JP2001165926A - Coulometer - Google Patents

Coulometer

Info

Publication number
JP2001165926A
JP2001165926A JP34848299A JP34848299A JP2001165926A JP 2001165926 A JP2001165926 A JP 2001165926A JP 34848299 A JP34848299 A JP 34848299A JP 34848299 A JP34848299 A JP 34848299A JP 2001165926 A JP2001165926 A JP 2001165926A
Authority
JP
Japan
Prior art keywords
oxygen
cell
culture cell
coulometer
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34848299A
Other languages
Japanese (ja)
Inventor
Harunori Watanabe
春紀 渡辺
Tango Hioki
丹悟 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKO KAGAKU KENKYUSHO KK
Original Assignee
TOKO KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKO KAGAKU KENKYUSHO KK filed Critical TOKO KAGAKU KENKYUSHO KK
Priority to JP34848299A priority Critical patent/JP2001165926A/en
Publication of JP2001165926A publication Critical patent/JP2001165926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a coulometer by integrating an electrolytic cell with a manometer. SOLUTION: Carbon dioxide is increased accompanying the reduction of oxygen in a culture cell 1, caused by the respiration of aerobic microorganisms and this formed carbon dioxide is adsorbed by a carbon dioxide adsorbent 12 to lower the pressure in the culture cell 1. Since the culture cell 1 is connected to an electrolytic cell 14 by an air pipe 13, the surface of the liquid in the air pipe 13 rises, and a current flows across electrodes 14a, 14b and a relay switch is turned on by a relay circuit 16, and a constant current flows across electrodes 14a, 14c. As result, a copper sulfate aqueous solution D is electrolyzed due to the flow of the constant current across both electrodes, and oxygen is generated from the electrode 14a to be supplied to the culture cell 1. The amount of oxygen generated can be calculated, on the basis of the quantity of the current flowing across the electrodes 14a, 14c, and the amount of oxygen consumed by aerobic microorganisms in the sample A within the culture cell 1 can be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、好気的微生物の呼
吸・増殖によって消費する酸素量である生化学的酸素要
求量(biochemical oxygen demand)を測定するクーロメ
ータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coulometer for measuring biochemical oxygen demand, which is the amount of oxygen consumed by the respiration and growth of aerobic microorganisms.

【0002】[0002]

【従来の技術】クーロメータ(BOD測定装置)は、例
えば下水廃水等のBOD測定や浄化処理シュミレータ等
に用いられている。また、化学物質の微生物による分解
度や微生物に与える薬品の影響の測定等、微生物工学や
薬学、医薬、水産学、農業、化学工学等の広い分野で利
用されている。
2. Description of the Related Art A coulometer (BOD measuring device) is used for, for example, BOD measurement of sewage wastewater and the like, and a purification simulator. Further, it is used in a wide range of fields such as microbiological engineering, pharmacy, medicine, fisheries science, agriculture, and chemical engineering, such as measurement of the degree of decomposition of chemical substances by microorganisms and the effect of drugs on microorganisms.

【0003】図2はこのクーロメータにおける検出部の
概略図を示しており、検出部は温度を一定に保持するた
めの恒温漕内に設けられ、恒温漕の外部には測定部、測
定結果を記録する記録部が接続されている。検出部にお
ける培養セル1の底部には、好気的微生物を含む試料A
が満たされており、培養セル1内には更に二酸化炭素吸
着剤2と、内部の硫酸銅水溶液Bを定電流電解し酸素を
発生するための電解セル3が設けられている。また、こ
の培養セル1は電導性を有する水Cが満たされたマノメ
ータ4に通気管5を介して接続されている。
FIG. 2 is a schematic view of a detecting unit in the coulometer. The detecting unit is provided in a constant temperature bath for maintaining a constant temperature, and a measuring unit and a measurement result are recorded outside the constant temperature bath. Recording unit is connected. At the bottom of the culture cell 1 in the detection section, a sample A containing aerobic microorganisms is provided.
The culture cell 1 is further provided with a carbon dioxide adsorbent 2 and an electrolysis cell 3 for generating oxygen by performing constant-current electrolysis of the aqueous copper sulfate solution B therein. The culture cell 1 is connected via a vent pipe 5 to a manometer 4 filled with water C having conductivity.

【0004】好気的微生物の呼吸作用により、培養セル
1内における酸素分圧が減少することに伴って、培養セ
ル1内の二酸化炭素が増加するが、この二酸化炭素は二
酸化炭素吸着剤2により吸着され、培養セル1内の圧力
は低下する。また、培養セル1は通気管5によりマノメ
ータ4に接続されていることから通気管5内の水Cの液
面が上昇する。
[0004] The carbon dioxide in the culture cell 1 increases as the oxygen partial pressure in the culture cell 1 decreases due to the respiratory action of the aerobic microorganisms. Adsorbed, the pressure in the culture cell 1 decreases. Further, since the culture cell 1 is connected to the manometer 4 by the ventilation pipe 5, the liquid level of the water C in the ventilation pipe 5 rises.

【0005】この通気管5内の液面の上昇により、水C
中に設けた電極6aと通気管5内に設けた電極6bが水
Cにより導通し、リレー回路6に電流が流れる。これに
より、図示しないリレースイッチがオンとなり電解セル
3内に設けた正極の電極3aと負極3b間に電流を流
し、この電解セル3内の硫酸銅水溶液Bが定電流電解さ
れることにより正極3aに酸素が発生する。培養セル1
内にこの酸素が供給されるに従い、培養セル1内の圧力
が再び上昇し、通気管5内の液面が下降することにより
リレースイッチが切れ、定電流電解が停止し酸素の供給
が停止する。
[0005] Due to the rise of the liquid level in the ventilation pipe 5, water C
The electrode 6a provided therein and the electrode 6b provided in the ventilation pipe 5 are electrically connected by water C, and a current flows through the relay circuit 6. As a result, a relay switch (not shown) is turned on, and a current flows between the positive electrode 3a and the negative electrode 3b provided in the electrolytic cell 3, and the copper sulfate aqueous solution B in the electrolytic cell 3 is subjected to constant current electrolysis. Generates oxygen. Culture cell 1
As the oxygen is supplied into the cell, the pressure in the culture cell 1 rises again and the liquid level in the ventilation tube 5 drops, so that the relay switch is turned off, the constant current electrolysis stops, and the supply of oxygen stops. .

【0006】上述の工程を繰り返し、電極3a、3b間
に流れた電流を定電流計7を用いて測定することによ
り、電解セル3からの酸素の発生量を計算することがで
き、試料A中の好気的微生物が消費した酸素量を測定す
ることができる。
By repeating the above steps and measuring the current flowing between the electrodes 3a and 3b using the constant current meter 7, the amount of oxygen generated from the electrolytic cell 3 can be calculated. The amount of oxygen consumed by the aerobic microorganism can be measured.

【0007】また、図3に示すように、電解セル3を培
養セル1の外部に配置し、通気管5を介して培養セル1
に酸素を供給する装置も知られている。
[0007] As shown in FIG. 3, the electrolysis cell 3 is arranged outside the culture cell 1,
A device for supplying oxygen to a gas is also known.

【0008】[0008]

【発明が解決しようとする課題】しかしながら図2に示
す従来のクーロメータにおいては培養セル1と電解セル
1が一体化されているため、試料Aを頻繁に交換する場
合には取り扱いが煩雑となる。
However, in the conventional coulometer shown in FIG. 2, since the culture cell 1 and the electrolytic cell 1 are integrated, when the sample A is frequently changed, the handling becomes complicated.

【0009】また、図3に示すクーロメータにおいて
は、試料Aの交換は容易であるが、培養セル1、電解セ
ル3を接合する接合部が増加することにより、気体の漏
れの原因となり、更にはシステム全体の大きさが大きく
なる問題点がある。
Further, in the coulometer shown in FIG. 3, although the exchange of the sample A is easy, the number of joints for joining the culture cell 1 and the electrolytic cell 3 increases, which causes gas leakage, and furthermore, There is a problem that the size of the whole system becomes large.

【0010】本発明の目的は、上述の問題点を解消し、
試料の交換が容易でかつ接合部が少ない小型なクーロメ
ータを供給することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a small-sized coulometer that allows easy exchange of a sample and has few joints.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るクーロメータは、培養セルと電解セルを
通気管を介して接続し、前記培養セル内に好気的微生物
を含む試料と二酸化炭素吸着剤を配置し、前記電解セル
に定電流電解により酸素を発生する電解液を満たし、前
記通気管の先端を前記電解液に挿入し、正電極を前記通
気管の内部の前記電解セルの電解液中に配置し、負電極
を前記通気管の外側の前記電解液中に配置し、前記通気
管中に設けた液面センサにより前記電解液の液面上昇を
検知し、前記正電極と前記負電極間に電流を流す回路を
構成し、該電流により前記正、負電極により前記電解液
を電気電解し、前記正電極から発生した酸素を前記通気
管を介して前記培養セルに供給することを特徴とする。
A coulometer according to the present invention for attaining the above object comprises connecting a culture cell and an electrolytic cell via a vent pipe, and connecting a sample containing aerobic microorganisms in the culture cell. A carbon dioxide adsorbent is placed, the electrolytic cell is filled with an electrolytic solution that generates oxygen by constant current electrolysis, the tip of the vent tube is inserted into the electrolytic solution, and a positive electrode is inserted into the electrolytic cell inside the vent tube. The negative electrode is disposed in the electrolytic solution outside the vent pipe, and a liquid level sensor provided in the vent pipe detects a rise in the level of the electrolytic solution, and the positive electrode is disposed in the positive electrode. And a circuit for flowing a current between the negative electrode and the current, the positive and negative electrodes electrolyze the electrolytic solution, and oxygen generated from the positive electrode is supplied to the culture cell through the ventilation tube. It is characterized by doing.

【0012】[0012]

【発明の実施の形態】本発明を図1に図示の実施例に基
づいて詳細に説明する。図1は本実施例におけるクーロ
メータにおける検出部の概略図を示しており、検出部全
体は温度を一定に保持するために恒温漕内に設けられて
いる。培養セル11の底部には好気的微生物を含む試料
Aが満たされており、更にその上方に二酸化炭素を吸着
するための二酸化炭素吸着剤12が配置されている。ま
た、この培養セル11は通気管13を介して硫酸銅水溶
液Dの満たされた電解セル14に接続されている。電解
セル14の水溶液D中でかつ通気管5内には正極の第1
の電極14aが設けられ、通気管5内の液面の上方に第
2の電極14bが設けられ、更に電解セル14内の水溶
液D中には負極の第3の電極14cが設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiment shown in FIG. FIG. 1 is a schematic diagram of a detecting unit in the coulometer in the present embodiment, and the entire detecting unit is provided in a constant temperature bath in order to keep the temperature constant. The bottom of the culture cell 11 is filled with a sample A containing aerobic microorganisms, and a carbon dioxide adsorbent 12 for adsorbing carbon dioxide is arranged above the sample A. The culture cell 11 is connected to an electrolytic cell 14 filled with an aqueous solution of copper sulfate D via a ventilation tube 13. In the aqueous solution D of the electrolytic cell 14 and in the vent pipe 5, the first positive electrode
, A second electrode 14b is provided above the liquid level in the ventilation tube 5, and a third electrode 14c as a negative electrode is provided in the aqueous solution D in the electrolytic cell 14.

【0013】第1の電極14aは定電流計15を介して
リレー回路16に接続され、また、第2の電極14b、
第3の電極14cもリレー回路16に接続されている。
そして、このリレー回路16は第1、第2の電極14
a、14bが導通することにより、第1、第3の電極1
4a、14c間に電流を流すように構成されている。
The first electrode 14a is connected to a relay circuit 16 via a constant current meter 15, and the second electrode 14b,
The third electrode 14c is also connected to the relay circuit 16.
The relay circuit 16 is connected to the first and second electrodes 14.
a, 14b conduct, the first and third electrodes 1
It is configured to allow a current to flow between 4a and 14c.

【0014】試験に際して、培養セル11内の試料A中
の好気的微生物が呼吸することにより、試料A中の溶存
酸素が減少する。この溶存酸素が減少すると培養セル1
1の上部空間の酸素が供給される。そして、培養セル1
1における酸素量が減少することに伴い二酸化炭素が増
加し、生成された二酸化炭素は二酸化炭素吸着剤12に
より吸着されるので、培養セル11内の圧力は消費され
た酸素の体積分だけ低下する。
At the time of the test, the dissolved oxygen in the sample A decreases due to the respiration of the aerobic microorganisms in the sample A in the culture cell 11. When this dissolved oxygen decreases, the culture cell 1
1 is supplied with oxygen. And culture cell 1
As the amount of oxygen in 1 decreases, carbon dioxide increases, and the generated carbon dioxide is adsorbed by the carbon dioxide adsorbent 12, so that the pressure in the culture cell 11 decreases by the volume of consumed oxygen. .

【0015】また、培養セル11は通気管13を介して
電解セル14に接続されていることから、電解セル14
中の通気管13内の液面が上昇する。これにより、第
1、第2の電極14a、14bが硫酸銅水溶液Dを介し
て導通し、液面センサとして機能し、これらの第1、第
2の電極14a、14b間に電流が流れリレー回路15
が作動する。そして、リレー回路15中の図示しないリ
レースイッチがオンとすることにより、第1、第3の電
極14a、14c間に定電流計15による定電流が流れ
て硫酸銅水溶液Dは定電流電解され、正極の第1の電極
14aから電解酸素が発生し、通気管13を介して培養
セル11に供給され、また負極の第3の電極14cには
銅が析出する。酸素の供給により、培養セル11内の圧
力が元に戻るにつれて通気管13内の液面も下降し、電
極14a、14b間の導通が断となるとリレースイッチ
がオフとなり、硫酸銅水溶液Dの定電流電解が停止す
る。
Further, since the culture cell 11 is connected to the electrolysis cell 14 through the ventilation pipe 13, the electrolysis cell 14
The liquid level inside the ventilation pipe 13 rises. As a result, the first and second electrodes 14a and 14b conduct through the aqueous solution of copper sulfate D, function as a liquid level sensor, and a current flows between the first and second electrodes 14a and 14b to cause a relay circuit. Fifteen
Operates. Then, when a not-shown relay switch in the relay circuit 15 is turned on, a constant current flows between the first and third electrodes 14a and 14c by the constant current meter 15, and the copper sulfate aqueous solution D is subjected to constant current electrolysis. Electrolytic oxygen is generated from the first electrode 14a of the positive electrode, supplied to the culture cell 11 through the ventilation tube 13, and copper is deposited on the third electrode 14c of the negative electrode. By the supply of oxygen, the liquid level in the ventilation pipe 13 also drops as the pressure in the culture cell 11 returns to normal, and when the conduction between the electrodes 14a and 14b is cut off, the relay switch is turned off, and the copper sulfate aqueous solution D is fixed. Current electrolysis stops.

【0016】上述の工程を繰り返し、第1、第3の電極
14a、14c間の定電流計15により、消費された電
気量を電流値と電解時間の積として容易に測定すること
ができる。この電気量から酸素の発生量を計算すること
ができ、試料A中の好気的微生物が消費した酸素量を測
定することができる。
By repeating the above steps, the amount of electricity consumed can be easily measured as the product of the current value and the electrolysis time by the constant current meter 15 between the first and third electrodes 14a and 14c. The amount of generated oxygen can be calculated from the amount of electricity, and the amount of oxygen consumed by the aerobic microorganisms in the sample A can be measured.

【0017】また、記録計を使用することにより、好気
的微生物によって酸素がどのように消費されたのかをモ
ニタリングすることがもできる。
Also, by using a recorder, it is possible to monitor how oxygen is consumed by aerobic microorganisms.

【0018】なお、本実施例においては電解セル中の電
解液として硫酸銅水溶液Dを用いたが、定電流電解した
際に気体として酸素が発生する溶液であれば、他の電解
液を用いてもよい。
In this embodiment, an aqueous solution of copper sulfate D is used as the electrolytic solution in the electrolytic cell. However, any other electrolytic solution may be used as long as oxygen is generated as a gas during constant current electrolysis. Is also good.

【0019】また、本実施例は電解液の液面を検出する
液面センサとして、第1、第2の電極14a、14bを
用いたが、第2、第3の電極14b、14cを利用して
もよい。更には、これらの電極を使用せずに、別途にリ
ードスイッチ等の液面センサを適用しても支障はない。
In this embodiment, the first and second electrodes 14a and 14b are used as the liquid level sensors for detecting the liquid level of the electrolytic solution, but the second and third electrodes 14b and 14c are used. You may. Furthermore, there is no problem even if a liquid level sensor such as a reed switch is separately applied without using these electrodes.

【0020】[0020]

【発明の効果】以上説明したように本発明に係るクーロ
メータは、電解セルとマノメータとを一体化することに
より、システム全体を小型化することが可能となり、更
に接合部を減少することにより気体の漏れを少なくする
ことができ、測定精度を向上させることができる。
As described above, in the coulometer according to the present invention, by integrating the electrolytic cell and the manometer, it is possible to reduce the size of the entire system, and further reduce the number of joints to reduce the amount of gas. Leakage can be reduced, and measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例におけるクーロメータの検出部の概略
図である。
FIG. 1 is a schematic diagram of a detection unit of a coulometer in the present embodiment.

【図2】従来のクーロメータの検出部の概略図である。FIG. 2 is a schematic diagram of a detection unit of a conventional coulometer.

【図3】従来のクーロメータの検出部の概略図である。FIG. 3 is a schematic diagram of a detection unit of a conventional coulometer.

【符号の説明】[Explanation of symbols]

11 培養セル 12 二酸化炭素吸着剤 13 通気管 14 電解セル 14a 第1の電極 14b 第2の電極 14c 第3の電極 15 定電流計 16 リレー回路 DESCRIPTION OF SYMBOLS 11 Culture cell 12 Carbon dioxide adsorbent 13 Vent tube 14 Electrolysis cell 14a 1st electrode 14b 2nd electrode 14c 3rd electrode 15 Constant ammeter 16 Relay circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B029 AA07 BB01 BB02 BB15 BB20 CC01 FA15 4D061 DA10 DB09 EA03 EB37 EB38 EB39 EB40 FA15 FA20 GA04 GB23 GB30 GC12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4B029 AA07 BB01 BB02 BB15 BB20 CC01 FA15 4D061 DA10 DB09 EA03 EB37 EB38 EB39 EB40 FA15 FA20 GA04 GB23 GB30 GC12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 培養セルと電解セルを通気管を介して接
続し、前記培養セル内に好気的微生物を含む試料と二酸
化炭素吸着剤を配置し、前記電解セルに定電流電解によ
り酸素を発生する電解液を満たし、前記通気管の先端を
前記電解液に挿入し、正電極を前記通気管の内部の前記
電解セルの電解液中に配置し、負電極を前記通気管の外
側の前記電解液中に配置し、前記通気管中に設けた液面
センサにより前記電解液の液面上昇を検知し、前記正電
極と前記負電極間に電流を流す回路を構成し、該電流に
より前記正、負電極により前記電解液を電気電解し、前
記正電極から発生した酸素を前記通気管を介して前記培
養セルに供給することを特徴とするクーロメータ。
1. A culture cell and an electrolysis cell are connected via a vent pipe, a sample containing aerobic microorganisms and a carbon dioxide adsorbent are arranged in the culture cell, and oxygen is supplied to the electrolysis cell by constant current electrolysis. Fill the electrolytic solution to be generated, insert the tip of the vent tube into the electrolytic solution, place a positive electrode in the electrolytic solution of the electrolytic cell inside the vent tube, and place the negative electrode outside the vent tube. It is arranged in the electrolyte, detects a rise in the liquid level of the electrolyte by a liquid level sensor provided in the ventilation pipe, and constitutes a circuit for flowing a current between the positive electrode and the negative electrode. A coulometer, wherein the electrolytic solution is electrolyzed by positive and negative electrodes, and oxygen generated from the positive electrode is supplied to the culture cell through the ventilation tube.
【請求項2】 前記電気電解のための電流を定電流計を
用いて電気量に換算して酸素の発生量を計算し、前記試
料が消費する酸素量を測定する請求項1に記載のクーロ
メータ。
2. The coulometer according to claim 1, wherein the amount of oxygen consumed by the sample is measured by converting the current for the electrolysis into an amount of electricity using a constant ammeter to calculate the amount of oxygen generated. .
【請求項3】 前記電流は定電流とした請求項1に記載
のクーロメータ。
3. The coulometer according to claim 1, wherein the current is a constant current.
【請求項4】 前記液面センサは前記通気管中の液面の
上方に配置した電極と前記正又は負電極との間の前記電
解液による導通を検知する機構とした請求項1に記載の
クーロメータ。
4. The liquid level sensor according to claim 1, wherein the liquid level sensor has a mechanism for detecting conduction by the electrolytic solution between an electrode disposed above a liquid level in the ventilation pipe and the positive or negative electrode. Coulometer.
JP34848299A 1999-12-08 1999-12-08 Coulometer Pending JP2001165926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34848299A JP2001165926A (en) 1999-12-08 1999-12-08 Coulometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34848299A JP2001165926A (en) 1999-12-08 1999-12-08 Coulometer

Publications (1)

Publication Number Publication Date
JP2001165926A true JP2001165926A (en) 2001-06-22

Family

ID=18397317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34848299A Pending JP2001165926A (en) 1999-12-08 1999-12-08 Coulometer

Country Status (1)

Country Link
JP (1) JP2001165926A (en)

Similar Documents

Publication Publication Date Title
US4259165A (en) Dissolved oxygen probe
US4400242A (en) Electrochemical method of determining oxygen, halothane and nitrous oxide
US20190187089A1 (en) Method for operating an amperometric sensor, amperometric sensor, and method for monitoring a measuring fluid in a fluid line network
US7459067B2 (en) Semi-permanent reference electrode
CN105181774A (en) Dissolved oxygen concentration measuring device and method
WO2006101290A1 (en) Sensor for measuring chloride concentration, sensor for detecting microorganisms, and water purifying apparatus having the same
JP2001165926A (en) Coulometer
US20070227908A1 (en) Electrochemical cell sensor
CN202710509U (en) Biological reaction vessel
CN205538799U (en) Novel chlorine residue water quality testing appearance
CN211978896U (en) Device for rapidly obtaining maximum breathing rate of activated sludge
WO2006081377A8 (en) Amperometric sensor comprising counter electrode isolated from liquid electrolyte
JP5937560B2 (en) Dissolved hydrogen concentration measuring device
CN208060429U (en) A kind of electrode reaction ware
JP2003202315A (en) Diaphragm cartridge
JPH0643132A (en) Measuring method for residual chlorine concentration in purified water
WO2017168558A1 (en) Gas permeability measurement method and system therefor
CN219239340U (en) Slightly acidic electrolyzed water generator
JPH06138068A (en) Concentration meter for electrolyte solution
JP2009257854A (en) Electrochemical sensor
CN206300922U (en) A kind of full-automatic micro-water analyzer of coulomb method
CN115468993A (en) Bacterium concentration detection assembly, device and method and electrical equipment
JPH0710288Y2 (en) Water quality measurement electrode
JP2006071438A (en) Biosensor calibration method
GB2489964A (en) Device for removing a dissolved gas or volatile component from a liquid sample