JP2001167786A - Electrode material and electrolytic bath for redox flow cell - Google Patents

Electrode material and electrolytic bath for redox flow cell

Info

Publication number
JP2001167786A
JP2001167786A JP34859999A JP34859999A JP2001167786A JP 2001167786 A JP2001167786 A JP 2001167786A JP 34859999 A JP34859999 A JP 34859999A JP 34859999 A JP34859999 A JP 34859999A JP 2001167786 A JP2001167786 A JP 2001167786A
Authority
JP
Japan
Prior art keywords
electrode material
point compression
compression retention
redox flow
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34859999A
Other languages
Japanese (ja)
Other versions
JP4280883B2 (en
Inventor
Makoto Inoue
誠 井上
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP34859999A priority Critical patent/JP4280883B2/en
Publication of JP2001167786A publication Critical patent/JP2001167786A/en
Application granted granted Critical
Publication of JP4280883B2 publication Critical patent/JP4280883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic bath that has a basic property of carbonaceous fiber used in an electrode material for a redox flow cell, and reduces contact resistance in an electrolytic bath using electrode material for reducing the contact resistance. SOLUTION: The electrolytic bath includes a membrane arranged between a pair of current collecting plates which are opposed with each other through a gap, and the electrode material is pressure-contacted and pinched by at least either of the membrane or the current collecting plates. As the electrode material, carbon aggregate is used and has a layered structure in the thickness direction, in which different point compression holding rates of more layers than two are integrated with each other. A pitch ratio (low value/high value) of the point pressure holding rate is in a range of 0.80 to 0.98. The side which has a higher point compression holding rate of the electrode material is arranged at the membrane side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水溶液系電解液を用
いたレドックスフロー電池の電解槽に用いられる電極材
および電解槽に関する。特に本発明のレドックスフロー
電池用電極材および電解槽は、特にバナジウム系レドッ
クスフロー電池用の電極材および電解槽として有用であ
る。
The present invention relates to an electrode material and an electrolytic cell used for an electrolytic cell of a redox flow battery using an aqueous electrolytic solution. In particular, the electrode material and the electrolytic cell for a redox flow battery of the present invention are particularly useful as an electrode material and an electrolytic cell for a vanadium-based redox flow battery.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素繊維集合体が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a carbon fiber aggregate having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6, 7と電解
槽ECから成り、ポンプ8, 9にて活物質を含む電解液
を外部タンク6, 7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge, is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1, 1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサー2によって集電板1,
1の内面に沿った電解液の流路4a, 4bが形成されて
いる。該流通路4a,4bの少なくとも一方には炭素繊
維集合体等の電極材5が配設されており、このようにし
て三次元電極が構成されている。なお、集電板1には、
電解液の液流入り口10と液流出口11とが設けられて
いる。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is disposed between two opposing current collectors 1, 1, and the current collectors 1, 1 are arranged on both sides of the ion exchange membrane 3 by spacers 2.
The flow paths 4a and 4b for the electrolytic solution are formed along the inner surface of the first electrode 1. An electrode material 5 such as a carbon fiber aggregate is provided in at least one of the flow passages 4a and 4b, and thus a three-dimensional electrode is formed. In addition, in the current collector 1,
A liquid inlet 10 and a liquid outlet 11 for the electrolytic solution are provided.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2- が不足
し、正極電解液ではSO4 2- が過剰になるため、イオン
交換膜3を通ってSO4 2- が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさ
ないこと(反応選択性が高いこと)、具体的には電流効
率(ηI )が高いこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ).

【0010】2)電極反応活性が高いこと、具体的には
セル抵抗(R)が小さいこと。すなわち電圧効率(η
V )が高いこと。
2) High electrode reaction activity, specifically, low cell resistance (R). That is, the voltage efficiency (η
V ) is high.

【0011】3)上記1)2)に関連するが電池エネル
ギー効率(ηE )が高いこと。ηE =ηI ×ηV
3) High battery energy efficiency (η E ), which is related to 1) and 2) above. η E = η I × η V

【0012】4)繰り返し使用に対する劣化が小さいこ
と(高寿命)、具体的には電池エネルギー効率 (η
E )の低下量が小さいこと。
4) Deterioration due to repeated use is small (long life), specifically, battery energy efficiency (η)
E ) The amount of decrease is small.

【0013】例えば、特開昭60−232669号公報
には、X線広角解析より求めた<002>面間隔が、平
均3.70Å以下であり、またc軸方向の結晶子の大き
さが平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸
性官能基量が少なくとも0.01meq/gである炭素
質材料を、電解槽用電極材として用いることが提案され
ている。
For example, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is average. It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell.

【0014】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材を、鉄−クロム系レドックスフロー電
池の電解槽用電極材として用いることが提案されてい
る。
JP-A-5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing determined by X-ray wide-angle analysis of 3.0.
A carbonaceous material having a pseudo-graphite crystal structure of 50 to 3.60 ° and having the number of bonded oxygen atoms on the surface of the carbonaceous material of 10 to 25% of the number of carbon atoms is electrolyzed in an iron-chromium redox flow battery. It has been proposed to use it as an electrode material for a bath.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいは炭素質材料表面の結合酸素原子
数が炭素原子数の10%以上必要であり、炭素電極材表
面の官能基が多すぎるため、上記の如き接触抵抗が高く
なり、その結果セル抵抗が高くなって、高い電池エネル
ギー効率が得られていなかった。こうした問題に対し、
電極材の導電性を向上させるために、電極材の充填密度
を高くすることが考えられるが、いたずらに充填密度を
高くすると、電解液の流通性が悪化して通液圧損が高く
なり、電解液を流通するポンプの動力損失が増加して結
果として、電池の効率が低下してしまう。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or the number of bonded oxygen atoms on the surface of the carbonaceous material is required to be 10% or more of the number of carbon atoms, and the number of functional groups on the surface of the carbon electrode material is too large. As a result, the cell resistance was increased, and high battery energy efficiency was not obtained. To address these issues,
In order to improve the conductivity of the electrode material, it is conceivable to increase the packing density of the electrode material.However, if the packing density is increased unnecessarily, the flowability of the electrolytic solution is deteriorated, and the pressure loss due to the passage increases. The power loss of the pump that circulates the liquid increases, and as a result, the efficiency of the battery decreases.

【0016】そこで、本発明の目的はかかる事情に鑑
み、レドックスフロー電池の電極材に用いられる炭素質
繊維の基本的な特性を有し、かつ電解槽における接触抵
抗を低減しうる電極材を用いて接触抵抗を低減した電解
槽を提供することにある。
In view of such circumstances, an object of the present invention is to use an electrode material having the basic characteristics of carbonaceous fiber used for an electrode material of a redox flow battery and capable of reducing the contact resistance in an electrolytic cell. To provide an electrolytic cell with reduced contact resistance.

【0017】[0017]

【発明を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究したところ、電極材に用いる
炭素集合体に厚み方向のポイント圧縮率に所定の差を付
け、当該電極材のポイント圧縮率の高い側を隔膜側に配
設することにより、上記目的を達成できる事を見いだ
し、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and found that a predetermined difference is provided in the point compression ratio in the thickness direction of the carbon aggregate used for the electrode material, and It has been found that the above object can be achieved by arranging the side having the higher point compressibility of the material on the diaphragm side, and the present invention has been completed.

【0018】すなわち、本発明は、間隙を介した状態で
対向して配設された一対の集電板間に隔膜が配設され、
該集電板と隔膜の間との少なくとも一方に電極材が圧接
挟持された構造を有する電解槽において、前記電極材と
して、厚み方向にポイント圧縮保持率の異なる2層以上
の一体化された層構造を有し、かつ表裏面のポイント圧
縮保持率の高低比率(低い値/高い値)が0.80以上
0.98以下である炭素集合体を用い、当該電極材のポ
イント圧縮保持率の高い側を隔膜側に配設したことを特
徴とする水溶液系電解液を用いたレドックスフロー、に
関する。
That is, according to the present invention, a diaphragm is provided between a pair of current collectors disposed to face each other with a gap therebetween,
In an electrolytic cell having a structure in which an electrode material is pressed and held between at least one of the current collector plate and the diaphragm, two or more integrated layers having different point compression retention rates in the thickness direction are used as the electrode material. A carbon aggregate having a structure and a high / low ratio (low value / high value) of the point compression retention on the front and back surfaces is 0.80 or more and 0.98 or less, and the electrode material has a high point compression retention. A redox flow using an aqueous electrolyte solution, wherein the redox flow is disposed on the diaphragm side.

【0019】さらに本発明は前記レドックスフロー電池
用電解槽に用いられる炭素集合体からなる電極材であっ
て、炭素集合体がポイント圧縮保持率の異なる2層以上
の一体化された層構造を有し、かつ表裏面のポイント圧
縮保持率の高低比率(低い値/高い値)が0.80以上
0.98以下であることを特徴とするレドックスフロー
電池用電極材、に関する。
The present invention further relates to an electrode material comprising a carbon aggregate used in the electrolytic cell for a redox flow battery, wherein the carbon aggregate has an integrated layer structure of two or more layers having different point compression retention rates. And an electrode material for a redox flow battery, characterized in that the point compression retention ratio of the front and back surfaces (low value / high value) is 0.80 or more and 0.98 or less.

【0020】前記ポイント圧縮保持率は表層の局所的な
堅さを評価するため、先端が球状の測定子を用いて低荷
重での厚み変化率を評価する方法である。ポイント圧縮
保持率が高い値になるほど球状測定子による荷重厚みの
変化率が大きいことを意味し、表面組織が柔らかいこと
を示唆している。ポイント圧縮保持率の高低比率が高い
ことは、即ち電極材組織の表裏面の堅さに大きな違いが
あることを意味する。
The point compression retention is a method of evaluating the thickness change rate under a low load using a measuring element having a spherical tip in order to evaluate the local hardness of the surface layer. The higher the point compression retention ratio, the higher the rate of change in the load thickness by the spherical probe, indicating that the surface texture is softer. The high ratio of the point compression retention ratio means that there is a great difference in the hardness of the front and back surfaces of the electrode material structure.

【0021】前記のように電極材に用いる炭素集合体
を、厚み方向にポイント圧縮保持率の異なる2層以上の
一体化された層構造とすることにより、電極材の電解槽
への組み込み時に幾何的な接触面積を増加し、さらにポ
イント圧縮保持率の高低比率を上記所定範囲に調整する
ことによって、ポイント圧縮保持率の高い側では圧縮保
持率が高いことから、電極材の電解槽への組み込み時
に、優先して電極材が圧縮され高ポイント圧縮保持率を
有する面により電極材の幾何表面積を増加しするととも
に、ポイント圧縮保持率の低い側では圧縮保持率が低い
ために、電極材の電解槽への組み込み時に強い圧縮応力
によって電極材と集電板との接着性が向上し低ポイント
圧縮保持率を有する面で必要な圧縮応力を得て接触抵抗
を低減したものである。
As described above, by forming the carbon aggregate used for the electrode material into an integrated layer structure of two or more layers having different point compression holding ratios in the thickness direction, the carbon material can be geometrically assembled when the electrode material is incorporated into the electrolytic cell. By increasing the point-to-point compression retention ratio within the above-mentioned predetermined range by increasing the point-to-point compression retention ratio, the compression retention ratio is high on the high point compression retention ratio side. Sometimes, the electrode material is compressed preferentially and the surface having a high point compression retention increases the geometric surface area of the electrode material, and the compression retention is low on the low point compression retention, so that the electrode material is electrolyzed. The strong compressive stress at the time of assembling into the tank improves the adhesiveness between the electrode material and the current collector, and reduces the contact resistance by obtaining the necessary compressive stress on the surface with low point compression retention.

【0022】このように、電極材に用いる炭素集合体
を、厚み方向に嵩密度の異なる2層以上の一体化された
層構造とすることにより、ポイント圧縮率の高い側では
電解槽作成時に優先的に圧縮され電極材の単繊維幾何表
面積が増加するため電極材内部の接触性が向上する。ま
たこの電極材のポイント圧縮率の高い側を隔膜側に向け
て電解槽を作成することにより隔膜付近で活発に行われ
る電極反応が単繊維幾何表面積増加により向上し反応抵
抗が低減され、セル抵抗を低減することが可能となる。
As described above, by forming the carbon aggregate used for the electrode material into an integrated layer structure of two or more layers having different bulk densities in the thickness direction, the side having the higher point compression ratio has a higher priority when preparing the electrolytic cell. Since the electrode material is compressed and the geometric surface area of the single fiber of the electrode material is increased, the contact property inside the electrode material is improved. In addition, by creating an electrolytic cell with the side with the higher point compression ratio of the electrode material facing the diaphragm side, the electrode reaction that is actively performed near the diaphragm is improved by increasing the geometric surface area of the single fiber, the reaction resistance is reduced, and the cell resistance is reduced. Can be reduced.

【0023】[0023]

【発明の実施の形態】本発明の電極材は炭素質繊維から
なり、その組成、微細構造等は特に制限されないが、電
極表面積を大きくできるものが好ましい。具体的には、
紡績糸、フィラメント集束糸、不織布、編地、織地、特
殊編織物(特開昭63−200467号公報に記載され
ているようなもの)があげられるが取扱いや加工性、製
造性等から主として不織布が利用される。当該不織布
は、焼成(炭化)の前に不融化あるいは耐炎化された短
繊維を解繊し、カードにかけ、幾層かに重ねられたレイ
ヤーからなるウェブを作成し、ニードルパンチ法、サー
マルボンド法、ステッチボンド法等の公知の方法を組み
合わせて好適に作成される。
BEST MODE FOR CARRYING OUT THE INVENTION The electrode material of the present invention is made of carbonaceous fiber, and its composition and microstructure are not particularly limited, but those capable of increasing the electrode surface area are preferred. In particular,
Examples include spun yarn, bundled filament yarn, non-woven fabric, knitted fabric, woven fabric, and special knitted fabric (such as those described in JP-A-63-200457). Is used. The nonwoven fabric is obtained by defibrating infusible or flame-resistant short fibers prior to firing (carbonization), applying a card, creating a web composed of several layers, using a needle punch method, a thermal bonding method, and the like. And a known method such as a stitch bonding method.

【0024】電極材として用いられる炭素集合体はこう
して得られた不織布等を公知の方法で焼成し必要であれ
ば表面処理を行うことによって得られる。
The carbon aggregate used as an electrode material can be obtained by firing the thus obtained nonwoven fabric or the like by a known method and, if necessary, subjecting it to a surface treatment.

【0025】炭素集合体の目付量は電解槽のスペーサー
で設定される間隙によって異なるが、通常、100〜1
000g/m2 程度であり、圧接時に必要な圧縮応力を
得るために厚みは少なくとも間隙より大きいこと、望ま
しくは間隙の1.2倍から3.3倍の厚みに調整され
る。しかしながら電極材の圧縮応力が高いと隔膜の損傷
や電解槽作成時のハンドリングの悪さが顕在化するため
設定間隙までの圧縮応力が0.098MPa以下にする
ことが望ましい。
Although the basis weight of the carbon aggregate varies depending on the gap set by the spacer of the electrolytic cell, it is usually 100 to 1%.
The thickness is about 000 g / m 2 , and the thickness is adjusted to be at least larger than the gap, desirably 1.2 to 3.3 times the gap in order to obtain the necessary compressive stress at the time of pressing. However, if the compressive stress of the electrode material is high, damage to the diaphragm and poor handling during the preparation of the electrolytic cell become apparent, so the compressive stress up to the set gap is desirably 0.098 MPa or less.

【0026】このような層構造を有する炭素集合体は、
通常、厚さ0.5〜15mm程度、好ましくは1〜10
mmであり、嵩密度は、0.05〜0.15g/cm3
程度、好ましくは0.06〜0.14g/cm3 とする
のが、通液性とセル抵抗を両立する上で好ましい。
The carbon aggregate having such a layer structure is
Usually, the thickness is about 0.5 to 15 mm, preferably 1 to 10
mm, and the bulk density is 0.05 to 0.15 g / cm 3
Level, preferably 0.06 to 0.14 g / cm 3 , in order to achieve both liquid permeability and cell resistance.

【0027】前記電極材として用いられる炭素集合体
は、厚み方向にポイント圧縮保持率の異なる2層以上の
一体化された層構造を有する。電極材の層構造は、表裏
にポイント圧縮保持率の異なる層が2層以上あれば、そ
の層構造は特に制限されない。たとえば、厚み方向に各
層のポイント圧縮保持率が順次に高く(または低く)な
るような層構造であってもよく、高ポイント圧縮保持率
層/低ポイント圧縮保持率層/高ポイント圧縮保持率
層、または低ポイント圧縮保持率層/高ポイント圧縮保
持率層/低ポイント圧縮保持率層のようにポイント圧縮
保持率の異なる層が繰り返されているような層構造であ
ってもよい。ただし、炭素集合体は表面と裏面のポイン
ト圧縮保持率には差がついていることが必要である。
The carbon aggregate used as the electrode material has an integrated layer structure of two or more layers having different point compression retention rates in the thickness direction. The layer structure of the electrode material is not particularly limited as long as there are two or more layers having different point compression retention rates on the front and back. For example, the layer structure may be such that the point compression retention of each layer sequentially increases (or decreases) in the thickness direction, and the high point compression retention layer / low point compression retention layer / high point compression retention layer Alternatively, a layer structure in which layers having different point compression retention rates such as a low point compression retention rate layer / a high point compression retention rate layer / a low point compression retention rate layer may be repeated. However, it is necessary that the carbon aggregate has a difference in point compression retention between the front surface and the back surface.

【0028】高ポイント圧縮保持率層と低ポイント圧縮
保持率層の区別は、表裏面のポイント圧縮保持率を測定
し、どちらかの圧縮保持率の高い面を含む層を高ポイン
ト圧縮保持率層とし、もう一方の面を含む層を低ポイン
ト圧縮保持率層とする。電極材の層構造が3層以上ある
場合にも表裏面のポイント圧縮保持率を測定し高低比率
を決定する。
The high-point compression retention layer and the low-point compression retention layer can be distinguished by measuring the point compression retention on the front and back surfaces, and determining which of the layers containing the surface with the higher compression retention is the high-point compression retention layer. And the layer including the other surface is a low-point compression retention layer. Even when the electrode material has three or more layer structures, the point compression retention ratio on the front and back surfaces is measured to determine the height ratio.

【0029】また、前記炭素集合体は、表裏面のポイン
ト圧縮保持率の高低比率(低い値/高い値)が0.80
以上0.98以下の範囲になるように調整したものを用
いる。
Further, the carbon aggregate has a high / low point compression retention ratio (low value / high value) of 0.80 for the front and back surfaces.
The one adjusted so as to be in the range of 0.98 or more is used.

【0030】ポイント圧縮保持率の高低比率の比が小さ
くなり、0.80未満になると、ポイント圧縮保持率の
低い部分は表層が極端に堅い組織になってしまうため、
電解槽作成時に隔膜を損傷し電解液が混入し容量低下が
起きるので好ましくない。こうした傾向があることから
高低比率は、0.82以上、さらには0.85以上とす
るのが好ましい。一方、ポイント圧縮保持率の高低比率
が0.98を超える場合には、ポイント圧縮保持率の差
がなくなるので電解槽作成時には電極材が均一充填とな
り、集電板と付近の電極材中の単繊維幾何表面積が増加
せず電極材との接合性が悪くなる。そのため接触抵抗が
増加しセル抵抗が増加し、結果的に電池効率が低下す
る。こうした傾向があることから高低比率の比は、0.
97以下、さらには0.95以下とするのが好ましい。
If the ratio of the high and low ratios of the point compression retention ratio becomes small and becomes less than 0.80, the portion having a low point compression retention ratio has an extremely hard structure with a superficial layer.
It is not preferable because the diaphragm is damaged when the electrolytic cell is formed, and the electrolytic solution is mixed in the electrolytic cell to cause a reduction in capacity. Because of this tendency, the height ratio is preferably set to 0.82 or more, more preferably 0.85 or more. On the other hand, when the ratio of the point compression retention ratio exceeds 0.98, there is no difference in the point compression retention ratio. The geometric surface area of the fiber does not increase, and the bondability with the electrode material deteriorates. Therefore, the contact resistance increases, the cell resistance increases, and as a result, the battery efficiency decreases. Because of this tendency, the ratio of the high and low ratios is 0.
It is preferably 97 or less, more preferably 0.95 or less.

【0031】高ポイント圧縮保持率層、低ポイント圧縮
保持率層の厚さやポイント圧縮保持率は、前記高低比率
となるように適宜に調整されるが、高ポイント圧縮保持
率層のポイント圧縮保持率は、5〜50%程度、好まし
くはで10〜40%であり、厚さはスペーサーによって
得られる空隙の30〜99%程度、好ましくは50〜9
0%とするのが通液性と接触性を確保する上で好まし
い。低ポイント圧縮保持率層のポイント圧縮保持率は、
0.1〜50%程度、好ましくは0.2〜40%であ
り、厚さはスペーサーによって得られる空隙の1〜70
%程度、好ましくは10〜50%とするのが、通液性と
電解槽構成時に必要な圧縮応力を確保する上で好まし
い。
The thickness and the point compression retention of the high point compression retention layer and the low point compression retention layer are appropriately adjusted so as to achieve the above-mentioned high / low ratio. Is about 5 to 50%, preferably about 10 to 40%, and the thickness is about 30 to 99%, preferably about 50 to 9% of the space obtained by the spacer.
0% is preferable from the viewpoint of ensuring liquid permeability and contact property. The point compression retention of the low point compression retention layer is
The thickness is about 0.1 to 50%, preferably 0.2 to 40%, and the thickness is 1 to 70% of the space obtained by the spacer.
%, And preferably 10 to 50%, from the viewpoint of ensuring liquid permeability and compressive stress required at the time of forming the electrolytic cell.

【0032】炭素集合体として不織布を用いた場合に、
ポイント圧縮保持率を調整する方法としては不織布化時
のニードルパンチ用針の特性や針密度、針深度、押さえ
ギャップなどのニードルパンチ法における不織布化条件
を種々設定する方法があげられる。
When a non-woven fabric is used as the carbon aggregate,
As a method of adjusting the point compression holding ratio, there is a method of variously setting nonwoven fabric forming conditions in the needle punching method, such as the characteristics of the needle for needle punching at the time of forming the nonwoven fabric, the needle density, the needle depth, and the pressing gap.

【0033】また、ニードルパンチ法で実現できない様
な圧縮保持率にするには熱プレスしたりバインダーの存
在下で熱圧着する事によって達成される。
In order to obtain a compression holding ratio which cannot be realized by the needle punching method, it can be achieved by hot pressing or thermocompression bonding in the presence of a binder.

【0034】熱プレスを行う場合は各繊維の性質によっ
て温度・圧力を調整する必要がある。
When hot pressing is performed, it is necessary to adjust the temperature and pressure according to the properties of each fiber.

【0035】バインダーの種類は特に得資源されず、た
とえば、アクリル系、でんぷんのり、ポリビニルアルコ
ール系、エポキシ樹脂系、酢酸ビニル系、フェノール樹
脂系等のバインダーがあげられる。なお、炭化後にも炭
化して接着性を保持させるため前記バインダーとして
は、フェノール系樹脂バインダーを用いることが最も好
ましい。バインダーの不織布への添加方法は、特に制限
されず、原綿の解繊後混綿工程で添加する方法、水や有
機溶媒などに溶解または分散させ不織布に添着し乾燥す
る方法があげられ、各素材に適した条件で実施すること
が望ましい。
The kind of binder is not particularly available, and examples thereof include binders of acrylic type, starch paste, polyvinyl alcohol type, epoxy resin type, vinyl acetate type and phenol resin type. It is most preferable to use a phenolic resin binder as the binder in order to maintain the adhesiveness by carbonizing even after carbonization. The method of adding the binder to the nonwoven fabric is not particularly limited, and examples thereof include a method of adding the binder in the cotton mixing step after the fibrillation of raw cotton, a method of dissolving or dispersing in water or an organic solvent, and attaching and drying the nonwoven fabric. It is desirable to carry out under suitable conditions.

【0036】炭素集合体を2層以上の層構造とし、ポイ
ント圧縮保持率の高低比率を前記範囲になるようにする
方法としては、たとえば、前記方法により、異なったポ
イント圧縮保持率を持つ不織布を重ねてさらにニードル
パンチをかけて接合する方法、不織布と別種の高いポイ
ント圧縮保持率を有する織布、編地をあわせて接合する
方法、ウェブ作成時に異なった目付のウェブを作成し目
付順に積層して不織布化する方法、上記のバインダーを
不織布の片方の面に塗布または散布し固化する方法があ
げられる。そのほかラッセル編地、マリフリーズといっ
た表裏面にポイント圧縮保持率の差が形成される組織を
用いても良い。
As a method of forming the carbon aggregate into a layer structure of two or more layers and adjusting the ratio of the point compression retention to the above-mentioned range, for example, a nonwoven fabric having different point compression retention by the above-mentioned method is used. A method of joining by overlapping and further needlepunching, a method of joining together a nonwoven fabric and a woven fabric having a high point compression retention rate of another kind, a knitted fabric, and creating a web with a different basis weight at the time of web creation and laminating in the basis weight And a method in which the binder is applied or dispersed on one surface of the nonwoven fabric and solidified. In addition, a structure such as a Russell knitted fabric or a mulie frieze having a difference in point compression retention rate on the front and back surfaces may be used.

【0037】次に、本発明において採用される電極材の
ポイント圧縮保持率、ポイント圧縮保持率の高低比率、
セル抵抗の測定方法について説明する。
Next, the point compression holding ratio of the electrode material used in the present invention, the high / low ratio of the point compression holding ratio,
A method for measuring the cell resistance will be described.

【0038】1.ポイント圧縮保持率およびその高低比
率 圧縮厚み試験機に測定子(尾崎製作所(株)製球状測定
子X−1)を装着し、寸法25mm×10mm)の試験
片を用意する。ゼロ荷重時でのゼロ点を調整した後、試
験片の表面に測定子を合わせ、0.0392Nの荷重を
かけ、そのときの厚みを読みとる(t4)。その後、
0.490Nまで圧縮し、この時の厚みを読みとる(t
50)。これらのデータから式1によって表面の圧縮保
持率を得る。測定したサンプルを裏返し、同様にして測
定子を合わせ裏面の圧縮保持率を得る。
1. Point compression retention ratio and its height ratio A test piece (dimension 25 mm × 10 mm) is prepared by mounting a measuring element (Spherical measuring element X-1 manufactured by Ozaki Seisakusho Co., Ltd.) on a compression thickness tester. After adjusting the zero point at zero load, the tracing stylus is fitted to the surface of the test piece, a load of 0.0392 N is applied, and the thickness at that time is read (t4). afterwards,
Compress to 0.490N and read the thickness at this time (t
50). From these data, the compression retention of the surface is obtained by the equation (1). The measured sample is turned upside down, and the probe is combined in the same manner to obtain the compression retention on the back surface.

【0039】[0039]

【数1】 次いで、数式2によって、ポイント圧縮保持率高低比率
を算出する。
(Equation 1) Next, the point compression holding ratio high / low ratio is calculated by Expression 2.

【数2】 (Equation 2)

【0040】2.セル抵抗 上下方向(通液方向)に1cm、幅方向に10cmの電
極面積10cm2 を有する小型のセルを作り、電極材の
高ポイント圧縮保持率側をセルの隔膜側に向けて装着す
る。定電流密度で充放電を行い、電極性能のテストを行
う。正極電解液には2mol/lのオキシ硫酸バナジウ
ムの3mol/l硫酸水溶液を用い、負極電解液には2
mol/lの硫酸バナジウムの3mol/l硫酸水溶液
を用いた。電解液量はセル、配管に対して大過剰とし
た。液流量は毎分6.2mlとし、30℃で測定を行っ
た。
2. Cell Resistance A small cell having an electrode area of 10 cm 2 of 1 cm in the vertical direction (liquid flowing direction) and 10 cm in the width direction is prepared, and is mounted with the high point compression retention rate side of the electrode material facing the cell membrane side. Perform charge / discharge at a constant current density and test the electrode performance. A 2 mol / l vanadium oxysulfate aqueous solution of 3 mol / l sulfuric acid was used for the positive electrode electrolyte, and 2 mol / l aqueous solution of sulfuric acid for the negative electrode electrolyte was used.
A 3 mol / l aqueous solution of sulfuric acid of mol / l vanadium sulfate was used. The amount of the electrolytic solution was set to a large excess with respect to the cells and piping. The liquid flow rate was 6.2 ml per minute, and the measurement was performed at 30 ° C.

【0041】充電に始まり、放電で終わる1サイクルの
テストにおいて、電流密度を電極幾何面積当たり40m
A/cm2 (400mA)として、1.7Vまでの充電
に要した電気量をQ1 クーロン、1.0Vまでの定電流
放電、およびこれに続く1.2Vでの定電圧放電で取り
だした電気量をそれぞれQ2 、Q3 クーロンとし、負極
液中のV3+をV2+に完全に還元するのに必要な理論電気
量Qthに対して放電により取りだした電気量の比を充電
率とし、数式3で充電率を求める。
In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 m per electrode geometric area.
A / cm 2 (400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, constant current discharging up to 1.0 V, and subsequent electricity discharging at constant voltage discharging at 1.2 V. The quantities are Q 2 and Q 3 coulombs, respectively, and the ratio of the quantity of electricity taken out by discharge to the theoretical quantity of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is the charging rate. Then, the charging rate is obtained by Expression 3.

【0042】[0042]

【数3】 充電率が50%のときの電気量に対応する充電電圧VC
50、放電電圧VD50を電気量−電圧曲線からそれぞ
れ求め、数式4より電極幾何面積に対するセル抵抗R
(Ω・cm2 )を求める。
(Equation 3) Charging voltage VC corresponding to the amount of electricity when the charging rate is 50%
50 and the discharge voltage VD50 are respectively obtained from the electric quantity-voltage curve, and the cell resistance R with respect to the electrode geometrical area is obtained from Expression 4.
(Ω · cm 2 ).

【0043】[0043]

【数4】 ここで、I は定電流充放電における電流値0. 4Aであ
る。
(Equation 4) Here, I is a current value of 0.4 A in constant current charging and discharging.

【0044】本発明の電極材は、水溶液系電解液を使用
するレドックスフロー電池に用いられるものである。当
該レドックスフロー電池は、前述のように例えば間隙を
介した状態で対向して配設された一対の集電板間に隔膜
が配設され、該集電板と隔膜の間との少なくとも一方に
電極材が圧接挟持された構造を有する電解槽を備えてい
る。電解槽は、従来と同様のものを使用できる。たとえ
ば、図1、図2に示した構造をしている。集電板、隔膜
としては従来と同様のものを使用できる。電解槽には活
物質を含んだ水溶液が水溶液系電解液として用いられ
る。
The electrode material of the present invention is used for a redox flow battery using an aqueous electrolyte. In the redox flow battery, for example, as described above, a diaphragm is disposed between a pair of current collectors disposed facing each other with a gap therebetween, and at least one of between the current collector and the diaphragm is provided. An electrolytic cell having a structure in which an electrode material is pressed and held is provided. The same electrolytic cell can be used as in the prior art. For example, it has the structure shown in FIGS. As the current collector and the diaphragm, the same ones as those in the related art can be used. In the electrolytic cell, an aqueous solution containing an active material is used as an aqueous electrolytic solution.

【0045】水溶液系電解液としては前述のバナジウム
系電解液の他、鉄−クロム系、チタン−マンガン系、マ
ンガン−クロム系、鉄−チタン系があげられるがバナジ
ウム系が望ましい。本発明の電極材は特に粘度が25℃
にて0.05Pa・s以上であるバナジウム系電解液、
あるいは1.5mol/l以上のバナジウムイオンを含
むバナジウム系電解液を使用するレドックスフロー電池
に用いられるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, titanium-manganese-based, manganese-chromium-based, and iron-titanium-based systems, in addition to the above-described vanadium-based electrolyte, and the vanadium-based system is preferred. The electrode material of the present invention has a viscosity of 25 ° C.
A vanadium-based electrolyte solution of 0.05 Pa · s or more,
Alternatively, it is useful to be used in a redox flow battery using a vanadium-based electrolyte containing 1.5 mol / l or more vanadium ions.

【0046】[0046]

【実施例】以下、本発明の構成および効果を具体的に示
し、実施例等について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and effects of the present invention will be specifically shown below, and embodiments and the like will be described.

【0047】実施例1 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ5.0mmの条件で不織布化
し、目付量900g/m2 、厚み6.3mmの不織布を
作成した。これにフェノール系樹脂粉末(鐘紡(株)
製:ベルパールS890)3g/m2 を不織布上方より
散布した後、不織布下方より静圧980.6Pa、吸引
速度2.0m/秒の吸引サクションで吸引し、バインダ
ーを不織布表面に固定化した。これを180℃のエアス
ルーオーブンで10分間加熱してバインダーを接着させ
た。該布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し炭
素質繊維不織布を得た。
Example 1 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
A non-woven fabric having a needle of No. 40 HDB manufactured by Foster, a needle density of 43.09 needles / cm 2 , and a holding gap of 5.0 mm was formed into a non-woven fabric having a basis weight of 900 g / m 2 and a thickness of 6.3 mm. Add phenolic resin powder (Kanebo Co., Ltd.)
Manufactured by Bellpearl S890) 3 g / m 2 was sprayed from above the nonwoven fabric, and then suctioned from below the nonwoven fabric with a suction pressure of 980.6 Pa and a suction speed of 2.0 m / sec to immobilize the binder on the surface of the nonwoven fabric. This was heated in an air through oven at 180 ° C. for 10 minutes to bond the binder. The cloth was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, carbonized and cooled, and then cooled to 700 ° C. in a nitrogen stream with an oxygen concentration of 5 vol%. The mixture was treated at 93 ° C. to a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric.

【0048】実施例2 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ5.0mmの条件で不織布化
し、目付量900g/m2 、厚み6.3mmの不織布を
作成した。これにフェノール系樹脂粉末(鐘紡(株)
製:ベルパールS890)10g/m2 を不織布上方よ
り散布した後、不織布下方より静圧980.6Pa、吸
引速度2.0m/秒の吸引サクションで吸引しバインダ
ーを不織布表面に固定化した。これを180℃のエアス
ルーオーブンで10分間加熱してバインダーを接着させ
た。該布を窒素気流下で100℃/分の昇温速度でそれ
ぞれ1600℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて酸素濃度5vol%の窒素気
流下で700℃にて重量収率93%になるまで処理し炭
素質繊維不織布を得た。
Example 2 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
A non-woven fabric having a needle of No. 40 HDB manufactured by Foster, a needle density of 43.09 needles / cm 2 , and a holding gap of 5.0 mm was formed into a non-woven fabric having a basis weight of 900 g / m 2 and a thickness of 6.3 mm. Add phenolic resin powder (Kanebo Co., Ltd.)
(Bellpearl S890) 10 g / m 2 was sprayed from above the nonwoven fabric, and then suction was applied from below the nonwoven fabric with a suction pressure of 980.6 Pa and a suction speed of 2.0 m / sec to immobilize the binder on the surface of the nonwoven fabric. This was heated in an air through oven at 180 ° C. for 10 minutes to bond the binder. The cloth was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, carbonized and cooled, and then cooled to 700 ° C. in a nitrogen stream with an oxygen concentration of 5 vol%. The mixture was treated at 93 ° C. to a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric.

【0049】実施例3 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ3.0mmの条件で不織布化
し目付量300g/m2 、厚み3.4mmの耐炎化不織
布1を作成した。また同じ耐炎化繊維にフェノール系樹
脂粉末(鐘紡(株)製:ベルパールS890)10g/
2 を混ぜフォスター社製HDB40番の針、針密度7
2.85本/cm2 、押さえギャップ3.0mmの条件
で不織布化し目付量600g/m2 、厚み4.8mmの
耐炎化不織布2を作成した。これら2枚の不織布をあわ
せてニードルパンチにかけさらに180℃のエアスルー
オーブンで10分間加熱してバインダーを接着させ積層
耐炎化不織布を得た。この積層耐炎化不織布を窒素気流
下で100℃/分の昇温速度でそれぞれ1600℃まで
昇温し、この温度で1時間保持し炭化を行って冷却し、
続いて酸素濃度5vol%の窒素気流下で700℃にて
重量収率93%になるまで処理し炭素質繊維不織布を得
た。
Example 3 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
Foster's HDB No. 40 needle, a needle density of 43.09 needles / cm 2 , and a holding gap of 3.0 mm were formed into a nonwoven fabric to prepare an oxidized nonwoven fabric 1 having a basis weight of 300 g / m 2 and a thickness of 3.4 mm. A phenolic resin powder (manufactured by Kanebo K.K .: Bellpearl S890) 10 g /
Foster Co. HDB40 number of needle mix m 2, needle density 7
A non-woven fabric was formed into a non-woven fabric under the conditions of 2.85 yarns / cm 2 and a holding gap of 3.0 mm, and an oxidized non-woven fabric 2 having a basis weight of 600 g / m 2 and a thickness of 4.8 mm was prepared. The two nonwoven fabrics were combined, needle-punched, and heated in an air-through oven at 180 ° C. for 10 minutes to bond a binder to obtain a laminated flame-resistant nonwoven fabric. The laminated flame-resistant nonwoven fabric was heated to 1600 ° C. at a heating rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, carbonized, and cooled.
Subsequently, treatment was performed at 700 ° C. under a nitrogen stream having an oxygen concentration of 5 vol% until the weight yield became 93%, to obtain a carbonaceous fiber nonwoven fabric.

【0050】実施例4 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ3.0mmの条件で不織布化
し目付量300g/m2 、厚み3.4mmの耐炎化不織
布1作成した。また同じ耐炎化繊維をフォスター社製H
DB40番の針、針密度72.85本/cm2 、押さえ
ギャップ4.0mmの条件で不織布化し目付量600g
/m2 、厚み4.8mmの耐炎化不織布2を作成し、液
体フェノール樹脂(昭和高分子(株)製:BRE17
4)0.1重量%を添着した。これら2枚の不織布をあ
わせてニードルパンチにかけさらに180℃のエアスル
ーオーブンで10分間加熱してバインダーを接着させ積
層耐炎化不織布を得た。この積層耐炎化不織布を窒素気
流下で100℃/分の昇温速度でそれぞれ1600℃ま
で昇温し、この温度で1時間保持し炭化を行って冷却
し、続いて酸素濃度5vol%の窒素気流下で700℃
にて重量収率93%になるまで処理し炭素質繊維不織布
を得た。
Example 4 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
Foster's HDB No. 40 needle, a needle density of 43.09 needles / cm 2 , and a holding gap of 3.0 mm were formed into a nonwoven fabric to prepare an oxidized nonwoven fabric 1 having a basis weight of 300 g / m 2 and a thickness of 3.4 mm. In addition, the same flame-resistant fiber was manufactured by Foster H
A DB40 needle, a needle density of 72.85 needles / cm 2 , and a holding gap of 4.0 mm were formed into a nonwoven fabric, and the basis weight was 600 g.
/ M 2 , 4.8 mm thick non-flammable nonwoven fabric 2 was prepared, and a liquid phenol resin (BRE17, manufactured by Showa Polymer Co., Ltd.) was used.
4) 0.1% by weight was impregnated. The two nonwoven fabrics were combined, needle-punched, and heated in an air-through oven at 180 ° C. for 10 minutes to bond a binder to obtain a laminated flame-resistant nonwoven fabric. The laminated flame-resistant nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen gas flow, held at this temperature for one hour, carbonized and cooled, and subsequently cooled with a nitrogen gas having an oxygen concentration of 5 vol%. 700 ° C below
To obtain a carbon fiber nonwoven fabric.

【0051】実施例5 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ5.0mmの条件で不織布化
し目付量600g/m2 、厚み5.4mmの耐炎化不織
布1作成した。また同じ耐炎化繊維をフォスター社製H
DB40番の針、針密度72.85本/cm2、押さえギ
ャップ3.0mmの条件で不織布化し目付量300g/
2 、厚み3.1mmの耐炎化不織布2を作成し、液体
フェノール樹脂(昭和高分子(株)製:BRE174)
0.1重量%を添着した。これら2枚の不織布をあわせ
てニードルパンチにかけさらに180℃のエアスルーオ
ーブンで10分間加熱してバインダーを接着させ積層耐
炎化不織布を得た。この積層耐炎化不織布を窒素気流下
で100℃/分の昇温速度でそれぞれ1600℃まで昇
温し、この温度で1時間保持し炭化を行って冷却し、続
いて酸素濃度5vol%の窒素気流下で700℃にて重
量収率93%になるまで処理し炭素質繊維不織布を得
た。
Example 5 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
Foster's HDB No. 40 needle, a needle density of 43.09 needles / cm 2 , and a holding gap of 5.0 mm were formed into a nonwoven fabric to prepare an oxidized nonwoven fabric 1 having a basis weight of 600 g / m 2 and a thickness of 5.4 mm. In addition, the same flame-resistant fiber was manufactured by Foster H
A DB40 needle, a nonwoven fabric with a needle density of 72.85 needles / cm2 and a holding gap of 3.0 mm, a basis weight of 300 g /
An oxidized nonwoven fabric 2 having an m 2 of 3.1 mm and a thickness of 3.1 mm was prepared, and a liquid phenol resin (BRE174, manufactured by Showa Polymer Co., Ltd.) was used.
0.1% by weight was impregnated. The two nonwoven fabrics were combined, needle-punched, and heated in an air-through oven at 180 ° C. for 10 minutes to bond a binder to obtain a laminated flame-resistant nonwoven fabric. The laminated flame-resistant nonwoven fabric was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen gas flow, held at this temperature for one hour, carbonized and cooled, and subsequently cooled with a nitrogen gas having an oxygen concentration of 5 vol%. The resultant was treated at 700 ° C. under a temperature of 93% to obtain a carbonaceous fiber nonwoven fabric.

【0052】比較例1 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2 、押さえギャップ5.0mmの条件で不織布化
し目付量900g/m2 、厚み6.3mmの不織布を作
成した。これを180℃のエアスルーオーブンで10分
間加熱してバインダーを接着させた。該布を窒素気流下
で100℃/分の昇温速度でそれぞれ1600℃まで昇
温し、この温度で1時間保持し炭化を行って冷却し、続
いて酸素濃度5vol%の窒素気流下で700℃にて重
量収率93%になるまで処理し炭素質繊維不織布を得
た。
COMPARATIVE EXAMPLE 1 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized at 200 to 300 ° C. in air, and then about 80 m long.
m to prepare short fibers of flame-resistant fibers. Then
A needle of No. 40 of HDB manufactured by Foster, a needle density of 43.09 needles / cm 2 , and a holding gap of 5.0 mm were formed into a nonwoven fabric to prepare a nonwoven fabric having a basis weight of 900 g / m 2 and a thickness of 6.3 mm. This was heated in an air through oven at 180 ° C. for 10 minutes to bond the binder. The cloth was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, carbonized and cooled, and then cooled to 700 ° C. in a nitrogen stream with an oxygen concentration of 5 vol%. The mixture was treated at 93 ° C. to a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric.

【0053】比較例2 平均繊維径16μmのポリアクリロニトリル繊維を、空
気中、200〜300℃で耐炎化した後、長さ約80m
mにカットし耐炎化繊維の短繊維を作成した。次いで、
フォスター社製HDB40番の針、針密度43.09本
/cm2、押さえギャップ5.0mmの条件で不織布化し
目付量900g/m2 、厚み6.3mmの不織布を作成
した。これにフェノール系樹脂粉末(ベルパールS89
0)40g/m2 を不織布上方より散布しその後不織布
下方より静圧490.3Pa、吸引速度2.0m/秒の
吸引サクションで吸引しバインダーを不織布表面に固定
化した。これを180℃のエアスルーオーブンで10分
間加熱してバインダーを接着させた。該布を窒素気流下
で100℃/分の昇温速度でそれぞれ1600℃まで昇
温し、この温度で1時間保持し炭化を行って冷却し、続
いて酸素濃度5vol%の窒素気流下で700℃にて重
量収率93%になるまで処理し炭素質繊維不織布を得
た。
Comparative Example 2 A polyacrylonitrile fiber having an average fiber diameter of 16 μm was oxidized in air at 200 to 300 ° C., and then the length was about 80 m.
m to prepare short fibers of flame-resistant fibers. Then
A non-woven fabric having a basis weight of 900 g / m 2 and a thickness of 6.3 mm was prepared under the conditions of a Foster No. 40 HDB needle, a needle density of 43.09 needles / cm 2 and a holding gap of 5.0 mm. Add phenolic resin powder (Bellpearl S89)
0) 40 g / m 2 was sprayed from above the nonwoven fabric, and then suction was applied from below the nonwoven fabric with a suction pressure of 490.3 Pa and a suction speed of 2.0 m / sec to immobilize the binder on the surface of the nonwoven fabric. This was heated in an air through oven at 180 ° C. for 10 minutes to bond the binder. The cloth was heated to 1600 ° C. at a rate of 100 ° C./min under a nitrogen stream, held at this temperature for 1 hour, carbonized and cooled, and then cooled to 700 ° C. in a nitrogen stream with an oxygen concentration of 5 vol%. The mixture was treated at 93 ° C. to a weight yield of 93% to obtain a carbonaceous fiber nonwoven fabric.

【0054】実施例および比較例で得られた炭素質繊維
不織布の目付量、厚み、ポイント圧縮保持率の高低比
率、ポイント圧縮保持率の高い側を隔膜方向に設置した
電解槽によるセル抵抗値を表1に記載する。
The basis weight and thickness of the carbonaceous fiber nonwoven fabrics obtained in the examples and comparative examples, the high / low ratio of the point compression retention, and the cell resistance value of the electrolytic cell in which the side having the high point compression retention were installed in the direction of the diaphragm. It is described in Table 1.

【0055】[0055]

【表1】 表1の結果から明らかなように、実施例1〜5の電極材
はセル抵抗値が小さい。また、該電極材の高ポイント圧
縮保持率側を隔膜側に向けた電極を用いて、電解槽を作
成することによって高い電圧効率を示し、優れたエネル
ギー効率が得られる。
[Table 1] As is clear from the results in Table 1, the electrode materials of Examples 1 to 5 have small cell resistance values. In addition, by forming an electrolytic cell using an electrode with the high point compression retention ratio side of the electrode material facing the diaphragm side, high voltage efficiency is exhibited, and excellent energy efficiency is obtained.

【0056】これに対し電極材の高ポイント圧縮保持率
の高低比率が0.98より高い比較例1では表裏のポイ
ント圧縮保持率の差がないので電解槽作成時には電極材
は均一充填となり隔膜付近の反応性が低下する。したが
って反応時の抵抗が上昇しセル抵抗が増加するので電池
効率が低下するため好ましくない。またポイント圧縮保
持率の高低比率が0.80未満の場合ポイント圧縮率の
低い部分は表層が極端に堅い組織になってしまうため電
解槽作成時に隔膜を損傷し電解液が混入し容量低下が起
き、好ましくない。
On the other hand, in Comparative Example 1 in which the ratio of the high point compression retention of the electrode material was higher than 0.98, there was no difference in the point compression retention between the front and back sides. Is reduced in reactivity. Therefore, the resistance at the time of reaction increases, and the cell resistance increases. When the point compression ratio is less than 0.80, the surface of the part having a low point compression ratio becomes extremely hard, so that the membrane is damaged when the electrolytic cell is made, and the electrolyte is mixed in, resulting in a decrease in capacity. Is not preferred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサー 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collecting plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 間隙を介した状態で対向して配設された
一対の集電板間に隔膜が配設され、該集電板と隔膜の間
との少なくとも一方に電極材が圧接挟持された構造を有
する電解槽において、前記電極材として、厚み方向にポ
イント圧縮保持率の異なる2層以上の一体化された層構
造を有し、かつ表裏面のポイント圧縮保持率の高低比率
(低い値/高い値)が0.80以上0.98以下である
炭素集合体を用い、当該電極材のポイント圧縮保持率の
高い側を隔膜側に配設したことを特徴とする水溶液系電
解液を用いたレドックスフロー電池用電解槽。
1. A diaphragm is disposed between a pair of current collectors disposed opposite each other with a gap therebetween, and an electrode material is pressed and held between at least one of the current collector and the diaphragm. In the electrolytic cell having the structure described above, the electrode material has an integrated layer structure of two or more layers having different point compression retention rates in the thickness direction, and a high / low ratio of the point compression retention rates on the front and back surfaces (low value). (High value) of 0.80 or more and 0.98 or less using an aqueous electrolyte solution characterized in that a side having a higher point compression retention rate of the electrode material is disposed on the diaphragm side. For redox flow batteries.
【請求項2】 請求項1記載のレドックスフロー電池用
電解槽に用いられる炭素集合体からなる電極材であっ
て、炭素集合体がポイント圧縮保持率の異なる2層以上
の一体化された層構造を有し、かつ表裏面のポイント圧
縮保持率の高低比率(低い値/高い値)が0.80以上
0.98以下であることを特徴とするレドックスフロー
電池用電極材。
2. An electrode material comprising a carbon aggregate used in the electrolytic cell for a redox flow battery according to claim 1, wherein the carbon aggregate has two or more integrated layer structures having different point compression retention rates. And an electrode material for a redox flow battery, characterized in that the ratio of high and low point compression retention ratios (low value / high value) on the front and back surfaces is 0.80 or more and 0.98 or less.
JP34859999A 1999-12-08 1999-12-08 Electrolyzer and electrode material for redox flow battery Expired - Fee Related JP4280883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34859999A JP4280883B2 (en) 1999-12-08 1999-12-08 Electrolyzer and electrode material for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34859999A JP4280883B2 (en) 1999-12-08 1999-12-08 Electrolyzer and electrode material for redox flow battery

Publications (2)

Publication Number Publication Date
JP2001167786A true JP2001167786A (en) 2001-06-22
JP4280883B2 JP4280883B2 (en) 2009-06-17

Family

ID=18398100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34859999A Expired - Fee Related JP4280883B2 (en) 1999-12-08 1999-12-08 Electrolyzer and electrode material for redox flow battery

Country Status (1)

Country Link
JP (1) JP4280883B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111254A1 (en) * 2010-03-12 2011-09-15 住友電気工業株式会社 Redox flow battery
KR101130575B1 (en) 2011-11-10 2012-04-12 주식회사 에이치투 A method for producing vanadium electrolyte from slightly soluable v2o5 by using vanadium redox flow battery stack
CN102866094A (en) * 2012-09-09 2013-01-09 中国科学院金属研究所 Test method and test device of permeability of diaphragm quadrivalence vanadium ion
JP2017033758A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
CN113228364A (en) * 2019-01-29 2021-08-06 住友电气工业株式会社 Battery cell, battery pack and redox flow battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111254A1 (en) * 2010-03-12 2011-09-15 住友電気工業株式会社 Redox flow battery
CN102341946A (en) * 2010-03-12 2012-02-01 住友电气工业株式会社 Redox flow battery
US8288030B2 (en) 2010-03-12 2012-10-16 Sumitomo Electric Industries, Ltd. Redox flow battery
CN102341946B (en) * 2010-03-12 2013-05-01 住友电气工业株式会社 Redox flow battery
US9118064B2 (en) 2010-03-12 2015-08-25 Sumitomo Electric Industries, Ltd. Redox flow battery
KR101130575B1 (en) 2011-11-10 2012-04-12 주식회사 에이치투 A method for producing vanadium electrolyte from slightly soluable v2o5 by using vanadium redox flow battery stack
US9905875B2 (en) 2011-12-28 2018-02-27 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
CN102866094A (en) * 2012-09-09 2013-01-09 中国科学院金属研究所 Test method and test device of permeability of diaphragm quadrivalence vanadium ion
JP2017033758A (en) * 2015-07-31 2017-02-09 東洋紡株式会社 Carbon electrode material for redox battery
CN113228364A (en) * 2019-01-29 2021-08-06 住友电气工业株式会社 Battery cell, battery pack and redox flow battery
CN113228364B (en) * 2019-01-29 2023-11-03 住友电气工业株式会社 Battery cell, battery pack and redox flow battery

Also Published As

Publication number Publication date
JP4280883B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR101856887B1 (en) Electrode substrate made of carbon fibers
JP2000357520A (en) Carbon electrode material for vanadium-based redox flow battery
JP6177324B2 (en) Conductive fabric sheet
US20180108915A1 (en) Porous Electrodes and Electrochemical Cells and Liquid Flow Batteries Therefrom
JP5890561B1 (en) Electrolyzer and battery
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP2001167786A (en) Electrode material and electrolytic bath for redox flow cell
EP3761423A1 (en) Electrode for redox-flow batteries, redox-flow battery cell, and redox-flow battery
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP3555303B2 (en) Redox battery
JP7305935B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP4244476B2 (en) Redox flow battery electrode material and electrolytic cell
JP6847217B2 (en) Electrode structure and redox flow battery containing it
JP3844101B2 (en) Grooved electrode material and manufacturing method thereof
JP2001167785A (en) Electrolytic bath for redox flow cell and electrode material
JP2001167771A (en) Electrode material for redox flow cell and electrolytic bath
JP2001085028A (en) Carbon electrode material assembly
JP3844103B2 (en) Grooved electrode material for liquid flow type electrolytic cell and method for producing the same
JP2001085025A (en) Carbon electrode material assembly
JP2021125385A (en) Electrode for redox flow battery and redox flow cell
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2001085026A (en) Carbon electrode material assembly
JP2001006690A (en) Carbon electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees