JP2001162142A - Membrane separation method - Google Patents

Membrane separation method

Info

Publication number
JP2001162142A
JP2001162142A JP34637199A JP34637199A JP2001162142A JP 2001162142 A JP2001162142 A JP 2001162142A JP 34637199 A JP34637199 A JP 34637199A JP 34637199 A JP34637199 A JP 34637199A JP 2001162142 A JP2001162142 A JP 2001162142A
Authority
JP
Japan
Prior art keywords
membrane
liquid
permeable
treated
rejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34637199A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Tanida
克義 谷田
Kazutaka Takada
一貴 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP34637199A priority Critical patent/JP2001162142A/en
Publication of JP2001162142A publication Critical patent/JP2001162142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separation method which is high in a ratio of obstructing the particles and ions tending to permeate permeable membranes and is large in permeation flow flux. SOLUTION: Membrane separation is carried out while the permeable membranes in a membrane module 3 arranged with the permeable membranes is vibrated when liquid to be treated is subjected to the membrane separation by supplying the liquid to be treated to one side of the membrane module 3, permeating permeation components to the other side, taking a permeate out of the other side and taking a non-permeable liquid does not permeate the permeable membranes out of the one side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラテックス濃縮、
コロイドシリカ濃縮、有価物回収、廃液処理、金属分
級、水道水濾過、活性汚泥処理、上水汚泥処理、食品廃
液処理、イオン除去、COD除去、BOD除去、スラリ
ーおよびコロイド成分のダイアフィルトレーション等に
有用な膜分離方法の改善に関する。
The present invention relates to a latex concentrate,
Colloidal silica concentration, valuables recovery, waste liquid treatment, metal classification, tap water filtration, activated sludge treatment, tap water sludge treatment, food waste liquid treatment, ion removal, COD removal, BOD removal, diafiltration of slurry and colloid components, etc. The present invention relates to an improvement of a membrane separation method that is useful for a method.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、被処理液を膜分離する方法としては、微小孔を有す
る透過性膜を備えたクロスフロー型膜分離装置により透
過液と非透過液に分離する方法が知られている。クロス
フロー型膜分離装置は透過性膜により被処理液を透過成
分と非透過成分とに分離し、この非透過成分を再び装置
入側に供給して同じく透過性膜により透過成分と非透過
成分に分離し、以降同様の操作を繰り返し行うことによ
って非透過液の濃度を高めて膜分離する方法である。こ
の場合、非透過液中の懸濁物による膜の目詰まりを避け
て透過効率を低下させないようにするためには、被処理
液の流速を上げて膜表面におけるせん断力を増すことに
より膜表面から異物を除去する方法がある。すなわち、
膜分離において最も重要なことは膜表面に一様な処理液
の流れが形成されるように膜表面が異物で汚されないよ
うにすることである。
2. Description of the Related Art Conventionally, as a method for separating a liquid to be treated into a membrane, a cross-flow type membrane separation apparatus having a permeable membrane having micropores is used to separate a permeated liquid and a non-permeated liquid. Methods for separating are known. The cross-flow type membrane separation device separates the liquid to be treated into a permeate component and a non-permeate component by a permeable membrane, and supplies the non-permeate component again to the apparatus inlet side, and the permeate component and the non-permeate component are also transmitted by the permeable membrane This is a method in which the concentration of the non-permeate is increased by repeating the same operation thereafter to perform membrane separation. In this case, in order to avoid clogging of the membrane due to the suspended matter in the non-permeate and prevent the permeation efficiency from decreasing, the flow rate of the liquid to be treated is increased to increase the shear force on the membrane surface. There is a method of removing foreign matter from the material. That is,
The most important thing in membrane separation is to keep the membrane surface from being contaminated with foreign matters so that a uniform flow of the processing solution is formed on the membrane surface.

【0003】ところで、一般的に非透過液中の粒子およ
びイオンの透過を阻止するために膜の微小孔の大きさを
小さくした(膜の阻止率が高い)透過性膜は、透過流束
(単位時間当たり、単位面積を透過する液の流量)が小
さく、逆に膜の阻止率が低い膜は透過流束が大きいとい
う関係にある。すなわち、膜の阻止率と透過流束は相反
する関係にあり、従来の膜分離方法では、阻止率の高い
膜では、大きな透過流束を得ることができなかった。
[0003] In general, a permeable membrane in which the size of the micropores of the membrane is reduced (the rejection of the membrane is high) in order to prevent the permeation of particles and ions in the non-permeate liquid is reduced. The flow rate of the liquid permeating per unit area per unit time) is small, and conversely, a membrane having a low rejection rate has a large permeation flux. That is, the rejection rate of the membrane and the permeation flux are in an opposite relationship, and a conventional membrane separation method cannot obtain a large permeation flux with a membrane having a high rejection rate.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、透過
性膜を透過しようとする粒子およびイオンを阻止する比
率が高く、しかも、透過流束の大きな膜分離方法を提供
することにある。
[0004] The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a high ratio of blocking particles and ions which try to pass through a permeable membrane, and An object of the present invention is to provide a membrane separation method having a large permeation flux.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、透過性膜を振動させることにより大きなせ
ん断速度を膜表面の流体に与えることができ、この大き
なせん断速度により膜の目詰まりを抑制し、しかも、膜
表面に濃度分極(膜表面近傍に異常に濃度が高い部分が
生じること)が起きることを抑制して、膜表面の濃度を
低下させるので、大きな透過流束を得ることができ、膜
の阻止率を向上させることができる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for applying a large shear rate to a fluid on a membrane surface by vibrating a permeable membrane. Suppresses clogging and suppresses concentration polarization on the film surface (the occurrence of an abnormally high concentration near the film surface), lowering the concentration on the film surface, resulting in a large permeation flux. And the rejection of the film can be improved.

【0006】[0006]

【発明の実施の形態】すなわち、本発明の要旨は、透過
性膜を配置した膜分離装置の一方側に被処理液を供給
し、透過成分を他方側に透過させて他方側から透過液を
取り出し、一方側からは透過性膜を透過しない非透過液
を取り出すことにより被処理液を膜分離する方法におい
て、透過性膜を振動させつつ膜分離を行うことによって
膜の阻止率を向上させることを特徴とする膜分離方法に
ある。
That is, the gist of the present invention is that a liquid to be treated is supplied to one side of a membrane separation apparatus having a permeable membrane, a permeated component is transmitted to the other side, and the permeated liquid is supplied from the other side. In the method of separating the liquid to be treated by taking out the non-permeate liquid which does not pass through the permeable membrane from one side, improving the rejection rate of the membrane by performing the membrane separation while vibrating the permeable membrane. A membrane separation method.

【0007】以上のように構成される本発明によれば、
透過性膜を振動させつつ膜分離を行えば、透過性膜の振
動によって発生するせん断力により、膜表面近傍の高濃
度成分は膜表面に付着することなく非透過側出口より排
出され、透過成分は透過性膜を高い透過流束で透過す
る。また、膜表面には振動に伴って高せん断場が形成さ
れるため、膜表面はクリーンな状態に保たれ、膜の目詰
まりは防止される。さらに粘性が大きい被処理液が流れ
ても、膜表面には振動に伴うせん断場が形成されている
ため、粒子間に捕捉されている水分が自由水となって流
動性が改善される結果、みかけの粘性係数が低下するの
で、高濃度被処理液の処理が可能になり、非透過液の平
均流速も小さくすることができる。
According to the present invention configured as described above,
If membrane separation is performed while vibrating the permeable membrane, the high-concentration components near the membrane surface are discharged from the non-permeate side outlet without adhering to the membrane surface due to the shear force generated by the vibration of the permeable membrane, and the permeable components Permeates through the permeable membrane with a high flux. In addition, since a high shear field is formed on the film surface due to the vibration, the film surface is kept clean and clogging of the film is prevented. Even if the liquid to be treated with a higher viscosity flows, a shear field is generated on the membrane surface due to vibration, so that the water trapped between the particles becomes free water and the fluidity is improved. Since the apparent viscosity coefficient is reduced, it is possible to process a high-concentration liquid to be processed, and it is possible to reduce the average flow rate of the non-permeate liquid.

【0008】そして、膜表面を動かすエネルギーの大半
が膜表面近傍の流体にせん断力として変換され、高効率
で被処理液を膜分離することができる。
[0008] Most of the energy for moving the membrane surface is converted into a fluid near the membrane surface as a shear force, and the liquid to be treated can be separated with high efficiency.

【0009】かくして、透過性膜の一方側に供給された
被処理液は、他方側から透過液として取り出され、一方
側から非透過液として取り出され、透過性膜を振動させ
つつ透過処理を行うことによって、透過性膜を透過しよ
うとする粒子およびイオンを阻止する率(本明細書にお
いて、「膜の阻止率」という)は高いままで、しかも大
きな透過流束のもとで、所定濃度までスムーズに被処理
液を濃縮することができる。
Thus, the liquid to be treated supplied to one side of the permeable membrane is taken out as a permeated liquid from the other side and taken out as a non-permeated liquid from one side, and the permeation processing is performed while vibrating the permeable membrane. As a result, the rejection of particles and ions that are likely to penetrate the permeable membrane (referred to herein as the "rejection of the membrane") remains high and at a given concentration under a large permeation flux. The liquid to be treated can be smoothly concentrated.

【0010】このようにして、本発明によれば、透過性
膜の振動条件を調節することにより、膜の阻止率と透過
流束をコントロールすることができるが、その振動条件
としては、後記するように、透過性膜の振幅および膜表
面に発生する平均せん断速度が膜の阻止率や透過流束に
及ぼす効果が大きく、振幅や平均せん断速度を増加させ
ることにより、膜の阻止率を高め、大きな透過流束を確
保することができる。
As described above, according to the present invention, the rejection rate and the permeation flux of the membrane can be controlled by adjusting the oscillation conditions of the permeable membrane. The oscillation conditions are described later. Thus, the amplitude of the permeable membrane and the average shear rate generated on the membrane surface have a large effect on the rejection rate and the permeation flux of the membrane, and by increasing the amplitude and the average shear rate, the rejection rate of the membrane is increased. A large permeation flux can be ensured.

【0011】さらに、本発明によれば、透過性膜を振動
させることによって発生するせん断力によって膜表面の
濃度を低下させ、膜表面での被処理液中の粒子およびイ
オンの析出を抑制することも可能である。
Further, according to the present invention, the concentration of the membrane surface is reduced by the shear force generated by vibrating the permeable membrane, and the deposition of particles and ions in the liquid to be treated on the membrane surface is suppressed. Is also possible.

【0012】透過性膜を振動させるときの振幅および振
動周波数の条件としては、透過性膜を、水平面内の円周
方向に振幅0.5cm以上で、振動周波数40〜60Hz
の往復運動をさせるのが好ましい。
The condition of the amplitude and the vibration frequency when the permeable membrane is vibrated is that the permeable membrane is made to have an amplitude of 0.5 cm or more in a circumferential direction in a horizontal plane and a vibration frequency of 40 to 60 Hz.
Is preferable.

【0013】[0013]

【実施例】以下に本発明の実施例を図面を参照しながら
説明する。図1は、本発明の膜分離方法を適用するに好
適である振動型膜分離装置の概略構成を示す図である。
図1を説明すると、1は被処理液の供給タンク、2は被
処理液を圧送するポンプ、3は多数の平膜型の透過性膜
を積層した膜モジュール、4はこの膜モジュール3内の
透過性膜に、水平面内の円周方向に振幅0.5〜2.5
4cmで振動周波数40〜60Hzの微小振幅の往復運動
を伝えるトーションバー、5は非透過液(濃縮液)の貯
槽、6は透過液の貯槽である。7は膜モジュール3から
管路8を経て排出される非透過液の排出量を調節する流
量調節バルブである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a vibration type membrane separation apparatus suitable for applying the membrane separation method of the present invention.
Referring to FIG. 1, 1 is a supply tank of a liquid to be treated, 2 is a pump for pumping the liquid to be treated, 3 is a membrane module in which many flat membrane type permeable membranes are laminated, and 4 is a membrane module in the membrane module 3. The permeable membrane has an amplitude of 0.5 to 2.5 in the circumferential direction in the horizontal plane.
A torsion bar for transmitting a reciprocating motion of a small amplitude of 4 cm and a vibration frequency of 40 to 60 Hz, a storage tank 5 for a non-permeated liquid (concentrated liquid) and a storage tank 6 for a permeated liquid. Reference numeral 7 denotes a flow control valve for controlling the discharge amount of the non-permeate discharged from the membrane module 3 via the pipe line 8.

【0014】膜モジュール3の内部には、図2に示すよ
うに、上下の透過性膜9、9′の間に2〜15枚の不織
布のドレインクロス10、10′を介して金属板11が
積層されたものが水平方向に配置され、かつ鉛直方向に
所定間隙を設けて多段に設置されている。図中、上位の
透過性膜9の上側が一方側(供給側)であり、ドレイン
クロス10側が他方側(透過側)である。この供給側に
被処理液を供給すると、供給側の内圧は透過側より高圧
(約0.20〜3.92MPa)に設定されているた
め、被処理液中の透過成分、すなわち、図3に示すよう
に、透過性膜9の微小孔より小さな粒子(透過成分)が
膜孔12を透過し、他方側へ達する。透過成分が透過し
た後の非透過液は、図2の次の段の透過性膜9の供給側
に供給され、透過成分が膜孔を透過する。
As shown in FIG. 2, a metal plate 11 is provided inside the membrane module 3 between two upper and lower permeable membranes 9 and 9 'via two to fifteen nonwoven fabric drain cloths 10 and 10'. The stacked components are arranged in a horizontal direction, and are arranged in multiple stages with a predetermined gap provided in a vertical direction. In the figure, the upper side of the upper permeable film 9 is one side (supply side), and the drain cross 10 side is the other side (transmission side). When the liquid to be treated is supplied to this supply side, the internal pressure on the supply side is set to a higher pressure (about 0.20 to 3.92 MPa) than that on the permeation side. As shown, particles (permeation components) smaller than the micropores of the permeable membrane 9 pass through the membrane pores 12 and reach the other side. The non-permeate liquid after the permeation component has passed is supplied to the supply side of the permeable membrane 9 in the next stage in FIG. 2, and the permeation component permeates through the membrane pores.

【0015】この透過処理の間、図1に示す膜モジュー
ル3内の透過性膜はトーションバー4の作用により、水
平面内の円周方向に微小振幅の往復運動を続けるため、
膜表面近傍の被処理液は振動によるせん断効果により濃
度分極(膜表面近傍に濃度が異常に高い部分が生じるこ
と)が抑制され、膜の目詰まりが防止される。また、膜
モジュール内流路が閉塞しにくくなる。かくして、ポン
プ2により適正な圧力を被処理液に与えることにより、
高い透過流束と高い膜の阻止率のもとで、被処理液を透
過液と非透過液とに効率的に分離することができる。こ
のようにして順次透過処理が行われ、得られた透過液は
管路13を経て貯槽6に送られ、管路8内にある非透過
液は貯槽5に送られる。かくして、タンク1内の被処理
液を管路14を経て膜モジュール3に供給し、上記した
振動型膜分離装置によって効率的に透過液と非透過液に
分離することができる。
During the permeation process, the permeable membrane in the membrane module 3 shown in FIG. 1 continues to reciprocate with a small amplitude in the circumferential direction in the horizontal plane due to the action of the torsion bar 4.
In the liquid to be treated in the vicinity of the film surface, concentration polarization (the generation of an abnormally high concentration portion in the vicinity of the film surface) is suppressed by the shearing effect due to vibration, and clogging of the film is prevented. Further, the flow path in the membrane module is less likely to be blocked. Thus, by applying an appropriate pressure to the liquid to be treated by the pump 2,
The liquid to be treated can be efficiently separated into a permeate and a non-permeate under a high permeation flux and a high membrane rejection. The permeation process is sequentially performed in this manner, and the obtained permeated liquid is sent to the storage tank 6 via the pipe 13, and the non-permeated liquid in the pipe 8 is sent to the storage tank 5. Thus, the liquid to be treated in the tank 1 can be supplied to the membrane module 3 via the conduit 14, and can be efficiently separated into a permeated liquid and a non-permeated liquid by the above-mentioned vibration type membrane separation device.

【0016】振動型膜分離装置の透過性膜としては、逆
浸透膜、精密濾過膜、ナノフィルター、限外濾過膜等を
好適に用いることができる。
As the permeable membrane of the vibration type membrane separation device, a reverse osmosis membrane, a microfiltration membrane, a nanofilter, an ultrafiltration membrane or the like can be suitably used.

【0017】図4(a)は膜モジュール内の被処理液の
流れを示す図であり、被処理液は経路15から膜モジュ
ール内に流入し、透過性膜を透過した透過液は経路16
から排出され、非透過液は経路17から排出される。1
8は非透過液の流路である(直上の透過性膜9′と直下
の透過性膜9との間隙が非透過液の流路である。図2の
拡大図参照)。図4(b)は透過性膜の拡大平面図で、
19は透過液の流路、20は被処理液の流路である。
FIG. 4A is a view showing the flow of the liquid to be treated in the membrane module. The liquid to be treated flows into the membrane module from the path 15, and the permeated liquid that has passed through the permeable membrane passes through the path 16.
And the non-permeated liquid is discharged from the passage 17. 1
Reference numeral 8 denotes a non-permeate liquid flow path (a gap between the permeable film 9 'immediately above and the permeable film 9 immediately below is a non-permeate liquid flow path; see an enlarged view of FIG. 2). FIG. 4B is an enlarged plan view of the permeable membrane.
Reference numeral 19 denotes a flow path for the permeated liquid, and reference numeral 20 denotes a flow path for the liquid to be treated.

【0018】以上のように構成される振動型膜分離装置
を用いて、膜の阻止率と透過流束に及ぼす振動条件の効
果について調査したので、以下に説明する。 (1)試験条件 a.被処理液 NaCl水溶液を使用した。 b.透過性膜 膜の阻止率の評価が容易なNaCl水溶液を使用したた
め、透過性膜の振動の有無によるテスト結果に明瞭な差
異が現れるように、透過性膜としては、NaCl阻止率
の比較的低いナノフィルターを使用した。 c.共通試験条件 振動型膜分離装置=外形が約30cmで内径が約10cm
で、膜面積が0.045m2 である円形平膜のナノフィ
ルターを配置した、図1に示す構成の振動型膜分離装置
を用いた。
The effect of vibration conditions on the rejection and permeation flux of the membrane was investigated using the vibrating membrane separation apparatus constructed as described above, and will be described below. (1) Test conditions a. Liquid to be treated An aqueous solution of NaCl was used. b. The permeable membrane has a relatively low NaCl rejection rate so that a clear difference appears in the test results depending on the presence or absence of vibration of the permeable membrane because the NaCl aqueous solution that can easily evaluate the rejection rate of the membrane is used. A nanofilter was used. c. Common test conditions Vibration type membrane separation device = outer diameter of about 30 cm and inner diameter of about 10 cm
A vibration-type membrane separation apparatus having a configuration shown in FIG. 1 and having a circular flat membrane nanofilter having a membrane area of 0.045 m 2 was used.

【0019】振動周波数=約58Hz 温度=20℃ 流速=3.5リッター/min. (2)試験結果 イ.膜のNaCl阻止率と透過流束に及ぼす振幅の効果 濃度0.2%のNaClを用いて、膜間差圧(透過性膜
に対する被処理液の供給側の圧力と透過側の圧力の差)
1.03MPaの条件で、透過性膜を振動させつつ、そ
の振幅を徐々に増加させた場合の膜のNaCl阻止率の
変化を図5に示す。図5の横軸は、透過性膜の振幅(イン
チ) であり、左側の縦軸は、NaCl阻止率(%)を示
し、右側の縦軸は、透過流束(リッター/m2/hr) を示
す。図5中、●はNaClの阻止率を示し、△は透過流
束を示す。なお、NaClの濃度は電気伝導度と比例関
係にあるため、NaClの阻止率は原液の電気伝導度
(C0)と透過液の電気伝導度(C1)を測定し、 次式
(1)より算出した。
Vibration frequency = about 58 Hz Temperature = 20 ° C. Flow rate = 3.5 liter / min. (2) Test results Effect of amplitude on NaCl rejection of membrane and permeation flux Difference in transmembrane pressure (difference in pressure between supply side and permeation side of liquid to be treated with respect to permeable membrane) using NaCl at a concentration of 0.2%
FIG. 5 shows a change in the NaCl rejection of the permeable membrane when the amplitude is gradually increased while the permeable membrane is vibrated under the condition of 1.03 MPa. The horizontal axis in FIG. 5 is the amplitude (inch) of the permeable membrane, the vertical axis on the left shows the NaCl rejection (%), and the vertical axis on the right is the permeation flux (liter / m 2 / hr). Is shown. In FIG. 5, ● represents the rejection of NaCl, and Δ represents the permeation flux. Since the concentration of NaCl that is proportional to the electrical conductivity, rejection of NaCl measuring the electrical conductivity (C 0) and the permeate electric conductivity (C 1) of the stock solution, the following equation
Calculated from (1).

【0020】 NaClの阻止率(%)=(1−C1/C0)×100 (1) 図5に示すように、振幅が増加するほど、NaCl阻止
率は高くなっており、一方、透過流束は、振幅とともに
わずかではあるが上昇している。 ロ.膜のNaCl阻止率に及ぼすせん断速度の効果 膜表面に発生するせん断速度は、次式(2) で表される。
NaCl rejection (%) = (1−C 1 / C 0 ) × 100 (1) As shown in FIG. 5, as the amplitude increases, the NaCl rejection increases, while transmission increases. Flux is increasing slightly but with amplitude. B. Effect of shear rate on NaCl rejection of membrane The shear rate generated on the membrane surface is represented by the following equation (2).

【0021】 せん断速度=(代表速度)/(代表長さ)[sec-1] (2) 膜表面での流体の代表速度は振動速度と一致すると仮定
すると、代表速度は次式(3) で表される。ただし、ω:
角速度、P:振幅、f:振動周波数 代表速度=2ωP=4πfP [m/sec] (3) 代表長さは速度境界層の厚さとして与えられ、次式(4)
で表される。ただし、μ:粘性係数、ρ:密度 代表長さ=(μ/ρf)0.5 [m] (4) 式(3)を式(4)で除すことにより、膜表面の半径方向の任
意の点のせん断速度は、次式(5)で与えられる。
Shear rate = (representative velocity) / (representative length) [sec −1 ] (2) Assuming that the representative velocity of the fluid on the membrane surface coincides with the vibration velocity, the representative velocity is expressed by the following equation (3). expressed. Where ω:
Angular velocity, P: amplitude, f: vibration frequency Representative velocity = 2ωP = 4πfP [m / sec] (3) The representative length is given as the thickness of the velocity boundary layer, and the following equation (4)
It is represented by Where μ: viscosity coefficient, ρ: density, representative length = (μ / ρf) 0.5 [m] (4) By dividing equation (3) by equation (4), an arbitrary point in the radial direction of the film surface can be obtained. Is given by the following equation (5).

【0022】 せん断速度=(4πf1.5ρ0.5)P/μ0.5 [sec-1] (5) 式(5) より、膜表面のせん断速度は振幅Pに比例するこ
とが分かるが、振幅は、膜の外周部から中心部に向かっ
て小さくなるため、膜表面の半径方向の任意の点でせん
断速度が異なる。よって、膜表面のせん断速度は、膜表
面全体のせん断速度を半径方向に積分し、膜面積で除し
た平均値で評価する必要があり、この平均せん断速度は
次式(6) で求められる。ただし、A:膜面積、r:透過
性膜の半径、r1:透過性膜の内周部の半径、r2:透過
性膜の外周部の半径、P2:半径r2での振幅 平均せん断速度={(4πf1.5ρ0.5)/μ0.5}∫P・2πrdr/A =〔8π21.5ρ0.5)/μ0.5〕×〔P2/r2〕×〔(r2 3−r1 3)/3A〕(6) 図6は、式(6)で 求められる平均せん断速度に対して、
NaCl濃度を0.2%で一定としたときの膜のNaC
l阻止率の変化を示す図である。図6中の各記号(●、
△、■、◇)は、膜間差圧を示す。図6より、膜のNa
Cl阻止率は平均せん断速度の上昇とともに増加してお
り、また、膜間差圧が上昇すると、膜のNaCl阻止率
は増加する傾向にある。すなわち、膜間差圧の値に関係
なく、平均せん断速度を上昇させると、膜のNaCL阻
止率は増加する。
Shear rate = (4πf 1.5 ρ 0.5 ) P / μ 0.5 [sec −1 ] (5) From equation (5), it can be seen that the shear rate on the film surface is proportional to the amplitude P, but the amplitude is The shear rate differs at any point in the radial direction on the film surface because the shear rate decreases from the outer peripheral portion toward the central portion. Therefore, it is necessary to evaluate the shear rate of the membrane surface by an average value obtained by integrating the shear rate of the entire membrane surface in the radial direction and dividing by the membrane area, and this average shear rate is obtained by the following equation (6). Where A: membrane area, r: radius of the permeable membrane, r 1 : radius of the inner periphery of the permeable membrane, r 2 : radius of the outer periphery of the permeable membrane, P 2 : amplitude average at radius r 2 shear rate = {(4πf 1.5 ρ 0.5) / μ 0.5} ∫P · 2πrdr / A = [8π 2 f 1.5 ρ 0.5) / μ 0.5 ] × [P 2 / r 2] × [(r 2 3 -r 1 3 ) / 3A] (6) FIG. 6 shows the relationship between the average shear rate obtained by equation (6) and
NaC of membrane when NaCl concentration is fixed at 0.2%
It is a figure which shows the change of 1 rejection. Each symbol in FIG. 6 (●,
Δ, Δ, Δ) indicate the transmembrane pressure difference. As shown in FIG.
The Cl rejection increases with an increase in the average shear rate, and when the transmembrane pressure increases, the NaCl rejection of the membrane tends to increase. That is, irrespective of the value of the transmembrane pressure, increasing the average shear rate increases the NaCL rejection of the membrane.

【0023】図7は、式(6)で 求められる平均せん断速
度に対して、膜間差圧を1.03MPaで一定としたと
きの膜のNaCl阻止率の変化を示す図である。図7中
の各記号(●、△、■、◇、▼)は、NaClの濃度を
示す。図7より、NaClの濃度を変化させても、平均
せん断速度を上昇させると、膜のNaCl阻止率は増加
する。 ハ.透過流束に及ぼす振動の効果 被処理液として、純水に飽和濃度になるように硫酸カル
シウムを溶解させたものを用い、透過性膜としてNaC
l阻止率85%のナノフィルターを用い、膜間差圧1.
03MPaで振幅1インチ で透過性膜を振動させた場合
と、透過性膜を振動させなかった場合について、硫酸カ
ルシウムの飽和溶液を濃縮したときの透過流束の変化を
調査した。その結果、図8に示すように、膜を振動させ
なかった場合、濃縮初期から急激に透過流束は低下して
いるが、膜を振動させると、約3倍に濃縮するまで、ほ
とんど透過流束は低下していないことが分かる。これ
は、膜の振動により、膜表面の硫酸カルシウム濃度が低
下し、膜表面での硫酸カルシウムの析出が抑制されたた
ため、透過流束の低下が抑制されたのである。
FIG. 7 is a diagram showing a change in the NaCl rejection of the membrane when the transmembrane pressure is constant at 1.03 MPa with respect to the average shear rate obtained by the equation (6). Each symbol (●, △, ■, ◇, ▼) in FIG. 7 indicates the concentration of NaCl. As shown in FIG. 7, even if the concentration of NaCl is changed, when the average shear rate is increased, the NaCl rejection of the film increases. C. Effect of vibration on permeation flux As a liquid to be treated, a solution in which calcium sulfate is dissolved in pure water to a saturated concentration is used, and NaC is used as a permeable membrane.
1 Using a nanofilter having a rejection of 85%, a transmembrane pressure difference of 1.
The change in the permeation flux when the saturated solution of calcium sulfate was concentrated was examined for the case where the permeable membrane was vibrated at 03 MPa and the amplitude of 1 inch and the case where the permeable membrane was not vibrated. As a result, as shown in FIG. 8, when the membrane was not vibrated, the permeation flux decreased sharply from the initial stage of the concentration, but when the membrane was vibrated, the permeate flux almost decreased until the membrane was concentrated to about three times. It can be seen that the bundle has not decreased. This is because the vibration of the membrane reduced the calcium sulfate concentration on the membrane surface and suppressed the precipitation of calcium sulfate on the membrane surface, thereby suppressing the decrease in the permeation flux.

【0024】[0024]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0025】請求項1記載の発明によれば、透過性膜を
透過しようとする粒子およびイオンを阻止する比率が高
く、しかも、透過流束の大きな膜分離方法を提供するこ
とができる。すなわち、振動型膜分離方法を採用するこ
とにより、透過流束が大きくて透過性膜を透過しようと
する粒子およびイオンを阻止する性能が低い膜を使用し
ても、大きな透過流束を維持したままで膜の阻止率を向
上しうるので、同量の被処理液を膜分離する場合、従来
のクロスフロー型膜分離方式に比して本発明によれば、
膜面積の小さな膜を使用することが可能であり、処理コ
ストを大幅に低減することができる。
According to the first aspect of the present invention, it is possible to provide a membrane separation method which has a high ratio of blocking particles and ions which are going to permeate the permeable membrane and has a large permeation flux. That is, by employing the vibrating membrane separation method, a large permeation flux was maintained even when a membrane having a high permeation flux and a low ability to block particles and ions that would pass through the permeable membrane was used. Since the rejection of the membrane can be improved as it is, when the same amount of the liquid to be treated is subjected to membrane separation, according to the present invention, as compared with the conventional cross-flow membrane separation method,
A film having a small film area can be used, and the processing cost can be significantly reduced.

【0026】すなわち、請求項2記載の発明のように、
透過性膜の振動条件を調節することにより、膜の阻止率
と透過流束をコントロールすることができる。具体的に
は、請求項3記載の発明のように、透過性膜の振幅を増
加させることにより、大きな透過流束を維持したまま
で、膜の阻止率を高めることができる。また、請求項4
記載の発明のように、膜表面に発生する平均せん断速度
を上昇させることにより、膜の阻止率を高めることがで
きる。
That is, as in the second aspect of the present invention,
By adjusting the vibration conditions of the permeable membrane, the rejection and permeation flux of the membrane can be controlled. Specifically, by increasing the amplitude of the permeable membrane, the rejection of the membrane can be increased while maintaining a large permeation flux. Claim 4
As in the described invention, the rejection of the film can be increased by increasing the average shear rate generated on the film surface.

【0027】さらに、請求項5記載の発明によれば、透
過性膜を振動させることによって発生するせん断力によ
って膜表面の濃度を低下させ、膜表面での被処理液中の
粒子およびイオンの析出を抑制することができる。
According to the fifth aspect of the present invention, the concentration of the surface of the membrane is reduced by the shear force generated by vibrating the permeable membrane, and the particles and ions in the liquid to be treated are deposited on the surface of the membrane. Can be suppressed.

【0028】そして、請求項6記載の発明によれば、透
過性膜を振動させるときの好適な振幅および振動周波数
の条件を提供することができる。
According to the sixth aspect of the present invention, it is possible to provide suitable amplitude and vibration frequency conditions for vibrating the permeable membrane.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜分離方法を適用するに好適である振
動型膜分離装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a vibration type membrane separation apparatus suitable for applying a membrane separation method of the present invention.

【図2】図1の振動型膜分離装置に使用する膜モジュー
ルの一部を示す断面図である。
FIG. 2 is a sectional view showing a part of a membrane module used in the vibration type membrane separation device of FIG.

【図3】振動型膜分離装置による透過処理の概念を示す
図である。
FIG. 3 is a diagram showing a concept of a permeation process by a vibration type membrane separation device.

【図4】図4(a)は振動型膜分離装置による膜モジュ
ール内の被処理液の流れを示す図であり、図4(b)は
透過性膜の拡大平面図である。
FIG. 4 (a) is a diagram showing a flow of a liquid to be treated in a membrane module by a vibrating membrane separation device, and FIG. 4 (b) is an enlarged plan view of a permeable membrane.

【図5】膜のNaCl阻止率と透過流束に及ぼす振幅の
効果を示す図である。
FIG. 5 shows the effect of amplitude on NaCl rejection and permeation flux of the membrane.

【図6】平均せん断速度に対して、NaCl濃度を一定
としたときの膜のNaCl阻止率の変化を示す図であ
る。
FIG. 6 is a diagram showing a change in NaCl rejection of a film when a NaCl concentration is constant with respect to an average shear rate.

【図7】平均せん断速度に対して、膜間差圧を一定とし
たときの膜のNaCl阻止率の変化を示す図である。
FIG. 7 is a diagram showing a change in NaCl rejection of a membrane when a transmembrane pressure is constant with respect to an average shear rate.

【図8】硫酸カルシウムの飽和溶液を濃縮したときの透
過流束の変化を示す図である。
FIG. 8 is a diagram showing a change in permeation flux when a saturated solution of calcium sulfate is concentrated.

【符号の説明】[Explanation of symbols]

1…供給タンク 3…膜モジュール 5…非透過液の貯槽 6…透過液の貯槽 7…流量調節バルブ 9、9′…透過性膜 18…非透過液の流路 19…透過液の流路 20…被処理液の流路 DESCRIPTION OF SYMBOLS 1 ... Supply tank 3 ... Membrane module 5 ... Non-permeate liquid storage tank 6 ... Permeate liquid storage tank 7 ... Flow control valve 9, 9 '... Permeable membrane 18 ... Non-permeate liquid flow path 19 ... Permeate liquid flow path 20 ... Flow path of liquid to be treated

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月4日(2000.7.4)[Submission date] July 4, 2000 (200.7.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】すなわち、請求項2記載の発明のように、
透過性膜の振動条件を調節することにより、膜の阻止率
と透過流束をコントロールすることができる。具体的に
は、請求項3記載の発明のように透過性膜の振幅を増加
させ、あるいは請求項4記載の発明のように振動周波数
を調節することにより、大きな透過流束を維持したまま
で、膜の阻止率を高めることができる。また、請求項5
記載の発明のように、膜表面に発生する平均せん断速度
を上昇させることにより、膜の阻止率を高めることがで
きる。
That is, as in the second aspect of the present invention,
By adjusting the vibration conditions of the permeable membrane, the rejection and permeation flux of the membrane can be controlled. Specifically, the amplitude of the permeable membrane is increased as in the invention of claim 3, or the vibration frequency is adjusted as in the invention of claim 4, thereby maintaining a large permeation flux. The rejection of the film can be increased. Claim 5
As in the described invention, the rejection of the film can be increased by increasing the average shear rate generated on the film surface.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】さらに、請求項6記載の発明によれば、透
過性膜を振動させることによって発生するせん断力によ
って膜表面の濃度を低下させ、膜表面での被処理液中の
粒子およびイオンの析出を抑制することができる。
Further, according to the invention of claim 6, the concentration of the surface of the membrane is reduced by the shear force generated by vibrating the permeable membrane, and the particles and ions in the liquid to be treated are deposited on the surface of the membrane. Can be suppressed.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】そして、請求項7記載の発明によれば、透
過性膜を振動させるときの好適な振幅および振動周波数
の条件を提供することができる。
According to the seventh aspect of the present invention, it is possible to provide suitable amplitude and vibration frequency conditions for vibrating the permeable membrane.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA07 HA41 JA03C KA41 KE04Q MA03 PA01 PB06 PB08 PB23 PC11 PC62 PC64 4D028 BC17 BD00 BD17 4D059 AA03 BE42 BK30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 GA06 GA07 HA41 JA03C KA41 KE04Q MA03 PA01 PB06 PB08 PB23 PC11 PC62 PC64 4D028 BC17 BD00 BD17 4D059 AA03 BE42 BK30

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透過性膜を配置した膜分離装置の一方側
に被処理液を供給し、透過成分を他方側に透過させて他
方側から透過液を取り出し、一方側からは透過性膜を透
過しない非透過液を取り出すことにより被処理液を膜分
離する方法において、透過性膜を振動させつつ膜分離を
行うことによって膜の阻止率を向上させることを特徴と
する膜分離方法。
1. A liquid to be treated is supplied to one side of a membrane separation apparatus provided with a permeable membrane, a permeated component is permeated to the other side, and a permeated liquid is taken out from the other side. A method of separating a liquid to be treated by membrane by extracting a non-permeate liquid that does not pass through, wherein the membrane separation method is performed by vibrating a permeable membrane to improve the rejection of the membrane.
【請求項2】 透過性膜の振動条件を調節することによ
り、膜の阻止率と透過流束をコントロールすることを特
徴とする請求項1記載の膜分離方法。
2. The method according to claim 1, wherein the rejection rate and the permeation flux of the membrane are controlled by adjusting the vibration conditions of the permeable membrane.
【請求項3】 振動条件が振幅であることを特徴とする
請求項2記載の膜分離方法。
3. The method according to claim 2, wherein the vibration condition is an amplitude.
【請求項4】 振動条件が膜表面に発生する平均せん断
速度であることを特徴とする請求項2記載の膜分離方
法。
4. The membrane separation method according to claim 2, wherein the vibration condition is an average shear rate generated on the membrane surface.
【請求項5】 透過性膜を振動させることによって発生
するせん断力によって膜表面の濃度を低下させ、膜表面
での被処理液中の粒子およびイオンの析出を抑制するこ
とを特徴とする請求項1記載の膜分離方法。
5. The method according to claim 1, wherein a concentration of the surface of the membrane is reduced by a shear force generated by vibrating the permeable membrane, thereby suppressing precipitation of particles and ions in the liquid to be treated on the surface of the membrane. 2. The membrane separation method according to 1.
【請求項6】 透過性膜を、水平面内の円周方向に振幅
0.5cm以上で、振動周波数40〜60Hzの条件で振
動させることを特徴とする請求項1、2、3、4または
5記載の膜分離方法。
6. The permeable membrane is vibrated in a circumferential direction in a horizontal plane with an amplitude of 0.5 cm or more and a vibration frequency of 40 to 60 Hz. The membrane separation method according to the above.
JP34637199A 1999-12-06 1999-12-06 Membrane separation method Pending JP2001162142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34637199A JP2001162142A (en) 1999-12-06 1999-12-06 Membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34637199A JP2001162142A (en) 1999-12-06 1999-12-06 Membrane separation method

Publications (1)

Publication Number Publication Date
JP2001162142A true JP2001162142A (en) 2001-06-19

Family

ID=18382974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34637199A Pending JP2001162142A (en) 1999-12-06 1999-12-06 Membrane separation method

Country Status (1)

Country Link
JP (1) JP2001162142A (en)

Similar Documents

Publication Publication Date Title
TWI494277B (en) Water treatment apparatus and water treatment method
Kertész et al. Dairy wastewater purification by vibratory shear enhanced processing
JP2001232158A (en) Diafiltration method
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
WO2020179594A1 (en) Zero liquid discharge system
FR2545472A1 (en) APPARATUS AND METHOD FOR TREATING POOL WATER WITH A SEMI-PERMEABLE MEMBRANE SEPARATING APPARATUS
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
CN104787846A (en) Water treatment system
JP4984460B2 (en) Separation membrane cleaning method and organic sewage treatment apparatus
JP2003080246A (en) Apparatus and method for treating water
AU2016232367B2 (en) A subsea installation and method for treatment of seawater
KR101732811B1 (en) Energy saving Forward Osmosis-filtration hybrid Water treatment/seawater desalination system using big size polymer draw solute and method of Water treatment/seawater desalination using the same
JP2001162142A (en) Membrane separation method
JP2011121007A (en) Pretreatment apparatus of water treatment system and pretreatment method
JPH09220449A (en) Membrane separation device
JP3838689B2 (en) Water treatment system
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP2001259374A (en) Method for operating membrane separator
JP3276334B2 (en) Latex concentration method
JP2006218341A (en) Method and apparatus for treating water
JP2001104761A (en) Operation method for membrane separation apparatus
JPH11347380A (en) Washing method for membranes of membrane separator for papermaking waste water permeating treatment
JP2000246070A (en) Membrane separation apparatus and operation method therefor
KR102314410B1 (en) Method of Operation of Vacuum Enhanced Forward Osmosis Membrane Bioreactor
JPH09276863A (en) Reverse osmosis separation apparatus and method therefor