JP2001172766A - Coated sliding member - Google Patents

Coated sliding member

Info

Publication number
JP2001172766A
JP2001172766A JP35685699A JP35685699A JP2001172766A JP 2001172766 A JP2001172766 A JP 2001172766A JP 35685699 A JP35685699 A JP 35685699A JP 35685699 A JP35685699 A JP 35685699A JP 2001172766 A JP2001172766 A JP 2001172766A
Authority
JP
Japan
Prior art keywords
film
sliding member
diamond
coated sliding
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35685699A
Other languages
Japanese (ja)
Other versions
JP4359979B2 (en
Inventor
Kazuhiko Oda
一彦 織田
Yoshinori Irie
美紀 入江
Hisanori Ohara
久典 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35685699A priority Critical patent/JP4359979B2/en
Publication of JP2001172766A publication Critical patent/JP2001172766A/en
Application granted granted Critical
Publication of JP4359979B2 publication Critical patent/JP4359979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the surface of a diamond film deposited by vapor phase synthesis is extremely rough and becomes increasingly hostile to mating materials as well as in friction coefficient, although diamond is minimal in friction coefficient if it is smooth, and to attain sliding characteristics of decreased friction coefficient and decreased attacks on mating materials when a diamond coated surface is rough. SOLUTION: The member is a sliding member coated with film, in which an upper-layer film composed of a carbon film, a metal film, or a compound film of 20 to 2,000 Knoop hardness is laminated on a lower-layer film which is composed of a diamond film or a film containing >=30 vol.% diamond microcrystals and has >8,000 Vickers hardness or Knoop hardness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面コーティング
を施した機械部品などの摺動部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member such as a machine part having a surface coating.

【0002】[0002]

【従来の技術】現在工業製品に使用されている摺動部材
には、鋼やセラミックス材料など各種材料が使用されて
いる。そして、その多くには、焼付や摩擦抵抗を低減さ
せるための各種試みがなされており、例えば、潤滑剤の
使用、摺動面の形状や粗さの最適化、硬化処理、摺動面
への被覆処理等が挙げられる。
2. Description of the Related Art Various materials such as steel and ceramic materials are used for sliding members currently used in industrial products. In many of them, various attempts have been made to reduce seizure and frictional resistance. For example, use of a lubricant, optimization of the shape and roughness of a sliding surface, hardening treatment, Coating treatment and the like.

【0003】摺動面の被覆処理に関しては、クロム処理
めっき処理、リン酸塩皮膜処理などが古くから適用され
ているが、最近では、二硫化モリブデン処理や窒化クロ
ム処理、窒化チタン処理などが注目を浴びている。これ
らの例として、特開平7−118832号公報、特開昭
61−87950号公報、特開平6−57407号公報
等が挙げられる。また、特開平6−227882号公報
に記載されるように、硬質炭素膜やを摺動部品に適用し
ようとする試みもなされており、特開平6−22788
2号公報記載の温水栓やハードディスクなどの磁気記憶
媒体など既にいくつかの製品で実用化がなされている。
[0003] With regard to the coating of the sliding surface, chromium plating, phosphate coating, and the like have been applied for a long time, but recently, molybdenum disulfide treatment, chromium nitride treatment, titanium nitride treatment, and the like have attracted attention. Is taking a bath. Examples thereof include JP-A-7-118832, JP-A-61-87950, and JP-A-6-57407. Also, as described in JP-A-6-227882, an attempt has been made to apply a hard carbon film or the like to a sliding component.
Some products have already been put to practical use, such as a magnetic water storage medium such as a hot water faucet or a hard disk described in Japanese Patent Publication No. 2 (JP-A) No.

【0004】[0004]

【発明が解決しようとする課題】近年、電気製品の小型
化、携帯化に伴う消費電力低減の動きが著しく、駆動部
の摩擦抵抗の低減が大きな課題となっている。また、自
動車など輸送用機器分野においても低燃費化が強く叫ば
れ、エンジンなどの摺動部における摩擦係数の低減への
要求も強い。一方で、高面圧の摺動や駆動部の長寿命化
など、耐摩耗性への関心も依然として高いものがある。
In recent years, there has been a remarkable movement in reducing power consumption due to miniaturization and portability of electric products, and reduction of frictional resistance of a driving unit has become a major issue. In the field of transportation equipment such as automobiles, there is a strong demand for lower fuel consumption, and there is a strong demand for a reduction in the coefficient of friction in sliding parts such as engines. On the other hand, there is still a high interest in abrasion resistance, such as sliding at a high surface pressure and extending the life of a driving unit.

【0005】そうしたなか、特開平6−294307号
公報に示されるように、摺動部にダイヤモンドを適用し
ようという試みもなされているが、ダイヤモンドは高額
であると同時に研磨コストが高く、機械部品として普及
することを阻んできた。
[0005] Under such circumstances, as disclosed in Japanese Patent Application Laid-Open No. 6-294307, attempts have been made to apply diamond to the sliding portion. However, diamond is expensive and the polishing cost is high. It has prevented its spread.

【0006】一般に、摩擦摩耗において表面粗さは耐摩
耗性や摩擦係数に大きく影響を及ぼす。平滑であれば極
めて低い摩擦係数を示すダイヤモンドも、例えば気相合
成で得られるダイヤモンド膜の表面は極めて粗く、摩擦
係数や相手攻撃性が大きくなるという問題を有してい
た。図1は、従来のダイヤモンド被膜を被覆した摺動部
材の摺動前(a)、及び摺動後(b)の断面概略図であ
る。本発明は、ダイヤモンドを被覆した表面が粗い場合
に、摩擦係数や相手攻撃性が小さい摺動特性を実現する
事を目的としている。
Generally, in frictional wear, the surface roughness greatly affects the wear resistance and the friction coefficient. Even a diamond having an extremely low friction coefficient if it is smooth, for example, has a problem in that the surface of a diamond film obtained by vapor phase synthesis is extremely rough, and the friction coefficient and the aggressiveness of the partner are increased. FIG. 1 is a schematic cross-sectional view of a conventional sliding member coated with a diamond coating before (a) and after (b) sliding. An object of the present invention is to realize a sliding characteristic with a small friction coefficient and low aggressiveness when a diamond-coated surface is rough.

【0007】[0007]

【課題を解決するための手段】本発明では、ダイヤモン
ド、あるいはダイヤモンド微結晶を含む被膜を被覆した
部材の摩擦係数を低減するべく、次のものを提案する。
The present invention proposes the following to reduce the coefficient of friction of a member coated with a coating containing diamond or diamond microcrystals.

【0008】被膜が被覆された摺動部材において、ビッ
カース硬度8000より大きいダイヤモンド被膜、また
はダイヤモンド微結晶を30体積%以上含有する下層被
膜を形成しさらに、この下層被膜上にヌープ硬度が20
以上2000以下である炭素膜または金属膜または化合
物膜からなる上層被膜が積層されていることを特徴とす
る被覆摺動部材である。
In the slide member coated with the coating, a diamond coating having a Vickers hardness of more than 8000 or an undercoat containing 30% by volume or more of diamond crystallites is formed, and a Knoop hardness of 20 is formed on the undercoat.
A coated sliding member characterized in that an upper layer film made of a carbon film, a metal film, or a compound film having a thickness of 2000 or more is laminated.

【0009】ダイヤモンド被膜、あるいはダイヤモンド
微結晶を30体積%以上含有する被膜は、一般に耐摩耗
性が優れ、また摩擦係数も低い。ダイヤモンド微結晶を
含有する割合が30体積%より小さい被膜は、8000
以下の硬度となりやすく硬度が小さいために耐摩耗性が
劣り、摩擦係数も高くなる。一方、ダイヤモンド被膜、
あるいはダイヤモンド微結晶を30体積%以上含有する
被膜であっても、基材が粗かったり、被膜そのものが粗
い場合には、摩擦係数と相手攻撃性が大きくなる。これ
を防ぐため、この上層に、ヌープ硬度が20以上200
0以下の炭素膜または金属膜または化合物膜を積層する
こととした。
A diamond film or a film containing 30% by volume or more of diamond microcrystals generally has excellent wear resistance and low friction coefficient. Coatings containing less than 30% by volume of diamond microcrystals are 8000
Since the hardness tends to be lower than the above, the wear resistance is inferior because the hardness is low, and the coefficient of friction is also high. Meanwhile, diamond coating,
Alternatively, even if the coating contains diamond microcrystals in an amount of 30% by volume or more, when the substrate is rough or the coating itself is rough, the friction coefficient and the aggressiveness to the opponent increase. To prevent this, the upper layer has a Knoop hardness of 20 or more and 200 or more.
Zero or less carbon films, metal films, or compound films are stacked.

【0010】図2に本発明による摺動部材の、摺動前
(a)、及び摺動後(b)の断面概略図を示す。炭素膜
または金属膜または化合物膜の上層被膜は、摺動の初期
に凸の部分から磨耗され、短時間で凸部が平滑になる。
凸部が平坦化するに伴い、下層被膜が部分的に表層に現
れる。上層被膜は、硬度が高い下層被膜よりやや凹とな
り、相手材と固体接触するのは逆にやや凸となり残った
下層被膜の部分が主となる。全体的には表面は平滑にな
るため、相手攻撃性は小さく、固体接触するダイヤモン
ドの効果で摩擦係数は小さくなる。
FIG. 2 is a schematic sectional view of a sliding member according to the present invention before (a) and after (b) sliding. The upper layer coating of the carbon film, the metal film or the compound film is worn from the convex portion at the beginning of sliding, and the convex portion becomes smooth in a short time.
As the protrusions are flattened, the lower layer film partially appears on the surface layer. The upper layer film is slightly concave than the lower layer film having a high hardness, and the portion of the lower layer film which remains slightly convex when it comes into solid contact with the counterpart material is mainly formed. As a whole, the surface becomes smooth, so that the opposing aggressiveness is small and the coefficient of friction is reduced due to the effect of diamond in solid contact.

【0011】炭素膜、金属膜または化合物膜の上層被膜
のヌープ硬度は、2000より大きいとでは硬すぎて摺
動による平滑化に時間がかかり好ましくない。ヌープ硬
度が20より小さい場合には、柔らかすぎて簡単に除去
されてしまう。
If the Knoop hardness of the upper layer film of the carbon film, the metal film or the compound film is more than 2,000, it is too hard, and it takes a long time for smoothing by sliding. If the Knoop hardness is less than 20, it is too soft and easily removed.

【0012】膜のヌープ硬度、ビッカース硬度は、あら
かじめ単層で得られた膜の硬さで成膜条件を設定するの
が一般的である。積層した後のそれぞれの膜の硬さを測
定するには、膜表面を斜めに研磨するかまたはボール膜
厚計による研磨を行なうことで、各層のヌープ硬度を測
定することが出来る。また、下層被膜のダイヤモンド微
結晶の割合は、透過型電子顕微鏡による画像から求める
ことが出来る。
The Knoop hardness and the Vickers hardness of the film are generally set in advance by using the hardness of the film obtained as a single layer. In order to measure the hardness of each film after lamination, the Knoop hardness of each layer can be measured by polishing the surface of the film obliquely or by using a ball thickness gauge. The ratio of the diamond microcrystals in the lower layer coating can be determined from an image obtained by a transmission electron microscope.

【0013】上層被膜に適用される材料は、炭素、アル
ミニウム、シリコン、チタン、クロム、鉄、ニッケル、
亜鉛、モリブデン、銀、タングステン、金、二硫化モリ
ブデン等の硫化物、ホウ化チタン等のホウ化物、リン酸
マンガンなおのリン酸塩、炭化チタン、窒化チタン、炭
窒化チタン、窒化チタンアルミニウム、窒化クロムなど
の炭化物、窒化物、炭窒化物のいずれか1種類以上を用
いることが好ましい。
The material applied to the upper coating is carbon, aluminum, silicon, titanium, chromium, iron, nickel,
Sulfides such as zinc, molybdenum, silver, tungsten, gold and molybdenum disulfide, borides such as titanium boride, manganese phosphate phosphate, titanium carbide, titanium nitride, titanium carbonitride, titanium aluminum nitride, nitrided It is preferable to use one or more of carbides such as chromium, nitrides, and carbonitrides.

【0014】さらに好ましくは、上層被膜のヌープ硬度
が1000以上2000以下の硬質炭素膜である場合で
ある。硬質炭素膜そのものが優れた摺動性を有するから
である。ここで、硬質炭素膜の硬さが、ヌープ硬度の値
が2000より大きいと、前述のように硬すぎて摺動に
よる平滑化に時間がかかり好ましくない。ヌープ硬度が
1000より小さくても十分に効果があるが、耐摩耗性
において特に好ましい領域がヌープ硬度1000以上で
ある。
More preferably, the upper layer film is a hard carbon film having a Knoop hardness of 1000 or more and 2000 or less. This is because the hard carbon film itself has excellent slidability. Here, if the hardness of the hard carbon film is greater than 2000, the Knoop hardness is too hard as described above, and it takes time for smoothing by sliding, which is not preferable. Although the Knoop hardness is sufficiently effective even if it is smaller than 1000, a particularly preferable region in the wear resistance is the Knoop hardness of 1000 or more.

【0015】膜厚に関しては、上層被膜の炭素膜、金属
膜または化合物膜は、一般に0.1μm以上2.0μm
以下であることが好ましい。0.1μmより小さい膜厚
では薄すぎるので凸部の平滑化の機能を十分に果たせな
く、2.0μmより大きいと被覆処理のコストが大きく
なるためである。
Regarding the film thickness, the carbon film, metal film or compound film of the upper layer film is generally from 0.1 μm to 2.0 μm.
The following is preferred. If the thickness is less than 0.1 μm, the function of smoothing the projections cannot be sufficiently performed because the thickness is too small. If the thickness is more than 2.0 μm, the cost of the coating process increases.

【0016】さらに望ましくは、上層被膜の炭素膜、金
属膜または化合物膜の膜厚は、上層被膜の平均表面粗さ
Ra以上であり上層被膜の最大表面粗さRmax以下が
好ましい。ここで、厳密には平均表面粗さRaと最大表
面粗さRmaxは、上層被膜を被覆する前の下層被膜の
表面粗さで規定してもよいが、上層被膜を炭素膜または
金属膜または化合物膜を被覆した後の粗さで規定しても
大きくは変わらない。上層被膜の膜厚が、上層被膜の平
均表面粗さRaより小さい場合、薄すぎて凸部の平滑化
の機能を十分に果たせなく、上層被膜の最大表面粗さR
maxより大きい場合、摺動特性に優れた下層被膜のダ
イヤモンドの効果が現れにくいためである。
More preferably, the thickness of the carbon film, metal film or compound film of the upper layer coating is not less than the average surface roughness Ra of the upper layer coating and not more than the maximum surface roughness Rmax of the upper layer coating. Here, strictly speaking, the average surface roughness Ra and the maximum surface roughness Rmax may be defined by the surface roughness of the lower film before coating the upper film, but the upper film is formed of a carbon film, a metal film, or a compound. Even if it is defined by the roughness after coating the film, it does not change much. When the film thickness of the upper layer coating is smaller than the average surface roughness Ra of the upper layer coating, it is too thin to sufficiently perform the function of smoothing the convex portions, and the maximum surface roughness R of the upper layer coating is reduced.
If it is larger than max, the effect of the diamond of the lower layer coating having excellent sliding characteristics is hardly exhibited.

【0017】また、ダイヤモンド被膜またはダイヤモン
ド微結晶を30体積%以上含有する下層被膜の厚さは、
任意の厚さが適用できるが、好ましくは0.5μm以上
3μm以下であることが望ましい。膜厚が3μmを越え
ると、表面粗さが大きくなり摺動部材として不利になる
ことと、製造コストが高くなることがあげられる。膜厚
が0.5μmより小さくなると、ダイヤモンド結晶が島
状にばらばらに離れた状態となりやすく、膜として母材
全体を覆うことが困難になることがあるためである。た
だし、この範囲より下層被膜が厚い場合でも、あるいは
薄い場合でも、十分に効果は認められる。
The thickness of the diamond film or the lower film containing 30% by volume or more of diamond microcrystals is as follows:
Although any thickness can be applied, it is preferable that the thickness be 0.5 μm or more and 3 μm or less. When the film thickness exceeds 3 μm, the surface roughness is increased, which is disadvantageous as a sliding member, and the manufacturing cost is increased. If the film thickness is smaller than 0.5 μm, the diamond crystals are likely to be separated from each other like islands, and it may be difficult to cover the entire base material as a film. However, even if the lower layer coating is thicker or thinner than this range, a sufficient effect is recognized.

【0018】上層被膜の表面粗さは、平均表面粗さRa
が0.005μm以上0.3μm以下であるものが最適
である。この表面粗さは、下層被膜を被覆した段階の粗
さでもよいが、上層の炭素膜または金属膜または化合物
膜を被覆した後の粗さで規定しても大きくは変わらな
い。上層被膜の平均表面粗さRaが下限の0.005μ
mよりも小さい場合、下層被膜の表面は十分に粗さが小
さいことになるので、平滑化を目的とする炭素膜または
金属膜または化合物膜を上層に被覆する必要は特にはな
い。上層被膜の平均表面粗さRaが0.3μmより大き
くても、本発明による下層被膜、上層被膜を被覆する
と、摩耗や摩擦係数を小さくする効果は十分ある。しか
し、あらかじめ基材の粗さを十分に小さくするなどし
て、できるかぎり平均表面粗さRaを0.3μm以下に
した方がより効果的である。さらに下層被膜を成膜後、
または上層被膜を成膜後に研磨工程を追加して面粗さを
小さくしてもよい。なお、より好ましくは、平均表面粗
さRaが0.1μm以下、さらに好ましくはRa0.0
5μm以下であることが好ましい。
The surface roughness of the upper film is determined by the average surface roughness Ra.
Is from 0.005 μm to 0.3 μm. The surface roughness may be the roughness at the stage of coating the lower layer coating, but does not change much even if it is defined by the roughness after coating the upper layer carbon film, metal film or compound film. The average surface roughness Ra of the upper layer coating is the lower limit of 0.005μ.
When it is smaller than m, the surface of the lower layer film has a sufficiently small roughness, so that it is not particularly necessary to cover the upper layer with a carbon film, a metal film or a compound film for the purpose of smoothing. Even if the average surface roughness Ra of the upper layer coating is larger than 0.3 μm, the effect of reducing the wear and the coefficient of friction is sufficient when the lower layer coating and the upper layer coating according to the present invention are coated. However, it is more effective to reduce the average surface roughness Ra to 0.3 μm or less as much as possible by previously reducing the roughness of the substrate sufficiently. After forming the lower layer coating,
Alternatively, a polishing step may be added after forming the upper layer coating to reduce the surface roughness. The average surface roughness Ra is more preferably 0.1 μm or less, and still more preferably Ra0.0
Preferably it is 5 μm or less.

【0019】これらの被覆摺動部材の母材としては、各
種鋼材、WC基の超硬合金、あるいは窒化硅素、炭化硅
素、酸化アルミ、酸化ジルコニウムなどをベースにした
各種セラミックス、アルミニウム合金、マグネシウム合
金等が最適である。
As the base material of these coated sliding members, various steel materials, WC-based cemented carbides, or various ceramics, aluminum alloys, magnesium alloys based on silicon nitride, silicon carbide, aluminum oxide, zirconium oxide, etc. Etc. are optimal.

【0020】膜の構造においては、下層被膜と母材との
間に、密着性の向上や、母材硬度の向上を目的として、
さらに中間層をもうけることもできる。その中間層の例
としては、シリコン、炭化ケイ素、炭化チタン、炭化タ
ングステンなどが挙げられる。
In the structure of the film, between the lower layer coating and the base material, for the purpose of improving the adhesion and the hardness of the base material,
Further, an intermediate layer can be provided. Examples of the intermediate layer include silicon, silicon carbide, titanium carbide, tungsten carbide and the like.

【0021】各種鋼材、アルミニウム合金、マグネシウ
ム合金等、基材上に直接にダイヤモンドの合成が困難な
場合は、別の基材にあらかじめ気相合成ダイヤを合成し
たのちにこのダイヤ膜を取りだし目的の基材上にろう付
けなどの手法で張り付けてもよい。
When it is difficult to synthesize diamond directly on a substrate such as various steel materials, aluminum alloys, magnesium alloys, etc., the diamond film is taken out after synthesizing a vapor phase synthetic diamond on another substrate in advance. It may be attached on the base material by a technique such as brazing.

【0022】使用環境としては、潤滑下、無潤滑下いず
れの環境下でも効果がある。しかし、摩擦係数の差が現
れにくい液体潤滑下でその効果は顕著となる。液体潤滑
下でも、自動車エンジンオイルや機械油をはじめとする
油潤滑下で使用すると摩擦損失の低減に極めて効果が大
きい。
The working environment is effective under both lubricated and non-lubricated environments. However, the effect is remarkable under liquid lubrication in which a difference in friction coefficient is unlikely to appear. Even under liquid lubrication, when used under oil lubrication such as automobile engine oil and machine oil, it is extremely effective in reducing friction loss.

【0023】具体的な適用対象としては、高速摺動、高
面圧摺動の部品に適する。紡績・繊維関係では、家庭用
・工業用ミシンの釜や、糸道、各種軸受などの高速摺動
部品に適する。OA機器では、レーザープリンタなどの
OA機器の高速軸受などが挙げられる。家電では、冷蔵
庫やエアコンのコンプレッサ部品などの高面圧部品に適
する。自動車などの輸送機器においては、エンジン部品
が挙げられ、ピストンやクランクシャフトなどの主運動
系、カムとロッカーアーム・シム・リフター、バルブと
バルブシートなどの動弁系部品、プランジャーなどの燃
料噴射ポンプ周辺部品などが挙げられる。また、本構造
の被膜は、摺動部品以外の分野、例えば、工具や金型等
にも適用しても、耐摩耗性等の点で十分に効果を発揮す
る。
It is suitable for high-speed sliding and high-surface-pressure sliding components. In the spinning and textile fields, it is suitable for high-speed sliding parts such as pots for household and industrial sewing machines, yarn paths, and various bearings. Examples of the OA device include a high-speed bearing of an OA device such as a laser printer. For home appliances, it is suitable for high surface pressure parts such as refrigerators and air conditioner compressor parts. In transportation equipment such as automobiles, there are engine parts, such as main motion systems such as pistons and crankshafts, cam and rocker arms, shim and lifters, valve train parts such as valves and valve seats, and fuel injection such as plungers. Pump peripheral parts and the like. Further, even when the coating of the present structure is applied to a field other than sliding parts, for example, a tool or a mold, the coating exhibits a sufficient effect in terms of wear resistance and the like.

【0024】ダイヤモンド被膜の下層被膜は、マイクロ
波プラズマCVD法、ECRプラズマCVD法、フィラ
メントCVD法、燃焼炎法などの気相合成法で得られる
ものが好ましい。また、ダイヤモンド微結晶を30体積
%以上含有する下層被膜も、マイクロ波プラズマCVD
法、ECRプラズマCVD法、フィラメントCVD法、
燃焼炎法などの気相合成法で得られるものが好ましく、
この場合、ダイヤモンド以外の部分は、非晶質の炭素や
グラファイトなどの相で形成される。
The lower layer film of the diamond film is preferably obtained by a gas phase synthesis method such as a microwave plasma CVD method, an ECR plasma CVD method, a filament CVD method, and a combustion flame method. In addition, the underlayer coating containing 30% by volume or more of diamond microcrystals was also obtained by microwave plasma CVD.
Method, ECR plasma CVD method, filament CVD method,
Those obtained by a gas phase synthesis method such as a combustion flame method are preferable,
In this case, the portion other than the diamond is formed of a phase such as amorphous carbon or graphite.

【0025】また、後者のダイヤモンド微結晶を30体
積%以上含有する被膜は、高圧合成法などによるダイヤ
モンド微粒を30体積%以上含有させた複合材料でもよ
く、複合化に用いるマトリクス材料としては、樹脂や金
属、セラミックス等が適用できる。基材上に直接にダイ
ヤモンドの合成が困難な場合は、別に合成したダイヤを
目的の基材上にろう付けなどの手法で張り付けてもよ
い。
Further, the latter film containing 30% by volume or more of diamond microcrystals may be a composite material containing 30% by volume or more of diamond fine particles by a high-pressure synthesis method or the like. And metals, ceramics and the like can be applied. When it is difficult to synthesize diamond directly on the base material, a separately synthesized diamond may be attached to the target base material by brazing or the like.

【0026】上層被膜が金属膜または化合物膜の場合
は、スパッタリング法、各種プラズマCVD法、イオン
プレーティング法、カソードアークイオンプレーティン
グ法、真空蒸着法、レーザーアブレーション法、イオン
ビームスパッタ法等の公知の方法で成膜することができ
る。
When the upper film is a metal film or a compound film, known methods such as sputtering, various plasma CVD, ion plating, cathode arc ion plating, vacuum deposition, laser ablation, ion beam sputtering, etc. The film can be formed by the method described above.

【0027】また上層被膜が炭素膜の場合、結晶質ダイ
ヤモンド薄膜の合成に適用されているマイクロ波プラズ
マCVD法、ECRプラズマCVD法、フィラメントC
VD法、燃焼炎法等のほかに、高周波や直流電圧、パル
ス直流電圧、ホロカソード、ホットカソードを適用した
アークなどの各種プラズマ源を用いたプラズマCVD
法、炭素または炭化水素イオンを用いるイオンビーム蒸
着法、固体炭素源からスパッタリングやアーク放電、レ
ーザー照射にて炭素を気化し基体上に成膜する手法等が
適用できる。なお、密着性の観点からは、下層被膜と上
層被膜の炭素膜、金属膜または化合物膜とを連続的に処
理することが望ましい。
When the upper film is a carbon film, microwave plasma CVD, ECR plasma CVD, filament C
In addition to VD method, combustion flame method, etc., plasma CVD using various plasma sources such as high frequency, DC voltage, pulse DC voltage, arc using a hollow cathode and hot cathode
For example, an ion beam evaporation method using carbon or hydrocarbon ions, a method of vaporizing carbon by sputtering, arc discharge, or laser irradiation from a solid carbon source and forming a film on a substrate can be applied. From the viewpoint of adhesion, it is desirable to continuously treat the carbon film, the metal film, or the compound film of the lower film and the upper film.

【0028】[0028]

【発明の実施の形態】本発明の具体的な実施の形態につ
いては実施例で示すが、本発明はこれらの実施例に限定
されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0029】[0029]

【実施例】(実施例1)フィラメントCVD法により、
超硬合金基材上にに膜厚2μmの気相合成ダイヤモンド
を析出させた。この気相合成ダイヤモンドのヌープ硬度
は8000より大きかった。この表面に表1に示す各種
成膜方法で各種被膜を形成した。また比較のため、上層
被膜を積層しない単層のダイヤモンド膜も作製した。
EXAMPLES (Example 1) By a filament CVD method,
A 2 μm-thick vapor-phase synthetic diamond was deposited on a cemented carbide substrate. The Knoop hardness of this vapor phase synthetic diamond was greater than 8000. Various films were formed on the surface by various film forming methods shown in Table 1. For comparison, a single-layer diamond film without an upper layer film was also prepared.

【0030】得られた積層被膜につき、ピン・オン・デ
ィスク法による摩擦摩耗試験を行なった。雰囲気は、軽
油中および機械油の滴下による潤滑とし、積層膜をディ
スク、相手材は先端曲率半径R3mmのSUJ2製ピ
ン、加重10N、回転速度500rpm(摺動速度10
0mm/sec)、回転回数1万回とした。1万回の摺
動試験終了時に摩擦係数を、摺動試験後に、相手材ピン
の磨耗痕の直径を測定した。結果を表2にまとめる。
The obtained laminated coating was subjected to a friction and wear test by a pin-on-disk method. The atmosphere was lubrication in light oil and by dropping of machine oil. The laminated film was a disk, the mating material was a SUJ2 pin with a tip curvature radius of R3 mm, a load of 10 N, a rotation speed of 500 rpm (sliding speed of 10 rpm).
0 mm / sec) and the number of rotations was 10,000 times. At the end of 10,000 sliding tests, the coefficient of friction was measured. After the sliding test, the diameter of the wear mark of the mating pin was measured. The results are summarized in Table 2.

【0031】表面が粗い単層のダイヤモンドは、摩擦係
数が低く、相手攻撃性が非常に高い。しかし、上層に各
種の被覆することで、摩擦係数は低下し、相手攻撃性が
低減する。しかし、硬度が3200の窒化チタンアルミ
ニウムを被覆したものは、大きな摩擦係数と相手攻撃性
を示した。
A single-layer diamond having a rough surface has a low coefficient of friction and a very high aggressiveness to a partner. However, by applying various coatings to the upper layer, the friction coefficient is reduced, and the opponent aggression is reduced. However, those coated with titanium aluminum nitride having a hardness of 3200 exhibited a large coefficient of friction and aggressiveness to the partner.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例2)マイクロ波プラズマCVD法
により、窒化硅素基材上に膜厚2μmのダイヤモンド微
結晶含有膜を析出させた。このダイヤモンド微結晶含有
膜のヌープ硬度は8000より大きかった。透過型電子
顕微鏡によりこの膜におけるダイヤモンド微結晶の割合
を測定した結果、40体積%がダイヤモンド微結晶であ
った。この下層被膜の表面に表3に示す各種硬度の硬質
炭素膜を形成した。
Example 2 A 2 μm-thick diamond microcrystal-containing film was deposited on a silicon nitride substrate by microwave plasma CVD. The Knoop hardness of this diamond microcrystal-containing film was greater than 8000. As a result of measuring the ratio of diamond microcrystals in this film by a transmission electron microscope, 40% by volume was diamond microcrystals. Hard carbon films having various hardnesses shown in Table 3 were formed on the surface of the lower layer coating.

【0035】得られた積層被膜につき、ピン・オン・デ
ィスク法による摩擦摩耗試験を行なった。雰囲気は、乾
式大気中およびエンジンオイル10W−40SHの滴下
による潤滑とし、実施例1と同じ方法で摺動試験を行な
った。比較のため、未コートの窒化硅素基材とダイヤモ
ンド被膜のみ処理した試験片についても試験を行なっ
た。結果を表4に示す。上層被膜に硬質炭素膜を積層す
ることで、摩擦係数と相手摩耗量が小さくなることがわ
かる。特に、上層の硬質炭素膜のヌープ硬度が、100
0以上2000以下でその傾向は顕著である。
The obtained laminated coating was subjected to a friction and wear test by a pin-on-disk method. The sliding test was performed in the same manner as in Example 1 by lubricating the atmosphere in a dry atmosphere and by dripping engine oil 10W-40SH. For comparison, a test was also performed on an uncoated silicon nitride substrate and a test piece treated only with a diamond coating. Table 4 shows the results. It can be seen that the lamination of the hard carbon film on the upper coating reduces the coefficient of friction and the amount of wear on the other side. In particular, the Knoop hardness of the upper hard carbon film is 100
At 0 or more and 2000 or less, the tendency is remarkable.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】(実施例3)ECRプラズマCVD法によ
り、超硬合金基材上に膜厚2μmの気相合成ダイヤモン
ドを析出させた。この気相合成ダイヤモンドのヌープ硬
度は8000より大きかった。この表面に表5に示す各
種膜厚の硬質炭素膜を形成した。
Example 3 A 2 μm-thick vapor-phase synthetic diamond was deposited on a cemented carbide substrate by ECR plasma CVD. The Knoop hardness of this vapor phase synthetic diamond was greater than 8000. Hard carbon films of various thicknesses shown in Table 5 were formed on this surface.

【0039】得られた積層被膜につき、ピン・オン・デ
ィスク法による摩擦摩耗試験を行なった。雰囲気は、乾
式大気中およびエンジンオイル10W−40SHの滴下
による潤滑とし、実施例1と同じ方法で摺動試験を行な
った。結果を表6に示す。上層の硬質炭素膜の膜厚が
0.1μ以上2μm以下で摩擦係数や相手攻撃性が小さ
いことがわかる。また特に、硬質炭素膜の膜厚が表面粗
さRa以上Rmax以下でその傾向は顕著になる。
The obtained multilayer coating was subjected to a friction and wear test by a pin-on-disk method. The sliding test was performed in the same manner as in Example 1 by lubricating the atmosphere in a dry atmosphere and by dripping engine oil 10W-40SH. Table 6 shows the results. It can be seen that when the thickness of the upper hard carbon film is 0.1 μm or more and 2 μm or less, the friction coefficient and the opponent aggressiveness are small. In particular, when the thickness of the hard carbon film is not less than the surface roughness Ra and not more than Rmax, the tendency becomes remarkable.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】(実施例4)マイクロ波プラズマCVD法
により、窒化硅素基材上に膜厚1.5μmの気相合成ダ
イヤモンドを析出させた。この気相合成ダイヤモンドの
ヌープ硬度は8000より大きかった。この表面に表7
に示す各種膜厚の二硫化モリブデン被膜を形成した。
Example 4 A 1.5 μm-thick vapor-phase synthetic diamond was deposited on a silicon nitride substrate by microwave plasma CVD. The Knoop hardness of this vapor phase synthetic diamond was greater than 8000. Table 7 on this surface
The molybdenum disulfide coatings of various film thicknesses shown in FIG.

【0043】得られた積層被膜につき、ピン・オン・デ
ィスク法による摩擦摩耗試験を行なった。雰囲気は、軽
油中およびエンジンオイル10W−40SHの滴下によ
る潤滑とし、実施例1と同じ方法で摺動試験を行なっ
た。結果を表8に示す。上層の二硫化モリブデン被膜の
膜厚が0.1μ以上2μm以下で摩擦係数や相手攻撃性
が小さいことがわかる。また特に、二硫化モリブデン被
膜の膜厚が表面粗さRa以上Rmax以下でその傾向は
顕著になる。
The obtained laminated coating was subjected to a friction and wear test by a pin-on-disk method. The atmosphere was lubricated in light oil and by dripping of engine oil 10W-40SH, and a sliding test was performed in the same manner as in Example 1. Table 8 shows the results. It can be seen that when the film thickness of the upper molybdenum disulfide film is 0.1 μm or more and 2 μm or less, the friction coefficient and the opponent aggressiveness are small. In particular, the tendency becomes remarkable when the film thickness of the molybdenum disulfide coating is from surface roughness Ra to Rmax.

【0044】[0044]

【表7】 [Table 7]

【0045】[0045]

【表8】 [Table 8]

【0046】(実施例5)フィラメントCVD法によ
り、炭化硅素基材上に表9に示す各種膜厚の気相合成ダ
イヤモンドを析出させた。この気相合成ダイヤモンドの
ヌープ硬度は8000より大きかった。この表面にヌー
プ硬度1500の硬質炭素膜を膜厚0.8μmの厚さで
積層した。また、膜厚4μmのダイヤモンド被膜を下層
に、上層硬質炭素膜を積層にしたものの一つは、硬質炭
素膜表面から研磨を行ない、表面粗さを小さくして試験
に供試した。
(Example 5) Vapor-phase synthetic diamond having various film thicknesses shown in Table 9 was deposited on a silicon carbide substrate by a filament CVD method. The Knoop hardness of this vapor phase synthetic diamond was greater than 8000. On this surface, a hard carbon film having a Knoop hardness of 1500 was laminated with a thickness of 0.8 μm. In addition, one of the laminates of a 4 μm-thick diamond film as a lower layer and an upper hard carbon film was polished from the surface of the hard carbon film to reduce the surface roughness and subjected to a test.

【0047】得られた積層被膜につき、ピン・オン・デ
ィスク法による摩擦摩耗試験を行なった。雰囲気は、乾
式大気中および機械油の滴下による潤滑とし、実施例1
と同じ方法で摺動試験を行なった。結果を表10に示
す。下層のダイヤモンド被膜の膜厚が0.5μ以上3μ
m以下で摩擦係数や相手攻撃性が小さいことがわかる。
また、下層のダイヤモンド膜の膜厚が厚くても、硬質炭
素膜を積層後に研磨することで、摩擦係数と相手攻撃性
の低減が見られた。この研磨はダイヤモンド被膜そのも
のを研磨するより容易であった。
The resulting laminated coating was subjected to a friction and wear test by the pin-on-disk method. The atmosphere was lubricated in dry atmosphere and by dripping of machine oil.
A sliding test was performed in the same manner as described above. Table 10 shows the results. The thickness of the lower diamond coating is 0.5μ or more and 3μ
It can be seen that the coefficient of friction and the opponent's aggressiveness are small at m or less.
In addition, even when the thickness of the lower diamond film was large, a reduction in the coefficient of friction and aggressiveness to the opponent were observed by polishing after laminating the hard carbon film. This polishing was easier than polishing the diamond coating itself.

【0048】[0048]

【表9】 [Table 9]

【0049】[0049]

【表10】 [Table 10]

【0050】(実施例6)窒化硅素製のプランジャーの
外周に実施例2−11の処理を施した。実施例2−11
の処理を施したプランジャーは、コーティング処理の無
いものに対して80倍の時間、安定して作動した。
Example 6 The outer periphery of a silicon nitride plunger was subjected to the treatment of Example 2-11. Example 2-11
The plunger subjected to the above treatment was operated stably for 80 times as long as the plunger without the coating treatment.

【0051】(実施例7)窒化ケイ素製の軸の外周に、
実施例4−20の被覆を施した。これを窒化ケイ素製の
軸受と組み合わせて使用したところ、実施例4−20の
軸と摺動した軸受は、未コートの軸と摺動した軸受の1
/20の摩耗量であった。
(Embodiment 7) On the outer periphery of a shaft made of silicon nitride,
The coating of Example 4-20 was applied. When this was used in combination with a bearing made of silicon nitride, the bearing slid on the shaft of Example 4-20 was one of the bearings slid on the uncoated shaft.
/ 20.

【0052】(実施例8)ステンレス製の加工品が搬送
される超硬合金製の搬送用レールに、実施例1−7と比
較例1−2の被覆処理を施した。これらを実際に使用し
たところ、未コートのレールでは滑りが悪く製品の流れ
が滞るという問題が発生した。比較例1−2の処理のレ
ールでは、製品の流れはスムーズであったが、製品のす
べり面の傷による不良率が20%を超えた。一方実施例
1−7のレールでは、製品の流れはスムーズで、傷の発
生も極めて少なく傷による不良率は1%以下であった。
Example 8 A coating rail of Example 1-7 and Comparative Example 1-2 was applied to a cemented carbide transfer rail on which a stainless steel workpiece was transferred. When these were actually used, there was a problem in that uncoated rails slipped poorly and the product flow was interrupted. In the rail of Comparative Example 1-2, the product flow was smooth, but the defect rate due to scratches on the slip surface of the product exceeded 20%. On the other hand, in the rail of Example 1-7, the flow of the product was smooth, the generation of scratches was extremely small, and the defect rate due to the scratches was 1% or less.

【0053】(実施例9)続いて、エンジンの動弁系の
窒化硅素製のシムのカムとの摺動面に、実施例2−12
と比較例2−6の処理を施した。実施例2−12の処理
のリフターは、未コートのリフターに対し5割、比較例
2−6の処理のリフターに対し4割の摩擦抵抗の低減が
確認された。また、カムの磨耗に関しても、未コートの
約半分、比較例2−6の5分の1であった。
(Embodiment 9) Next, the sliding surface of the valve operating system of the engine with the cam of the silicon nitride shim was used.
And Comparative Example 2-6. It was confirmed that the frictional resistance of the lifter of Example 2-12 was reduced by 50% with respect to the uncoated lifter and that of the lifter of Comparative Example 2-6 with 40%. Also, the abrasion of the cam was about half of that of the uncoated film, and was one fifth of that of Comparative Example 2-6.

【0054】[0054]

【発明の効果】本発明によれば、摺動部材においてダイ
ヤモンド被膜あるいはダイヤモンド微結晶を30体積%
以上含有する被膜を被覆した表面が粗い場合に、摩擦係
数や相手攻撃性が小さい摺動特性を実現することができ
有用である。
According to the present invention, 30% by volume of a diamond coating or diamond microcrystals is contained in a sliding member.
When the surface covered with the film containing the above is rough, it is useful because it can realize sliding characteristics with a small coefficient of friction and low aggressiveness to a partner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイヤモンド被膜のみを被覆した摺動部材の摺
動前及び摺動後の断面概略図である。
FIG. 1 is a schematic sectional view of a sliding member coated only with a diamond film before and after sliding.

【図2】本発明による摺動部材の摺動前及び摺動後の断
面概略図である。
FIG. 2 is a schematic sectional view of a sliding member according to the present invention before and after sliding.

【符号の説明】[Explanation of symbols]

1 基材 2 ダイヤモンド被膜 3 相手材 4 下層被膜 5 上層被膜 Reference Signs List 1 base material 2 diamond coating 3 partner material 4 lower coating 5 upper coating

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 33/24 F16C 33/24 Z (72)発明者 大原 久典 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 3J011 DA02 QA04 SB02 SB04 SB05 SB12 SB13 SB15 SB20 SD01 SE02 SE10 4K029 AA02 AA04 BA01 BA03 BA04 BA05 BA07 BA09 BA11 BA12 BA17 BA18 BA34 BA35 BA41 BA51 BA53 BA54 BA55 BA58 BB00 BB02 BB07 BC02 BD04 CA03 CA05 EA01 4K030 BA01 BA02 BA06 BA07 BA12 BA14 BA18 BA20 BA21 BA28 BA29 BA35 BA36 BA38 BA41 BA49 BA50 BB13 CA02 CA03 CA05 FA01 FA02 FA10 LA23──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16C 33/24 F16C 33/24 Z (72) Inventor Hisanori Ohara 1-1-1 Kunyokita, Itami City, Hyogo No. Sumitomo Electric Industries, Ltd. Itami Works F term (reference) 3J011 DA02 QA04 SB02 SB04 SB05 SB12 SB13 SB15 SB20 SD01 SE02 SE10 4K029 AA02 AA04 BA01 BA03 BA04 BA05 BA07 BA09 BA11 BA12 BA17 BA18 BA34 BA35 BA41 BA51 BA53 BA54 BA55 BA58 BB00 BB07 BC02 BD04 CA03 CA05 EA01 4K030 BA01 BA02 BA06 BA07 BA12 BA14 BA18 BA20 BA21 BA28 BA29 BA35 BA36 BA38 BA41 BA49 BA50 BB13 CA02 CA03 CA05 FA01 FA02 FA10 LA23

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 被膜が被覆された摺動部材において、ビ
ッカース硬度またはヌープ硬度が8000より大きい、
ダイヤモンド被膜またはダイヤモンド微結晶を30体積
%以上含有する被膜からなる下層被膜上に、ヌープ硬度
が20以上2000以下の炭素膜、金属膜または化合物
膜からなる上層被膜が積層されていることを特徴とする
被覆摺動部材。
1. A sliding member coated with a coating, wherein Vickers hardness or Knoop hardness is greater than 8000.
An upper film made of a carbon film, a metal film or a compound film having a Knoop hardness of 20 or more and 2,000 or less is laminated on a lower film made of a diamond film or a film containing 30% by volume or more of diamond microcrystals. Coated sliding member.
【請求項2】 前記上層被膜が、炭素、アルミニウム、
シリコン、チタン、クロム、鉄、ニッケル、亜鉛、モリ
ブデン、銀、タングステン、金、硫化物、ホウ化物、リ
ン酸塩、炭化物、窒化物、炭窒化物のいずれか1種類以
上からなることを特徴とする請求項1に記載の被覆摺動
部材。
2. The method according to claim 1, wherein the upper film is made of carbon, aluminum,
It consists of at least one of silicon, titanium, chromium, iron, nickel, zinc, molybdenum, silver, tungsten, gold, sulfide, boride, phosphate, carbide, nitride, and carbonitride. The coated sliding member according to claim 1.
【請求項3】 前記上層被膜が、1000以上2000
以下のヌープ硬度の硬質炭素膜であることを特徴とする
請求項1〜請求項2のいずれかに記載の被覆摺動部材。
3. The method according to claim 1, wherein the upper layer coating has a thickness of 1,000 to 2,000.
The coated sliding member according to claim 1, wherein the coated sliding member is a hard carbon film having the following Knoop hardness.
【請求項4】 前記上層被膜の膜厚が、0.1μm以上
2.0μm以下であることを特徴とする請求項1〜請求
項3のいずれかに記載の被覆摺動部材。
4. The coated sliding member according to claim 1, wherein the thickness of the upper layer coating is 0.1 μm or more and 2.0 μm or less.
【請求項5】 前記上層被膜の膜厚が、上層被膜の平均
表面粗さRa以上であり上層被膜の最大表面粗さRma
x以下であることを特徴とする請求項1〜請求項4のい
ずれかに記載の被覆摺動部材。
5. The method according to claim 1, wherein a thickness of the upper layer coating is not less than an average surface roughness Ra of the upper layer coating, and a maximum surface roughness Rma of the upper layer coating.
The coated sliding member according to any one of claims 1 to 4, wherein x is equal to or less than x.
【請求項6】 前記下層被膜の厚さが0.5μm以上3
μm以下であることを特徴とする請求項1〜請求項5の
いずれかに記載の被覆摺動部材。
6. The method according to claim 1, wherein the thickness of the lower film is 0.5 μm or more.
The coated sliding member according to any one of claims 1 to 5, wherein the thickness is not more than μm.
【請求項7】 前記上層被膜の平均表面粗さRaが0.
005μm以上0.3μm以下であることを特徴とする
請求項1〜請求項6のいずれかに記載の被覆摺動部材。
7. An upper layer film having an average surface roughness Ra of 0.
The coated sliding member according to any one of claims 1 to 6, wherein the thickness is not less than 005 µm and not more than 0.3 µm.
【請求項8】 被覆される母材が、鉄系合金、超硬合
金、セラミックス、アルミニウム合金、マグネシウム合
金のうちのいずれかであることを特徴とする請求項1〜
請求項7のいずれかに記載の被覆摺動部材。
8. The base material to be coated is any one of an iron-based alloy, a cemented carbide, a ceramic, an aluminum alloy, and a magnesium alloy.
A coated sliding member according to claim 7.
【請求項9】 潤滑下で使用されることを特徴とする請
求項1〜請求項8のいずれかに記載の被覆摺動部材。
9. The coated sliding member according to claim 1, wherein the coated sliding member is used under lubrication.
【請求項10】 エンジンオイル潤滑下で使用されるこ
とを特徴とする請求項1〜請求項10のいずれかに記載
の被覆摺動部材。
10. The coated sliding member according to claim 1, wherein the coated sliding member is used under engine oil lubrication.
【請求項11】 前記下層被膜が、マイクロ波プラズマ
CVD法、ECRプラズマCVD法、フィラメントCV
D法、燃焼炎法で合成されることを特徴とする請求項1
〜請求項10のいずれかに記載の被覆摺動部材。
11. The method according to claim 1, wherein the undercoating film is a microwave plasma CVD method, an ECR plasma CVD method, or a filament CV.
2. The composition according to claim 1, wherein the compound is synthesized by a D method or a combustion flame method.
The coated sliding member according to claim 10.
【請求項12】 前記上層被膜が、マイクロ波プラズマ
CVD法、ECRプラズマCVD法、フィラメントCV
D法、燃焼炎法、スパッタリング法、プラズマCVD
法、イオンプレーティング法、カソードアークイオンプ
レーティング法のいずれかで合成されることを特徴とす
る請求項1〜請求項11のいずれかに記載の被覆摺動部
材。
12. The method according to claim 1, wherein the upper layer film is formed by microwave plasma CVD, ECR plasma CVD, filament CV.
D method, combustion flame method, sputtering method, plasma CVD
The coated sliding member according to any one of claims 1 to 11, wherein the coated sliding member is synthesized by any one of a method, an ion plating method, and a cathode arc ion plating method.
JP35685699A 1999-12-16 1999-12-16 Covered sliding member Expired - Fee Related JP4359979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35685699A JP4359979B2 (en) 1999-12-16 1999-12-16 Covered sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35685699A JP4359979B2 (en) 1999-12-16 1999-12-16 Covered sliding member

Publications (2)

Publication Number Publication Date
JP2001172766A true JP2001172766A (en) 2001-06-26
JP4359979B2 JP4359979B2 (en) 2009-11-11

Family

ID=18451115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35685699A Expired - Fee Related JP4359979B2 (en) 1999-12-16 1999-12-16 Covered sliding member

Country Status (1)

Country Link
JP (1) JP4359979B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003039826A1 (en) * 2001-11-05 2003-05-15 Ngk Insulators, Ltd Honeycomb extrusion molding mouth ring
EP1411145A1 (en) * 2002-10-16 2004-04-21 Nissan Motor Company, Limited Sliding structure for automotive engine
JP2005054609A (en) * 2003-08-07 2005-03-03 Nissan Motor Co Ltd High pressure fuel pump
JP2006039392A (en) * 2004-07-29 2006-02-09 Sumitomo Electric Ind Ltd Thin film and diffraction optical element and their manufacturing methods
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
JP2008031534A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
WO2011125657A1 (en) * 2010-03-31 2011-10-13 日立ツール株式会社 Process for production of coated article having excellent corrosion resistance, and coated article
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
US8206035B2 (en) 2003-08-06 2012-06-26 Nissan Motor Co., Ltd. Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
US8575076B2 (en) 2003-08-08 2013-11-05 Nissan Motor Co., Ltd. Sliding member and production process thereof
WO2014074574A1 (en) * 2012-11-06 2014-05-15 Raytheon Company Friction and wear reduction in cryogenic mechanisms and other systems
US9228645B2 (en) 2013-06-11 2016-01-05 Raytheon Company Vacuum stable mechanism drive arm
US9285653B2 (en) 2012-11-06 2016-03-15 Raytheon Company Variable aperture mechanism for creating different aperture sizes in cameras and other imaging devices
US9323130B2 (en) 2013-06-11 2016-04-26 Raytheon Company Thermal control in variable aperture mechanism for cryogenic environment
US9448462B2 (en) 2013-06-11 2016-09-20 Raytheon Company Pulse width modulation control of solenoid motor
KR20190091803A (en) * 2018-01-29 2019-08-07 한국생산기술연구원 Manufacturing Method of Lubricated Parts Thin Film Using Organic Metal Precursor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340984A (en) * 1989-07-07 1991-02-21 Toyota Central Res & Dev Lab Inc Sliding member
JPH03260362A (en) * 1990-03-05 1991-11-20 Jerome H Lemelson Internal-combustion engine and its factors
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340984A (en) * 1989-07-07 1991-02-21 Toyota Central Res & Dev Lab Inc Sliding member
JPH03260362A (en) * 1990-03-05 1991-11-20 Jerome H Lemelson Internal-combustion engine and its factors
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273655B2 (en) 1999-04-09 2007-09-25 Shojiro Miyake Slidably movable member and method of producing same
US7094047B2 (en) 2001-11-05 2006-08-22 Ngk Insulators, Ltd. Die for extrusion molding of honeycomb
WO2003039826A1 (en) * 2001-11-05 2003-05-15 Ngk Insulators, Ltd Honeycomb extrusion molding mouth ring
EP1411145A1 (en) * 2002-10-16 2004-04-21 Nissan Motor Company, Limited Sliding structure for automotive engine
US6886521B2 (en) 2002-10-16 2005-05-03 Nissan Motor Co., Ltd. Sliding structure for automotive engine
US8152377B2 (en) 2002-11-06 2012-04-10 Nissan Motor Co., Ltd. Low-friction sliding mechanism
US8096205B2 (en) 2003-07-31 2012-01-17 Nissan Motor Co., Ltd. Gear
US8206035B2 (en) 2003-08-06 2012-06-26 Nissan Motor Co., Ltd. Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
JP2005054609A (en) * 2003-08-07 2005-03-03 Nissan Motor Co Ltd High pressure fuel pump
US8575076B2 (en) 2003-08-08 2013-11-05 Nissan Motor Co., Ltd. Sliding member and production process thereof
US7771821B2 (en) 2003-08-21 2010-08-10 Nissan Motor Co., Ltd. Low-friction sliding member and low-friction sliding mechanism using same
US7650976B2 (en) 2003-08-22 2010-01-26 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
JP2006039392A (en) * 2004-07-29 2006-02-09 Sumitomo Electric Ind Ltd Thin film and diffraction optical element and their manufacturing methods
JP2008031534A (en) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd Hard carbon film
CN102803546A (en) * 2010-03-31 2012-11-28 日立工具股份有限公司 Process for production of coated article having excellent corrosion resistance, and coated article
WO2011125657A1 (en) * 2010-03-31 2011-10-13 日立ツール株式会社 Process for production of coated article having excellent corrosion resistance, and coated article
KR101455142B1 (en) * 2010-03-31 2014-10-27 히타치 긴조쿠 가부시키가이샤 Process for production of coated article having excellent corrosion resistance, and coated article
WO2014074574A1 (en) * 2012-11-06 2014-05-15 Raytheon Company Friction and wear reduction in cryogenic mechanisms and other systems
US9285653B2 (en) 2012-11-06 2016-03-15 Raytheon Company Variable aperture mechanism for creating different aperture sizes in cameras and other imaging devices
US9228645B2 (en) 2013-06-11 2016-01-05 Raytheon Company Vacuum stable mechanism drive arm
US9323130B2 (en) 2013-06-11 2016-04-26 Raytheon Company Thermal control in variable aperture mechanism for cryogenic environment
US9448462B2 (en) 2013-06-11 2016-09-20 Raytheon Company Pulse width modulation control of solenoid motor
US9488254B2 (en) 2013-06-11 2016-11-08 Raytheon Company Method for embedded feedback control for bi-stable actuators
KR20190091803A (en) * 2018-01-29 2019-08-07 한국생산기술연구원 Manufacturing Method of Lubricated Parts Thin Film Using Organic Metal Precursor
KR102133773B1 (en) * 2018-01-29 2020-07-15 한국생산기술연구원 Manufacturing Method of Lubricated Parts Thin Film Using Organic Metal Precursor

Also Published As

Publication number Publication date
JP4359979B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP2001172766A (en) Coated sliding member
KR101420142B1 (en) Sliding element, in particular piston ring, having a coating, and process for the production of a sliding element
KR101201653B1 (en) Wear-resistant coating and method for producing the same
US7255084B2 (en) Piston with a skirt having a low coefficient of friction
JP5669390B2 (en) Abrasion resistant coating and manufacturing method therefor
JP4007440B2 (en) Hard carbon film sliding member
US7824733B2 (en) Wear-resistant coating and process for producing it
JP2000120870A (en) Piston ring
US20080044646A1 (en) Wear-resistant coating and process for producing it
JP2001064005A (en) Coated sliding member and its production
JP2008081522A (en) Slide member
JP5101879B2 (en) Sliding structure
JP5182130B2 (en) Sliding member in compressor
CN102092166A (en) Multilayered gradient diamond like nano composite coating for aluminum alloy piston and preparation method thereof
US20130199331A1 (en) Machine element
US20150011444A1 (en) Coating with enhanced sliding properties
JP2008286354A (en) Sliding member
Johnston et al. Effect of DLC coatings on wear in automotive applications
EP1837418A1 (en) High-hardness carbon coating
US6478933B1 (en) Method for creating surface oil reservoirs on coated iron
JP4374160B2 (en) piston ring
JP2006207691A (en) Hard film coated sliding member
KR20160145084A (en) Tribological system with reduced counter body wear
JP2006257916A (en) Combinational sliding member
JP2004176848A (en) Combination of amorphous hard carbon coated member and ferrous member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees