JP2001167981A - Solid electrolytic capacitor and manufacturing method therefor - Google Patents

Solid electrolytic capacitor and manufacturing method therefor

Info

Publication number
JP2001167981A
JP2001167981A JP34448699A JP34448699A JP2001167981A JP 2001167981 A JP2001167981 A JP 2001167981A JP 34448699 A JP34448699 A JP 34448699A JP 34448699 A JP34448699 A JP 34448699A JP 2001167981 A JP2001167981 A JP 2001167981A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
solid electrolyte
electrolyte layer
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34448699A
Other languages
Japanese (ja)
Other versions
JP3864651B2 (en
Inventor
Toshitaka Kato
寿孝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34448699A priority Critical patent/JP3864651B2/en
Priority to CNB001344781A priority patent/CN1184653C/en
Priority to US09/726,400 priority patent/US6614063B2/en
Priority to TW089125717A priority patent/TW494419B/en
Publication of JP2001167981A publication Critical patent/JP2001167981A/en
Application granted granted Critical
Publication of JP3864651B2 publication Critical patent/JP3864651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid electrolytic capacitor having a low leakage current, a small number of short-circuit faults and superior yield. SOLUTION: In the manufacturing method of this solid electrolytic capacitor, on the surface of an anodic body 2 having a formed dielectric oxide film layer 3, an intermediate product of a solid electrolyte layer 4 is formed through chemical oxidative polymerization, where an oxidant made of a heterocyclic monomer and an organic-acid ferric salt are used. Thereafter, an intermediate product of the solid electrolyte layer 4 is cleaned by dipping it into a solution, containing an electrolyte or by applying to it a voltage by using as an anode the anodic body 2, while dipping it into the solution containing the electrolyte. Thereby, the solid electrolytic capacitor is obtained where the solid electrolyte layer 4 made of a conductive macromolecule having an iron/concentration of not higher than 100 ppm is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性高分子を固体
電解質として用いた固体電解コンデンサおよびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、高速化
に伴い、電子部品である固体電解コンデンサにも小型高
性能化が求められてきている。
2. Description of the Related Art In recent years, as electronic devices have become more portable and faster, solid-state electrolytic capacitors, which are electronic components, have been required to be smaller and have higher performance.

【0003】この市場の要求に応えるために陽極の表面
状態、酸化皮膜の形成方法、固体電解質層の開発、改
善、陰極の表面状態、コンデンサ素子の構造などさまざ
まな角度から検討がなされている。
In order to meet the demands of this market, various aspects such as the surface condition of the anode, the method of forming the oxide film, the development and improvement of the solid electrolyte layer, the surface condition of the cathode, and the structure of the capacitor element have been studied.

【0004】図2に代表的な固体電解コンデンサ素子の
構成を断面図で示す。図2に示すように、アルミニウム
やタンタル等の弁作用を有する金属の箔や焼結体11を
陽極酸化して誘電体酸化皮膜層12を形成した陽極体の
表面にMn,Pbなどの遷移金属酸化物を用いた固体電
解質層13を形成し、この固体電解質層13の表面にカ
ーボン層14及び銀層15を順次積層して陰極層を形成
し、最後に陽極導出線16および陰極導出線17を表出
させるようにして樹脂モールドなどで外装部(図示せ
ず)を形成することにより構成されている。
FIG. 2 is a sectional view showing the structure of a typical solid electrolytic capacitor element. As shown in FIG. 2, a metal foil having a valve action such as aluminum or tantalum or a sintered body 11 is anodically oxidized to form a dielectric oxide film layer 12, and a transition metal such as Mn or Pb is formed on the surface of the anode body. A solid electrolyte layer 13 using an oxide is formed, and a carbon layer 14 and a silver layer 15 are sequentially laminated on the surface of the solid electrolyte layer 13 to form a cathode layer. Finally, an anode lead 16 and a cathode lead 17 are formed. Is formed by forming an exterior part (not shown) with a resin mold or the like so as to be exposed.

【0005】上記固体電解質層13の高性能化のための
改善策として、電荷移動錯体としてTCNQ塩を利用し
た有機半導体コンデンサや複素環式化合物であるピロー
ル、チオフェン、フランなどを重合して導電化してなる
導電性高分子を利用した機能性高分子固体電解コンデン
サが実用化されてきている。
As an improvement measure for improving the performance of the solid electrolyte layer 13, an organic semiconductor capacitor using a TCNQ salt as a charge transfer complex, or a heterocyclic compound such as pyrrole, thiophene or furan is polymerized to make it conductive. Functional solid polymer electrolytic capacitors using conductive polymers have been put to practical use.

【0006】このような導電性高分子はその固有抵抗が
著しく低いという特徴を有するため、固体電解コンデン
サの低インピーダンス化には有力な固体電解質層として
種々の開発が進められ実用化されてきている。
Since such a conductive polymer has a characteristic that its specific resistance is remarkably low, various developments have been advanced and put to practical use as a solid electrolyte layer which is effective for lowering the impedance of a solid electrolytic capacitor. .

【0007】また、この固体電解質層の形成方法として
は、特開昭60−244017号公報や特開昭63−1
81308号公報に開示されているように、誘電体酸化
皮膜層を形成した陽極体を陽極として、重合液に浸漬し
て通電することにより前記誘電体酸化皮膜層上に電解重
合による固体電解質層を形成する方法、或いは陽極体に
モノマー溶液を含浸後、p−トルエンスルホン酸鉄やド
デシルベンゼンスルホン酸鉄などの酸化剤溶液に浸漬し
て化学酸化重合による固体電解質層を形成する方法や化
学酸化重合した後に電解重合を行い導電性高分子の固体
電解質を形成する方法などが提案されている。
As a method for forming the solid electrolyte layer, Japanese Patent Application Laid-Open Nos. 60-244017 and
As disclosed in JP-A-81308, a solid electrolyte layer formed by electrolytic polymerization is formed on the dielectric oxide film layer by immersing in a polymerization solution and applying a current by using the anode body on which the dielectric oxide film layer is formed as an anode. A method of forming a solid electrolyte layer by chemical oxidative polymerization by immersing the anode body in a monomer solution and then immersing it in an oxidizing agent solution such as iron p-toluenesulfonate or iron dodecylbenzenesulfonate; After that, a method of forming a conductive polymer solid electrolyte by performing electrolytic polymerization has been proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記モ
ノマー溶液と酸化剤を用いて化学酸化重合により固体電
解質層を形成する方法において、重合反応に供しなかっ
た酸化剤の三価の鉄イオンや二価の鉄イオンは重合反応
後に固体電解質層中に残留されるので、誘電体酸化皮膜
層に介在する欠陥部に固体電解質層が形成された場合、
鉄イオンは前記陽極体との酸化還元電位差により鉄に還
元されて、漏れ電流不良、ショート不良の原因となり、
製造工程において歩留まりが非常に悪くなってしまうと
いう課題を有していた。
However, in the method of forming a solid electrolyte layer by chemical oxidative polymerization using the above-mentioned monomer solution and oxidizing agent, trivalent iron ions or divalent iron of the oxidizing agent not subjected to the polymerization reaction is used. Iron ions remain in the solid electrolyte layer after the polymerization reaction, so when the solid electrolyte layer is formed at a defect portion interposed in the dielectric oxide film layer,
Iron ions are reduced to iron by the oxidation-reduction potential difference with the anode body, causing leakage current failure and short-circuit failure,
There has been a problem that the yield becomes very poor in the manufacturing process.

【0009】本発明はこのような課題を解決し、漏れ電
流が低く、ショート不良を低減し、製造工程での歩留ま
りを著しく向上させることができる固体電解コンデンサ
およびその製造方法を提供することを目的とするもので
ある。
An object of the present invention is to provide a solid electrolytic capacitor and a method of manufacturing the same which can solve the above-mentioned problems, have a low leakage current, reduce short-circuit defects, and significantly improve the yield in the manufacturing process. It is assumed that.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明は、弁作用を有する金属からなる陽極体の表面
に形成された誘電体酸化皮膜層の表面に鉄濃度が100
ppm以下の導電性高分子からなる固体電解質層を設け
た構成としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a dielectric oxide film layer formed on the surface of an anode body made of a metal having a valve action.
The configuration is such that a solid electrolyte layer made of a conductive polymer of not more than ppm is provided.

【0011】また、この固体電解コンデンサを得るため
の製造方法としては、弁作用を有する金属からなる陽極
体の表面に陽極酸化法により誘電体酸化皮膜層を形成
し、この陽極体を複素環式モノマーを含有する重合溶液
と無機の第二鉄塩からなる酸化剤を含有する酸化溶液と
に個々に含浸させた後に洗浄し、続いて複素環式モノマ
ーと有機酸の第二鉄塩からなる酸化剤とを含有する混合
溶液に含浸させた後に洗浄することにより鉄濃度が10
0ppm以下の導電性高分子の固体電解質層を形成する
製造方法としたものである。
[0011] Further, as a manufacturing method for obtaining this solid electrolytic capacitor, a dielectric oxide film layer is formed by anodic oxidation on the surface of an anode body made of a metal having a valve action, and this anode body is formed into a heterocyclic type. The polymer solution containing the monomer and the oxidizing solution containing the oxidizing agent consisting of an inorganic ferric salt are individually impregnated and washed, and then the oxidizing solution consisting of the heterocyclic monomer and the ferric salt of an organic acid is used. After impregnating with a mixed solution containing the agent and washing, an iron concentration of 10
This is a method for forming a solid electrolyte layer of a conductive polymer of 0 ppm or less.

【0012】これらの本発明により、漏れ電流が低く、
ショート不良を低減し、製造工程での歩留まりを著しく
向上させた固体電解コンデンサを得ることができるもの
である。
According to the present invention, the leakage current is low,
It is possible to obtain a solid electrolytic capacitor in which short defects are reduced and the yield in a manufacturing process is significantly improved.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、弁作用を有する金属からなる陽極体の表面に形成さ
れた誘電体酸化皮膜層と、この誘電体酸化皮膜層の表面
に形成された鉄濃度が100ppm以下の導電性高分子
からなる固体電解質層を設けた構成としたもので、この
構成により、漏れ電流が低くなり、ショート不良数を低
減し、製造工程において歩留まりの良い固体電解コンデ
ンサを得ることができるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to a dielectric oxide film layer formed on the surface of an anode body made of a metal having a valve action, and a dielectric oxide film layer formed on the surface of the dielectric oxide film layer. A structure in which a solid electrolyte layer made of a conductive polymer having a formed iron concentration of 100 ppm or less is provided. With this structure, a leakage current is reduced, the number of short-circuit defects is reduced, and a good yield is obtained in a manufacturing process. This has the effect that a solid electrolytic capacitor can be obtained.

【0014】請求項2に記載の発明は、請求項1に記載
の発明において、導電性高分子からなる固体電解質層が
化学酸化重合後に洗浄することにより形成された構成と
したものであり、この構成により、化学酸化重合により
形成された導電性高分子の固体電解質層の鉄濃度を低減
させることができるという作用を有する。
According to a second aspect of the present invention, in the first aspect of the present invention, the solid electrolyte layer made of a conductive polymer is formed by washing after chemical oxidation polymerization. According to the configuration, the iron concentration of the conductive polymer solid electrolyte layer formed by chemical oxidation polymerization can be reduced.

【0015】請求項3に記載の発明は、請求項1に記載
の発明において、導電性高分子からなる固体電解質層が
複素環式モノマーを有機および/または無機の第二鉄塩
からなる酸化剤を用いて化学酸化重合反応することによ
り形成された構成としたものであり、この構成により、
化学酸化重合効率および導電性の高い導電性高分子を得
ることができるという作用を有する。
According to a third aspect of the present invention, in the first aspect of the present invention, the solid electrolyte layer comprising a conductive polymer comprises an oxidizing agent comprising a heterocyclic monomer comprising an organic and / or inorganic ferric salt. Is formed by performing a chemical oxidative polymerization reaction using
It has an effect that a conductive polymer having high chemical oxidation polymerization efficiency and high conductivity can be obtained.

【0016】請求項4に記載の発明は、弁作用を有する
金属からなる陽極体の表面に陽極酸化法により誘電体酸
化皮膜層を形成し、この陽極体を複素環式モノマーを含
有する重合溶液と無機の第二鉄塩からなる酸化剤を含有
する酸化溶液とに個々に含浸させた後に洗浄し、続いて
複素環式モノマーと有機酸の第二鉄塩からなる酸化剤と
を含有する混合溶液に含浸させた後に洗浄することによ
り鉄濃度が100ppm以下の導電性高分子の固体電解
質層を形成するようにした製造方法であり、この方法に
より、固体電解質層の鉄濃度を100ppm以下にする
ことができるもので、漏れ電流が低くなり、ショート不
良数を低減し、製造工程において歩留まりの良い固体電
解コンデンサを得ることができるという作用を有する。
According to a fourth aspect of the present invention, there is provided a polymer solution containing a heterocyclic monomer, wherein a dielectric oxide film layer is formed on the surface of an anode body made of a metal having a valve action by an anodic oxidation method. And an oxidizing solution containing an oxidizing agent consisting of an inorganic ferric salt, and then separately washed, followed by mixing containing a heterocyclic monomer and an oxidizing agent consisting of a ferric salt of an organic acid. A manufacturing method in which a solid electrolyte layer of a conductive polymer having an iron concentration of 100 ppm or less is formed by washing after being impregnated with a solution, and by this method, the iron concentration of the solid electrolyte layer is reduced to 100 ppm or less. This has the effect of reducing the leakage current, reducing the number of short-circuit defects, and obtaining a solid electrolytic capacitor with a high yield in the manufacturing process.

【0017】請求項5に記載の発明は、請求項4に記載
の発明において、導電性高分子の固体電解質層を形成す
る工程が、陽極体を複素環式モノマーを含有する重合溶
液と無機の第二鉄塩からなる酸化剤を含有する酸化溶液
とに個々に含浸させて洗浄、修復化成する工程を少なく
とも2回繰り返し行い、続いて複素環式モノマーと有機
酸の第二鉄塩からなる酸化剤を含有する混合溶液に含浸
させる工程を少なくとも2回繰り返し行い、その後洗浄
をして行う方法としたもので、この方法により、欠陥の
少ない誘電体酸化皮膜層上に導電性高分子の固体電解質
層をより緻密に形成して、固体電解質層中に残留してい
る鉄濃度を低減することができるので、漏れ電流が低く
なり、ショート不良数を低減することができるという作
用を有する。
According to a fifth aspect of the present invention, in the fourth aspect of the invention, the step of forming the conductive polymer solid electrolyte layer comprises the step of forming the anode body with a polymerization solution containing a heterocyclic monomer and an inorganic solution. The steps of individually impregnating with an oxidizing solution containing an oxidizing agent composed of a ferric salt, washing and repairing and forming the same are repeated at least twice, followed by oxidation of the ferric salt of the heterocyclic monomer and the organic acid. The method comprises repeating the step of impregnating with the mixed solution containing the agent at least twice, and then performing washing, and this method allows the solid electrolyte of the conductive polymer to be formed on the dielectric oxide film layer with few defects. Since the layer can be formed more densely and the concentration of iron remaining in the solid electrolyte layer can be reduced, the leakage current is reduced, and the number of short-circuit defects can be reduced.

【0018】なお、上記洗浄は水洗と湯洗のいずれか一
方または両方を用いることができ、順序は逆でも構わな
いが、湯洗を最初に用いた方が鉄含有量の低減をより一
層高めることができる。
The above-mentioned washing can be carried out by using one or both of water washing and hot water washing, and the order may be reversed. However, using the hot water washing first further enhances the reduction of the iron content. be able to.

【0019】請求項6に記載の発明は、請求項4に記載
の発明において、洗浄工程が、電解質を含む溶液中に浸
漬する工程および/または前記溶液中に浸漬しながら陽
極体を陽極として電圧を印加する工程を含む方法とした
もので、この方法により、電解質の作用により鉄含有量
を低減しやすいイオンの状態に維持することが可能とな
り、固体電解質層中からの鉄濃度の低減が容易にでき、
また、陽極体を陽極として電圧を印加することにより、
プラスの電荷を有する鉄イオンが陽極体に対して斥力を
受けるため、固体電解質層中からの鉄濃度の低減がさら
に容易にできるという作用を有する。
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the cleaning step is a step of immersing in an electrolyte-containing solution and / or a step of applying a voltage while using the anode body as an anode while immersing in the solution. The method includes a step of applying an ion, and by this method, it is possible to maintain an ion state in which the iron content is easily reduced by the action of the electrolyte, and it is easy to reduce the iron concentration from the solid electrolyte layer. Can be
Also, by applying a voltage using the anode body as an anode,
Since the positively charged iron ions receive a repulsive force with respect to the anode body, it has an effect that the iron concentration from the solid electrolyte layer can be more easily reduced.

【0020】請求項7に記載の発明は、請求項6に記載
の発明において、電解質を含む溶液が有機酸およびその
塩からなり、かつ水酸基とカルボキシル基を併せ持つ分
子からなる方法としたもので、この方法により、分子中
の水酸基とカルボキシル基の働きにより、鉄イオンの錯
体を形成して溶液中では安定であるため、固体電解質層
中からの鉄濃度の低減が容易になり、その結果、固体電
解質層中の鉄濃度を低減することができるという作用を
有する。
A seventh aspect of the present invention is the method according to the sixth aspect, wherein the solution containing the electrolyte comprises an organic acid and a salt thereof, and comprises a molecule having both a hydroxyl group and a carboxyl group. According to this method, the function of the hydroxyl group and the carboxyl group in the molecule forms a complex of iron ions and is stable in the solution, so that the concentration of iron in the solid electrolyte layer can be easily reduced, and as a result, This has the effect that the iron concentration in the electrolyte layer can be reduced.

【0021】なお、前記電解質は分子構造中に水酸基と
カルボキシル基を併せ持つことが重要であり、どちらか
一方もしくはそのいずれも持たない電解質では、鉄イオ
ンと錯体を形成することが困難となるため、作用は著し
く低減する。
It is important that the electrolyte has both a hydroxyl group and a carboxyl group in the molecular structure, and it is difficult to form a complex with iron ions in an electrolyte having one or neither of them. The effect is significantly reduced.

【0022】また、電解質としては、クエン酸、酒石
酸、グルコン酸などを用いることができる。
As the electrolyte, citric acid, tartaric acid, gluconic acid and the like can be used.

【0023】請求項8に記載の発明は、請求項6に記載
の発明において、電圧を印加して洗浄する工程が誘電体
酸化皮膜層の化成電圧に対して0.2〜1倍の電圧を印
加して行う方法としたもので、この方法により、陽極体
への印加により電場が形成され、プラスの電荷を持つ鉄
イオンは斥力を受けるため、導電性高分子中からの除去
が容易になり、その結果、固体電解質層中の鉄濃度が低
減し、電流集中が緩和されるため、漏れ電流が低くな
り、ショート不良数を低減し、製造工程において歩留ま
りの良い固体電解コンデンサを得ることができるという
作用を有する。
According to an eighth aspect of the present invention, in the sixth aspect of the present invention, the step of applying a voltage for cleaning comprises applying a voltage 0.2 to 1 times the formation voltage of the dielectric oxide film layer. In this method, an electric field is formed by application to the anode body, and iron ions having a positive charge receive a repulsive force, which facilitates removal from the conductive polymer. As a result, since the iron concentration in the solid electrolyte layer is reduced and current concentration is reduced, the leakage current is reduced, the number of short-circuit defects is reduced, and a solid electrolytic capacitor having a good yield in the manufacturing process can be obtained. It has the action of:

【0024】なお、前記印加電圧が誘電体酸化皮膜の化
成電圧に対して0.2倍未満である場合では、固体電解
質層からの鉄濃度を低減させるのに必要な斥力を十分得
られず、また、前記印加電圧が1倍を越える場合では、
誘電体酸化皮膜の絶縁破壊が発生し、再度誘電体酸化皮
膜の形成が行われることになり、その結果、鉄イオンが
誘電体酸化皮膜中に取り込まれ、漏れ電流の増大を招
く。
If the applied voltage is less than 0.2 times the formation voltage of the dielectric oxide film, the repulsive force required to reduce the iron concentration from the solid electrolyte layer cannot be obtained sufficiently. When the applied voltage exceeds one time,
Dielectric breakdown of the dielectric oxide film occurs, and the dielectric oxide film is formed again. As a result, iron ions are taken into the dielectric oxide film, causing an increase in leakage current.

【0025】以下、本発明の具体的な実施の形態につい
て説明する。
Hereinafter, specific embodiments of the present invention will be described.

【0026】図1は本発明の実施の形態による固体電解
コンデンサの構成を概念的に示した断面図であり、同図
において、1はタンタル線等の弁作用金属からなる陽極
導出線、2は陽極導出線1の一端部が表出するようにし
て陽極導出線1を埋設した弁作用金属微粉末を成形焼結
して得られた多孔質体の陽極体、3はこの陽極体2の表
面に陽極酸化により形成された誘電体酸化皮膜層、4は
この誘電体酸化皮膜層3の表面に化学酸化重合により形
成された導電性高分子の固体電解質層、5はカーボン
層、6は導電性接着層、7はこの導電性接着層6に接続
された陰極引出線である。このように構成された本発明
の固体電解コンデンサは、上記陽極導出線1及び陰極引
出線7の一部が外部に表出するようにして図示しない外
装樹脂で被覆することによって構成したものである。
FIG. 1 is a sectional view conceptually showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an anode lead-out wire made of a valve metal such as tantalum wire; A porous anode body obtained by molding and sintering a valve metal fine powder in which the anode lead wire 1 is embedded so that one end of the anode lead wire 1 is exposed, and 3 is the surface of the anode body 2. A dielectric oxide film layer formed on the surface of the dielectric oxide film layer 3 by anodizing; a solid electrolyte layer of a conductive polymer formed on the surface of the dielectric oxide film layer 3 by chemical oxidation polymerization; 5 a carbon layer; The adhesive layer 7 is a cathode lead connected to the conductive adhesive layer 6. The solid electrolytic capacitor of the present invention configured as described above is configured by covering a part of the anode lead wire 1 and the cathode lead wire 7 with an exterior resin (not shown) so as to be exposed to the outside. .

【0027】次に、本発明の具体的な実施の形態につい
て説明するが、本発明はこれに限定されるものではな
い。以下、部は重量部を示す。
Next, specific embodiments of the present invention will be described, but the present invention is not limited to these embodiments. Hereinafter, "part" indicates "part by weight".

【0028】(実施の形態1)タンタル線からなる陽極
導出線をその一端部が表出するように埋設したタンタル
金属微粉末を成形、焼結して多孔質体の陽極体を得て、
前記多孔質体の陽極体の表面に陽極酸化法により誘電体
酸化皮膜層を形成した。次に、前記誘電体酸化皮膜層が
形成された陽極体を複素環式モノマーであるピロール1
部と重合溶剤である1−プロパノール4部を含む溶液に
浸漬して引き上げて、続いて酸化剤である硫酸第二鉄2
部と溶剤である1−プロパノール4部を含む溶液に浸漬
して引き上げた後、この陽極体を温度85℃で濃度1.
0%のクエン酸水溶液中で洗浄して乾燥を行った。続い
て複素環式モノマーであるピロール1部と酸化剤である
p−トルエンスルホン酸第二鉄2部と重合溶剤である1
−プロパノール4部を含む混合溶液に浸漬して引き上げ
た後、この陽極体を温度85℃で濃度1.0%のクエン
酸水溶液中で洗浄して乾燥を行い導電性高分子の固体電
解質層を形成した(この時の固体電解質層の鉄濃度は8
5ppmであった)。その後、カーボン層、導電性接着
層を順次形成して陰極引出線を接続して、最後に陽極導
出線及び陰極引出線の一部が外部に表出するように外装
樹脂で被覆してタンタル固体電解コンデンサを作製した
(Dサイズ:7.3×4.3×2.8mm)。
(Embodiment 1) A tantalum metal fine powder in which an anode lead wire made of a tantalum wire is embedded so that one end thereof is exposed is molded and sintered to obtain a porous anode body.
A dielectric oxide film layer was formed on the surface of the porous anode body by anodization. Next, the anode body on which the dielectric oxide film layer was formed was attached to a pyrrole 1 which is a heterocyclic monomer.
Immersed in a solution containing 1 part of 1-propanol as a polymerization solvent and 4 parts of 1-propanol, followed by ferric sulfate 2 as an oxidizing agent.
Of the anode body at a temperature of 85 ° C and a concentration of 1.
Washing and drying were performed in a 0% citric acid aqueous solution. Subsequently, 1 part of pyrrole, which is a heterocyclic monomer, 2 parts of ferric p-toluenesulfonate, which is an oxidizing agent, and 1 part, which is a polymerization solvent,
After dipping in a mixed solution containing 4 parts of propanol and pulling up the anode body, the anode body is washed at a temperature of 85 ° C. in a 1.0% citric acid aqueous solution and dried to form a solid polymer electrolyte polymer electrolyte layer. (The iron concentration of the solid electrolyte layer at this time was 8
5 ppm). After that, a carbon layer and a conductive adhesive layer are sequentially formed, and the cathode lead is connected. Finally, the anode lead and the cathode lead are covered with an exterior resin so that a part of the lead is exposed to the outside. An electrolytic capacitor was manufactured (D size: 7.3 × 4.3 × 2.8 mm).

【0029】(実施の形態2)上記実施の形態1におい
て、導電性高分子の固体電解質層の形成を複素環式モノ
マーであるピロール1部と重合溶剤である1−プロパノ
ール4部を含む溶液に浸漬して引き上げて、続いて酸化
剤である硫酸第二鉄2部と溶剤である1−プロパノール
4部を含む酸化溶液に浸漬して引き上げた後、この陽極
体を温度85℃で濃度1.0%の酒石酸水溶液中で洗浄
して乾燥を行った。続いて修復化成を行い水洗して乾燥
した後、複素環式モノマーであるピロール1部と酸化剤
であるp−トルエンスルホン酸第二鉄2部と重合溶剤で
ある1−プロパノール4部を含む混合溶液に浸漬して引
き上げて乾燥した。この陽極体を温度85℃で濃度1.
0%のクエン酸水溶液中で洗浄して乾燥を行った(この
時の固体電解質層の鉄濃度は75ppmであった)。こ
れ以外は実施の形態1と同様にしてタンタル固体電解コ
ンデンサを作製した。
(Embodiment 2) In Embodiment 1, the solid electrolyte layer of the conductive polymer is formed by a solution containing 1 part of pyrrole as a heterocyclic monomer and 4 parts of 1-propanol as a polymerization solvent. The anode body was immersed and pulled up, and then immersed in an oxidizing solution containing 2 parts of ferric sulfate as an oxidizing agent and 4 parts of 1-propanol as a solvent and pulled up. Washing and drying were performed in a 0% aqueous tartaric acid solution. Subsequently, after repair formation, washing with water and drying, a mixture containing 1 part of pyrrole as a heterocyclic monomer, 2 parts of ferric p-toluenesulfonate as an oxidizing agent, and 4 parts of 1-propanol as a polymerization solvent. It was immersed in the solution, pulled up and dried. This anode body was heated at a temperature of 85 ° C. to a concentration of 1.
Washing and drying were performed in a 0% citric acid aqueous solution (at this time, the iron concentration of the solid electrolyte layer was 75 ppm). Except for this, a tantalum solid electrolytic capacitor was manufactured in the same manner as in the first embodiment.

【0030】(実施の形態3)上記実施の形態1におい
て、導電性高分子の固体電解質層の形成を複素環式モノ
マーであるピロール1部と重合溶剤である1−プロパノ
ール4部を含む溶液に浸漬して引き上げて、続いて酸化
剤である硫酸第二鉄2部と溶剤である1−プロパノール
4部を含む酸化溶液に浸漬して引き上げた後、この陽極
体を温度85℃で濃度1.0%のクエン酸水溶液中で洗
浄して乾燥を行い、その後修復化成を行い水洗して乾燥
した。この一連の工程を5回繰り返し行った。続いて複
素環式モノマーであるピロール1部と酸化剤であるp−
トルエンスルホン酸第二鉄2部と重合溶剤である1−プ
ロパノール4部を含む混合溶液に浸漬して引き上げて乾
燥して、再び混合溶液に浸漬して乾燥する工程を3回繰
り返した後、この陽極体を温度85℃で濃度1.0%の
酒石酸水溶液中で洗浄して乾燥を行った(この時の固体
電解質層の鉄濃度は55ppmであった)以外は実施の
形態1と同様にしてタンタル固体電解コンデンサを作製
した。
(Embodiment 3) In Embodiment 1, the solid electrolyte layer of the conductive polymer is formed by a solution containing 1 part of pyrrole as a heterocyclic monomer and 4 parts of 1-propanol as a polymerization solvent. The anode body was immersed and pulled up, and then immersed in an oxidizing solution containing 2 parts of ferric sulfate as an oxidizing agent and 4 parts of 1-propanol as a solvent and pulled up. Washing and drying were performed in a 0% citric acid aqueous solution, followed by repair formation, washing with water, and drying. This series of steps was repeated five times. Subsequently, one part of pyrrole, which is a heterocyclic monomer, and p-
After repeating the process of dipping in a mixed solution containing 2 parts of ferric toluenesulfonic acid and 4 parts of 1-propanol as a polymerization solvent, pulling up and drying, and dipping again in the mixed solution and drying, the process was repeated three times. The anode body was washed in an aqueous tartaric acid solution having a concentration of 1.0% at a temperature of 85 ° C. and dried (the iron concentration of the solid electrolyte layer at this time was 55 ppm), and the same as in the first embodiment. A tantalum solid electrolytic capacitor was manufactured.

【0031】(実施の形態4)上記実施の形態1におい
て、クエン酸の水溶液で洗浄する工程を、水溶液に陽極
体を浸漬しながら誘電体酸化皮膜層の化成電圧の0.1
倍の電圧を印加した以外は実施の形態1と同様にしてタ
ンタル固体電解コンデンサを作製した(この時の固体電
解質層の鉄濃度は82ppmであった)。
(Embodiment 4) In the first embodiment, the step of washing with an aqueous solution of citric acid is carried out by immersing the anode body in the aqueous solution while reducing the formation voltage of the dielectric oxide film layer to 0.1.
A tantalum solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that a double voltage was applied (the iron concentration of the solid electrolyte layer at this time was 82 ppm).

【0032】(実施の形態5)上記実施の形態1におい
て、クエン酸の水溶液で洗浄する工程を水溶液に陽極体
を浸漬しながら誘電体酸化皮膜層の化成電圧の0.2倍
の電圧を印加した以外は実施の形態1と同様にしてタン
タル固体電解コンデンサを作製した(この時の固体電解
質層の鉄濃度は70ppmであった)。
Fifth Embodiment In the first embodiment, the step of washing with an aqueous solution of citric acid is performed by applying a voltage 0.2 times the formation voltage of the dielectric oxide film layer while immersing the anode body in the aqueous solution. A tantalum solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the solid electrolyte layer had an iron concentration of 70 ppm.

【0033】(実施の形態6)上記実施の形態1におい
て、クエン酸の水溶液で洗浄する工程を水溶液に陽極体
を浸漬しながら誘電体酸化皮膜層の化成電圧の1倍の電
圧を印加した以外は実施の形態1と同様にしてタンタル
固体電解コンデンサを作製した(この時の固体電解質層
の鉄濃度は65ppmであった)。
(Embodiment 6) In the first embodiment, the step of washing with an aqueous solution of citric acid is the same as that in the first embodiment except that the anode body is immersed in the aqueous solution and a voltage that is one time the formation voltage of the dielectric oxide film layer is applied. Produced a tantalum solid electrolytic capacitor in the same manner as in Embodiment 1 (at this time, the iron concentration of the solid electrolyte layer was 65 ppm).

【0034】(実施の形態7)上記実施の形態1におい
て、クエン酸の水溶液で洗浄する工程を水溶液に陽極体
を浸漬しながら誘電体酸化皮膜層の化成電圧の1.1倍
の電圧を印加した以外は実施の形態1と同様にしてタン
タル固体電解コンデンサを作製した(この時の固体電解
質層の鉄濃度は90ppmであった)。
(Embodiment 7) In the first embodiment, the step of washing with an aqueous solution of citric acid is performed by applying a voltage 1.1 times the formation voltage of the dielectric oxide film layer while immersing the anode body in the aqueous solution. A tantalum solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the solid electrolyte layer had an iron concentration of 90 ppm.

【0035】(比較例)タンタル線からなる陽極導出線
をその一端部が表出するように埋設したタンタル金属微
粉末を成形焼結して多孔質体の陽極体を得て、前記多孔
質体の陽極体の表面に陽極酸化法により誘電体酸化皮膜
層を形成した。次に、前記誘電体酸化皮膜層が形成され
た陽極体を複素環式モノマーであるピロール1部と重合
溶剤である1−プロパノール4部を含む溶液に浸漬して
引き上げた後、酸化剤であるp−トルエンスルホン酸第
二鉄2部と重合溶剤である1−プロパノール4部を含む
溶液に浸漬して引き上げた後、85℃で60分間放置す
ることによりポリピロールの固体電解質層を形成した
(この時の固体電解質層の鉄濃度は130ppmであっ
た)。この陽極体にカーボン層、導電性接着層を順次形
成して陰極引出線を接続し、最後に陽極導出線及び陰極
引出線の一部が表出するように外装樹脂で被覆してタン
タル固体アルミ電解コンデンサを構成した(Dサイズ:
7.3×4.3×2.8mm)。
(Comparative Example) A porous anode body was obtained by molding and sintering a fine tantalum metal powder in which an anode lead wire made of a tantalum wire was embedded so that one end thereof was exposed. A dielectric oxide film layer was formed on the surface of the anode body by the anodizing method. Next, the anode body on which the dielectric oxide film layer has been formed is immersed in a solution containing 1 part of pyrrole, which is a heterocyclic monomer, and 4 parts of 1-propanol, which is a polymerization solvent. After immersing in a solution containing 2 parts of ferric p-toluenesulfonate and 4 parts of 1-propanol as a polymerization solvent and lifting the solution, it was left at 85 ° C. for 60 minutes to form a solid electrolyte layer of polypyrrole. The iron concentration of the solid electrolyte layer at that time was 130 ppm). A carbon layer and a conductive adhesive layer are sequentially formed on the anode body, a cathode lead is connected thereto, and finally, the anode lead and a part of the cathode lead are covered with an exterior resin so that the tantalum solid aluminum is covered. Constructed electrolytic capacitor (D size:
7.3 × 4.3 × 2.8 mm).

【0036】以上のように作製した本発明の実施の形態
1〜7と比較例のタンタル固体電解コンデンサについ
て、固体電解質層の鉄濃度、漏れ電流(定格電圧印加後
30秒値)、エージング処理中のショート発生(不良)
数を比較した結果を(表1)に示す。
With respect to the tantalum solid electrolytic capacitors according to Embodiments 1 to 7 of the present invention and the comparative example manufactured as described above, the iron concentration of the solid electrolyte layer, the leakage current (30 seconds after application of the rated voltage), the aging treatment Occurrence of short circuit (defective)
The results of comparing the numbers are shown in (Table 1).

【0037】なお、試験個数は各50個であり、鉄濃度
は各50個の平均値で示し、漏れ電流は、ショート品を
除いたサンプルについての平均値で示した。
The number of test pieces was 50, the iron concentration was shown by the average value of each 50 pieces, and the leakage current was shown by the average value of the samples excluding short-circuited products.

【0038】[0038]

【表1】 [Table 1]

【0039】(表1)から明らかなように、本発明の実
施の形態1〜3のタンタル固体電解コンデンサは、比較
例と比較して陽極体を化学酸化重合後の洗浄工程を電解
質を含む溶液中に浸漬することにより、固体電解質層の
鉄濃度を100ppm以下に低減することができ、その
結果、漏れ電流が低くなり、ショート不良数を低減し、
製造工程において歩留まりの良いタンタル固体電解コン
デンサを得ることができる。
As is clear from Table 1, the tantalum solid electrolytic capacitors according to the first to third embodiments of the present invention are different from the comparative example in that the cleaning process after the chemical oxidation polymerization of the anode body is performed in a solution containing an electrolyte. By immersing in the solid electrolyte layer, the iron concentration of the solid electrolyte layer can be reduced to 100 ppm or less. As a result, the leakage current is reduced and the number of short-circuit defects is reduced.
In the manufacturing process, a tantalum solid electrolytic capacitor having a good yield can be obtained.

【0040】また、本発明の実施の形態4〜7のタンタ
ル固体電解コンデンサは、電解質を含む水溶液中に浸漬
しながら導電性高分子の固体電解質層を形成した陽極体
を陽極として電圧を印加した洗浄方法としたもので、実
施の形態4のタンタル固体電解コンデンサは電圧を印加
する効果が得られなかった。また、実施の形態7のタン
タル固体電解コンデンサは、固体電解質層の鉄濃度を低
減させることはできるが、静電容量が低下してしまう。
In the tantalum solid electrolytic capacitors according to Embodiments 4 to 7 of the present invention, a voltage was applied using the anode body having the conductive polymer solid electrolyte layer formed thereon as the anode while immersed in an aqueous solution containing the electrolyte. Because of the cleaning method, the tantalum solid electrolytic capacitor of Embodiment 4 did not provide the effect of applying a voltage. In the tantalum solid electrolytic capacitor according to the seventh embodiment, the iron concentration of the solid electrolyte layer can be reduced, but the capacitance is reduced.

【0041】従って、電解質を含む溶液中に浸漬しなが
ら電圧を印加した洗浄方法の印加電圧の最適値は0.2
〜1倍の範囲が好ましい。
Therefore, the optimum value of the applied voltage in the cleaning method in which the voltage is applied while being immersed in the solution containing the electrolyte is 0.2
A range of 1 to 1 is preferable.

【0042】[0042]

【発明の効果】以上のように本発明の固体電解コンデン
サは、誘電体酸化皮膜層が形成された陽極体の表面に、
複素環式モノマーと有機酸の第二鉄塩からなる酸化剤を
用いて化学酸化重合による固体電解質層を形成させた
後、電解質を含む溶液中に浸漬または浸漬しながら前記
陽極体を陽極として電圧を印加して洗浄することによ
り、鉄含有量が100ppm以下の導電性高分子の固体
電解質層を形成したもので、漏れ電流が低くなり、ショ
ート不良数を低減し、歩留まりの良い固体電解コンデン
サを得ることができるものであり、その工業的な価値は
大なるものである。
As described above, the solid electrolytic capacitor of the present invention has a structure in which the surface of the anode body on which the dielectric oxide film layer is formed
After forming a solid electrolyte layer by chemical oxidative polymerization using an oxidizing agent comprising a heterocyclic monomer and a ferric salt of an organic acid, the anode body is used as an anode while immersing or immersing in a solution containing an electrolyte. By applying and washing, a solid electrolyte layer of a conductive polymer having an iron content of 100 ppm or less is formed, the leakage current is reduced, the number of short-circuit defects is reduced, and a solid electrolytic capacitor having a good yield is obtained. It can be obtained, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による固体電解コンデンサ
の構成を概念的に示した断面図
FIG. 1 is a sectional view conceptually showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】従来の固体電解コンデンサ素子の構成を示した
断面図
FIG. 2 is a cross-sectional view showing a configuration of a conventional solid electrolytic capacitor element.

【符号の説明】[Explanation of symbols]

1 陽極導出線 2 陽極体 3 誘電体酸化皮膜層 4 導電性高分子の固体電解質層 5 カーボン層 6 導電性接着層 7 陰極引出線 REFERENCE SIGNS LIST 1 anode lead wire 2 anode body 3 dielectric oxide film layer 4 conductive polymer solid electrolyte layer 5 carbon layer 6 conductive adhesive layer 7 cathode lead wire

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 弁作用を有する金属からなる陽極体の表
面に形成された誘電体酸化皮膜層と、この誘電体酸化皮
膜層の表面に形成された鉄濃度が100ppm以下の導
電性高分子からなる固体電解質層と、この固体電解質層
上に形成された陰極層とからなる固体電解コンデンサ。
1. A dielectric oxide film layer formed on the surface of an anode body made of a metal having a valve action, and a conductive polymer having an iron concentration of 100 ppm or less formed on the surface of the dielectric oxide film layer. A solid electrolytic capacitor comprising: a solid electrolyte layer formed of the above; and a cathode layer formed on the solid electrolyte layer.
【請求項2】 導電性高分子からなる固体電解質層が化
学酸化重合後に洗浄することにより形成されたものであ
る請求項1に記載の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer made of a conductive polymer is formed by washing after chemical oxidation polymerization.
【請求項3】 導電性高分子からなる固体電解質層が複
素環式モノマーを有機および/または無機の第二鉄塩か
らなる酸化剤を用いて化学酸化重合反応により形成され
たものである請求項1に記載の固体電解コンデンサ。
3. The solid electrolyte layer comprising a conductive polymer, wherein the heterocyclic monomer is formed by a chemical oxidative polymerization reaction using an oxidizing agent comprising an organic and / or inorganic ferric salt. 2. The solid electrolytic capacitor according to 1.
【請求項4】 弁作用を有する金属からなる陽極体の表
面に陽極酸化法により誘電体酸化皮膜層を形成し、この
陽極体を複素環式モノマーを含有する重合溶液と無機の
第二鉄塩からなる酸化剤を含有する酸化溶液とに個々に
含浸させた後に洗浄し、続いて複素環式モノマーと有機
酸の第二鉄塩からなる酸化剤とを含有する混合溶液に含
浸させた後に洗浄することにより鉄濃度が100ppm
以下の導電性高分子の固体電解質層を形成するようにし
た固体電解コンデンサの製造方法。
4. A dielectric oxide film layer is formed by anodic oxidation on the surface of an anode body made of a metal having a valve action, and the anode body is mixed with a polymerization solution containing a heterocyclic monomer and an inorganic ferric salt. And then immersed in a mixed solution containing a heterocyclic monomer and an oxidizing agent consisting of a ferric salt of an organic acid, and then washed. By doing, iron concentration is 100ppm
A method for producing a solid electrolytic capacitor in which a conductive polymer solid electrolyte layer described below is formed.
【請求項5】 導電性高分子の固体電解質層を形成する
工程が、陽極体を複素環式モノマーを含有する重合溶液
と無機の第二鉄塩からなる酸化剤を含有する酸化溶液と
に個々に含浸させて洗浄、修復化成する工程を少なくと
も2回繰り返し行い、続いて複素環式モノマーと有機酸
の第二鉄塩からなる酸化剤を含有する混合溶液に含浸さ
せる工程を少なくとも2回繰り返し行い、その後洗浄し
て請求項4に記載の固体電解コンデンサの製造方法。
5. The step of forming a solid electrolyte layer of a conductive polymer comprises separately forming an anode body into a polymerization solution containing a heterocyclic monomer and an oxidation solution containing an oxidizing agent consisting of an inorganic ferric salt. , Washing and repair formation are repeated at least twice, and then a step of impregnating with a mixed solution containing an oxidizing agent comprising a heterocyclic monomer and a ferric salt of an organic acid is repeated at least twice. 5. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein the method is followed by washing.
【請求項6】 洗浄工程が電解質を含む溶液中に浸漬す
る工程および/または前記溶液中に浸漬しながら陽極体
を陽極として電圧を印加する工程を含む請求項4に記載
の固体電解コンデンサの製造方法。
6. The method of manufacturing a solid electrolytic capacitor according to claim 4, wherein the washing step includes a step of immersing in an electrolyte-containing solution and / or a step of applying a voltage while using the anode body as an anode while immersing in the solution. Method.
【請求項7】 電解質を含む溶液が有機酸およびその塩
からなり、かつ水酸基とカルボキシル基を併せ持つ分子
構造からなる請求項6に記載の固体電解コンデンサの製
造方法。
7. The method for producing a solid electrolytic capacitor according to claim 6, wherein the solution containing the electrolyte comprises an organic acid and a salt thereof, and has a molecular structure having both a hydroxyl group and a carboxyl group.
【請求項8】 電圧を印加して洗浄する工程が誘電体酸
化皮膜層の化成電圧に対して0.2〜1倍の電圧を印加
して行うものである請求項6に記載の固体電解コンデン
サの製造方法。
8. The solid electrolytic capacitor according to claim 6, wherein the step of cleaning by applying a voltage is performed by applying a voltage 0.2 to 1 times the formation voltage of the dielectric oxide film layer. Manufacturing method.
JP34448699A 1999-12-03 1999-12-03 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP3864651B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34448699A JP3864651B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor and manufacturing method thereof
CNB001344781A CN1184653C (en) 1999-12-03 2000-12-01 Method for mfg. solid electrolytic capacitor, and said solid electrolytic capacitor
US09/726,400 US6614063B2 (en) 1999-12-03 2000-12-01 Solid electrolytic capacitor
TW089125717A TW494419B (en) 1999-12-03 2000-12-02 Solid electrolytic capacitor and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34448699A JP3864651B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001167981A true JP2001167981A (en) 2001-06-22
JP3864651B2 JP3864651B2 (en) 2007-01-10

Family

ID=18369645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34448699A Expired - Fee Related JP3864651B2 (en) 1999-12-03 1999-12-03 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3864651B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299856A (en) * 2006-04-28 2007-11-15 Nec Tokin Corp Solid electrolytic capacitor
JP2012199364A (en) * 2011-03-22 2012-10-18 Nec Tokin Corp Solid electrolytic capacitor and manufacturing method therefor
US8699208B2 (en) 2005-09-13 2014-04-15 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors
US9373449B2 (en) 2011-12-14 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor
US9514888B2 (en) 2005-09-13 2016-12-06 Heraeus Deutschland GmbH & Co. KG Process for the production of electrolyte capacitors of high nominal voltage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699208B2 (en) 2005-09-13 2014-04-15 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors
US9514888B2 (en) 2005-09-13 2016-12-06 Heraeus Deutschland GmbH & Co. KG Process for the production of electrolyte capacitors of high nominal voltage
US9959981B2 (en) 2005-09-13 2018-05-01 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors of high nominal voltage
JP2007299856A (en) * 2006-04-28 2007-11-15 Nec Tokin Corp Solid electrolytic capacitor
JP2012199364A (en) * 2011-03-22 2012-10-18 Nec Tokin Corp Solid electrolytic capacitor and manufacturing method therefor
US9373449B2 (en) 2011-12-14 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3864651B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JPH1197296A (en) Solid electrolytic capacitor and its manufacture
JP4947150B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JPH1187177A (en) Solid electrolytic capacitor and its manufacture
JP3864651B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001148328A (en) Manufacturing method for solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001203128A (en) Method of manufacturing solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JP4115359B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH1174156A (en) Manufacture of solid electrolytic capacitor
JP2007048936A (en) Method of manufacturing solid electrolytic capacitor
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor
JP2004128035A (en) Method of manufacturing solid-state electrolytic capacitor
JP2006135191A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000340462A (en) Solid electrolytic capacitor
JP2001167980A (en) Manufacturing method of solid electrolytic capacitor
JP2000106330A (en) Capacitor and its manufacture
JP4637700B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees