JP2001163013A - Pneumatic tire - Google Patents
Pneumatic tireInfo
- Publication number
- JP2001163013A JP2001163013A JP34806599A JP34806599A JP2001163013A JP 2001163013 A JP2001163013 A JP 2001163013A JP 34806599 A JP34806599 A JP 34806599A JP 34806599 A JP34806599 A JP 34806599A JP 2001163013 A JP2001163013 A JP 2001163013A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- tread
- intersection
- tire
- lug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/13—Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
- B60C11/1376—Three dimensional block surfaces departing from the enveloping tread contour
- B60C11/1384—Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れたウエット性
能を確保しながら2ピースモールドによる加硫成形を可
能にした空気入りタイヤに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire capable of being vulcanized by a two-piece mold while ensuring excellent wet performance.
【0002】[0002]
【従来の技術、及び発明が解決しようとする課題】タイ
ヤのウエット性能を向上させるためには、路面の水膜を
タイヤ周方向およびタイヤ軸方向に排出することが重要
であり、そのためにトレッド部には、通常、例えば特開
平6−40215号公報等に記載する如く、タイヤ周方
向にのびる縦主溝、及びこの縦主溝と交わる向きのラグ
状溝を設けている。2. Description of the Related Art In order to improve the wet performance of a tire, it is important to discharge a water film on a road surface in a tire circumferential direction and a tire axial direction. As described in, for example, JP-A-6-40215, a vertical main groove extending in the tire circumferential direction and a lug-shaped groove intersecting with the vertical main groove are provided in the vehicle.
【0003】ここで、接地面のタイヤ赤道側での排水性
を考えた場合、ラグ状溝の溝中心線の向きをタイヤ周方
向に近づけてやることにより水膜抵抗が減少し、接地圧
の高いタイヤ赤道側からタイヤ軸方向側方への排水が効
率的に行われる。そのために、一般には、前記記ラグ状
溝は、タイヤ周方向に対して45゜以下で傾く急傾斜部
を有して形成している。[0003] Here, in consideration of drainage on the tire equator side of the ground contact surface, the direction of the groove center line of the lug-like groove is made closer to the tire circumferential direction, so that the water film resistance is reduced and the ground pressure is reduced. The drainage from the high tire equator side to the tire axial side is efficiently performed. Therefore, generally, the lug-shaped groove is formed to have a steeply inclined portion inclined at 45 ° or less with respect to the tire circumferential direction.
【0004】他方、タイヤ加硫金型には、タイヤ赤道面
と平行な割面を有する2ピースモールドと、タイヤ周方
向に複数分割されかつ半径方向に拡縮径可能に移動する
セグメントをもつ割モールドとが広く知られており、こ
のなかで2ピースモールドは、金型構造やその作動制御
が簡易でありかつ製造コストが非常に安いという利点が
ある。[0004] On the other hand, a tire vulcanizing mold includes a two-piece mold having a split surface parallel to the tire equatorial plane, and a split mold having a plurality of segments divided in the tire circumferential direction and movable in the radial direction so as to be able to expand and contract in the radial direction. Among them, the two-piece mold has the advantages that the mold structure and its operation control are simple and the manufacturing cost is very low.
【0005】しかしながら、このような2ピースモール
ドの金型では、タイヤ軸方向外方に離隔することによっ
て加硫成形後のタイヤが金型から取り出されるため、そ
のとき金型の溝形成凸部分がトレッド面を傷つける所謂
ディモールドという損傷が発生しやすい。特に、このデ
ィモールドは、溝の向きがタイヤ周方向に近いほど、さ
らにはタイヤの外径が大きくトレッド部から前記溝形成
凸部分が抜き出しにくいタイヤ赤道側においてより顕著
となる。However, in such a two-piece mold, the tire after vulcanization molding is taken out of the mold by being separated outward in the tire axial direction. The so-called demold damage to the tread surface is likely to occur. In particular, this demolding becomes more remarkable on the tire equator side where the direction of the groove is closer to the tire circumferential direction, and further, the outer diameter of the tire is large and the groove forming convex portion is difficult to be extracted from the tread portion.
【0006】従って、このディモールドの観点から、前
述の如き急傾斜部を含むラグ状溝、又は縦主溝をタイヤ
赤道側に有するトレッドパターンのタイヤを、2ピース
モールドの金型を用いて加硫成形することは非常に難し
く、従来においては、割モールドの金型を用いて加硫成
形せざるを得ないという問題があった。Accordingly, from the viewpoint of demolding, a tread pattern tire having a lug-like groove including a steeply inclined portion or a vertical main groove on the tire equator side as described above is applied using a two-piece mold. It is very difficult to carry out vulcanization molding, and there has been a problem that vulcanization molding must be performed using a split mold in the past.
【0007】そこで本発明は、このような状況に鑑み案
出されたもので、その目的は、前記ラグ状溝又は縦主溝
をタイヤ赤道側に有するタイヤにおいて、外の溝壁面に
面取り部を設ける一方、その近傍のトレッド面に小巾の
溝状凹部を溝に沿って形成することを基本として、優れ
たウエット性能を確保しながら、2ピースモールドの金
型によってもディモールドを招くことなく簡易に加硫成
形しうる空気入りタイヤを提供することにある。The present invention has been devised in view of such a situation, and an object of the present invention is to provide a tire having the lug-like groove or the vertical main groove on the tire equator side with a chamfered portion on an outer groove wall surface. On the other hand, based on the fact that a narrow groove-shaped concave portion is formed along the groove on the tread surface in the vicinity thereof, while ensuring excellent wet performance, demolding is not caused even by a two-piece mold. It is to provide a pneumatic tire that can be easily vulcanized and formed.
【0008】[0008]
【課題を解決するための手段】前記目的を達成するため
に、本願請求項1の発明は、タイヤ赤道と、このタイヤ
赤道からトレッド接地縁までの接地半巾TW/2の50
%を隔てる位置との間の内側領域に、タイヤ周方向に対
して0゜でのびる縦主溝、又は45゜以内の傾斜角度θ
で傾くラグ状溝からなるトレッド溝を具え、かつ2ピー
スモールドにより成形される空気入りタイヤであって、
前記トレッド溝の溝中心線と直角な断面における前記ト
レッド溝のタイヤ軸方向外側の外の溝壁面は、溝底から
傾斜して立ち上がる外溝壁面基部と、該外溝壁面基部の
半径方向外縁に連なりトレッド面の交点P1にのびる面
取り部とからなり、かつ面取り部は、前記交点P1にお
いて前記トレッド面に立てた法線とのなす角度δ1が3
0〜60゜であって、前記外溝壁面基部がその仮想延長
線と仮想トレッド面との仮想交点P2において前記仮想
トレッド面に立てた法線とのなす角度δ2よりも大きい
外開きをなすとともに、前記仮想交点P2から交点P1
までの前記断面における距離L3を0.3〜2.0m
m、しかも前記断面での前記交点P1からタイヤ軸方向
外側に0.5〜2.0mmの間隔L4を隔てて小巾の凹
部を、前記トレッド溝に沿って形成したことを特徴とし
ている。In order to achieve the above object, the invention of claim 1 of the present application is directed to a tire equator and a contact half width TW / 2 from the tire equator to a tread contact edge of 50%.
%, Or a vertical main groove extending at 0 ° with respect to the tire circumferential direction, or an inclination angle θ within 45 ° with respect to the tire circumferential direction.
A pneumatic tire comprising a tread groove comprising a lug-shaped groove inclined at
The outer groove wall surface of the tread groove in the tire axial direction outside in a cross section perpendicular to the groove center line of the tread groove is formed on an outer groove wall base rising up from the groove bottom and a radial outer edge of the outer groove wall base. A continuous chamfered portion extending to the intersection P1 of the tread surface, and the chamfered portion has an angle δ1 formed by a normal to the tread surface at the intersection P1 with 3
0-60 °, the outer groove wall base forms an outward opening larger than an angle δ2 formed by a normal line on the virtual tread surface at a virtual intersection P2 between the virtual extension line and the virtual tread surface. , From the virtual intersection P2 to the intersection P1
Distance L3 in the cross section up to 0.3 to 2.0 m
m, and a small-width concave portion is formed along the tread groove at a distance L4 of 0.5 to 2.0 mm outward in the tire axial direction from the intersection P1 in the cross section.
【0009】また請求項2の発明では、前記外溝壁面基
部の前記角度δ2は2〜8゜、かつ前記凹部は前記断面
における巾を0.3〜3mm、深さを0.3〜2.0m
mとする円弧を含む曲面状をなすことを特徴としてい
る。In the invention of claim 2, the angle δ2 of the outer groove wall base is 2 to 8 °, and the recess has a width of 0.3 to 3 mm and a depth of 0.3 to 2. 0m
It is characterized by having a curved shape including an arc of m.
【0010】また請求項3の発明では、前記トレッド溝
の溝底と前記外の溝壁面との交わり部C1を曲率半径r
1が0.5〜2.0mmの円弧状とし、かつ前溝底とト
レッド溝のタイヤ赤道側の内の溝壁面との交わり部C2
の曲率半径r2よりも大としたことを特徴としている。According to the third aspect of the present invention, the intersection C1 between the groove bottom of the tread groove and the outer groove wall surface has a radius of curvature r.
1 is an arc of 0.5 to 2.0 mm, and the intersection C2 between the bottom of the front groove and the groove wall surface on the tire equator side of the tread groove.
Is larger than the radius of curvature r2.
【0011】ここで、前記「トレッド接地縁」とは、タ
イヤを正規リムに装着しかつ正規内圧を充填した状態で
正規荷重を負荷したときに、トレッド面が接地する接地
面のタイヤ軸方向最外端を通るタイヤ周方向線を意味す
る。又「正規リム」とは、タイヤが基づいている規格を
含む規格体系において、当該規格がタイヤ毎に定めるリ
ムであり、例えばJATMAであれば標準リム、TRA
であれば "Design Rim" 、或いはETRTOであれば "
Measuring Rim"となる。また、「正規内圧」とは、前記
規格で定める空気圧であり、JATMAであれば最高空
気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOU
S COLD INFLATION PRESSURES" に記載の最大値、ETR
TOであれば "INFLATION PRESSURE" であるが、タイヤ
が乗用車用である場合には一律に180(kPa)とす
る。さらに「正規荷重」とは、前記規格で定める荷重で
あり、JATMAであれば最大負荷能力、TRAであれ
ば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION P
RESSURES" に記載の最大値、ETRTOであれば "LOAD
CAPACITY"とする。Here, the "tread contact edge" is defined as the tread surface contacting the tread surface when the tire is mounted on a regular rim and a regular load is applied in a state where the regular internal pressure is charged. It means a tire circumferential line passing through the outer end. The “regular rim” is a rim defined for each tire in a standard system including the standard on which the tire is based. For example, in JATMA, a standard rim, TRA
"Design Rim" or "ETRTO"
Measuring Rim "." Normal internal pressure "is the air pressure specified in the above standard. For JATMA, the maximum air pressure, and for TRA, the table" TIRE LOAD LIMITS AT VARIOU ".
Maximum value described in "S COLD INFLATION PRESSURES", ETR
If it is TO, it is "INFLATION PRESSURE", but if the tire is for a passenger car, it is 180 (kPa) uniformly. Furthermore, the "regular load" is the load specified in the above-mentioned standard. For JATMA, the maximum load capacity, and for TRA, the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION P
RESSURES ", maximum value for ETRTO," LOAD
CAPACITY ".
【0012】[0012]
【発明の実施の形態】以下本発明の実施の一形態を図面
に基づき説明する。なお本願の空気入りタイヤ1は、図
7に略示する如く、2ピースモールド30によって加硫
成形されるタイヤであって、この2ピースモールド30
は、周知の如く、タイヤ赤道面C0乃至その近傍領域に
割面31を有し、該割面31を合わせて配することによ
りタイヤ成形内腔Hを形成する上金型31Uと下金型3
1Lとを具えている。そして、前記上金型31Uをプレ
スのラム側に、又下金型31Lをベッド側にそれぞれ取
付けることによって、ラムの昇降により上金型31Uと
下金型31Lとをタイヤ軸方向の内外(本例では上下)
に相対移動しうる。なお本例では、前記割面31がタイ
ヤ赤道面C0上に配される場合を例示する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. The pneumatic tire 1 of the present application is a tire which is vulcanized and molded by a two-piece mold 30 as schematically shown in FIG.
As is well known, an upper mold 31U and a lower mold 3 having a split surface 31 in the tire equatorial plane C0 or in the vicinity thereof, and forming the tire forming cavity H by arranging the split surfaces 31 together.
1L. By mounting the upper mold 31U on the ram side of the press and the lower mold 31L on the bed side, the upper mold 31U and the lower mold 31L are moved up and down in the tire axial direction to move the ram up and down. (In the example above and below)
Can move relatively. In this example, the case where the split surface 31 is arranged on the tire equatorial plane C0 is illustrated.
【0013】又前記タイヤ成形内腔Hは、前記空気入り
タイヤ1の輪郭形状と実質的に等しい輪郭形状をなし、
トレッド成形用のトレッド成形面32と、サイドウォー
ル成形用のサイドウォール成形面33と、ビード成形用
のビード成形面34とから形成されるとともに、前記ト
レッド成形面32には、トレッド溝G形成用の溝形成凸
部分35を突設している。The tire forming cavity H has a contour substantially the same as the contour of the pneumatic tire 1,
A tread forming surface 32 for forming a tread, a side wall forming surface 33 for forming a sidewall, and a bead forming surface 34 for forming a bead are formed. Of the groove-forming convex portion 35 is protruded.
【0014】次に、前記空気入りタイヤ1のトレッド面
2には、図1に示すように、接地面のうちタイヤ赤道側
となる内側領域2Cに、タイヤ周方向に対して0゜での
びる縦主溝、又は45゜以内の傾斜角度θで傾くラグ状
溝からなるトレッド溝Gを具えている。Next, as shown in FIG. 1, the tread surface 2 of the pneumatic tire 1 extends vertically to the inner area 2C of the ground contact surface on the tire equator side at 0 ° with respect to the tire circumferential direction. It has a tread groove G consisting of a main groove or a lug-like groove inclined at an inclination angle θ of 45 ° or less.
【0015】なお前記「内側領域2C」は、タイヤ赤道
Cと、このタイヤ赤道Cからトレッド接地縁Teまでの
接地半巾TW/2の50%の距離を隔てる位置との間の
領域として定義され、タイヤ1にとって、直径が大きく
ディモールドが起こりやすい反面、高い排水性が要求さ
れる部位である。The “inner area 2C” is defined as an area between the tire equator C and a position separated from the tire equator C by 50% of a half-width TW / 2 from the tread tread edge Te, Although the tire 1 has a large diameter and is likely to be demolded, it is a part that requires high drainage.
【0016】又前記トレッド溝Gは、本例では、前記内
側領域2Cに、タイヤ赤道Cを通る中央の縦主溝9と、
その両側に配される外の縦主溝3、3と、この外の縦主
溝3からタイヤ軸方向内方にのびる第1、第2のラグ状
溝4、10とを具え、本例では、このうちの、前記中央
の縦主溝9と第2のラグ状溝10とに起因するディモー
ルドの発生を、本発明の手段によって抑制している。In the present embodiment, the tread groove G has a central vertical main groove 9 passing through the tire equator C in the inner region 2C.
It comprises outer vertical main grooves 3, 3 arranged on both sides thereof, and first and second lug grooves 4, 10 extending inward in the tire axial direction from the outer vertical main grooves 3, and in this example, Of these, the occurrence of demolding due to the central vertical main groove 9 and the second lug-shaped groove 10 is suppressed by means of the present invention.
【0017】なお第1のラグ状溝4に起因するディモー
ルドの発生は、後に説明する他の手段よって抑制してい
る。また前記外の縦主溝3は、本例では、タイヤ軸方向
外側の溝壁面が、前記内側領域2C外の外側領域2Sに
配されているため、本願の対象とはならないが、もし内
側領域2Cに配される場合には、前記中央の縦主溝9と
同様、本発明の手段によってディモールドを抑制するこ
とが必要である。The occurrence of demolding due to the first lug-shaped groove 4 is suppressed by other means described later. In the present example, the outer vertical main groove 3 is not covered by the present application because the groove wall on the outer side in the tire axial direction is arranged in the outer region 2S outside the inner region 2C in this example. In the case of disposing in 2C, it is necessary to suppress demolding by means of the present invention as in the case of the central vertical main groove 9.
【0018】前記中央の縦主溝9は、外の縦主溝3と同
様、タイヤ周方向に略直線状に連続してのび、外の縦主
溝3と協同して路面上の水膜をタイヤ走行方向の後方へ
と排出する。特に中央の縦主溝9は、接地圧が高くかつ
接地長さが最長となるタイヤ赤道C上に配されるため、
より効率の良い排水効果が得られる。The central vertical main groove 9 extends substantially linearly in the tire circumferential direction similarly to the outer vertical main groove 3, and cooperates with the outer vertical main groove 3 to form a water film on a road surface. Discharges backward in the tire running direction. Especially, the central vertical main groove 9 is arranged on the tire equator C where the contact pressure is high and the contact length is the longest,
A more efficient drainage effect can be obtained.
【0019】そして、この中央の縦主溝9では、図2に
示すように、その溝中心線と直角な断面において、その
タイヤ軸方向外側の外の溝壁面21は、溝底22から傾
斜して立ち上がる外溝壁面基部21Aと、該外溝壁面基
部21Aの半径方向外縁に連なりトレッド面2の交点P
1にのびる面取り部21Bとから構成される。なお本例
では、この縦主溝9がタイヤ赤道C上に配されるため、
両側の溝壁面が前記外の溝壁面21として形成される。As shown in FIG. 2, in the central vertical main groove 9, in a cross section perpendicular to the groove center line, the outer groove wall surface 21 on the outer side in the tire axial direction is inclined from the groove bottom 22. 21A, and an intersection P of the tread surface 2 continuing to the radial outer edge of the outer groove wall base 21A.
1 and a chamfered portion 21B. In this example, since the vertical main groove 9 is arranged on the tire equator C,
The groove wall surfaces on both sides are formed as the outer groove wall surfaces 21.
【0020】又前記面取り部21Bは、前記交点P1に
おいて前記トレッド面2に立てた法線Nとのなす角度δ
1が30〜60度の範囲であって、前記外溝壁面基部2
1Aがその仮想延長線と仮想トレッド面との仮想交点P
2において前記仮想トレッド面に立てた法線Nとのなす
角度δ2よりも大きい外開きをなすように形成される。The chamfered portion 21B is formed at an angle δ between the intersection P1 and a normal N to the tread surface 2.
1 is in the range of 30 to 60 degrees, and the outer groove wall base 2
1A is a virtual intersection P between the virtual extension line and the virtual tread surface.
2 is formed so as to form an outward divergence larger than an angle δ2 formed between the virtual tread surface and the normal line N.
【0021】なお前記角度δ2としては、前記角度δ1
より小であるならば特に規制されないが、従来的な縦主
溝の溝壁と略同様の2〜8度とすることが、溝容積の確
保や外観性などの観点から好ましい。又前記溝底22と
外の溝壁面21との交わり部C1は、曲率半径r1が
0.5〜2.0mmの円弧状とし、滑らかに連結させる
のが好ましい。Note that the angle δ2 is the angle δ1
Although it is not particularly limited as long as it is smaller, it is preferable to set the angle to 2 to 8 degrees, which is substantially the same as the groove wall of the conventional vertical main groove, from the viewpoint of securing the groove volume and appearance. Further, it is preferable that the intersection C1 between the groove bottom 22 and the outer groove wall surface 21 has an arc shape with a curvature radius r1 of 0.5 to 2.0 mm and is smoothly connected.
【0022】又前記面取り部21Bとしては、前記仮想
交点P2から交点P1までの前記断面における距離L3
を0.3〜2.0mmとした比較的小さい斜面で形成さ
れるとともに、前記断面での前記交点P1からタイヤ軸
方向外側には、0.5〜2.0mmの間隔L4を隔てて
小巾溝状の凹部23を、前記縦主溝9に沿って形成して
いる。The chamfered portion 21B has a distance L3 in the cross section from the virtual intersection P2 to the intersection P1.
Is formed at a relatively small slope of 0.3 to 2.0 mm, and a small width is provided at a distance L4 of 0.5 to 2.0 mm outward in the tire axial direction from the intersection P1 in the cross section. A groove-shaped recess 23 is formed along the vertical main groove 9.
【0023】この凹部23は、前記断面における巾W4
を0.3〜3.0mm、深さD4を0.3〜2.0mm
とした小巾かつ浅底をなし、その底面は円弧を含む曲面
状、本例では半円弧状に形成している。The recess 23 has a width W4 in the cross section.
0.3-3.0 mm, depth D4 0.3-2.0 mm
The bottom surface is formed in a curved shape including an arc, in this example, a semicircular shape.
【0024】このように、前記面取り部21Bと凹部2
3とを組み合わせることによって、縦主溝9のタイヤ軸
方向外側のエッジ部に柔軟性が付与され、金型が縦主溝
9から抜けやすくなるなどディモールドが効果的に抑制
される。As described above, the chamfered portion 21B and the recess 2
By combining with 3, the edge portion of the vertical main groove 9 on the outer side in the tire axial direction is provided with flexibility, and demolding is effectively suppressed, for example, the mold is easily removed from the vertical main groove 9.
【0025】なお面取り部21Bのみの形成、或いは凹
部23のみの形成の場合には、必要なディモールド抑制
効果を得るために、面取り部21B或いは凹部23のサ
イズ(距離L3、巾W4、深さD4等)を極めて大きく
設定することが必要となり、その結果、接地面積減少に
よる操縦安定性の低下、外観の低下、耐摩耗性の低下な
どの種々の不具合を招来する。これに対して、前記面取
り部21Bと凹部23とを組み合わせた場合には、前述
の如き小さなサイズによっても充分なディモールド抑制
効果が発揮できるのである。In the case where only the chamfered portion 21B or only the concave portion 23 is formed, the size of the chamfered portion 21B or the concave portion 23 (distance L3, width W4, depth D4) must be set extremely large, and as a result, various problems such as a decrease in steering stability, a decrease in appearance, and a decrease in wear resistance due to a decrease in the contact area are caused. On the other hand, when the chamfered portion 21B and the concave portion 23 are combined, a sufficient demold suppressing effect can be exhibited even with the small size as described above.
【0026】なお前記角度δ1が30度未満或いは60
度より大、前記距離L3が0.3mm未満、前記距離L
4が2.0mmより大、前記巾W4が0.3mm未満、
及び前記深さD4が0.3mm未満では、何れもディモ
ールド抑制効果が不十分となってしまう。逆に、前記距
離L3が2.0mmより大、及び前記巾W4が3.0m
mより大では、接地面積の減少および外観性の悪化が顕
著となる。又前記距離L4が0.5mm未満、及び前記
深さD4が2.0mmより大では、面取り部21Bと凹
部23との間でゴム欠け等の亀裂損傷が生じやすくな
る。The angle δ1 is less than 30 degrees or 60
Degree, the distance L3 is less than 0.3 mm, the distance L
4 is greater than 2.0 mm, the width W4 is less than 0.3 mm,
In addition, when the depth D4 is less than 0.3 mm, the demold suppressing effect becomes insufficient. Conversely, the distance L3 is larger than 2.0 mm, and the width W4 is 3.0 m.
When it is larger than m, the reduction of the contact area and the deterioration of appearance are remarkable. If the distance L4 is less than 0.5 mm and the depth D4 is greater than 2.0 mm, crack damage such as chipping of rubber is likely to occur between the chamfered portion 21B and the concave portion 23.
【0027】次に前記第2のラグ状溝10は、前記縦主
溝3との交わり部J2でのタイヤ周方向に対する傾斜角
度θが30〜60゜をなし、かつこの交わり部J2から
傾斜角度θを漸減しつつタイヤ軸方向内側に向かって略
円弧状に滑らかに湾曲している。そして、この第2のラ
グ状溝10は、その全部又は一部、本例では一部に前記
傾斜角度θを45゜以下とした急傾斜領域10Aを具え
ており、少なくともこの急傾斜領域10Aに、縦主溝9
と同様のディモールド抑制手段が施される。Next, the second lug-shaped groove 10 has an inclination angle θ of 30 to 60 ° with respect to the tire circumferential direction at the intersection J2 with the vertical main groove 3, and the inclination angle θ from the intersection J2. It is smoothly curved in a substantially arc shape inward in the tire axial direction while gradually decreasing θ. The second lug-shaped groove 10 includes a steeply inclined region 10A in which the inclination angle θ is 45 ° or less in all or a part of the second lug-shaped groove 10. In this example, at least the steeply inclined region 10A is provided. , Vertical main groove 9
The same demold suppression means as described above is applied.
【0028】即ち、前記第2のラグ状溝10も同様に、
図3に示す如く、その溝中心線と直角な断面において、
外の溝壁面21は、溝底22から立ち上がる外溝壁面基
部21Aと、該外溝壁面基部21Aに連なりトレッド面
2の交点P1にのびる面取り部21Bとから構成され
る。That is, similarly, the second lug-shaped groove 10
As shown in FIG. 3, in a cross section perpendicular to the groove center line,
The outer groove wall surface 21 includes an outer groove wall base 21A rising from the groove bottom 22 and a chamfered portion 21B connected to the outer groove wall base 21A and extending to the intersection P1 of the tread surface 2.
【0029】又前記面取り部21Bは、前記交点P1に
おける角度δ1が30〜60度の範囲であって、前記外
溝壁面基部21Aが仮想交点P2においてなす角度δ2
よりも大としている。なお前記角度δ2は2〜8゜が好
ましい。又前記溝底22と外の溝壁面21との交わり部
C1は、曲率半径r1が0.5〜2.0mmの円弧状と
し、溝底22と内の溝壁面24との交わり部C2におけ
る曲率半径r2よりも大とすることが、溝容積確保の観
点から好ましい。又前記面取り部21Bは、仮想交点P
2と交点P1との間の距離L3が0.3〜2.0mmで
ある。The chamfered portion 21B has an angle δ1 at the intersection P1 in the range of 30 to 60 degrees and an angle δ2 formed by the outer groove wall base 21A at the virtual intersection P2.
And greater than. The angle δ2 is preferably 2 to 8 °. The intersection C1 between the groove bottom 22 and the outer groove wall surface 21 has an arc shape with a curvature radius r1 of 0.5 to 2.0 mm, and the curvature at the intersection C2 between the groove bottom 22 and the inner groove wall surface 24. It is preferable that the radius be larger than the radius r2 from the viewpoint of securing the groove volume. The chamfered portion 21B is located at the virtual intersection P
The distance L3 between 2 and the intersection P1 is 0.3 to 2.0 mm.
【0030】そして前記交点P1のタイヤ軸方向外側に
は、この交点P1から0.5〜2.0mmの間隔L4を
隔てて、例えば巾W4が0.3〜3.0mm、深さD4
が0.3〜2.0mmの小巾かつ浅底の凹部23をラグ
状溝10に沿って形成している。On the outside of the intersection P1 in the tire axial direction, for example, a width W4 of 0.3 to 3.0 mm and a depth D4 of 0.5 to 2.0 mm apart from the intersection P1.
Are formed along the lug-shaped groove 10 with a small-width, shallow-bottom concave portion 23 of 0.3 to 2.0 mm.
【0031】次に、前記第1のラグ状溝4は、以下の手
段によってディモールドが抑制される。即ち第1のラグ
状溝4は、その溝中心線の形状から見たとき、図4に拡
大して示すように、湾曲部4Aと直線状部4Bとを含ん
で構成されている。Next, demolding of the first lug-shaped groove 4 is suppressed by the following means. That is, when viewed from the shape of the groove center line, the first lug-shaped groove 4 includes a curved portion 4A and a linear portion 4B as shown in an enlarged manner in FIG.
【0032】この湾曲部4Aは、前記縦主溝3との交わ
り部J1でのタイヤ周方向に対する傾斜角度θ1が30
〜60度をなし、該傾斜角度θ1を漸減しつつ、本例で
は実質的に0度になるまで、前記交わり部J1からタイ
ヤ軸方向内側に向かって略円弧状に滑らかに湾曲する。
又前記直線状部4Bは、前記湾曲部4Aに滑らかに連な
り、かつタイヤ赤道Cよりもタイヤ軸方向外側でタイヤ
周方向に沿って直線状に延在している。The curved portion 4A has an inclination angle θ1 with respect to the tire circumferential direction at the intersection J1 with the vertical main groove 3 of 30.
The inclination angle θ1 is gradually reduced, and in this example, the curved portion smoothly curves in a substantially arc shape from the intersection J1 toward the inside in the tire axial direction until the angle becomes substantially 0 ° in this example.
The linear portion 4B smoothly continues to the curved portion 4A, and extends linearly outside the tire equator C in the tire axial direction along the tire circumferential direction.
【0033】このとき、直線状部4Bの溝中心線のタイ
ヤ赤道Cからの距離L1は、前記接地半巾TW/2の3
0%以下であって、接地圧のより高い位置に、この直線
状部4Bを形成する。又湾曲部4Aのタイヤ周方向長さ
L2は、第1のラグ状溝4全体のタイヤ周方向長さL0
の50%以上であって、これによって、水膜の流れ方向
が急激に変化して排水性が低下するのを抑制する。At this time, the distance L1 of the groove center line of the linear portion 4B from the tire equator C is 3/3 of the ground contact half width TW / 2.
This linear portion 4B is formed at a position of 0% or less and a higher ground pressure. The tire circumferential length L2 of the curved portion 4A is equal to the tire circumferential length L0 of the entire first lug groove 4.
50% or more, thereby suppressing a sudden change in the flow direction of the water film and a decrease in drainage.
【0034】又前記第1のラグ状溝4は、その溝巾wか
ら見たとき、前記湾曲部4Aと直線状部4Bとの連なり
位置Kを最大溝巾位置Qとして、前記湾曲部4A及び直
線状部4Bの両側にのびる拡巾部分6を具える。なお、
前記「連なり位置K」とは、前記湾曲部4Aの溝中心線
と直線状部4Bの溝中心線とが連結する位置を意味し、
同図には、内接する最も好ましい場合を例示している。When viewed from the groove width w of the first lug-shaped groove 4, the connecting position K between the curved portion 4A and the linear portion 4B is defined as the maximum groove width position Q, and the curved portions 4A and It has widened portions 6 extending on both sides of the linear portion 4B. In addition,
The “sequence position K” means a position where the groove center line of the curved portion 4A and the groove center line of the linear portion 4B are connected,
The figure illustrates the most preferred case of inscribing.
【0035】この拡巾部分6は、本例では、前記最大溝
巾位置Qが連続する最大巾領域6Aと、この最大巾領域
6Aから両側にのびかつ溝巾が漸減する漸減巾領域6
B、6Cとを具えている。なお、一方の漸減巾領域6B
は、前記交わり部J1から略一定の溝巾を有してのびる
一定巾領域Rに滑らかに接続するとともに、他方の漸減
巾領域6Cは前記直線状部4Bの端部まで延在してい
る。In this embodiment, the widened portion 6 has a maximum width region 6A in which the maximum groove width position Q is continuous, and a gradually decreasing width region 6 extending from both sides of the maximum width region 6A and gradually reducing the groove width.
B, 6C. In addition, one of the gradually decreasing width regions 6B
Is smoothly connected to a constant width region R extending from the intersection J1 with a substantially constant groove width, and the other gradually decreasing width region 6C extends to the end of the linear portion 4B.
【0036】従って、本例では、前記湾曲部4Aは、前
記一定巾領域Rと、漸減巾領域6Bと、最大巾領域6A
のうちの連なり位置Kまでの領域部分6A1とによって
形成されるとともに、前記直線状部4Bは、前記漸減巾
領域6Cと、最大巾領域6Aのうちの連なり位置Kまで
の領域部分6A2とによって形成されている。Accordingly, in the present embodiment, the curved portion 4A has the constant width region R, the gradually decreasing width region 6B, and the maximum width region 6A.
And the linear portion 4B is formed by the gradually decreasing width region 6C and the region portion 6A2 of the maximum width region 6A up to the continuous position K. Have been.
【0037】なお前記拡巾部分6としては、例えば、前
記最大溝巾がピーク状をなすことにより前記最大溝巾位
置Qが連続しない、即ち最大巾領域6Aを有することな
く、ピーク状の最大溝巾位置Qと漸減巾領域6B、6C
とによって形成することもできる。As the widened portion 6, for example, the maximum groove width is peaked, so that the maximum groove width position Q is not continuous, that is, without having the maximum width region 6A, Width position Q and gradually decreasing width area 6B, 6C
And can also be formed.
【0038】さらに前記第1のラグ状溝4においては、
図4のI−I線、II−II線、及びIII −III 線断面であ
る図5(A)〜(C)に示す如く、その溝中心線と直角
な溝断面において、タイヤ軸方向外側の外の溝壁面4o
が、該外の溝壁面4oとトレッド面2との交点において
該トレッド面2に立てた法線Nに対してなす傾斜角度α
を、前記最大溝巾位置Qにおいて15〜45度の最大傾
斜角度αmax を有するように形成している。又前記拡巾
部分6は、その両端域に該傾斜角度αが最大傾斜角度α
max から漸減する角度漸減範囲YB、YCを設けてい
る。なおこの角度漸減範囲YB、YCは、前記漸減巾領
域6B、6Cと略一致させて形成することが好ましい
が、一致させなくても良い。Further, in the first lug-shaped groove 4,
As shown in FIGS. 5A to 5C, which are cross sections taken along lines II, II-II, and III-III in FIG. Outer groove wall 4o
Is the angle of inclination α formed at the intersection of the outer groove wall surface 4o and the tread surface 2 with respect to the normal N erected on the tread surface 2.
At the maximum groove width position Q so as to have a maximum inclination angle αmax of 15 to 45 degrees. The widening portion 6 has a maximum inclination angle α at both end regions thereof.
Angle gradually decreasing ranges YB and YC that gradually decrease from max are provided. It is preferable that the angle gradually decreasing ranges YB and YC are formed so as to substantially coincide with the gradually decreasing width regions 6B and 6C, but they do not have to coincide with each other.
【0039】また同図に示す如く、前記溝断面における
タイヤ軸方向内側の内の溝壁面4iでは、該内の溝壁面
4iとトレッド面2との交点において該トレッド面2に
立てた法線Nに対する傾斜角度βを、0〜6度の範囲で
かつラグ状溝4の長さ方向に略一定としている。As shown in the figure, the inner wall surface 4i on the inner side in the tire axial direction in the groove cross section has a normal line N set on the tread surface 2 at the intersection of the inner wall surface 4i and the tread surface 2. Is substantially constant in the length direction of the lug-shaped groove 4 in the range of 0 to 6 degrees.
【0040】このように、第1のラグ状溝4は、互いに
滑らかに連なる直線状部4Bと湾曲部4Aとを具えるた
め、内側領域2Cの水膜は、接地圧の高いタイヤ赤道側
から前記直線状部4Bと湾曲部4Aとをへてタイヤ軸方
向外側に円滑に導かれるとともに、縦主溝3を通して接
地面外に効果的に排出される。As described above, since the first lug-shaped groove 4 includes the linear portion 4B and the curved portion 4A which are smoothly connected to each other, the water film in the inner region 2C is formed from the tire equator side where the contact pressure is high. The gas is smoothly guided to the outside in the tire axial direction through the straight portion 4B and the curved portion 4A, and is effectively discharged out of the ground contact surface through the vertical main groove 3.
【0041】この時、前記直線状部4Bと湾曲部4Aと
の連なり位置Kに、最大溝巾を有する拡巾部分6を設け
る一方、ラグ状溝4における外の溝壁面4oの傾斜角度
αが前記最大溝巾位置Qにおいて最大傾斜角度αmax と
なるように、この外の溝壁面4oを緩勾配で形成してい
る。その結果、前記直線状部4Bから湾曲部4Aに至る
水膜の流れがさらに円滑化し、いっそう速やかにかつ低
抵抗にて排水することが可能となる。At this time, the widened portion 6 having the maximum groove width is provided at the continuous position K between the linear portion 4B and the curved portion 4A, while the inclination angle α of the outer groove wall surface 4o in the lug-shaped groove 4 is reduced. The outer groove wall surface 4o is formed with a gentle gradient so that the maximum inclination angle αmax is obtained at the maximum groove width position Q. As a result, the flow of the water film from the linear portion 4B to the curved portion 4A is further smoothed, and it is possible to drain more quickly and with low resistance.
【0042】他方、前記2ピースモールド30に起因す
るディモールドは、タイヤ周方向に対する傾斜角度θ1
がより小さい部位、即ち前記湾曲部4Aにおける連なり
位置K近傍および直線状部4Bにおいて多発するが、こ
の部位における外の溝壁面4oを最大傾斜角度αmax が
15〜45度となる緩勾配で形成している。従って、加
硫成形後に、上金型31Uをタイヤ軸方向に平行移動し
てタイヤ1を取り出す際、ラグ状溝4形成用の溝形成凸
部分35がタイヤトレッドから抜けやすくなり、ディモ
ールドの発生が効果的に抑制される。On the other hand, the demold caused by the two-piece mold 30 has an inclination angle θ1 with respect to the tire circumferential direction.
Are frequently generated in the vicinity of the connecting position K in the curved portion 4A and in the linear portion 4B, but the outer groove wall surface 4o in this portion is formed with a gentle slope at which the maximum inclination angle αmax becomes 15 to 45 degrees. ing. Therefore, when the upper mold 31U is moved in parallel in the tire axial direction and the tire 1 is taken out after vulcanization molding, the groove forming convex portion 35 for forming the lug-shaped groove 4 is easily removed from the tire tread, and demolding occurs. Is effectively suppressed.
【0043】しかも、外の溝壁面4oが緩勾配となるこ
とによる溝容積の減少が、前記拡巾部分6の形成によっ
て補填されるため、優れた排水性が確保されるのであ
る。なお、本例では前記内の溝壁面4iを0〜6度の急
勾配としているため、充分な溝容積の確保が可能とな
り、緩勾配の外の溝壁面4oによる前記水流の円滑化と
相俟ってタイヤ軸方向外側への排水がより容易となる。
又この内の溝壁面4iにはエッジ効果が期待でき、ドラ
イ路面でのグリップ性の向上にも役立つ。Further, since the decrease in the groove volume due to the gentle inclination of the outer groove wall surface 4o is compensated for by the formation of the widened portion 6, excellent drainage is ensured. In this example, since the inner groove wall surface 4i has a steep gradient of 0 to 6 degrees, a sufficient groove volume can be ensured, and the smooth water flow can be achieved by the gentle gradient outer groove wall surface 4o. Therefore, drainage to the outside in the tire axial direction becomes easier.
In addition, an edge effect can be expected on the groove wall surface 4i, which is useful for improving grip on a dry road surface.
【0044】前記交わり部J1におけるラグ状溝4の傾
斜角度θが60度を越えると、湾曲部4A内での水膜抵
抗および縦主溝3と合流する際の抵抗が過大となるた
め、排水性の低下を招く。又30度未満では、ラグ状溝
4全体に亘ってディモールドが発生する恐れを招くな
ど、ディモールドの充分な抑制効果が得られなくなる。
従って、交わり部J1での前記傾斜角度θ1は、好まし
くは40〜50度であり本例では約45度としている。If the inclination angle θ of the lug-shaped groove 4 at the intersection J1 exceeds 60 degrees, the water film resistance in the curved portion 4A and the resistance at the time of merging with the vertical main groove 3 become excessive, so This leads to a decrease in sex. If the angle is less than 30 degrees, a sufficient effect of suppressing the demolding cannot be obtained, for example, the possibility of demolding occurring over the entire lug-shaped groove 4.
Therefore, the inclination angle θ1 at the intersection J1 is preferably 40 to 50 degrees, and is about 45 degrees in this example.
【0045】又前記外の溝壁面4oの最大傾斜角度αma
x が15未満では、前述した排水性の向上効果並びにデ
ィモールドの抑制効果が充分に達成されなくなり、逆に
45度を超えると、タイヤの外観を著しく悪化させる。
従って、この最大傾斜角度αmax は、15〜25度の範
囲が好ましい。The maximum inclination angle αma of the outer groove wall surface 4o.
If x is less than 15, the above-mentioned effect of improving drainage and suppression of demolding will not be sufficiently achieved. Conversely, if it exceeds 45 degrees, the appearance of the tire will be significantly deteriorated.
Therefore, the maximum inclination angle αmax is preferably in the range of 15 to 25 degrees.
【0046】さらにディモールドの抑制のためには、図
5(A)〜(C)に示す如く、前記外の溝壁面4oと溝
底4bとの間に、曲率半径rが1.0mm以上の円弧部
4cを介在させることが、溝形成凸部分35がタイヤト
レッドから抜けやすくなるため好ましい。なお曲率半径
rが3.0mmを越えると、外観を悪化させる恐れを招
く。In order to further suppress demolding, as shown in FIGS. 5A to 5C, a radius of curvature r of 1.0 mm or more is provided between the outer groove wall surface 4o and the groove bottom 4b. It is preferable to interpose the circular arc portion 4c because the groove forming convex portion 35 can easily come off the tire tread. If the radius of curvature r exceeds 3.0 mm, the appearance may be deteriorated.
【0047】ここで、前記ラグ状溝4の前記溝断面にお
ける溝巾wに関していえば、前記溝巾wは、前記交わり
部J1においては、前記縦主溝3の溝巾W0の25〜6
0%の範囲、かつ前記連なり位置Kにおいては、溝巾W
0の60〜100%の範囲が好ましい。もし前記溝巾w
が、交わり部J1および連なり位置Kにおいて、夫々2
5%未満及び60%未満であれば、充分な溝容積が確保
できなくなり、又夫々60%及び100%を越えるとト
レッド剛性が低下し偏摩耗が生じやすくなる。なお本願
において、溝巾は、夫々トレッド面上で測定した値であ
る。Here, regarding the groove width w of the lug-shaped groove 4 in the groove cross section, the groove width w is 25 to 6 of the groove width W0 of the vertical main groove 3 at the intersection J1.
In the range of 0% and the connecting position K, the groove width W
A range of 60 to 100% of 0 is preferred. If the groove width w
At the intersection J1 and the connecting position K, respectively.
If it is less than 5% or less than 60%, a sufficient groove volume cannot be secured, and if it exceeds 60% or 100%, the tread rigidity is reduced and uneven wear is liable to occur. In the present application, the groove width is a value measured on the tread surface.
【0048】なお前記縦主溝3の溝巾W0は、排水性を
より確実に高めるべく、好ましくは、前記接地半巾TW
/2の5.0%以上、より好ましくは6.0%以上とす
るのが望ましい。なお溝巾W0の上限は、トレッド剛性
等の兼ね合いにより適宜定められる。Preferably, the groove width W0 of the vertical main groove 3 is preferably set to the ground half width TW in order to more reliably improve drainage.
/ 2 is preferably 5.0% or more, more preferably 6.0% or more. The upper limit of the groove width W0 is appropriately determined depending on the balance of tread rigidity and the like.
【0049】又ラグ状溝4の溝深さdに関していえば、
図6に溝中心線に沿った溝断面を示すように、溝容積の
確保のために、前記交わり部J1におけるラグ溝深さd
を、縦主溝3の溝深さD0と略等しくするのが好まし
い。又ラグ溝深さdは、直線状部4Bにおいては、ディ
モールドやノイズの観点から前記縦主溝3の溝深さD0
の80%以下とするのが好ましい。Regarding the groove depth d of the lug-shaped groove 4,
As shown in FIG. 6 which shows a groove cross section along the groove center line, in order to secure a groove volume, the lug groove depth d at the intersection J1 is set.
Is preferably substantially equal to the groove depth D0 of the vertical main groove 3. In the linear portion 4B, the lug groove depth d is set to the groove depth D0 of the vertical main groove 3 from the viewpoint of demolding and noise.
Is preferably 80% or less.
【0050】そのために、本例では、ラグ溝深さdを、
前記交わり部J1においては溝深さD0と略等しく、か
つ直線状部4Bにおいて溝深さD0の80%以下とする
とともに、水流れの円滑化のために或いは剛性変化を緩
和するために、交わり部J1と直線状部4Bとの間でラ
グ溝深さdを漸減している。なお湾曲部4A及び直線状
部4Bでは、ラグ溝深さdが略一定の定深さ部分と漸減
する漸減深さ部分とを混在させることができる。For this purpose, in this embodiment, the lug groove depth d is
At the intersection J1, the intersection is substantially equal to the groove depth D0, and at the linear portion 4B, not more than 80% of the groove depth D0, and the intersection is made for smoothing the water flow or reducing the change in rigidity. The lug groove depth d is gradually reduced between the portion J1 and the linear portion 4B. In the curved portion 4A and the linear portion 4B, a constant depth portion having a substantially constant lug groove depth d and a gradually decreasing depth portion in which the lug groove depth d gradually decreases can be mixed.
【0051】又本例では、タイヤ周方向に隣り合うラグ
状溝4の直線状部4B、4B間を、継ぎ巾が0.5〜3
mm、深さが2〜5mmの周方向の継ぎ溝7によって接
続した場合を例示している。これにより、各直線状部4
Bと協同して周方向に連続する縦溝体を形成しうる結
果、排水性をさらに高め、ウエット性能をより一層向上
させる点で好ましい。又継ぎ溝7の継ぎ巾及び深さを前
記範囲内に規制することによって、この継ぎ溝7に起因
するディモールドの発生が阻止されるとともに、トレッ
ド剛性の維持が図られる。In this embodiment, the joint width between the linear portions 4B and 4B of the lug-like groove 4 adjacent in the tire circumferential direction is 0.5 to 3 mm.
2 illustrates an example in which the connection is made by a circumferential joint groove 7 having a depth of 2 to 5 mm. Thereby, each linear portion 4
As a result of being able to form a circumferentially continuous vertical groove body in cooperation with B, it is preferable in that drainage properties are further improved and wet performance is further improved. Further, by restricting the joint width and the depth of the joint groove 7 within the above ranges, the occurrence of demolding due to the joint groove 7 is prevented, and the tread rigidity is maintained.
【0052】次に、前記外側領域2Sでは、本例では、
前記外の縦主溝3からトレッド接地縁Teに向かって溝
巾を漸増してのびる巾広の第1の外側のラグ状溝26
と、トレッド接地縁Teに向かって溝巾を漸減する巾狭
の第2の外側のラグ状溝27とを含み、かつこれらをタ
イヤ周方向に交互に配したものを例示している。なお本
例では、第1の外側のラグ状溝26が前記第1のラグ状
溝4に、又第2の外側のラグ状溝27が前記第2のラグ
状溝10に、夫々連なるように配置される場合を例示し
ている。Next, in the outer region 2S, in this example,
A wide first outer lug-like groove 26 gradually increasing in groove width from the outer vertical main groove 3 toward the tread contact edge Te.
And a narrow second outer lug-like groove 27 whose width gradually decreases toward the tread contact edge Te, and these are alternately arranged in the tire circumferential direction. In this example, the first outer lug-shaped groove 26 is connected to the first lug-shaped groove 4, and the second outer lug-shaped groove 27 is connected to the second lug-shaped groove 10. The case where it arrange | positions is illustrated.
【0053】一般に、旋回時などではトレッド接地縁T
e側に大きな荷重が作用するが、本例のように、トレッ
ド接地縁Teに向かって溝巾を漸減する第2の外側のラ
グ状溝27を含むことにより、トレッド接地縁Te近傍
の剛性低下を防止することができ、この部分での耐摩耗
性を向上しうる。Generally, when turning, the tread contact edge T
Although a large load acts on the e-side, the rigidity near the tread contact edge Te is reduced by including the second outer lug groove 27 that gradually reduces the groove width toward the tread contact edge Te as in this example. Can be prevented, and the wear resistance at this portion can be improved.
【0054】なおこのような外側のラグ状溝26、27
は、任意であって、この外側領域2Sをリブ状に形成す
ることも良い。Note that such outer lug-like grooves 26, 27
Is arbitrary, and the outer region 2S may be formed in a rib shape.
【0055】本発明の実施の一形態では、図示のパター
ンが点対称のパターンで形成されているが、タイヤ赤道
Cを中心とする左右対称パターンにも形成しうる。この
場合、ラグ状溝4、10がその内端側から接地するよう
に回転方向を定めた方向性パターンの空気入りタイヤと
して好ましく実施しうる。またこの左右対称パターンに
おいて、タイヤ赤道の各側をタイヤ周方向にシフトさせ
たパターンシフトなども採用でき、本発明は種々の態様
に変形しうる。又本願では、前記第1のラグ状溝4を用
いることなく、第2のラグ状溝10を小ピッチ間隔でタ
イヤ周方向に隔設しても良い。In the embodiment of the present invention, the illustrated pattern is formed as a point-symmetric pattern, but may be formed as a left-right symmetric pattern centered on the tire equator C. In this case, the present invention can be preferably implemented as a pneumatic tire having a directional pattern in which the direction of rotation is determined such that the lug-shaped grooves 4 and 10 come into contact with the inner end side thereof. In this symmetric pattern, a pattern shift in which each side of the tire equator is shifted in the tire circumferential direction can be adopted, and the present invention can be modified into various modes. Further, in the present application, the second lug-shaped grooves 10 may be spaced at small pitch intervals in the tire circumferential direction without using the first lug-shaped grooves 4.
【0056】[0056]
【実施例】タイヤサイズが185/70R14であり、
図1に示す基本パターンをなす乗用車用の空気入りタイ
ヤを表1〜3の仕様に基づき、2ピースモールドの金型
を用いて加硫成形して試作し、ディモールドの発生状
況、外観性をテストした。テスト方法は次の通りであ
る。なお表1〜3以外の仕様は、表4にまとめて示して
いる。[Example] The tire size is 185 / 70R14,
A pneumatic tire for a passenger car having the basic pattern shown in FIG. 1 was prototyped by vulcanization molding using a two-piece mold based on the specifications in Tables 1 to 3, and the occurrence of demolding and appearance were evaluated. Tested. The test method is as follows. Specifications other than Tables 1 to 3 are summarized in Table 4.
【0057】(1)ディモールドの発生状況:加硫成形
したときのディモールドの発生の有無を目視によって確
認した。傷となって現れたものを×、擦れ痕が生じたも
の△、発生のないものを○としている。 (2)外観性:目視によって外観の良悪を官能評価し
た。悪いもの×、やや悪いもの△、良を○としている。(1) Occurrence of demolding: The presence or absence of demolding at the time of vulcanization molding was visually confirmed. A mark that appeared as a scratch was rated as X, a mark with rubbing was rated as △, and a mark without scratches was rated as ○. (2) Appearance: Sensory evaluation of appearance was performed visually. Poor ×, slightly poor △, good ○.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】[0060]
【表3】 [Table 3]
【0061】[0061]
【表4】 [Table 4]
【0062】[0062]
【発明の効果】叙上の如く本発明は構成しているため、
優れたウエット性能を確保しながら、2ピースモールド
の金型によってもディモールドを招くことなく簡易に加
硫成形しうる。Since the present invention is configured as described above,
While ensuring excellent wet performance, vulcanization molding can be easily performed with a two-piece mold without demolding.
【図1】本発明の一実施例のタイヤのトレッドパターン
を示す平面図である。FIG. 1 is a plan view showing a tread pattern of a tire according to an embodiment of the present invention.
【図2】中央の縦主溝の溝中心線と直角な向きの線断面
であるFIG. 2 is a line cross section perpendicular to a groove center line of a central vertical main groove.
【図3】第2のラグ状溝の溝中心線と直角な向きの線断
面であるFIG. 3 is a line cross section of the second lug-shaped groove perpendicular to the groove center line.
【図4】ラグ状溝を拡大して示す断面図である。FIG. 4 is an enlarged sectional view showing a lug-shaped groove.
【図5】(A)〜(C)は、ラグ状溝の溝中心線と直角
な向きの図4のI−I線、II−II線、及びIII −III 線
断面である。5 (A) to 5 (C) are cross sections taken along lines II, II-II and III-III in FIG. 4 in a direction perpendicular to the groove center line of the lug-shaped groove.
【図6】ラグ状溝の溝中心線に沿った断面図である。FIG. 6 is a sectional view taken along a groove center line of the lug-shaped groove.
【図7】本発明のタイヤを加硫成形する2ピースモール
ドを示す略断面図である。FIG. 7 is a schematic sectional view showing a two-piece mold for vulcanizing the tire of the present invention.
2 トレッド面 2C 内側領域 9 縦主溝 10 ラグ状溝 21 外の溝壁面 21A 外溝壁面基部 21B 面取り部 22 溝底 23 凹部 24 内の溝壁面 30 2ピースモールド C タイヤ赤道 Te トレッド接地縁 Reference Signs List 2 Tread surface 2C Inner region 9 Vertical main groove 10 Lug-shaped groove 21 Outer groove wall surface 21A Outer groove wall base 21B Chamfered portion 22 Groove bottom 23 Concave portion 24 Groove wall surface 30 Two-piece mold C Tire equator Te Tread grounding edge
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 21:00 B29L 30:00 105:24 B60C 11/04 H B29L 30:00 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 21:00 B29L 30:00 105: 24 B60C 11/04 H B29L 30:00 C
Claims (3)
ド接地縁までの接地半巾TW/2の50%を隔てる位置
との間の内側領域に、タイヤ周方向に対して0゜でのび
る縦主溝、又は45゜以内の傾斜角度θで傾くラグ状溝
からなるトレッド溝を具え、かつ2ピースモールドによ
り成形される空気入りタイヤであって、 前記トレッド溝の溝中心線と直角な断面における前記ト
レッド溝のタイヤ軸方向外側の外の溝壁面は、溝底から
傾斜して立ち上がる外溝壁面基部と、該外溝壁面基部の
半径方向外縁に連なりトレッド面の交点P1にのびる面
取り部とからなり、 かつ面取り部は、前記交点P1において前記トレッド面
に立てた法線とのなす角度δ1が30〜60゜であっ
て、前記外溝壁面基部がその仮想延長線と仮想トレッド
面との仮想交点P2において前記仮想トレッド面に立て
た法線とのなす角度δ2よりも大きい外開きをなすとと
もに、 前記仮想交点P2から交点P1までの前記断面における
距離L3を0.3〜2.0mm、しかも前記断面での前
記交点P1からタイヤ軸方向外側に0.5〜2.0mm
の間隔L4を隔てて小巾の凹部を、前記トレッド溝に沿
って形成したことを特徴とする空気入りタイヤ。1. A vertical main groove extending at 0 ° to the tire circumferential direction in an inner region between a tire equator and a position separated by 50% of a contact half width TW / 2 from the tire equator to a tread contact edge. Or a tread groove having a lug-shaped groove inclined at an inclination angle θ of 45 ° or less, and formed by a two-piece mold, wherein the tread has a cross section perpendicular to a groove center line of the tread groove. The outer groove wall surface on the outer side in the tire axial direction of the groove includes an outer groove wall base that rises inclining from the groove bottom, and a chamfer that extends to the radially outer edge of the outer groove wall base and extends to the intersection P1 of the tread surface, The chamfered portion has an angle δ1 between 30 ° and 60 ° with respect to a normal line formed on the tread surface at the intersection P1, and the outer groove wall base has a virtual intersection between the virtual extension line and the virtual tread surface. 2 and an angle δ2 larger than an angle δ2 formed with a normal line on the virtual tread surface, and a distance L3 in the cross section from the virtual intersection P2 to the intersection P1 is 0.3 to 2.0 mm, and 0.5 to 2.0 mm outward in the tire axial direction from the intersection P1 in the cross section
A pneumatic tire, wherein a small width recess is formed along the tread groove at an interval L4.
゜、かつ前記凹部は前記断面における巾を0.3〜3m
m、深さを0.3〜2.0mmとする円弧を含む曲面状
をなすことを特徴とする請求項1記載の空気入りタイ
ヤ。2. The angle δ2 of the outer groove wall base is 2-8.
゜, and the recess has a width of 0.3 to 3 m in the cross section.
The pneumatic tire according to claim 1, wherein the pneumatic tire has a curved surface including an arc having a depth m of 0.3 to 2.0 mm.
の交わり部C1を曲率半径r1が0.5〜2.0mmの
円弧状とし、かつ前溝底とトレッド溝のタイヤ赤道側の
内の溝壁面との交わり部C2の曲率半径r2よりも大と
したことを特徴とする請求項1又は2記載の空気入りタ
イヤ。3. An intersection C1 between the groove bottom of the tread groove and the outer groove wall surface has an arc shape having a radius of curvature r1 of 0.5 to 2.0 mm, and the front groove bottom and the tread groove have a tire equator side. 3. The pneumatic tire according to claim 1, wherein the radius of curvature r2 of the intersection C2 with the groove wall surface is larger than r2.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34806599A JP3405700B2 (en) | 1999-12-07 | 1999-12-07 | Pneumatic tire |
US09/729,418 US6640858B2 (en) | 1999-12-07 | 2000-12-05 | Tire having tread grooves having right-hand groove wall and left-hand groove wall |
DE60030393T DE60030393T2 (en) | 1999-12-07 | 2000-12-06 | tire |
EP00310824A EP1106395B1 (en) | 1999-12-07 | 2000-12-06 | Tyre |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34806599A JP3405700B2 (en) | 1999-12-07 | 1999-12-07 | Pneumatic tire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001163013A true JP2001163013A (en) | 2001-06-19 |
JP3405700B2 JP3405700B2 (en) | 2003-05-12 |
Family
ID=18394519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34806599A Expired - Lifetime JP3405700B2 (en) | 1999-12-07 | 1999-12-07 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3405700B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003054219A (en) * | 2001-08-08 | 2003-02-26 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2004352049A (en) * | 2003-05-28 | 2004-12-16 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2006192867A (en) * | 2005-01-17 | 2006-07-27 | Yokohama Rubber Co Ltd:The | Pneumatic tire and die for molding tire |
JP2007112396A (en) * | 2005-10-24 | 2007-05-10 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2012040892A (en) * | 2010-08-12 | 2012-03-01 | Bridgestone Corp | Pneumatic tire |
JP2015024818A (en) * | 2014-10-01 | 2015-02-05 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Tire including side groove having on-snow performance-improving chamfer part |
JP2015171872A (en) * | 2014-03-12 | 2015-10-01 | 住友ゴム工業株式会社 | pneumatic tire |
KR101668406B1 (en) | 2015-09-03 | 2016-10-21 | 한국아이티더블유 주식회사 | Assist handle for vehicle |
JP2020032699A (en) * | 2018-08-31 | 2020-03-05 | 住友ゴム工業株式会社 | Tire vulcanization mold and tire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5842885B2 (en) * | 2013-09-04 | 2016-01-13 | 横浜ゴム株式会社 | Pneumatic tire |
-
1999
- 1999-12-07 JP JP34806599A patent/JP3405700B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003054219A (en) * | 2001-08-08 | 2003-02-26 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2004352049A (en) * | 2003-05-28 | 2004-12-16 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP2006192867A (en) * | 2005-01-17 | 2006-07-27 | Yokohama Rubber Co Ltd:The | Pneumatic tire and die for molding tire |
JP4591092B2 (en) * | 2005-01-17 | 2010-12-01 | 横浜ゴム株式会社 | Pneumatic tire and tire mold |
JP2007112396A (en) * | 2005-10-24 | 2007-05-10 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
JP4690852B2 (en) * | 2005-10-24 | 2011-06-01 | 住友ゴム工業株式会社 | Pneumatic tire |
JP2012040892A (en) * | 2010-08-12 | 2012-03-01 | Bridgestone Corp | Pneumatic tire |
JP2015171872A (en) * | 2014-03-12 | 2015-10-01 | 住友ゴム工業株式会社 | pneumatic tire |
JP2015024818A (en) * | 2014-10-01 | 2015-02-05 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | Tire including side groove having on-snow performance-improving chamfer part |
KR101668406B1 (en) | 2015-09-03 | 2016-10-21 | 한국아이티더블유 주식회사 | Assist handle for vehicle |
JP2020032699A (en) * | 2018-08-31 | 2020-03-05 | 住友ゴム工業株式会社 | Tire vulcanization mold and tire |
JP7210942B2 (en) | 2018-08-31 | 2023-01-24 | 住友ゴム工業株式会社 | Tire vulcanization mold and tire |
Also Published As
Publication number | Publication date |
---|---|
JP3405700B2 (en) | 2003-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107031298B (en) | Pneumatic tire | |
EP3147139B1 (en) | Pneumatic tire | |
US7178570B2 (en) | Pneumatic tire including main and auxiliary oblique grooves in axially inner region of tread | |
JP4744800B2 (en) | Pneumatic tire | |
JP6988627B2 (en) | tire | |
CN107639975B (en) | Tyre for vehicle wheels | |
US20010035245A1 (en) | Tire | |
CN107867126B (en) | Tyre for vehicle wheels | |
JP2002059711A (en) | Pneumatic tire | |
EP0787599A1 (en) | Pneumatic tyre | |
US20190344622A1 (en) | Pneumatic Tire | |
JP2000238513A (en) | Pneumatic tire | |
JP2001163013A (en) | Pneumatic tire | |
CN100478197C (en) | Pneumatic tyre, manufacturing method thereof and tyre vulcanization mold used thereby | |
US11214100B2 (en) | Tire | |
JP2019127228A (en) | tire | |
JP3308251B2 (en) | Pneumatic tire | |
US11458775B2 (en) | Pneumatic tyre, tyre mold and method for manufacturing pneumatic tyre using the same | |
CN110001297B (en) | Pneumatic tire | |
JP2021049791A (en) | tire | |
US6098681A (en) | Pneumatic radial tire including chamfered blocks | |
KR100498018B1 (en) | Pneumatic tire having improved durability | |
CN114590080B (en) | Tire with a tire body | |
JP4815673B2 (en) | Pneumatic radial tire and its mold | |
JP2023127996A (en) | tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090307 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100307 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 10 |