JP2001165643A - Resonance type photoacoustic measuring and inspection device and method - Google Patents

Resonance type photoacoustic measuring and inspection device and method

Info

Publication number
JP2001165643A
JP2001165643A JP37647299A JP37647299A JP2001165643A JP 2001165643 A JP2001165643 A JP 2001165643A JP 37647299 A JP37647299 A JP 37647299A JP 37647299 A JP37647299 A JP 37647299A JP 2001165643 A JP2001165643 A JP 2001165643A
Authority
JP
Japan
Prior art keywords
sample
measurement
light
solid sample
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37647299A
Other languages
Japanese (ja)
Inventor
Tsutomu Hoshimiya
務 星宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP37647299A priority Critical patent/JP2001165643A/en
Publication of JP2001165643A publication Critical patent/JP2001165643A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means for measuring the finish dimension of a solid sample having a cylindrical structure or detecting a minute surface defect present on the inner surface of a tube. SOLUTION: The solid sample having the cylindrical structure is locally irradiated with optical beam, and its acoustic resonance is coupled with a photoacoustic effect, whereby the finish dimension of a tube part present in the solid sample is measured, or the minute surface detect present on the tube inner surface is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の属する技術分野】本発明は、金属鋳物などに
加工した管の内面など、筒状固体試料の仕上がり寸法の
計測、および試料内面の欠陥の非破壊的計測・検査装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring a finished dimension of a cylindrical solid sample such as an inner surface of a pipe formed into a metal casting or the like, and a non-destructive measuring and inspecting device for a defect on the inner surface of the sample. .

【0002】[0002]

【従来の技術】従来、金属鋳物に加工した管の内面など
固体試料内面に生じる欠陥を非破壊的に検査する方法に
は、その寸法が微細になるに従って、目視検査が困難に
なると言う問題点が存在していた。
2. Description of the Related Art Conventionally, a method for non-destructively inspecting a defect generated on an inner surface of a solid sample such as an inner surface of a pipe formed into a metal casting has a problem that visual inspection becomes more difficult as its size becomes finer. Existed.

【0003】[0003]

【発明が解決しようとする課題】特に、エンジンに燃料
を噴射するノズルの内面などの、複雑な構造を有する構
造物の内部を検査する場合には、重大な技術上の隘路が
あり、この問題を解決する必要があった。
Particularly, when inspecting the inside of a structure having a complicated structure, such as the inner surface of a nozzle for injecting fuel into an engine, there is a serious technical bottleneck. Had to be resolved.

【0004】[0004]

【課題を解決するための手段】本発明は、複雑な構造を
有する構造物の内部に存在する筒状構造の仕上がり寸法
の非破壊的な正確な計測と筒状構造内面に存在する表面
欠陥の非破壊検査に対して、固体中の両端が開放になっ
ている直管筒状面の音響的共振を変調したレーザーなど
の光ビームを照射し、吸収した光エネルギーが熱に転換
し、それによって発生する音波の共鳴を利用する事によ
って効果的に上記の目的を達成する事を特徴として、従
来の課題を解決するものである。
SUMMARY OF THE INVENTION The present invention provides a non-destructive and accurate measurement of the finished dimensions of a cylindrical structure existing inside a structure having a complicated structure, and a method for detecting surface defects existing on the inner surface of the cylindrical structure. For non-destructive inspection, the solid-state tube is irradiated with a light beam, such as a laser, that modulates the acoustic resonance of a straight tubular tube that is open at both ends, and the absorbed light energy is converted into heat. The object of the present invention is to solve the conventional problem by effectively achieving the above object by utilizing resonance of generated sound waves.

【0005】一般にパイプなどの両端開放、または一端
開放(他端閉鎖)などの境界条件を有する音響系はその
境界条件によって定まる固有の音響的共振条件を有して
いる。従ってエンジンに燃料を噴射するノズルの内面な
どの、複雑な構造を有する構造物であっても、その局所
的な構造が上記の両端開放、または一端開放(他端閉
鎖)などの境界条件を持っていて、その音響的な共振条
件を局所的に励振する事が可能である場合には、本手法
が適用可能となる。
Generally, an acoustic system having boundary conditions such as open ends at one end or open ends (close at the other end) such as a pipe generally has a unique acoustic resonance condition determined by the boundary conditions. Therefore, even for a structure having a complicated structure, such as the inner surface of a nozzle that injects fuel into the engine, the local structure has the boundary conditions such as the above-mentioned open ends or open ends (closed ends). Therefore, if it is possible to locally excite the acoustic resonance condition, the present method can be applied.

【0006】要するに、本手法の共鳴的光音響法とは、
レーザービームなどの光線を用いて光音響効果によって
固体筒状試料内面に微弱な音波を発生させ、その変調周
波数を境界条件によって定まる共振周波数付近で変化さ
せる事により、筒状固体試料内面に関する情報を音響的
共鳴により周波数領域の共振スペクトルによって、しか
もロックイン・アンプなどの検出法で効果的に、かつ高
感度で測定する方法である。本発明は微小光学系を採用
することによって、光ビームの直径の様に光照射によっ
て定まる分解能と、変調の一周期内に試料への熱拡散に
よって決定される領域の大きいもので分解能が定まる映
像装置としても働く非破壊検査・評価装置である。
[0006] In short, the resonant photoacoustic method of the present technique is:
Using a light beam such as a laser beam, a weak sound wave is generated on the inner surface of the solid cylindrical sample by the photoacoustic effect, and the modulation frequency is changed near the resonance frequency determined by the boundary conditions to obtain information on the inner surface of the solid cylindrical sample. This is a method of measuring with a resonance spectrum in the frequency domain by acoustic resonance, and effectively and with high sensitivity by a detection method such as a lock-in amplifier. The present invention employs a micro-optical system, so that the resolution determined by light irradiation, such as the diameter of a light beam, and the image whose resolution is determined by a large area determined by thermal diffusion to a sample within one cycle of modulation, are determined. This is a non-destructive inspection / evaluation device that also works as a device.

【0007】[0007]

【発明の実施の形態】以下に、本発明に関わる非破壊計
測・検査装置について、筒状構造を持つ固体試料の内面
寸法の計測、または管内面に存在する表面欠陥を測定す
る場合を例にとって、本発明の原理を図面に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The nondestructive measurement / inspection apparatus according to the present invention will be described below with reference to an example of measuring the inner surface dimensions of a solid sample having a cylindrical structure or measuring surface defects existing on the inner surface of a tube. The principle of the present invention will be described with reference to the drawings.

【0008】まず、図1の様にレーザーなどの光源1か
らの光ビームを音響光学変調器などの変調器2により一
定周波数で変調し、それを例えば金属パイプなどの筒状
構造を持つ固体試料3に入射させる。この場合試料は適
切に設計された光音響セル4内に支持され、光ビームは
二重線で示した窓を経由してセル内に導入される。変調
された光を吸収した固体試料には周期的な熱が発生し、
そのため光音響セル内に光ビームと同じ周期の温度上昇
が生じ、その結果圧力波(音波)が発生することにな
る。それをセル内に設置した高感度マイクロフォンなど
の音響センサ5で検出して電気信号に変換する。それを
必要に応じてさらにプリアンプ6で増幅しロックイン・
アンプ7で変調器2に加えたと同じ参照信号を用いて同
期検波することにより、高感度検出が実現される。信号
出力はコンピュータ8、レコーダ9などを用いて表示・
記録される。なお、変調周波数を音響的共鳴周波数の近
傍で掃引させるために、ファンクション・ジェネレータ
10を用いて変調器2を駆動する周波数を変化させ、こ
の装置を制御のためにコンピュータ8とGP−IBなど
のバスラインを経由して接続している場合が多い。
First, as shown in FIG. 1, a light beam from a light source 1 such as a laser is modulated at a constant frequency by a modulator 2 such as an acousto-optic modulator, and is modulated into a solid sample having a cylindrical structure such as a metal pipe. 3 In this case, the sample is supported in a suitably designed photoacoustic cell 4 and the light beam is introduced into the cell via a window indicated by double lines. Periodic heat is generated in the solid sample that has absorbed the modulated light,
Therefore, a temperature rise occurs in the photoacoustic cell in the same cycle as the light beam, and as a result, a pressure wave (sound wave) is generated. This is detected by an acoustic sensor 5 such as a high-sensitivity microphone installed in the cell and converted into an electric signal. If necessary, it is further amplified by preamplifier 6 and locked in.
By performing synchronous detection using the same reference signal applied to the modulator 2 by the amplifier 7, high-sensitivity detection is realized. Signal output is displayed using a computer 8, recorder 9, etc.
Be recorded. In order to sweep the modulation frequency in the vicinity of the acoustic resonance frequency, the frequency for driving the modulator 2 is changed using the function generator 10, and the computer 8 and the GP-IB or the like are used to control this device. They are often connected via bus lines.

【0009】次に発明の第2の実施形態を図2に示す。
図2においては、本発明を図1の実施形態でエンジンに
燃料を噴射する筒状ノズルの内面の仕上がり寸法を計測
するために、またノズル管内面の検査装置として実施し
た場合の実施形態を表す概念図である。光ビームはレン
ズで集光され、窓から光音響セル内に設置した筒状ノズ
ルに照射される。筒状ノズルの寸法が管長数ミリメート
ルと短いため、共鳴周波数は数10kHz−数百kHz
の超音波帯域となる。そのために、音響センサとしては
超音波キャパシタンス・トランスデューサ5‘の様なも
のを用いる必要が生じてくる点が特徴である。
Next, a second embodiment of the present invention is shown in FIG.
FIG. 2 shows an embodiment in which the present invention is implemented in the embodiment of FIG. 1 to measure a finished dimension of an inner surface of a cylindrical nozzle for injecting fuel into an engine and as an inspection device for an inner surface of a nozzle tube. It is a conceptual diagram. The light beam is condensed by a lens, and is irradiated from a window to a cylindrical nozzle installed in the photoacoustic cell. Since the size of the cylindrical nozzle is as short as several millimeters in tube length, the resonance frequency is several tens of kHz to several hundreds of kHz.
Of the ultrasonic band. Therefore, it is characterized in that it becomes necessary to use an acoustic sensor such as an ultrasonic capacitance transducer 5 '.

【0010】[0010]

【発明の効果】この発明は以上説明したように従来の筒
状構造を持つ固体試料内面に存在する表面欠陥の非破壊
的計測・検査において技術的に困難であった隘路を解決
する効果がある。
As described above, the present invention has the effect of solving the bottleneck that has been technically difficult in non-destructive measurement and inspection of surface defects existing on the inner surface of a solid sample having a conventional cylindrical structure. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図は本発明の第1の実行形態装置の実施例を示
すもので、図1は筒状固体試料の内面寸法の計測、管内
面に存在する表面欠陥の測定装置である。
FIG. 1 shows an embodiment of a first embodiment of the present invention. FIG. 1 shows an apparatus for measuring the inner surface dimensions of a cylindrical solid sample and measuring surface defects existing on the inner surface of a tube.

【符号の説明】[Explanation of symbols]

1 光源 2 光変調器 3 筒状構造を持つ固体試料 4 光音響セル 5 音響センサ(マイクロフォン) 6 プリアンプ 7 ロックイン・アンプ 8 コンピュータ 9 レコーダ 10 ファンクション・ジェネレータ Reference Signs List 1 light source 2 optical modulator 3 solid sample having cylindrical structure 4 photoacoustic cell 5 acoustic sensor (microphone) 6 preamplifier 7 lock-in amplifier 8 computer 9 recorder 10 function generator

【図2】図2は、本発明を図1の実施形態でエンジンに
燃料を噴射する筒状ノズルの内面の仕上がり寸法を計測
するために、またノズル管内面の検査装置として実施し
た場合の実施形態を表す概念図である。
FIG. 2 is a diagram illustrating an embodiment in which the present invention is implemented in the embodiment of FIG. 1 to measure a finished dimension of an inner surface of a cylindrical nozzle for injecting fuel into an engine and as an inspection device for an inner surface of a nozzle tube. It is a conceptual diagram showing a form.

【符号の説明】[Explanation of symbols]

1‘ 光源 2‘ 光変調器 3‘ 筒状構造を持つ固体試料 4‘ 光音響セル 5‘ 音響センサ(超音波キャパシタンス・トランスデ
ューサ) 6‘ プリアンプ 7‘ ロックイン・アンプ 8‘ コンピュータ 9‘ レコーダ 10‘ファンクション・ジェネレータ
1 'Light source 2' Optical modulator 3 'Solid sample having cylindrical structure 4' Photoacoustic cell 5 'Acoustic sensor (ultrasonic capacitance transducer) 6' Preamplifier 7 'Lock-in amplifier 8' Computer 9 'Recorder 10' Function Generator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 筒状固体試料(1)の内面に接触させる
様に、変調したレーザーなどの光ビーム(2)を照射し
て、光吸収により筒の内面に発生した熱源によりそれに
接触している気体に生じた微弱な音波をマイクロフォン
(3)などの圧力センサーにより検出する、いわゆる
「光音響効果」を用いる装置であって、かつ光を変調す
る周波数を当該筒状試料中に気体が定在波として振動す
る音波の共鳴周波数近辺で変化された場合に、共鳴効果
により光音響信号が振幅・位相ともに大きく変化する事
を検出する方法を用いて、筒状固体試料(1)の仕上が
り寸法の計測、および試料内面の欠陥を非破壊的に検査
する計測・検査装置。
1. A light beam (2) such as a modulated laser is irradiated so as to make contact with the inner surface of a cylindrical solid sample (1), and is contacted by a heat source generated on the inner surface of the tube by light absorption. A device that uses the so-called "photoacoustic effect" to detect weak sound waves generated in a gas by a pressure sensor such as a microphone (3), and determines the frequency at which light is modulated in the cylindrical sample. Finished dimensions of cylindrical solid sample (1) using a method that detects that the photoacoustic signal greatly changes both in amplitude and phase due to the resonance effect when it is changed near the resonance frequency of a sound wave oscillating as a standing wave Measurement and inspection equipment that non-destructively inspects for defects on the inner surface of the sample.
【請求項2】 マイクロフォン(3)をキャパシタンス
・超音波センサー(2a)としたことを特徴とする請求
項1記載の計測・検査装置。
2. The measurement / inspection apparatus according to claim 1, wherein the microphone (3) is a capacitance / ultrasonic sensor (2a).
【請求項3】マイクロフォン(3)を光ビームおよび位
置センサー(3a)などの音響的でないセンサーとした
ことを特徴とする請求項1記載の計測・検査装置。
3. The measurement and inspection device according to claim 1, wherein the microphone is a non-acoustic sensor such as a light beam and a position sensor.
【請求項4】試料への光照射に顕微鏡の対物レンズなど
の微小光学系(4)などを用いることを特徴とする請求
項1、または2、または3記載の計測・検査装置。
4. The measurement / inspection apparatus according to claim 1, wherein a micro optical system such as an objective lens of a microscope is used for irradiating the sample with light.
【請求項5】試料までの光の導波系に光ファイバーなど
を用いることを特徴とする請求項1、または2、または
3、または4記載の計測・検査装置。
5. The measurement / inspection apparatus according to claim 1, wherein an optical fiber or the like is used for a waveguide system of light to the sample.
JP37647299A 1999-12-08 1999-12-08 Resonance type photoacoustic measuring and inspection device and method Pending JP2001165643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37647299A JP2001165643A (en) 1999-12-08 1999-12-08 Resonance type photoacoustic measuring and inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37647299A JP2001165643A (en) 1999-12-08 1999-12-08 Resonance type photoacoustic measuring and inspection device and method

Publications (1)

Publication Number Publication Date
JP2001165643A true JP2001165643A (en) 2001-06-22

Family

ID=18507195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37647299A Pending JP2001165643A (en) 1999-12-08 1999-12-08 Resonance type photoacoustic measuring and inspection device and method

Country Status (1)

Country Link
JP (1) JP2001165643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523881A (en) * 2004-12-20 2008-07-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for investigating body structure
CN103983578A (en) * 2014-05-23 2014-08-13 华南师范大学 Method and device for simultaneously microimaging scattered opto-acoustic-confocal fluorescence bimodule

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523881A (en) * 2004-12-20 2008-07-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for investigating body structure
CN103983578A (en) * 2014-05-23 2014-08-13 华南师范大学 Method and device for simultaneously microimaging scattered opto-acoustic-confocal fluorescence bimodule

Similar Documents

Publication Publication Date Title
US5257544A (en) Resonant frequency method for bearing ball inspection
JPH0333222B2 (en)
JPS6239705B2 (en)
CN111426919A (en) Basin-type insulator detection device based on laser-induced ultrasound
JP2011257163A (en) Laser ultrasonic inspection method and laser ultrasonic inspection device
JP2001165643A (en) Resonance type photoacoustic measuring and inspection device and method
JP2002005899A (en) Method and apparatus for inspecting concrete structure
JP3704843B2 (en) Non-contact non-destructive material evaluation method and apparatus, elastic wave excitation method and elastic wave excitation apparatus
KR101215362B1 (en) Apparatus and method for detecting photothermal effect
CN114280157A (en) Sub-surface crack length quantitative detection method based on laser excitation surface wave
JPH01214719A (en) Collecting apparatus of optoacoustic signal
JP3271994B2 (en) Dimension measurement method
Vangi et al. On the use of two emerging laser-based flaw-detection techniques–Considerations and practicalities
JPH01203966A (en) Method and device for inspecting joining state of joined part of extremely small member
CN114295731B (en) Method for measuring subsurface defect depth based on laser excitation longitudinal wave
JPH05500416A (en) Light guided image generation device and method
WO2008079100A1 (en) Method and apparatus for detecting and assessing parameters of discontinuities in the surface layer of metal products
Bates et al. Rapid NDT of composite aircraft components using lock-in ultrasonic and halogen lamp thermography
KR20100093415A (en) Near scanning photoacoustic apparatus
Schley et al. Design of RUSL Irradiation Experiment with Free Standing Sample
JP2524946B2 (en) Ultrasonic microscope equipment
KR101646046B1 (en) Vibrating device for non destructive inspect utilizing continuous wave laser and non destructive inspecting device and that method
Cheng et al. A sensitivity-enhanced all-optical probe for non-contact laser ultrasonic inspection
SU1658052A1 (en) Method of determination of phase transition point
SU824031A1 (en) Acoustic method of flaw detection in bearings