JP2001167921A - High permeability oxide magnetic material - Google Patents
High permeability oxide magnetic materialInfo
- Publication number
- JP2001167921A JP2001167921A JP34836899A JP34836899A JP2001167921A JP 2001167921 A JP2001167921 A JP 2001167921A JP 34836899 A JP34836899 A JP 34836899A JP 34836899 A JP34836899 A JP 34836899A JP 2001167921 A JP2001167921 A JP 2001167921A
- Authority
- JP
- Japan
- Prior art keywords
- permeability
- ferrite
- initial
- temperature
- magnetic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、Mn−Znフェラ
イトからなり、ノイズフィルタ、チョークコイル、パル
ストランスなどの磁性部品に使用される高透磁率酸化物
磁性材料に関するものである。The present invention relates to a high-permeability oxide magnetic material made of Mn-Zn ferrite and used for magnetic components such as a noise filter, a choke coil, and a pulse transformer.
【0002】[0002]
【発明が解決しようとする課題】この種の高透磁率酸化
物磁性材料は、Mn−Znフェライトの初透磁率が温度
に依存する属性を有することから、これを組み込んだ磁
性部品の使用温度が変化すると、必然的に磁気特性が変
動してしまう。したがって、この高透磁率酸化物磁性材
料の用途を拡大するためには、広い温度範囲にわたって
初透磁率がなるべく増減しないように工夫することが必
要となる。This kind of high-permeability oxide magnetic material has an attribute that the initial permeability of Mn-Zn ferrite depends on temperature. If it changes, the magnetic characteristics inevitably change. Therefore, in order to expand the applications of the high-permeability oxide magnetic material, it is necessary to devise such that the initial permeability does not increase or decrease as much as possible over a wide temperature range.
【0003】本発明は、このような事情に鑑み、温度変
化による初透磁率の変動を小さく抑えることが可能な高
透磁率酸化物磁性材料を提供することを目的とする。[0003] In view of such circumstances, an object of the present invention is to provide a high-permeability oxide magnetic material capable of suppressing a change in initial permeability due to a temperature change.
【0004】[0004]
【課題を解決するための手段】すなわち、本発明に係る
高透磁率酸化物磁性材料は、Fe2 O3 50〜58mol
%、MnO12〜47mol %、ZnO3〜30mol %を
主成分とするMn−Znフェライトからなる高透磁率酸
化物磁性材料において、このMn−Znフェライトの主
成分に対して0.1〜2%の範囲内のTiO2 および
0.01〜0.2%の範囲内のCo3 O4 を副成分とし
て添加し、初透磁率の二次ピークが−40〜0℃となる
ようにして構成される。こうした構成を採用することに
より、Mn−Znフェライトの結晶磁気異方性ひいては
初透磁率が2種類の副成分TiO2、Co3 O4 の複合
添加によって変化し、そのためMn−Znフェライトの
温度特性が変わるように作用する。That is, the high-permeability oxide magnetic material according to the present invention comprises 50 to 58 mol of Fe 2 O 3 .
%, MnO 12 to 47 mol%, and ZnO 3 to 30 mol% in a high permeability oxide magnetic material composed of Mn-Zn ferrite in a range of 0.1 to 2% based on the main component of Mn-Zn ferrite. was added Co 3 O 4 in the range of TiO 2 and 0.01 to 0.2 percent of the inner as an auxiliary component, the secondary peak of the initial permeability is configured as a -40~0 ℃. By adopting such a configuration, the crystal magnetic anisotropy thus initial permeability Mn-Zn ferrite is changed by the combined addition of two sub-components TiO 2, Co 3 O 4, the temperature characteristic of the for Mn-Zn ferrite Acts to change.
【0005】また、キュリー温度が160℃以上となる
ように上記Mn−Znフェライトの主成分の組成比率を
限定して構成される。かかる構成により、初透磁率の二
次ピークを生じる温度とキュリー温度との温度差が一定
値以上確保され、その間における初透磁率の変化が緩や
かになるように作用する。The composition ratio of the main component of the Mn-Zn ferrite is limited so that the Curie temperature is 160 ° C. or higher. With this configuration, the temperature difference between the temperature at which the secondary peak of the initial permeability and the Curie temperature are equal to or more than a predetermined value is ensured, and the change in the initial permeability during that time is moderate.
【0006】さらに、上記Mn−Znフェライトの主成
分に対して0.01〜2%のMoO 3 および0.1%以
下のCaCO3 を副成分として添加して構成される。か
かる構成により、初透磁率の周波数特性が副成分CaC
O3 の添加によって良好となると同時に、副成分MoO
3 の添加により、Mn−Znフェライトの粒成長が促進
されて初透磁率が高くなるように作用する。Further, the main component of the above Mn-Zn ferrite is
0.01 to 2% MoO per minute ThreeAnd 0.1% or less
CaCO belowThreeIs added as an auxiliary component. Or
With this configuration, the frequency characteristic of the initial magnetic permeability is
OThreeAt the same time as the addition of MoO
ThreeAddition promotes grain growth of Mn-Zn ferrite
And acts to increase the initial magnetic permeability.
【0007】なお、本明細書の全体を通じて、主成分の
組成比率の単位として用いた「mol%」はモル百分率
(モル数で比較した場合の百分率)を表し、他方、副成
分の添加量の単位として用いた「%」は質量百分率を表
す。[0007] Throughout the present specification, "mol%" used as a unit of the composition ratio of the main component represents a mole percentage (percentage when compared with the number of moles). “%” Used as a unit indicates mass percentage.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施形態について
説明する。Embodiments of the present invention will be described below.
【0009】Fe2 O3 52.8mol %、MnO30.
3mol %、ZnO16.9mol %を主成分とするMn−
Znフェライトに対して、4種類の副成分TiO2 、C
o3O4 、MoO3 、CaCO3 をその添加量を変えて
添加して、10種類の高透磁率酸化物磁性材料(No.
1〜10)を作製した。これら高透磁率酸化物磁性材料
は、表1に示すように、Mn−Znフェライトの主成分
の組成比率が互いに同一であるためキュリー温度(表1
中の「Tc」)がすべて175℃であるため、初透磁率
の二次ピークを生じる温度とキュリー温度とは一定値以
上の温度差が確保され、その間においては初透磁率が緩
やかに変化することになる。52.8 mol% of Fe 2 O 3 , MnO 30.
Mn- containing 3 mol% and 16.9 mol% of ZnO as main components
Four types of subcomponents TiO 2 , C
o 3 O 4 , MoO 3 , and CaCO 3 were added in different amounts, and 10 kinds of high-permeability oxide magnetic materials (No.
1 to 10) were produced. As shown in Table 1, these high-permeability oxide magnetic materials have the same Curie temperature as the composition ratio of the main components of Mn—Zn ferrite (Table 1).
(Tc) is 175 ° C., so that a difference between the temperature at which the secondary peak of the initial permeability and the Curie temperature are equal to or more than a certain value is secured, and the initial permeability gradually changes during that time. Will be.
【0010】[0010]
【表1】 [Table 1]
【0011】そして、これら10種類の高透磁率酸化物
磁性材料について、−40〜130℃の範囲内で適当に
温度を変え、各温度における初透磁率をそれぞれ求め
た。さらに、こうして求めた初透磁率に基づき、温度変
化による初透磁率の変動具合を評価すべく、数1に示す
定義式(JIS C2560による)を用いて初透磁率
の相対温度係数を算出し、表2に示す結果を得た。With respect to these ten kinds of high-permeability oxide magnetic materials, the initial magnetic permeability at each temperature was determined by appropriately changing the temperature within the range of -40 to 130 ° C. Further, based on the initial magnetic permeability thus determined, a relative temperature coefficient of the initial magnetic permeability is calculated using a definition equation (according to JIS C2560) shown in Equation 1 in order to evaluate the degree of change of the initial magnetic permeability due to a temperature change. The results shown in Table 2 were obtained.
【0012】[0012]
【数1】 αμir=(μ2 −μ1 )/{μ1 2 (T2 −T1 )} αμir:初透磁率の相対温度係数 μ1 :基準温度T1 での初透磁率 μ2 :温度T2 での初透磁率[Number 1] α μir = (μ 2 -μ 1 ) / {μ 1 2 (T 2 -T 1)} α μir: relative temperature coefficient of initial permeability mu 1: initial permeability at a reference temperature T 1 mu 2 : Initial permeability at temperature T 2
【0013】[0013]
【表2】 [Table 2]
【0014】以上のことから、次の結論が導かれる。From the above, the following conclusions are drawn.
【0015】第1に、副成分Co3 O4 を添加すれば、
図1から明らかなように、初透磁率の変動は小さくなる
が、その添加量が0.2%を越えると初透磁率が著しく
低下する。First, if the auxiliary component Co 3 O 4 is added,
As is clear from FIG. 1, the fluctuation of the initial magnetic permeability is small, but when the addition amount exceeds 0.2%, the initial magnetic permeability is significantly reduced.
【0016】第2に、この副成分Co3 O4 に加えて副
成分TiO2 を複合添加すれば、Mn−Znフェライト
の結晶磁気異方性定数が変化し、低温から高温までの幅
広い温度範囲にわたって初透磁率の変動幅が減少する。
例えば、表2から明らかなように、主成分Fe2 O3 に
対する副成分TiO2 、Co3 O4 の添加量を選定して
初透磁率の二次ピークが−40〜0℃となるようにする
ことにより、低温における初透磁率の相対温度係数を−
1から1、高温における初透磁率の相対温度係数を0〜
2の範囲内に抑えることができる。この際、初透磁率の
二次ピークが−40℃を下回ると、図2に示すように、
初透磁率の二次ピークを生じる温度からキュリー温度に
至るまでの温度範囲で初透磁率が大幅に低下してしま
う。Second, if a sub-component TiO 2 is added in addition to the sub-component Co 3 O 4 , the crystal magnetic anisotropy constant of the Mn—Zn ferrite changes, and a wide temperature range from a low temperature to a high temperature is obtained. Over time, the fluctuation range of the initial permeability decreases.
For example, as it is clear from Table 2, as the secondary peak of the initial permeability was selected amount of the main component Fe 2 O 3 subcomponents with respect to TiO 2, Co 3 O 4 is -40~0 ° C. By doing so, the relative temperature coefficient of the initial permeability at low temperature is-
From 1 to 1, the relative temperature coefficient of the initial permeability at high temperature is 0 to
2 can be suppressed. At this time, when the secondary peak of the initial magnetic permeability is lower than −40 ° C., as shown in FIG.
The initial magnetic permeability is significantly reduced in a temperature range from a temperature at which a secondary peak of the initial magnetic permeability occurs to the Curie temperature.
【0017】第3に、副成分MoO3 を添加すれば、M
n−Znフェライトの粒成長が促進され、高い初透磁率
が得られる。但し、副成分MoO3 の添加量が2%を越
えると、異常粒成長が発生して初透磁率は逆に低下して
しまう。Third, if the auxiliary component MoO 3 is added, M
Grain growth of n-Zn ferrite is promoted, and a high initial magnetic permeability is obtained. However, if the addition amount of the sub-component MoO 3 exceeds 2%, abnormal grain growth occurs and the initial permeability decreases.
【0018】第4に、副成分CaCO3 を添加すれば、
図3から明らかなように、初透磁率の周波数特性は向上
するが、その添加量が多いほど初透磁率が下がり、特に
0.1%を越えて添加したときには初透磁率の低下が顕
著となる。Fourth, if the auxiliary component CaCO 3 is added,
As is clear from FIG. 3, the frequency characteristic of the initial permeability is improved, but as the amount of addition increases, the initial permeability decreases. Particularly, when the addition exceeds 0.1%, the decrease in the initial permeability is remarkable. Become.
【0019】[0019]
【発明の効果】以上説明したように、本発明によれば、
Fe2 O3 50〜58mol %、MnO12〜47mol
%、ZnO3〜30mol %を主成分とするMn−Znフ
ェライトからなる高透磁率酸化物磁性材料において、こ
のMn−Znフェライトの主成分に対して0.1〜2%
の範囲内のTiO2 および0.01〜0.2%の範囲内
のCo3 O4 を副成分として添加し、初透磁率の二次ピ
ークが−40〜0℃となるようにして構成したので、M
n−Znフェライトの結晶磁気異方性ひいては初透磁率
が2種類の副成分TiO2 、Co3 O4 の複合添加によ
って変化し、そのためMn−Znフェライトの温度特性
が変わることから、温度変化による初透磁率の変動を小
さく抑え、幅広い用途に使用することが可能な高透磁率
酸化物磁性材料を提供することができる。As described above, according to the present invention,
Fe 2 O 3 50 to 58 mol%, MnO 12 to 47 mol
%, ZnO 3 to 30 mol% in a high permeability oxide magnetic material comprising Mn-Zn ferrite as a main component, and 0.1 to 2% with respect to the main component of the Mn-Zn ferrite.
The Co 3 O 4 in the range of TiO 2 and from 0.01 to 0.2% of the range of added as an auxiliary component, the secondary peak of the initial permeability was constructed as a -40~0 ° C. So M
magnetocrystalline anisotropy and hence initial permeability n-Zn ferrite is changed by the combined addition of two sub-components TiO 2, Co 3 O 4, since the temperature characteristics of the for Mn-Zn ferrite is changed, due to a temperature change It is possible to provide a high-permeability oxide magnetic material that can suppress the fluctuation of the initial permeability and can be used for a wide range of applications.
【0020】また、本発明によれば、キュリー温度が1
60℃以上となるように上記Mn−Znフェライトの主
成分の組成比率を限定して構成したので、初透磁率の二
次ピークを生じる温度とキュリー温度との温度差が一定
値以上確保され、その間における初透磁率の変化が緩や
かになることから、上述した効果が一層顕著なものとな
る。According to the present invention, the Curie temperature is 1
Since the composition ratio of the main component of the Mn-Zn ferrite is limited so as to be 60 ° C. or higher, the temperature difference between the temperature at which the secondary peak of the initial permeability and the Curie temperature are maintained at a certain value or more, Since the change in the initial magnetic permeability during this period becomes gradual, the above-mentioned effects become more remarkable.
【0021】さらに、本発明によれば、上記Mn−Zn
フェライトの主成分に対して0.01〜2%のMoO3
および0.1%以下のCaCO3 を副成分として添加し
て構成したので、初透磁率の周波数特性が副成分CaC
O3 の添加によって良好となると同時に、副成分MoO
3 の添加により、Mn−Znフェライトの粒成長が促進
されて初透磁率が高くなることから、上述した効果が一
層顕著なものとなる。Further, according to the present invention, the above Mn-Zn
MoO 3 of 0.01 to 2% based on the main component of ferrite
And 0.1% or less of CaCO 3 added as a sub-component, the frequency characteristic of the initial magnetic permeability is
At the same time as the addition of O 3 improves the content,
The addition of 3 promotes the grain growth of Mn-Zn ferrite and increases the initial magnetic permeability, so that the above-mentioned effects become more remarkable.
【図1】副成分Co3 O4 の添加量が異なる4種類の高
透磁率酸化物磁性材料に関する初透磁率の温度特性を示
すグラフである。FIG. 1 is a graph showing temperature characteristics of initial magnetic permeability of four types of high-permeability oxide magnetic materials having different addition amounts of an auxiliary component Co 3 O 4 .
【図2】初透磁率の二次ピークが異なる5種類の高透磁
率酸化物磁性材料に関する初透磁率の温度特性を示すグ
ラフである。FIG. 2 is a graph showing temperature characteristics of initial permeability of five kinds of high-permeability oxide magnetic materials having different secondary peaks in initial permeability.
【図3】副成分CaCO3 の添加量が異なる3種類の高
透磁率酸化物磁性材料に関する初透磁率の温度特性を示
すグラフである。FIG. 3 is a graph showing temperature characteristics of initial magnetic permeability of three kinds of high-permeability oxide magnetic materials having different addition amounts of a subcomponent CaCO 3 .
フロントページの続き (72)発明者 松尾 良夫 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 福永 信二 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 4G002 AA07 AE02 4G018 AA01 AA02 AA15 AA21 AA25 AA39 5E041 AB02 AB19 BD01 CA02 NN02 NN15 Continued on the front page (72) Inventor Yoshio Matsuo 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Shinji Fukunaga 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. In-house F-term (reference) 4G002 AA07 AE02 4G018 AA01 AA02 AA15 AA21 AA25 AA39 5E041 AB02 AB19 BD01 CA02 NN02 NN15
Claims (3)
2〜47mol %、ZnO3〜30mol %を主成分とする
Mn−Znフェライトからなる高透磁率酸化物磁性材料
において、 このMn−Znフェライトの主成分に対して0.1〜2
%の範囲内のTiO2および0.01〜0.2%の範囲
内のCo3 O4 を副成分として添加し、初透磁率の二次
ピークが−40〜0℃となるようにしたことを特徴とす
る高透磁率酸化物磁性材料。1. 50 to 58 mol% of Fe 2 O 3 , MnO1
In a high-permeability oxide magnetic material composed of Mn-Zn ferrite containing 2 to 47 mol% and ZnO of 3 to 30 mol% as main components, the main component of Mn-Zn ferrite is 0.1 to 2 mol%.
% Of TiO 2 and 0.01 to 0.2% of Co 3 O 4 are added as subcomponents so that the secondary peak of initial permeability becomes −40 to 0 ° C. A high-permeability oxide magnetic material characterized by the following.
にMn−Znフェライトの主成分の組成比率を限定した
ことを特徴とする請求項1に記載の高透磁率酸化物磁性
材料。2. The high-permeability oxide magnetic material according to claim 1, wherein the composition ratio of the main component of Mn—Zn ferrite is limited so that the Curie temperature is 160 ° C. or higher.
0.01〜2%のMoO3 および0.1%以下のCaC
O3 を副成分として添加したことを特徴とする請求項1
または請求項2に記載の高透磁率酸化物磁性材料。3. MoO 3 of 0.01 to 2% and CaC of 0.1% or less based on the main component of Mn—Zn ferrite.
2. The method according to claim 1, wherein O 3 is added as an auxiliary component.
Alternatively, the high-permeability oxide magnetic material according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34836899A JP2001167921A (en) | 1999-12-08 | 1999-12-08 | High permeability oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34836899A JP2001167921A (en) | 1999-12-08 | 1999-12-08 | High permeability oxide magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001167921A true JP2001167921A (en) | 2001-06-22 |
Family
ID=18396567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34836899A Pending JP2001167921A (en) | 1999-12-08 | 1999-12-08 | High permeability oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001167921A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005145803A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
JP2005145802A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
US6940381B2 (en) | 2002-12-20 | 2005-09-06 | Tdk Corporation | Mn-Zn based ferrite, magnetic core for transformer and transformer |
-
1999
- 1999-12-08 JP JP34836899A patent/JP2001167921A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6940381B2 (en) | 2002-12-20 | 2005-09-06 | Tdk Corporation | Mn-Zn based ferrite, magnetic core for transformer and transformer |
JP2005145803A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
JP2005145802A (en) * | 2003-11-20 | 2005-06-09 | Jfe Chemical Corp | Mn-Zn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0931779A1 (en) | Ferrite, and transformer and method for driving it | |
JP2001068326A (en) | MnZn BASED FERRITE | |
JP5181175B2 (en) | Mn-Zn-Co ferrite | |
CN105837192B (en) | NiMnZn-based ferrite | |
JP2004247603A (en) | MnZn-BASED FERRITE WAVE ABSORBER | |
JP2008143744A (en) | MnCoZn FERRITE AND MAGNETIC CORE FOR TRANSFORMER | |
JP2001167921A (en) | High permeability oxide magnetic material | |
JP4711897B2 (en) | MnCoZn ferrite and transformer core | |
JP2001342058A (en) | METHOD FOR PRODUCING MnZn-BASED FERRITE, MnZn-BASED FERRITE, AND FERRITE CORE FOR POWER SOURCE | |
KR20000010786A (en) | Manganese-zinc-base ferrite | |
KR102157808B1 (en) | ferrite composition, ferrite magnetic substance using the same and method of fabricating ferrite magnetic substance | |
JP2009196841A (en) | Manganese-zinc ferrite and manganese-zinc ferrite core | |
JP4761175B2 (en) | Low-loss ferrite and magnetic core using the same | |
JP3256460B2 (en) | Oxide magnetic material and method for producing the same | |
JPH0463526B2 (en) | ||
JP3384044B2 (en) | Piezoelectric ceramic | |
JP2515184B2 (en) | Method for producing nickel-zinc ferrite | |
JPH06349622A (en) | Core for transformer or inductor | |
JP2007031210A (en) | Mn-Zn FERRITE | |
JP6716191B2 (en) | Ferrite core | |
JP2001057308A (en) | High-magnetic permeability oxide magnetic material | |
JP3300522B2 (en) | Low loss oxide soft magnetic material | |
JP2802839B2 (en) | Oxide soft magnetic material | |
JP3481493B2 (en) | MnZn ferrite | |
JP2003257724A (en) | Mn-Zn-BASED FERRITE |