JP2001169581A - Motor control device - Google Patents

Motor control device

Info

Publication number
JP2001169581A
JP2001169581A JP34370199A JP34370199A JP2001169581A JP 2001169581 A JP2001169581 A JP 2001169581A JP 34370199 A JP34370199 A JP 34370199A JP 34370199 A JP34370199 A JP 34370199A JP 2001169581 A JP2001169581 A JP 2001169581A
Authority
JP
Japan
Prior art keywords
speed
disturbance
model
inertia
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34370199A
Other languages
Japanese (ja)
Other versions
JP3391378B2 (en
Inventor
Kazuhiro Tsuruta
和寛 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP34370199A priority Critical patent/JP3391378B2/en
Publication of JP2001169581A publication Critical patent/JP2001169581A/en
Application granted granted Critical
Publication of JP3391378B2 publication Critical patent/JP3391378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase inertia identification accuracy when speed is close to zero if a speed command is small. SOLUTION: The motor control device is provided with a speed command generation part, a speed control for determining a torque command according to a speed command Vref and an actual motor speed Vfb, a model speed control for simulating the speed control according to a model, an identification part for identifying the inertia J according to the ratio of values STref, STref obtained by time-integrating a torque command Tref of the speed control and a torque command Tref' of the model speed control by each specific section [a, b], and an adjustment part for adjusting a speed loop gain Kv of the model speed control based on the inertia J. In the motor control device, the model from the torque command to speed in the model speed control is expressed by model inertia J', viscous friction disturbance Dc, and Coulomb friction disturbance Tc, and then negative inclination friction disturbance O where friction disturbance increases from a specific speed and characteristic disturbance P for assisting an acceleration torque when the speed decelerates to zero and speed accelerates from zero, respectively, thus reducing the inertia identification error.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットや工作機
械等の制御装置、特にイナーシャ等の制御定数を同定す
るモータ制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a robot or a machine tool, and more particularly to a motor control device for identifying control constants such as inertia.

【0002】[0002]

【従来の技術】従来のモータの制御定数を同定するモー
タ制御装置としては、例えば、本出願人による特開平1
1−46489号に開示の装置がある。この装置では、
モデルと実際のトルク指令を積分する区間及び速度指令
を、粘性摩擦外乱、クーロン摩擦外乱、一定外乱トル
ク、静止摩擦外乱の影響をできるだけ受けないように設
定し、それぞれのトルク指令の積分値の比によってイナ
ーシャを同定するもので、一定外乱トルク、粘性摩擦外
乱も非常に簡単に同定できる。
2. Description of the Related Art As a conventional motor control device for identifying a control constant of a motor, for example, Japanese Unexamined Patent Publication No.
There is an apparatus disclosed in JP-A-1-46489. In this device,
The section for integrating the model and the actual torque command and the speed command are set so that they are not affected as much as possible by viscous friction disturbance, Coulomb friction disturbance, constant disturbance torque, and static friction disturbance, and the ratio of the integral value of each torque command is set. The inertia is identified by the above method, and the constant disturbance torque and the viscous friction disturbance can be identified very easily.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例では、イナーシャ同定を行う速度指令に依存したイ
ナーシャ同定誤差を生じてしまう。図4に速度指令とイ
ナーシャ同定値の関係を示す。図4において、横軸は速
度指令(rpm)であり、縦軸はイナーシャ同定値J/
J’である。同図から、速度指令が小さい場合はイナー
シャ同定値が小さくなることがわかる。そこで、本発明
は、速度指令が小さい場合、あるいは加減速度が小さい
場合でも、精度良くイナーシャ同定ができる汎用的なモ
ータ制御装置を提供することを目的としている。
However, in the above conventional example, an inertia identification error occurs depending on a speed command for performing inertia identification. FIG. 4 shows the relationship between the speed command and the inertia identification value. In FIG. 4, the horizontal axis is the speed command (rpm), and the vertical axis is the inertia identification value J /.
J '. It can be seen from the figure that when the speed command is small, the inertia identification value becomes small. Therefore, an object of the present invention is to provide a general-purpose motor control device capable of accurately identifying inertia even when a speed command is small or acceleration / deceleration is small.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、速度指令を発生する指令
発生部と、速度指令Vrefと実際のモータ速度Vfb
によりトルク指令を決定しモータ速度を制御する速度制
御部と、モデルにより前記速度制御部をシミュレートす
るモデル速度制御部と、前記速度制御部のトルク指令T
refを所定の区間[a,b]で時間積分した値STr
efと前記モデル速度制御部のトルク指令Tref’を
同じ区間で時間積分した値STref’との比によりイ
ナーシャJを同定する同定部と、同定されたイナーシャ
Jに基づいて、前記モデル速度制御部の速度ループゲイ
ンKvの調整を行う調整部と、を備えるモータ制御装置
において、前記モデル速度制御部内のトルク指令から速
度までのモデルを、モデルイナーシャJ’と粘性摩擦外
乱Dcとクーロン摩擦外乱Tcと、速度がゼロに減速す
る場合は所定の速度から摩擦外乱が増加する負勾配摩擦
外乱と、速度がゼロから加速する場合は加速トルクを助
けるばね特性外乱とで表すことを特徴としている。ま
た、請求項2に記載の発明は、前記ばね特性外乱は、前
記速度が減速して速度がゼロになった場合の外乱から連
続的に加速トルクが始まる場合の外乱とすることを特徴
としている。以上の構成のモータ制御装置によれば、モ
デル速度制御部内のトルク指令Tref’から速度Vf
b’までのモデルを、モデルイナーシャJ’と粘性摩擦
外乱Dcとクーロン摩擦外乱Tcと、速度がゼロから減
速する場合は所定の速度から摩擦外乱が増加する負勾配
摩擦外乱と、速度がゼロから加速する場合は、速度がゼ
ロになった時の外乱から連続的に加速トルクが始まる時
の外乱による加速トルクを助けるばね特性外乱とで表す
ので、速度指令が大きい場合はクーロン摩擦外乱と粘性
摩擦外乱で表されるモデルによりイナーシャを同定し、
速度指令がゼロ近辺で小さい場合において、速度がゼロ
に減速する時には減速が始まり所定の速度に達すると摩
擦外乱トルクが増加する負勾配摩擦外乱により、速度が
ゼロから加速する時は連続的に摩擦外乱トルクが変化す
るモデルによって、同様にイナーシャを同定するので、
速度指令の大小に関わらず低速の場合でもイナーシャ同
定の際に、同定誤差の少ないイナーシャ同定が可能にな
る。
In order to achieve the above object, the invention according to claim 1 comprises a command generator for generating a speed command, a speed command Vref and an actual motor speed Vfb.
A speed control unit that determines a torque command and controls a motor speed, a model speed control unit that simulates the speed control unit using a model, and a torque command T of the speed control unit.
STr obtained by integrating ref with respect to time in a predetermined section [a, b]
an identification unit that identifies the inertia J by a ratio of a value STref ′ obtained by time-integrating the torque command Tref ′ of the model speed control unit in the same section, and an identification unit that identifies the inertia J based on the identified inertia J. An adjustment unit for adjusting the speed loop gain Kv, wherein a model from the torque command to the speed in the model speed control unit is referred to as a model inertia J ′, a viscous friction disturbance Dc, a Coulomb friction disturbance Tc, When the speed decreases to zero, the frictional disturbance increases from a predetermined speed, and when the speed increases from zero, it is represented by a spring characteristic disturbance that assists the acceleration torque. Further, the invention according to claim 2 is characterized in that the spring characteristic disturbance is a disturbance when acceleration torque starts continuously from a disturbance when the speed is reduced to zero. . According to the motor control device having the above configuration, the speed Vf is calculated from the torque command Tref ′ in the model speed control unit.
The models up to b ′ are model inertia J ′, viscous friction disturbance Dc, Coulomb friction disturbance Tc, a negative gradient friction disturbance in which the friction disturbance increases from a predetermined speed when the speed is reduced from zero, and a speed from zero. When accelerating, it is expressed as a spring characteristic disturbance that assists the acceleration torque due to the disturbance when the acceleration torque starts continuously from the disturbance when the speed becomes zero, so if the speed command is large, Coulomb friction disturbance and viscous friction Inertia is identified by the model represented by the disturbance,
When the speed command is small near zero, the deceleration starts when the speed decelerates to zero, and the friction disturbance torque increases when the speed reaches a predetermined speed.Negative gradient friction disturbance causes continuous friction when the speed accelerates from zero. Similarly, inertia is identified by the model in which the disturbance torque changes.
Regardless of the magnitude of the speed command, even in the case of low speed, inertia identification with a small identification error can be performed at the time of inertia identification.

【0005】次に、本発明の実施の形態について図を参
照して説明する。図1は本発明の実施の形態に係るモー
タ制御装置のブロック図である。図2は図1のモータ制
御装置における負勾配摩擦外乱及びばね特性外乱で表さ
れるモデルを示す図である。図3は図2に示すモデルに
よるイナーシャ同定結果を示す図である。図1におい
て、上段に大きなブロック1で示すのは速度制御部で、
下段の大きなブロック2はモデル速度制御部であり、3
はイナーシャJ同定部、4は速度ループゲインKvの調
整部である。速度制御部1では比例積分制御(PI制
御)を組んで、制御対象はイナーシャJのみとし、同様
にモデル制御部2でもPI制御を組み、制御対象はイナ
ーシャJ’のみとする。図1においては、速度制御部1
の速度Vfbとモデル速度制御部2の速度Vfb’が一
致し、速度VfbとVfb’がいずれもゼロでない場合
と言う条件の基に、速度制御部1のトルク指令積分値S
TrefとイナーシャJ、及びモデル速度制御部2のト
ルク指令積分値STref’とイナーシャJ’には式
(1)の関係が成り立ち、したがって、同定部3ではイ
ナーシャJを式(2)から求めることができる。 J/J’=STref/STref’ ・・・ (1) J=(STref/STref’)×J’ ・・・ (2) ただし、一般には、粘性摩擦外乱Dcや一定外乱トルク
Tdやクーロン摩擦外乱Tcが存在しており、それらの
影響を除去する必要があるので、以下その方法について
説明する。粘性摩擦外乱Dcについては、所定の区間
「a,b」における速度Vfbの積分値がゼロであれば
よく、一定外乱トルクTdについては、ある速度Vre
f1により求めたイナーシャJ1と、速度指令Vref
1の正負を反転させたVref2により求めたイナーシ
ャ2との平均値をイナーシャJとすればよい。又、クー
ロン摩擦外乱Tcについては、先の区間「a,b」内で
のモータの正転時間と逆転時間が等しくなるように、区
間「a,b」と速度指令Vrefを設定すればよい。以
上が、一定外乱トルクTd、クーロン摩擦外乱Tc、粘
性摩擦外乱Dcの影響を受けにくい方法でイナーシャを
求める原理である。こうして求められたイナーシャ値に
基づいて調整部4で速度ループゲインKvの調整を行
う。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a motor control device according to an embodiment of the present invention. FIG. 2 is a diagram showing a model represented by a negative gradient friction disturbance and a spring characteristic disturbance in the motor control device of FIG. FIG. 3 is a diagram showing an inertia identification result by the model shown in FIG. In FIG. 1, the speed control unit is indicated by a large block 1 at the top.
The lower large block 2 is a model speed controller,
Is an inertia J identification unit, and 4 is a speed loop gain Kv adjustment unit. In the speed control unit 1, proportional-integral control (PI control) is set, and only the inertia J is controlled, and similarly, the PI control is also set in the model control unit 2, and only the inertia J 'is controlled. In FIG. 1, the speed control unit 1
Is equal to the speed Vfb 'of the model speed control unit 2, and the torque command integral value S of the speed control unit 1 is set based on the condition that the speeds Vfb and Vfb' are not zero.
Equation (1) holds between Tref and inertia J, and the torque command integral value STref 'and inertia J' of the model speed control unit 2. Therefore, the identification unit 3 can obtain the inertia J from equation (2). it can. J / J ′ = STref / STref ′ (1) J = (STref / STref ′) × J ′ (2) However, generally, viscous friction disturbance Dc, constant disturbance torque Td, and Coulomb friction disturbance. Since Tc exists and it is necessary to remove the influence thereof, the method will be described below. For the viscous friction disturbance Dc, the integral value of the speed Vfb in the predetermined section “a, b” may be zero, and for the constant disturbance torque Td, a certain speed Vre
inertia J1 obtained by f1 and speed command Vref
Inertia J may be an average value of the inertia 2 and Vref2 obtained by inverting the sign of 1 with respect to the inertia 2. As for the Coulomb friction disturbance Tc, the section “a, b” and the speed command Vref may be set so that the forward rotation time and the reverse rotation time of the motor in the previous section “a, b” are equal. The above is the principle of obtaining inertia by a method that is not easily affected by the constant disturbance torque Td, Coulomb friction disturbance Tc, and viscous friction disturbance Dc. The adjusting unit 4 adjusts the speed loop gain Kv based on the inertia value thus obtained.

【0006】しかしながら、同定を行う速度指令Vre
fが小さい場合や加減速度が小さい場合に速度ゼロ付近
では、1軸ころがりスライダ等の特性が原因で、従来装
置の図4に示したようにイナーシャ同定値(J/J’)
が小さくなって同定誤差が大きくなってしまう。この状
態を従来装置の図5で見ると、例えば、速度指令が台形
速度パターン(加速−定速−減速)によるゼロ・クロス
点で正逆転が切り替わる連続性のある速度指令の場合、
同図右下の直線が指令の正転側の減速カーブに対応し、
左上の負の直線部分が続く逆転側の加速カーブに対応し
ている。しかし、減速時の摩擦特性と加速時の摩擦特性
は、例えば、1軸スライダで使用される転がり案内機構
では、駆動条件によってボールとレール間の膜厚(油膜
の厚さ)の変化や弾性変形の影響で、速度ゼロに対して
点対称ではない。
However, the speed command Vre for identification is
When f is small or when the acceleration / deceleration is small, near the speed zero, the inertia identification value (J / J ') as shown in FIG.
And the identification error increases. When this state is viewed in FIG. 5 of the conventional device, for example, when the speed command is a continuous speed command in which forward / reverse switching is performed at a zero cross point by a trapezoidal speed pattern (acceleration-constant speed-deceleration)
The straight line at the lower right of the figure corresponds to the forward deceleration curve of the command,
It corresponds to the reverse acceleration curve followed by the negative straight line in the upper left. However, the friction characteristics at the time of deceleration and the friction characteristics at the time of acceleration are, for example, in the case of a rolling guide mechanism used in a one-axis slider, changes in the film thickness (oil film thickness) between the ball and the rail and elastic deformation due to driving conditions. Is not point-symmetric with respect to zero velocity.

【0007】そこで、図2の速度−摩擦外乱のモデルで
は、速度が減速して、停止し、加速していく際、摩擦外
乱力は、負勾配摩擦外乱特性(O)→交点(Q)→ばね
特性外乱特性(P)と変化する。すなわち、速度が減速
してゆくと正転側の減速カーブの直線性から上側の凸の
2次曲線的に変化してQ点に達する。さらに、Q点から
逆方向に加速するにつれてばね外乱特性(P)が急勾配
に増加し、その後、直線性へ移行するものである。これ
によって制御上は低速時の正逆転カーブでもQ点で連続
性が回復し、図5のようなm−n間の段差等は解消され
て滑らかな動作が保証される。図2のモデルによる実際
の低速→高速のモータ制御は、速度が大きい場合は従来
図5と同じようなクーロン摩擦外乱と粘性外乱で表され
る直線領域におけるモデル制御となり、速度ゼロ近辺の
低速時には負勾配摩擦外乱カーブ(O)及びばね特性外
乱カーブ(P)による制御となる。図2のモデルを用い
た場合の実験結果を図3に示す。図3は横軸に速度指令
(rpm)を示し、縦軸にイナーシャ同定値J/J’を
示している。これを従来図5と比較すると、図3の場合
はイナーシャ同定値J/J’誤差が約0.5と、従来例
の図5における1.5から1/3に低下させることがで
きている、ということが分かる。なお、速度指令の加減
速度が小さい場合も速度指令が小さい場合と同様に考え
て、負勾配摩擦外乱、ばね特性外乱を適用してイナーシ
ャ同定誤差を改善することができる。
Therefore, in the speed-friction disturbance model shown in FIG. 2, when the speed is reduced, stopped, and accelerated, the friction disturbance force becomes negative gradient friction disturbance characteristic (O) → intersection (Q) → It changes from the spring characteristic disturbance characteristic (P). That is, as the speed decreases, the linear curve of the deceleration curve on the normal rotation side changes to a quadratic curve of the upper convex portion, and reaches the point Q. Further, as the vehicle accelerates in the reverse direction from the point Q, the spring disturbance characteristic (P) increases steeply, and then shifts to linearity. As a result, the continuity is restored at the point Q even in the forward / reverse rotation curve at the time of low speed control, and a step between mn as shown in FIG. 5 is eliminated, and a smooth operation is guaranteed. The actual low-speed to high-speed motor control by the model in FIG. 2 is a model control in a linear region represented by Coulomb frictional disturbance and viscous disturbance similar to the conventional one in FIG. 5 when the speed is high, and when the speed is low near zero speed. The control is based on the negative gradient friction disturbance curve (O) and the spring characteristic disturbance curve (P). FIG. 3 shows an experimental result when the model of FIG. 2 is used. FIG. 3 shows the speed command (rpm) on the horizontal axis and the inertia identification value J / J 'on the vertical axis. When this is compared with the conventional example of FIG. 5, the error of the inertia identification value J / J ′ in the case of FIG. 3 is about 0.5, which can be reduced to 3 from 1.5 of the conventional example of FIG. It turns out that. In addition, when the acceleration / deceleration of the speed command is small, similarly to the case where the speed command is small, the inertia identification error can be improved by applying the negative gradient friction disturbance and the spring characteristic disturbance.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば、
同定されたイナーシャJに基づいて速度ループゲインK
vの調整を行うモータ制御装置において、モデル速度制
御部内のトルク指令から速度までのモデルを、モデルイ
ナーシャJ’と粘性摩擦外乱Dcとクーロン摩擦外乱T
cと、速度がゼロに減速する場合は所定の速度から摩擦
外乱が増加する負勾配摩擦外乱と、速度がゼロから加速
する場合は加速トルクを助けるばね特性外乱とで表すよ
うにしたので、速度指令が小さい場合あるいは加減速度
が小さい場合にも、精度良くイナーシャ同定ができるの
で、非常に汎用的なモータ制御装置が提供できるという
効果がある。
As described above, according to the present invention,
Speed loop gain K based on the identified inertia J
In the motor control device for adjusting v, the model from the torque command to the speed in the model speed control unit is represented by model inertia J ′, viscous friction disturbance Dc, and Coulomb friction disturbance T
c, a negative gradient friction disturbance in which the friction disturbance increases from a predetermined speed when the speed is reduced to zero, and a spring characteristic disturbance that assists the acceleration torque when the speed is accelerated from zero. Even when the command is small or the acceleration / deceleration is small, the inertia identification can be performed with high accuracy, so that there is an effect that a very versatile motor control device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るモータ制御装置のブ
ロック図である。
FIG. 1 is a block diagram of a motor control device according to an embodiment of the present invention.

【図2】図1のモータ制御装置における負勾配摩擦外乱
及びばね特性外乱で表されるモデルを示す図である。
FIG. 2 is a diagram illustrating a model represented by negative gradient friction disturbance and spring characteristic disturbance in the motor control device of FIG. 1;

【図3】図2に示すモデルによるイナーシャ同定結果を
示す図である。
FIG. 3 is a diagram showing an inertia identification result by the model shown in FIG. 2;

【図4】従来のモータ制御装置のイナーシャ同定結果を
示す図である。
FIG. 4 is a diagram showing an inertia identification result of a conventional motor control device.

【図5】図4に示すモータ制御装置の制御モデルを示す
図である。
FIG. 5 is a diagram showing a control model of the motor control device shown in FIG.

【符号の説明】[Explanation of symbols]

1 速度制御部 2 モデル速度制御部 3 同定部 4 調整部 O 負勾配外乱特性部分 P ばね特性外乱特性部分 DESCRIPTION OF SYMBOLS 1 Speed control part 2 Model speed control part 3 Identification part 4 Adjustment part O Negative gradient disturbance characteristic part P Spring characteristic disturbance characteristic part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 速度指令を発生する指令発生部と、速度
指令Vrefと実際のモータ速度Vfbによりトルク指
令を決定しモータ速度を制御する速度制御部と、モデル
により前記速度制御部をシミュレートするモデル速度制
御部と、前記速度制御部のトルク指令Trefを所定の
区間[a,b]で時間積分した値STrefと前記モデ
ル速度制御部のトルク指令Tref’を同じ区間で時間
積分した値STref’との比によりイナーシャJを同
定する同定部と、同定されたイナーシャJに基づいて前
記モデル速度制御部の速度ループゲインKvの調整を行
う調整部とを備えるモータ制御装置において、 前記モデル速度制御部内のトルク指令から速度までのモ
デルを、モデルイナーシャJ’と粘性摩擦外乱Dcとク
ーロン摩擦外乱Tcと、速度がゼロに減速する場合は所
定の速度から摩擦外乱が増加する負勾配摩擦外乱と、速
度がゼロから加速する場合は加速トルクを助けるばね特
性外乱とで表すことを特徴とするモータ制御装置。
1. A speed controller for generating a speed command, a speed controller for determining a torque command based on a speed command Vref and an actual motor speed Vfb and controlling a motor speed, and simulating the speed controller by a model. A value STref 'obtained by time-integrating a torque command Tref of the model speed control unit and the torque command Tref of the speed control unit in a predetermined section [a, b] and a value STref' obtained by time-integrating the torque command Tref 'of the model speed control unit in the same section. A motor controller comprising: an identification unit that identifies the inertia J based on the ratio of the inertia J; and an adjustment unit that adjusts the speed loop gain Kv of the model speed control unit based on the identified inertia J. The model from the torque command to the speed is given by the model inertia J ′, viscous friction disturbance Dc, Coulomb friction disturbance Tc, and speed. Motor control apparatus characterized by represented by the negative slope of friction disturbance friction disturbance is increased from a predetermined speed, if the speed is accelerated from zero to the spring characteristic disturbance help acceleration torque when decelerating the filtration.
【請求項2】 前記ばね特性外乱は、前記速度が減速し
て速度がゼロになった場合の外乱から連続的に加速トル
クが始まる場合の外乱とすることを特徴とする請求項1
記載のモータ制御装置。
2. The system according to claim 1, wherein the spring characteristic disturbance is a disturbance in a case where the acceleration torque continuously starts from a disturbance in a case where the speed is reduced to zero.
The motor control device according to any one of the preceding claims.
JP34370199A 1999-12-02 1999-12-02 Motor control device Expired - Fee Related JP3391378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34370199A JP3391378B2 (en) 1999-12-02 1999-12-02 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34370199A JP3391378B2 (en) 1999-12-02 1999-12-02 Motor control device

Publications (2)

Publication Number Publication Date
JP2001169581A true JP2001169581A (en) 2001-06-22
JP3391378B2 JP3391378B2 (en) 2003-03-31

Family

ID=18363591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34370199A Expired - Fee Related JP3391378B2 (en) 1999-12-02 1999-12-02 Motor control device

Country Status (1)

Country Link
JP (1) JP3391378B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025045A1 (en) * 2003-09-04 2005-03-17 Kabushiki Kaisha Yaskawa Denki Motor controller
JP2013254257A (en) * 2012-06-05 2013-12-19 Juki Corp Control apparatus of positioning device and electronic component mounting device
CN107645267A (en) * 2016-07-20 2018-01-30 日本电产三协株式会社 Electric motor system
CN110281237A (en) * 2019-06-17 2019-09-27 华南理工大学 A kind of serial manipulator joint-friction power discrimination method based on machine learning

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025045A1 (en) * 2003-09-04 2005-03-17 Kabushiki Kaisha Yaskawa Denki Motor controller
US7187145B2 (en) 2003-09-04 2007-03-06 Kabushiki Kaisha Yaskawa Denki Motor controller
JP2013254257A (en) * 2012-06-05 2013-12-19 Juki Corp Control apparatus of positioning device and electronic component mounting device
CN107645267A (en) * 2016-07-20 2018-01-30 日本电产三协株式会社 Electric motor system
CN107645267B (en) * 2016-07-20 2020-05-26 日本电产三协株式会社 Motor system
CN110281237A (en) * 2019-06-17 2019-09-27 华南理工大学 A kind of serial manipulator joint-friction power discrimination method based on machine learning
CN110281237B (en) * 2019-06-17 2022-05-17 华南理工大学 Series robot joint friction force identification method based on machine learning

Also Published As

Publication number Publication date
JP3391378B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP3637597B2 (en) Control constant identification device
JP3900789B2 (en) Motor speed / acceleration determination method, acceleration / deceleration generation method, acceleration / deceleration control method, acceleration / deceleration control device, and motor control device
JPH09291753A (en) Control device for automatic door
CN106060380A (en) Linkage camera control system and method
WO2007046257A1 (en) Motor control device, method, and program storage medium
JP4075803B2 (en) Motor control device
JP3391378B2 (en) Motor control device
JPH06114762A (en) Vibration damping control method
JPH06114761A (en) Vibration damping control method
JPS5945515A (en) Method for controlling position of motor
JP2736715B2 (en) Positioning control method
JPH0336977A (en) Method and apparatus for controlling acceleration and deceleration of servomotor
JP3503343B2 (en) Friction compensation type control method and device
JPH09183589A (en) Control method for swing prevention and positioning of crane
JPH08286759A (en) Robot driving control method for compensating statical friction
US5867456A (en) Intelligent optical disk drive control method
KR100190709B1 (en) Step motor speed control method using harmonic motion
JPH05324085A (en) Head positioning controller
JP2521808B2 (en) Control method of servo circuit
JP2547112Y2 (en) XY plotter head controller
JPH068166A (en) Acceleration/deceleration controller
KR100203258B1 (en) Speed control system of capstan motor
JPH0540529A (en) Drive controller for positioning table
JP3161621B2 (en) Step motor operation method
SU1513415A1 (en) Positional control system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees