JP2001161376A - GLYCOSYLTRANSFERASE GENE och1 DERIVED FROM FISSION YEAST - Google Patents

GLYCOSYLTRANSFERASE GENE och1 DERIVED FROM FISSION YEAST

Info

Publication number
JP2001161376A
JP2001161376A JP2000263266A JP2000263266A JP2001161376A JP 2001161376 A JP2001161376 A JP 2001161376A JP 2000263266 A JP2000263266 A JP 2000263266A JP 2000263266 A JP2000263266 A JP 2000263266A JP 2001161376 A JP2001161376 A JP 2001161376A
Authority
JP
Japan
Prior art keywords
dna
fission yeast
och1
protein
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263266A
Other languages
Japanese (ja)
Other versions
JP3905695B2 (en
Inventor
Katsuhei Tsukahara
塚原克平
Tatsuo Watanabe
渡辺達夫
Takehiko Yokoo
横尾岳彦
Yoshifumi Chikami
地神芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Eisai Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Eisai Co Ltd
Priority to JP2000263266A priority Critical patent/JP3905695B2/en
Publication of JP2001161376A publication Critical patent/JP2001161376A/en
Application granted granted Critical
Publication of JP3905695B2 publication Critical patent/JP3905695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for specifying a gene encoding a glycosyltransferase derived from a fission yeast, and a method for producing an extraneous protein having less added sugar chains using a fission yeast in which the function of the gene was lost. SOLUTION: The finding that och1+ having a specific base sequence derived from a fission yeast Schizosaccharomyces pombe is homologous to a glycosyltransferase of a budding yeast permits producing a protein in which a high mannose-type sugar chain was not added using a fission yeast in which the function of the gene was lost, i.e., och+-destroyed strain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分裂酵母の糖転移
酵素をコードするDNA、及び該DNAの機能を欠損させるこ
とにより蛋白質への糖鎖付加を行なう能力が減少させら
れた分裂酵母の製造、該分裂酵母を利用した糖鎖付加の
少ない外来蛋白質を産生させる方法に関する。
[0001] The present invention relates to a DNA encoding a glycosyltransferase of fission yeast, and a method for producing a fission yeast having a reduced ability to add a sugar chain to a protein by deficient function of the DNA. And a method for producing a foreign protein with little sugar chain addition using the fission yeast.

【0002】[0002]

【従来の技術】酵母は動物細胞と比較して、分裂速度が
速く、安価な培地で生育が可能なこと、また細菌と比較
して、翻訳後修飾が動物細胞と類似していること、特に
細菌では付加しない糖鎖が付加することから、組換えDN
A技術で得られたDNAを用いた蛋白質産生の宿主として注
目を集めた。しかし、動物細胞と酵母では一部の糖転移
酵素が異なり、従って酵母で産生された蛋白質に、動物
細胞で見られない大量のマンノースから成る糖外鎖(以
下高マンノース型糖鎖と称す)が付加する場合が多く経
験された。そして高マンノース型糖鎖の付加は、蛋白質
の生産性、蛋白質の抗原性や体内動態等に影響を及ぼ
し、酵母での組換え蛋白質生産の大きな問題点となって
いた。
2. Description of the Related Art Yeasts have a higher division rate than animal cells and can grow on inexpensive media, and have similar post-translational modifications to animal cells as compared to bacteria. Since sugar chains that do not add in bacteria are added, recombinant DN
It attracted attention as a host for protein production using DNA obtained by A technology. However, some glycosyltransferases are different between animal cells and yeast. Therefore, proteins produced in yeast contain a large amount of mannose glycan, which is not found in animal cells (hereinafter referred to as high-mannose type sugar chains). Many cases have been added. The addition of a high-mannose type sugar chain has an effect on protein productivity, protein antigenicity, pharmacokinetics, and the like, and has been a major problem in recombinant protein production in yeast.

【0003】酵母は出芽酵母と分裂酵母に大きく分類さ
れ、出芽酵母においては、高マンノース型糖鎖を付加す
る糖転移酵素遺伝子OCH1が見出され(Nagasu, T., et.a
l., Yeast, 8, 535-547, 1992)、OCH1を欠失した酵母株
を用いて組換え蛋白質を産生させると高マンノース型の
糖鎖が付加しないことが見出された。しかし、分裂酵母
においてはハイブリダイゼーション等の通常の方法では
出芽酵母のOCH1に対するホモログが見つからず、高マン
ノース型の糖鎖が付加しない変異体を作製することはで
きなかった。
[0003] Yeasts are broadly classified into budding yeasts and fission yeasts. In budding yeasts, a glycosyltransferase gene OCH1 that adds a high-mannose type sugar chain has been found (Nagasu, T., et.a.
l., Yeast, 8, 535-547, 1992), it was found that when a yeast strain lacking OCH1 was used to produce a recombinant protein, a high-mannose-type sugar chain was not added. However, in fission yeast, homologs to OCH1 of budding yeast were not found by ordinary methods such as hybridization, and mutants to which high-mannose-type sugar chains were not added could not be produced.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、分裂
酵母の糖転移酵素をコードする遺伝子を特定し、その遺
伝子の機能を失わせた分裂酵母を使って糖鎖付加の少な
い蛋白質を産生させることにある。
An object of the present invention is to specify a gene encoding a glycosyltransferase of fission yeast, and to produce a protein with little sugar chain addition using the fission yeast having lost the function of the gene. To make it happen.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高温にお
いては浸透圧を調整した条件でしか生育できない分裂酵
母変異体に、分裂酵母のゲノムDNAライブラリーを導入
し、その性質を相補できるゲノムDNA断片から、出芽酵
母のOCH1とホモロジーがある配列番号1に記載の塩基配
列からなる遺伝子を見出した。その遺伝子は分裂酵母の
糖転移酵素をコードする遺伝子であると考えられ、分裂
酵母からその遺伝子を欠失させたところ、欠失させない
分裂酵母では付加していた高マンノース型の糖鎖が付加
しなくなったことを見出し、本発明を完成するに到っ
た。
Means for Solving the Problems The present inventors can introduce a genomic DNA library of fission yeast into a fission yeast mutant that can grow only under conditions of adjusted osmotic pressure at high temperatures, and complement its properties. From the genomic DNA fragment, a gene consisting of the nucleotide sequence of SEQ ID NO: 1 having homology to OCH1 of budding yeast was found. The gene is thought to be a gene encoding glycosyltransferase of fission yeast, and when the gene was deleted from fission yeast, the high-mannose type sugar chain that was added in the fission yeast that was not deleted was added. The inventor has found that it has disappeared, and has completed the present invention.

【0006】すなわち本発明は、下記の(a)から(c)のい
ずれかに記載のDNA(以下該DNAを「och1+」と記載す
る)。 (a)配列番号2に記載のアミノ酸配列からなる蛋白質を
コードするDNA。 (b)配列番号1に記載の塩基配列からなるDNA。 (c)配列番号1に記載の塩基配列からなるDNAとストリン
ジェントな条件下でハイブリダイズし、糖転移酵素活性
を有する蛋白質をコードする分裂酵母由来のDNA、およ
びoch1+がコードする蛋白質(以下「Och1」蛋白と称
す)に関する。
That is, the present invention provides the following (a) to (c):
The DNA described in any of the above (hereinafter referred to as “och1+"
). (a) a protein consisting of the amino acid sequence of SEQ ID NO: 2
DNA to encode.  (b) DNA comprising the nucleotide sequence of SEQ ID NO: 1. (c) a DNA comprising the nucleotide sequence of SEQ ID NO: 1 and a string
Hybridizes under gentle conditions and has glycosyltransferase activity
Fission yeast-derived DNA encoding a protein having
Och1+(Hereinafter referred to as “Och1” protein)
About).

【0007】ここでストリンジェントな条件の一例は、
65℃ 4 x SSCにおけるハイブリダイゼーション、次いで
65℃で1時間0.1 x SSC中での洗浄である。また別法と
してストリンジェントな条件は、50%ホルムアミド中42
℃ 4 x SSCである。
Here, one example of the stringent condition is as follows.
Hybridization in 4 x SSC at 65 ° C, then
Wash in 0.1 × SSC at 65 ° C. for 1 hour. Alternatively, stringent conditions may include 42% in 50% formamide.
° C 4 x SSC.

【0008】また本発明は、och1+あるいはその一部を
用いて、分裂酵母遺伝子中のoch1+の機能を失わせる方
法に関する。
[0008] The present invention also relates to a method for losing the function of och1 + in a fission yeast gene using och1 + or a part thereof.

【0009】ここで、「och1+の機能を欠損させる」に
は、och1+の蛋白質をコードする領域を変異させて、Och
1蛋白の機能を失わせること、およびoch1+の発現を減少
させることの双方が含まれる。「Och1蛋白の機能を失わ
せる」とは、分裂酵母が産生する蛋白質の大部分に過剰
な高マンノース型の糖鎖が付加しないようにOch1蛋白が
改変されていることを意味する。また、「och1+の発現
を減少させる」とは、分裂酵母のゲノムにおけるoch1+
またはその発現制御領域に変異を導入することにより、
該分裂酵母が産生するOch1蛋白量を、該変異を導入しな
い分裂酵母が産生するOch1蛋白量と比較して、少なくさ
せることを指す。
[0009] Here, to "delete the function of och1 + ", the region encoding the och1 + protein is mutated to
Includes both loss of function of one protein and reduction of och1 + expression. “Let the function of the Och1 protein be lost” means that the Och1 protein has been modified so that an excess of high-mannose-type sugar chains is not added to most of the proteins produced by the fission yeast. In addition, "to reduce the expression of och1 +", och1 in the genome of the fission yeast +
Or by introducing a mutation into its expression control region,
This refers to reducing the amount of Och1 protein produced by the fission yeast compared to the amount of Och1 protein produced by the fission yeast not introducing the mutation.

【0010】更に本発明は、och1+の機能を欠損させる
ことにより糖鎖付加が減少された蛋白質を産生する能力
を有する分裂酵母(以下och1+破壊株と称す)およびそ
の製造方法、該方法により製造し得る分裂酵母、好まし
くはSchizosaccharomyces pombe、該分裂酵母(och1+
壊株)に、糖鎖付加の少ない蛋白質を産生させる方法、
及びその方法により産生された糖鎖付加の少ない蛋白質
に関する。
Further, the present invention provides a fission yeast (hereinafter referred to as an och1 + disrupted strain) having the ability to produce a protein with reduced glycosylation by deficient och1 + function, a method for producing the same, and a method for producing the same. A method for producing a fission yeast which can be produced, preferably Schizosaccharomyces pombe, the fission yeast (och1 + disrupted strain) to produce a protein with little glycosylation,
And a protein with a small amount of glycosylation produced by the method.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0012】och1+あるいはその一部を含むDNAは、配列
番号1に記載の塩基配列を基にプライマーを設定し、分
裂酵母ゲノムDNAあるいはcDNAを鋳型にPCRを行なうこと
により、あるいは分裂酵母RNAを鋳型にRT-PCRを行なう
ことにより得ることができる。また別法としては、配列
番号1に記載の塩基配列を基にプローブを合成して、分
裂酵母のゲノムDNAライブラリーあるいはcDNAライブラ
リーより、プローブとハイブリダイズするクローンを選
び出し、塩基配列を決定して、och1+あるいはその一部
を含むクローンを選択しても良い。
[0012] DNA containing och1 + or a part thereof is prepared by setting primers based on the nucleotide sequence of SEQ ID NO: 1 and performing PCR using fission yeast genomic DNA or cDNA as a template, or fission yeast RNA. It can be obtained by performing RT-PCR on a template. Alternatively, a probe is synthesized based on the nucleotide sequence shown in SEQ ID NO: 1, a clone that hybridizes with the probe is selected from a genomic DNA library or cDNA library of fission yeast, and the nucleotide sequence is determined. Then, a clone containing och1 + or a part thereof may be selected.

【0013】更に、Och1蛋白の発現に影響を与えるoch1
+の発現制御領域は、配列番号1に記載の塩基配列を基
にプローブを合成して、分裂酵母ゲノムDNAライブラリ
ーより、プローブとハイブリダイズするクローンを選び
出し、塩基配列を決定して、och1+の上流あるいは下流
配列を含むクローンを選択することにより得ることがで
きる。判明した上流あるいは下流の塩基配列を基にプロ
ーブを合成して、更に上流あるいは下流配列を含むクロ
ーンを選択しても良い。
Furthermore, och1 which affects the expression of Och1 protein
The + expression control region synthesizes a probe based on the nucleotide sequence of SEQ ID NO: 1, selects a clone that hybridizes with the probe from the fission yeast genomic DNA library, determines the nucleotide sequence, and determines the och1 + Can be obtained by selecting a clone containing an upstream or downstream sequence. A probe may be synthesized based on the determined upstream or downstream base sequence, and a clone further containing the upstream or downstream sequence may be selected.

【0014】発現制御活性を有する領域は、通常コード
領域の上流1 kbp、下流500 bpの中に存在する。相同組
換えにより単離した領域を欠失させた分裂酵母において
ノーザンブロッティングにより定量されるoch1+ mRNA量
が減少しているか、あるいは該分裂酵母の産生する蛋白
質に過剰な高マンノース型の糖鎖付加が無くなっている
かを解析することにより、単離した領域が発現制御活性
を有するか否かを判定することができる。
[0014] The region having the expression regulating activity is usually present within 1 kbp upstream and 500 bp downstream of the coding region. In fission yeast in which the region isolated by homologous recombination has been deleted, the amount of och1 + mRNA quantified by Northern blotting is reduced, or excessive mannose-type sugar chains are added to the protein produced by the fission yeast By analyzing whether or not there is no expression, it can be determined whether or not the isolated region has an expression controlling activity.

【0015】得られたoch1+遺伝子は、発現ベクターに
挿入してOct1蛋白質を産生させることができる。発現ベ
クターは、宿主が大腸菌であれば、例えばpGEX、宿主が
酵母であれば、例えばpcL, pREP、宿主が哺乳類細胞で
あれば、例えばpCMV, pSRα等に挿入する。挿入は例え
ばSambruck, J., Fritsch, E. F., and Maniatis, T.
(1989) Molecular Cloning: A Laboratory Manual, Col
d Spring Harbor Laboratory, Cold Spring Harbor, NY
に記載の方法に従って行うことができる。Oct1蛋白質
は、His6, GSTとの融合蛋白として発現させると、後の
精製が容易になる点で望ましい。
The obtained och1 + gene can be inserted into an expression vector to produce an Oct1 protein. The expression vector is inserted into, for example, pGEX when the host is Escherichia coli, for example, pcL, pREP when the host is yeast, or pCMV, pSRα, for example, when the host is a mammalian cell. Insertions are described, for example, in Sambruck, J., Fritsch, EF, and Maniatis, T.
(1989) Molecular Cloning: A Laboratory Manual, Col
d Spring Harbor Laboratory, Cold Spring Harbor, NY
Can be performed according to the method described in (1). It is desirable that the Oct1 protein be expressed as a fusion protein with His6 and GST, since subsequent purification will be easy.

【0016】och1+遺伝子を挿入した発現ベクターは、
宿主に適した方法で宿主に導入する。導入は、例えば、
Sambruck, J., Fritsch, E. F., and Maniatis, T. (19
89)Molecular Cloning: A Laboratory Manual, Cold Sp
ring Harbor Laboratory, Cold Spring Harbor, NYに記
載の方法に従って行うことができる。
The expression vector into which the och1 + gene has been inserted is
It is introduced into the host in a manner appropriate for the host. The introduction, for example,
Sambruck, J., Fritsch, EF, and Maniatis, T. (19
89) Molecular Cloning: A Laboratory Manual, Cold Sp
This can be performed according to the method described in Ring Harbor Laboratory, Cold Spring Harbor, NY.

【0017】och1+遺伝子を導入した宿主を適当な条件
で培養した後、宿主を破壊し、蛋白質画分を抽出する。
破砕は、宿主が大腸菌や酵母であればガラスビーズある
いは超音波を用いて、宿主が哺乳類細胞であればホモゲ
ナーザーを用いて行なうことができる。発現ベクターに
産生される蛋白質が培養上清に分泌されるよう工夫が施
されている場合は、培養上清から目的の蛋白質を回収す
ることができる。
After culturing the host into which the och1 + gene has been introduced under appropriate conditions, the host is disrupted and the protein fraction is extracted.
Crushing can be performed using glass beads or ultrasonic waves when the host is Escherichia coli or yeast, and using a homogenizer when the host is mammalian cells. When a device is devised so that the protein produced in the expression vector is secreted into the culture supernatant, the target protein can be recovered from the culture supernatant.

【0018】抽出した蛋白質画分より、電気泳動、種々
のクロマトグラフィー、例えばアフィニティーカラム、
イオン交換カラム、ゲルフィルトレーションカラム等を
用いた標準的な方法によりoch1+遺伝子産物を精製でき
る。導入した遺伝子が、融合蛋白質をコードするように
設計されている場合、例えばGSTの場合はグルタチオン
カラムにより、His6の場合はニッケルセファロースカラ
ムを用いて容易に精製できる。
From the extracted protein fraction, electrophoresis, various chromatography, for example, affinity column,
The och1 + gene product can be purified by a standard method using an ion exchange column, a gel filtration column, or the like. When the introduced gene is designed to encode the fusion protein, for example, GST can be easily purified using a glutathione column, and His6 can be easily purified using a nickel sepharose column.

【0019】och1+の蛋白質をコードする領域を変異さ
せる方法は、分裂酵母遺伝子中のoch1+と、変異を導入
したoch1+あるいはその一部を含む環状又は線状DNAとの
間で相同組換えを起こさせ、分裂酵母遺伝子中のoch1+
を、変異を導入したoch1+に置き換えることを基本とす
る。組換えに用いられるoch1+の一部を含むDNAは、通
常、500 bp以上であり、1 kbp以上であることが望まし
い。
The method of mutating the och1 + protein-coding region involves homologous recombination between och1 + in the fission yeast gene and a circular or linear DNA containing the mutated och1 + or a part thereof. Och1 + in the fission yeast gene
Is basically replaced with och1 + into which a mutation has been introduced. The DNA containing a part of och1 + used for recombination is usually 500 bp or more, and preferably 1 kbp or more.

【0020】PCRまたはクローニングにより得られたoch
1+あるいはその一部を含むDNAに変異を導入する方法と
しては、DNAの塩基配列を操作する組換えDNA技術( Sam
bruck, J., Fritsch, E. F., and Maniatis, T. (1989)
Molecular Cloning: A Laboratory Manual, Cold Spri
ng Harbor Laboratory, Cold Spring Harbor, NY )、P
CRを応用した技術(Ling MM. and Robinson BH., Anal.
Biochem. 254(2):157-78, 1997)等、多くの方法が適
用可能である。例えば適当な制限酵素で切断した後に、
無関係な遺伝子、好ましくは相同組換えを起こした分裂
酵母を選択できる選択マーカ遺伝子、更に好ましくは選
択マーカとしてウラシル合成系の遺伝子ura4+を挿入す
る方法を挙げることができるが、適当な変異を導入でき
る方法であれば、この方法に限られるものではない。適
当な制限酵素部位が無い場合にはPCR等により、適当な
制限酵素部位を入れてもよい。
Och obtained by PCR or cloning
Methods for introducing mutations into DNA containing 1+ or a part thereof include recombinant DNA technology (Sam.
bruck, J., Fritsch, EF, and Maniatis, T. (1989)
Molecular Cloning: A Laboratory Manual, Cold Spri
ng Harbor Laboratory, Cold Spring Harbor, NY), P
Technology using CR (Ling MM. And Robinson BH., Anal.
Biochem. 254 (2): 157-78, 1997). For example, after cutting with an appropriate restriction enzyme,
An unrelated gene, preferably a selection marker gene capable of selecting a fission yeast that has undergone homologous recombination, and more preferably a method of inserting a uracil synthesis gene ura4 + as a selection marker can be mentioned. The method is not limited to this method as long as it can be performed. When there is no appropriate restriction enzyme site, an appropriate restriction enzyme site may be inserted by PCR or the like.

【0021】変異を導入したoch1+あるいはその一部を
含む、環状又は線状DNAは、スフェロプラスト法、酢酸
リチウム法、エレクトロポレーション法等の方法により
分裂酵母に導入される。導入した変異遺伝子に選択マー
カ、例えばura4+が含まれていれば、選択マーカを持つ
分裂酵母のみが生き残る培養条件、例えば選択マーカが
ura4+であればウラシルを含まない培地中で培養するこ
とにより、相同組換えを起こし、変異を導入したoch1+
を持った分裂酵母、すなわちoch1+破壊株を選択するこ
とができる。
Circular or linear DNA containing och1 + or a part thereof into which a mutation has been introduced is introduced into fission yeast by a method such as a spheroplast method, a lithium acetate method, or an electroporation method. If the introduced mutant gene contains a selection marker, for example, ura4 + , culture conditions under which only fission yeast having the selection marker survive, for example, if the selection marker
If ura4 + , by culturing in a medium without uracil, homologous recombination occurred, and och1 +
Och1 + disrupted strains can be selected.

【0022】Och1蛋白の発現を減少させる方法は、前述
のoch1+の蛋白質をコードする領域を含むDNAに代えて、
クローニングしたoch1+の発現制御領域(上流あるいは
下流配列を含む)を用い、Och1蛋白の発現に影響を与え
る塩基配列に変異を導入することにより、前述のoch1+
の蛋白質をコードする領域の場合と同様に行うことがで
きる。
A method for reducing the expression of the Och1 protein is to replace the DNA containing the region encoding the och1 + protein with
By using the cloned och1 + expression control region (including upstream or downstream sequences) and introducing mutations into the nucleotide sequence that affects Och1 protein expression, the aforementioned och1 +
Can be performed in the same manner as in the case of the region encoding the protein.

【0023】また、Och1蛋白の発現を減少させる方法と
しては、分裂酵母にoch1+の転写産物に相補的なRNA(ア
ンチセンスRNA)をコードするDNAが挿入された発現ベク
ターを導入して、Och1蛋白の発現を減少させる等の方法
も考えられる。ここで「相補的」とは、och1+の発現を
抑制し得る限り、完全に相補的である場合に限られな
い。通常、80%以上、好ましくは90%以上、さらに好ま
しくは95%以上の相補性があれば良い。
As a method for decreasing the expression of Och1 protein, an expression vector into which a DNA encoding an RNA (antisense RNA) complementary to the och1 + transcript has been inserted into fission yeast is introduced. Methods such as reducing the expression of the protein are also conceivable. Here, “complementary” is not limited to completely complementary as long as expression of och1 + can be suppressed. Usually, it is sufficient that the complementarity is 80% or more, preferably 90% or more, and more preferably 95% or more.

【0024】アンチセンスRNAをコードするDNAは、通
常、翻訳開始部位等mRNAの機能に重要な役割を果たす部
位と相補的な20 bpの鎖長があれば足りる。しかしなが
ら、高次構造をとることによりアンチセンスとして機能
しなくなることを考慮すれば、さらに長い鎖長、好まし
くは100 bpの鎖長を用いることも可能である。
The DNA encoding the antisense RNA usually needs to have a 20 bp chain length complementary to a site that plays an important role in the function of mRNA, such as a translation initiation site. However, in consideration of the fact that a higher-order structure prevents the antisense function, the longer chain length, preferably a chain length of 100 bp, can be used.

【0025】Och1蛋白の発現を減少させる処理が施さ
れ、その結果、産生する蛋白質の大部分に過剰な高マン
ノース型の糖鎖が付加しなくなっている分裂酵母である
限り、本発明の分裂酵母に含まれる。
The fission yeast according to the present invention may be any one of the fission yeasts which have been subjected to a treatment for reducing the expression of the Och1 protein, and as a result, an excess of high-mannose-type sugar chains are not added to most of the protein to be produced. include.

【0026】過剰な高マンノース型の糖鎖が付加してい
るかどうかは、高マンノース型の糖鎖が多様性を示すこ
とから、例えば、高マンノース型の糖鎖が付加した蛋白
質が多様な分子量を示すことより推定できる。すなわ
ち、野生型och1+を持った分裂酵母では、電気泳動でス
メアなパターンを示す蛋白質が、変異を導入した分裂酵
母でシャープなパターンを示せば、過剰な高マンノース
型の糖鎖が付加の無い蛋白質が産生されたことを推定す
ることができる。
It is determined whether an excessively high mannose type sugar chain is added. For example, since a high mannose type sugar chain shows diversity, for example, a protein to which a high mannose type sugar chain is added has various molecular weights. It can be estimated by showing. In other words, in fission yeast with wild-type och1 + , if a protein showing a smearing pattern by electrophoresis shows a sharp pattern in fission yeast with mutation, there is no excess high mannose type sugar chain added It can be inferred that the protein was produced.

【0027】以下に、och1+の機能を失わせる方法の具
体的な例を記載する。機能を失わせたoch1+を含む線状D
NAとして、例えばoch1+の翻訳領域の中央部約60%をウラ
シル合成系の遺伝子ura4+に置換した線状DNA(och1::ura
4+)を作製する。これをura4+を欠損する分裂酵母に導入
して、och1::ura4+と分裂酵母中のoch1+の間で相同組換
えを起こさせる。その後ウラシルを含まない培地中で培
養して、ura4+を持った、すなわち相同組み換えによりo
ch1+がoch1::ura4+に置き換わった分裂酵母を選択する
ことにより、och1+の機能を失わせた分裂酵母、すなわ
ちoch1+破壊株を得ることができる。
Hereinafter, a specific example of a method for losing the function of och1 + will be described. Linear D containing och1 + with loss of function
NA as, for example och1 + linear DNA that about 60% central and replaced with uracil synthesis system gene ura4 + coding region (och1 :: ura
4 + ). By introducing it into fission yeast lacking ura4 +, to cause homologous recombination between the och1 + in fission yeast and och1 :: ura4 +. After that, the cells were cultured in a medium without uracil and had ura4 + , that is, o
By ch1 + to select the fission yeast replacing a och1 :: ura4 +, can be obtained fission yeast was lost the function of the och1 +, i.e. och1 + destruction strain.

【0028】更に本発明は、och1+破壊株を用いて糖鎖
付加の少ない蛋白質を産生する方法にも関する。ここで
蛋白質は、分裂酵母が産生する蛋白質ならいかなる蛋白
質でもよく、分裂酵母由来の遺伝子、分裂酵母由来でな
い外来遺伝子の何れの遺伝子がコードする蛋白質であっ
てもよい。ここで外来遺伝子とは、分裂酵母で発現させ
たい遺伝子であり、動物・酵母・細菌等いかなる生物よ
り由来した遺伝子でも構わないが、好ましくは動物由来
の遺伝子が望ましい。外来遺伝子は、融合蛋白質等の人
工の配列を持っていてもよい。
[0028] The present invention further relates to a method for producing a protein with less glycosylation using an och1 + disrupted strain. Here, the protein may be any protein as long as it is a protein produced by fission yeast, and may be a protein encoded by any of genes derived from fission yeast and foreign genes not derived from fission yeast. Here, the exogenous gene is a gene that is desired to be expressed in fission yeast, and may be a gene derived from any organism such as an animal, a yeast, or a bacterium, but is preferably an animal-derived gene. The foreign gene may have an artificial sequence such as a fusion protein.

【0029】遺伝子の導入法としては、スフェロプラス
ト法、酢酸リチウム法、エレクトロポレーション法が挙
げられるが、本発明はこれに限られるものではない。具
体的に説明すると、例えば酢酸リチウム法は、対数増殖
期の分裂酵母を酢酸リチウム中で、30℃、1時間保温
し、その後導入DNAおよびポリエチレングリコール溶液
を加え、30℃、1時間保温する。これを43℃、15分熱処
理した後遠心により細胞を回収し培地中に懸濁して、30
℃、2時間振とう培養する。この培養液を選択寒天培地
上にひろげ、30℃で3日間培養すると、遺伝子が導入さ
れ選択培地上で増殖可能な酵母細胞のみがコロニーを形
成する。
Examples of a method for introducing a gene include a spheroplast method, a lithium acetate method, and an electroporation method, but the present invention is not limited thereto. Specifically, for example, in the lithium acetate method, fission yeast in the logarithmic growth phase is incubated in lithium acetate at 30 ° C. for 1 hour, and then the introduced DNA and polyethylene glycol solution are added, followed by incubation at 30 ° C. for 1 hour. This was heat-treated at 43 ° C for 15 minutes, and then the cells were collected by centrifugation and suspended in a medium.
Incubate with shaking at 2 ° C for 2 hours. When this culture solution is spread on a selective agar medium and cultured at 30 ° C. for 3 days, only yeast cells into which a gene has been introduced and which can grow on the selective medium form colonies.

【0030】本発明には、och1+破壊株により産生され
た糖鎖付加の少ない蛋白質も含まれるものである。ここ
で、本発明に記載の分裂酵母より産生された蛋白質は、
培養上清あるいは菌体より、アフィニティーカラム・イ
オン交換カラム・ゲルフィルトレーションカラム等の標
準的な方法により精製できる。導入した遺伝子が、融合
蛋白質をコードするように設計されている場合、例えば
GSTとの融合蛋白質の場合は、融合蛋白質とのアフィニ
ティーカラム、GSTの場合はグルタチオンカラムにより
精製することが好ましい。
The present invention also includes a protein with a small amount of glycosylation produced by the och1 + disrupted strain. Here, the protein produced from the fission yeast according to the present invention is:
It can be purified from the culture supernatant or cells by standard methods such as affinity column, ion exchange column and gel filtration column. When the introduced gene is designed to encode a fusion protein, for example,
In the case of a fusion protein with GST, it is preferable to purify it with an affinity column with the fusion protein, and in the case of GST, it is preferable to purify it with a glutathione column.

【0031】尚、以上に記載した操作は適当なマニュア
ル、例えばSambruck, J., Fritsch,E. F., and Maniati
s, T. (1989) Molecular Cloning: A Laboratory Manua
l,Cold Spring Harbor Laboratory, Cold Spring Harbo
r, NY 等に記載の方法に従って行うことができる。
It should be noted that the operations described above are performed in appropriate manuals, such as Sambruck, J., Fritsch, EF, and Maniati.
s, T. (1989) Molecular Cloning: A Laboratory Manua
l, Cold Spring Harbor Laboratory, Cold Spring Harbo
r, NY, etc.

【0032】[0032]

【実施例】以下に、本発明を下記実施例により更に詳し
く説明するが、本発明はこれに限られるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0033】[実施例1] 配列番号1に記載の塩基配列
からなる分裂酵母och1+と出芽酵母OCH1のホモロジー 分裂酵母のゲノムDNAライブラリーよりクローニングさ
れた、分裂酵母変異体の高温においては浸透圧を調製し
た条件でしか生育できない性質を相補できるゲノムDNA
断片から、配列番号1に記載の塩基配列からなる分裂酵
母の遺伝子och1+を見出した。そして、図1に示すよう
に分裂酵母och1+(SpOCH1)と、出芽酵母OCH1(ScOCH
1)との間にホモロジーが見出された。
Example 1 Homology of Fission Yeast och1 + and Saccharomyces cerevisiae OCH1 Consisting of SEQ ID NO: 1 Osmotic pressure of a fission yeast mutant cloned from a fission yeast genomic DNA library at high temperatures Genomic DNA that can complement the ability to grow only under conditions that prepare
From the fragment, the fission yeast gene och1 + consisting of the nucleotide sequence of SEQ ID NO: 1 was found. Then, as shown in FIG. 1, fission yeast och1 + (SpOCH1) and budding yeast OCH1 (ScOCH1)
Homology was found between 1).

【0034】[実施例2] och1+破壊株の作製 変異を導入した配列番号1に記載の塩基配列を含むDNA
と、分裂酵母och1+の間で相同組換えを起こさせ、och1+
破壊株を作製した。配列番号1に記載の塩基配列を含む
DNAの、och1+の翻訳領域内に存在する2つのHindIII切
断部位に挟まれた領域を、分裂酵母ura4+に置換したDNA
を作製した(図2)。その後、スフェロプラスト法にて
分裂酵母を形質転換し、ウラシルを含まない選択培地で
培養して、ura4+を持った、すなわち変異が導入されたo
ch1+を持った分裂酵母を選択し、och1+破壊株を作製し
た。
[Example 2] Preparation of och1 + disrupted strain DNA containing the mutation-introduced nucleotide sequence of SEQ ID NO: 1
Causes homologous recombination between the fission yeast och1 + and och1 +
A disrupted strain was prepared. Contains the nucleotide sequence of SEQ ID NO: 1
DNA in which the region flanked by two HindIII cleavage sites present in the och1 + translation region of DNA is replaced with fission yeast ura4 +
(FIG. 2). Then, the fission yeast was transformed by the spheroplast method, and cultured in a selective medium not containing uracil to have ura4 + , that is, the mutation was introduced.
Fission yeast having ch1 + was selected and och1 + disrupted strain was prepared.

【0035】[実施例3] och1+を欠失させた分裂酵母
の形態 顕微鏡にて、och1+を欠失させた分裂酵母と野生型分裂
酵母を比較した。図3に示すように、och1+を欠失させ
た分裂酵母は、野生型分裂酵母に比べて丸く短い形態を
している。また、凝集しやすく、増殖速度も遅い。37℃
では生育できないという温度感受性を示すが、培地中に
1.5%程度のソルビトールを加え高浸透圧条件とすると、
37℃でも生育できるようになる。
[0035] in [Example 3] och1 + form microscopic fission yeast deleted, compared with wild-type fission yeast and fission yeast was deleted och1 +. As shown in FIG. 3, the fission yeast from which och1 + has been deleted has a rounder and shorter form than the wild-type fission yeast. In addition, they tend to aggregate and have a slow growth rate. 37 ℃
Although it shows temperature sensitivity that it can not grow in
When about 1.5% sorbitol is added and high osmotic pressure is applied,
It can grow even at 37 ° C.

【0036】[実施例4] och1+破壊株の培養と、産生
された蛋白質の解析 och1+の破壊が、産生される蛋白質の糖鎖付加に対し
て、影響を与えるかどうかを検討した。och1+破壊株及
び野生株の分裂酵母を培養し、産生される糖タンパク
質、ここでは酸性フォスファターゼを電気泳動し、活性
染色を行って酸性フォスファターゼの分子量分布を調べ
た。その結果、4に示すように、酸性フォスファターゼ
は野生型株では分子量が大きくスメアーなパターンを示
したのに対し(レーン1)、och1+破壊株では分子量が
小さくシャープなバンドとなった(レーン2)。このこ
とは多様性に富み分子量の大きなhigh-mannose typeの
糖鎖付加が、野生型株では起こり、och1+破壊株では起
こっていないことを示唆している。
Example 4 Cultivation of och1 + Disrupted Strain and Analysis of Produced Protein Whether or not disruption of och1 + had an effect on glycosylation of the produced protein was examined. The och1 + disrupted strain and the wild-type fission yeast were cultured, and the produced glycoprotein, here, acid phosphatase was electrophoresed, and the activity was stained to examine the molecular weight distribution of acid phosphatase. As a result, as shown in FIG. 4, the acid phosphatase showed a smear pattern with a large molecular weight in the wild-type strain (lane 1), whereas a sharp band with a small molecular weight in the och1 + disrupted strain (lane 2) ). This suggests that high-mannose-type glycosylation with high diversity and high molecular weight occurs in the wild-type strain and not in the och1 + disrupted strain.

【0037】更にこのような電気泳動上の移動度の違い
が糖鎖付加によるものかどうかを調べるために、エンド
グリコシダーゼH(Endo H)による糖鎖切断処理を行っ
た。エンドグリコシダーゼHはN-結合型糖鎖の根元にあ
る、2つのN-アセチルグルコサミン残基の間を切る酵素
であるため、エンドグリコシダーゼH処理された糖蛋白
質は、ポリペプチド部分から推定される分子量とほぼ同
じ移動度を示す。この結果、エンドグリコシダーゼH処
理したレーン3及び4の野生型由来およびoch1+破壊株
由来の酸性フォスファターゼのバンドはどちらも同じと
ころに現れ、レーン1と2の移動度の違いは、N-結合型
糖鎖の大きさの違いに起因するものであることが示され
た。
Further, in order to examine whether such a difference in electrophoretic mobility was due to the addition of a sugar chain, a sugar chain cleavage treatment with endoglycosidase H (Endo H) was performed. Since endoglycosidase H is an enzyme that cuts between two N-acetylglucosamine residues at the base of an N-linked sugar chain, the glycoprotein treated with endoglycosidase H has a molecular weight estimated from the polypeptide portion. Shows almost the same mobility. As a result, the bands of acid phosphatase derived from the wild type and the och1 + disrupted strain in lanes 3 and 4 treated with endoglycosidase H appeared in the same place, and the difference in mobility between lanes 1 and 2 was due to the N-linked This was shown to be due to the difference in the size of the sugar chain.

【0038】[実施例5] och1+遺伝子産物のマンノー
ス転移酵素活性 och1+遺伝子産物のマンノース転移酵素活性を、蛍光標
識したMan9GlcNAc2-PA及びGDP-マンノースを基質とし、
och1+破壊株、och1+発現ベクターを導入したoch1+破壊
株、及び野生株の菌体を破砕した粗抽出物を酵素として
測定した。分裂酵母och1+遺伝子をpREP1(Maundrell,
K. 1993. Thiamine-repressible expression vectors p
REP and pRIP for fission yeast. Gene 123, 127-13
0)発現ベクターに組み込み、och1+発現ベクターを作製
した。och1+発現ベクターを導入しoch1+遺伝子産物を過
剰発現させたoch1+破壊株、コントロールとしてベクタ
ーのみを導入したoch1+破壊株、及び野生株の菌体を破
砕し、100,000 x gで沈殿させたものを酵素として使用
した。50 mM Tris HCl (pH 7.5), 10 mM MnCl2, 0.6% T
riton X-100, 0.5 mM 1-deoxymannojirimycin, 2 mM PA
-sugar chain, 1 mMGDP-マンノースを反応溶液とし、酵
素を加えて酵素反応を開始した。30℃で10,20, 30分間
反応後、99℃5分間処理して反応を停止し、反応産物を
TSK Gel Amide-80カラムを用いたHPLCにより分離して、
酵素反応を解析した。
[0038] [Example 5] och1 + mannosyltransferase activity mannosyltransferase activity och1 + gene product of a gene product, the Man9GlcNAc2-PA and GDP- mannose fluorescently labeled as a substrate,
och1 + disrupted strain, och1 + och1 + disrupted strain was introduced expression vector, and the crude extract was disrupted wild strain was measured as the enzyme. The fission yeast och1 + gene was replaced with pREP1 (Maundrell,
K. 1993. Thiamine-repressible expression vectors p
REP and pRIP for fission yeast.Gene 123, 127-13
0) It was incorporated into an expression vector to prepare an och1 + expression vector. och1 + crushed och1 + disrupted strain overexpressing the introduced och1 + gene product expression vectors, och1 + disrupted strain was introduced only vector as a control, and the cells of the wild strain, which was precipitated with 100,000 xg Was used as the enzyme. 50 mM Tris HCl (pH 7.5), 10 mM MnCl 2 , 0.6% T
riton X-100, 0.5 mM 1-deoxymannojirimycin, 2 mM PA
-sugar chain, 1 mM GDP-mannose was used as a reaction solution, and an enzyme was added to start an enzyme reaction. After reacting at 30 ° C for 10, 20, 30 minutes, the reaction is stopped by treating at 99 ° C for 5 minutes, and the reaction product is removed.
Separation by HPLC using a TSK Gel Amide-80 column,
The enzymatic reaction was analyzed.

【0039】図5に示す通り、och1+破壊株ではMan9Glc
NAc2-PAへのマンノースの転移は観察されなかったが、
野生株ではマンノースの転移が見られ、och1+発現ベク
ターを導入しoch1+遺伝子産物を過剰発現させたoch1+
壊株では更に多くのマンノースの転移が見られた。この
結果より、och1+遺伝子産物はマンノース転移酵素活性
としての活性を有し、S. cerevisiae OCH1遺伝子産物と
同様な反応に関与することが確認された。
As shown in FIG. 5, Man9Glc was found in the och1 + disrupted strain.
No transfer of mannose to NAc2-PA was observed,
Mannose translocation was observed in the wild strain, and more mannose translocation was observed in the och1 + disrupted strain into which the och1 + expression vector was introduced and the och1 + gene product was overexpressed. From these results, it was confirmed that the och1 + gene product had an activity as a mannose transferase activity and was involved in the same reaction as the S. cerevisiae OCH1 gene product.

【0040】[0040]

【発明の効果】本発明により、糖転移酵素の機能を失わ
せた分裂酵母の入手が可能となり、分裂酵母においても
付加糖鎖の少ない蛋白質を産生することが可能となっ
た。
Industrial Applicability According to the present invention, fission yeast in which the function of glycosyltransferase has been lost can be obtained, and it has become possible for fission yeast to produce a protein with less added sugar chains.

【0041】[0041]

【配列表】 SEQUENCE LISTING <110> Eisai Co., Ltd. AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY <120> glycosyltransferase gene och1+ <130> E1-102DP1 <150> JP 1999-246494 <151> 1999-08-31 <160> 2 <170> PatentIn Ver. 2.0 <210> 1 <211> 1191 <212> DNA <213> Schizosaccharomyces pombe <220> <221> CDS <222> (1)..(1191) <400> 1 atg ttg aga ctc cga ttg aga agt att gta ata gga gct gcg ata gcg 48 Met Leu Arg Leu Arg Leu Arg Ser Ile Val Ile Gly Ala Ala Ile Ala 1 5 10 15 gga tcc ata ctg ttg tta ttc aat cat ggt agc ata gaa gga atg gaa 96 Gly Ser Ile Leu Leu Leu Phe Asn His Gly Ser Ile Glu Gly Met Glu 20 25 30 gat ttg aca gag att tcg atg ttg gag gat tac act ccg gaa gcc gct 144 Asp Leu Thr Glu Ile Ser Met Leu Glu Asp Tyr Thr Pro Glu Ala Ala 35 40 45 aat aaa gat tat gtt ggt caa cag gag gag gag gaa ctt ttg tat gat 192 Asn Lys Asp Tyr Val Gly Gln Gln Glu Glu Glu Glu Leu Leu Tyr Asp 50 55 60 caa ccg tct tac att gaa gaa gaa gaa gat cca gat ttg gaa gct tac 240 Gln Pro Ser Tyr Ile Glu Glu Glu Glu Asp Pro Asp Leu Glu Ala Tyr 65 70 75 80 ttg agc gat ttg gag agg gaa gag ctg gaa cac agc ttg gaa gaa ctt 288 Leu Ser Asp Leu Glu Arg Glu Glu Leu Glu His Ser Leu Glu Glu Leu 85 90 95 gat gaa gaa aat aat tat aaa ctt cat cta cgg tac tcc ttt tca cag 336 Asp Glu Glu Asn Asn Tyr Lys Leu His Leu Arg Tyr Ser Phe Ser Gln 100 105 110 ctt caa gat ttt gac gaa gaa aat gaa gct gta cac atg atc gtt cct 384 Leu Gln Asp Phe Asp Glu Glu Asn Glu Ala Val His Met Ile Val Pro 115 120 125 aaa gat act tat gaa ttt gag gtg cct tat cac gct gac att ccc aag 432 Lys Asp Thr Tyr Glu Phe Glu Val Pro Tyr His Ala Asp Ile Pro Lys 130 135 140 tta ata tgg caa act tcc aag gac cct ttt gat aga gag gtt atg aag 480 Leu Ile Trp Gln Thr Ser Lys Asp Pro Phe Asp Arg Glu Val Met Lys 145 150 155 160 tac act cgg ttt tgg aga atc aac cat ccc agt tat tct cat gct gtt 528 Tyr Thr Arg Phe Trp Arg Ile Asn His Pro Ser Tyr Ser His Ala Val 165 170 175 tta gac gat gag cag tct aaa gca ttg gtc atc agt agc ttt ggc gat 576 Leu Asp Asp Glu Gln Ser Lys Ala Leu Val Ile Ser Ser Phe Gly Asp 180 185 190 tca tca gtt tcc aag att tca caa gcg tat gca atg atg cct ctg cct 624 Ser Ser Val Ser Lys Ile Ser Gln Ala Tyr Ala Met Met Pro Leu Pro 195 200 205 gtt ctg aag gcc gat ttc ttt cgg tat cta gtg tta ttg gca aaa ggt 672 Val Leu Lys Ala Asp Phe Phe Arg Tyr Leu Val Leu Leu Ala Lys Gly 210 215 220 ggt att tat agc gac att gat acg gca cca ttg aag cat ata aac aat 720 Gly Ile Tyr Ser Asp Ile Asp Thr Ala Pro Leu Lys His Ile Asn Asn 225 230 235 240 tgg atc cct cgt gaa tat cgt aag cgt aat att cga ctg atc gtt ggc 768 Trp Ile Pro Arg Glu Tyr Arg Lys Arg Asn Ile Arg Leu Ile Val Gly 245 250 255 att gaa gca gat ccc gac cgc cct gat tgg aac gac tac tat gcc agg 816 Ile Glu Ala Asp Pro Asp Arg Pro Asp Trp Asn Asp Tyr Tyr Ala Arg 260 265 270 cgt gta caa ttc tgt cag tgg acc ata gct gct gca cca ggc cat cca 864 Arg Val Gln Phe Cys Gln Trp Thr Ile Ala Ala Ala Pro Gly His Pro 275 280 285 att ctt tgg gaa ctt gtt cgt aga att acc gat gaa act tgg aag ctg 912 Ile Leu Trp Glu Leu Val Arg Arg Ile Thr Asp Glu Thr Trp Lys Leu 290 295 300 cat gat tca aag aag ctt tcg aaa aat ggc gag tca gta atg gag tgg 960 His Asp Ser Lys Lys Leu Ser Lys Asn Gly Glu Ser Val Met Glu Trp 305 310 315 320 act ggt cca ggt att tgg acc gat gcc att atg gat tat tta aat tgg 1008 Thr Gly Pro Gly Ile Trp Thr Asp Ala Ile Met Asp Tyr Leu Asn Trp 325 330 335 cag tat ggc cct ttc tcg gtt gag aat atc acc aat tta gaa gaa cct 1056 Gln Tyr Gly Pro Phe Ser Val Glu Asn Ile Thr Asn Leu Glu Glu Pro 340 345 350 tat ctt gtt gga gat gtt tta atc cta ccc ata act gca ttt agt cct 1104 Tyr Leu Val Gly Asp Val Leu Ile Leu Pro Ile Thr Ala Phe Ser Pro 355 360 365 ggt gtc ggt cac atg ggt agc aag tct cca aat gat ccg atg gcg tat 1152 Gly Val Gly His Met Gly Ser Lys Ser Pro Asn Asp Pro Met Ala Tyr 370 375 380 gtt caa cat ttc ttt gcc ggt tca tgg aaa gat gat tga 1191 Val Gln His Phe Phe Ala Gly Ser Trp Lys Asp Asp 385 390 395 <210> 2 <211> 396 <212> PRT <213> Schizosaccharomyces pombe <400> 2 Met Leu Arg Leu Arg Leu Arg Ser Ile Val Ile Gly Ala Ala Ile Ala 1 5 10 15 Gly Ser Ile Leu Leu Leu Phe Asn His Gly Ser Ile Glu Gly Met Glu 20 25 30 Asp Leu Thr Glu Ile Ser Met Leu Glu Asp Tyr Thr Pro Glu Ala Ala 35 40 45 Asn Lys Asp Tyr Val Gly Gln Gln Glu Glu Glu Glu Leu Leu Tyr Asp 50 55 60 Gln Pro Ser Tyr Ile Glu Glu Glu Glu Asp Pro Asp Leu Glu Ala Tyr 65 70 75 80 Leu Ser Asp Leu Glu Arg Glu Glu Leu Glu His Ser Leu Glu Glu Leu 85 90 95 Asp Glu Glu Asn Asn Tyr Lys Leu His Leu Arg Tyr Ser Phe Ser Gln 100 105 110 Leu Gln Asp Phe Asp Glu Glu Asn Glu Ala Val His Met Ile Val Pro 115 120 125 Lys Asp Thr Tyr Glu Phe Glu Val Pro Tyr His Ala Asp Ile Pro Lys 130 135 140 Leu Ile Trp Gln Thr Ser Lys Asp Pro Phe Asp Arg Glu Val Met Lys 145 150 155 160 Tyr Thr Arg Phe Trp Arg Ile Asn His Pro Ser Tyr Ser His Ala Val 165 170 175 Leu Asp Asp Glu Gln Ser Lys Ala Leu Val Ile Ser Ser Phe Gly Asp 180 185 190 Ser Ser Val Ser Lys Ile Ser Gln Ala Tyr Ala Met Met Pro Leu Pro 195 200 205 Val Leu Lys Ala Asp Phe Phe Arg Tyr Leu Val Leu Leu Ala Lys Gly 210 215 220 Gly Ile Tyr Ser Asp Ile Asp Thr Ala Pro Leu Lys His Ile Asn Asn 225 230 235 240 Trp Ile Pro Arg Glu Tyr Arg Lys Arg Asn Ile Arg Leu Ile Val Gly 245 250 255 Ile Glu Ala Asp Pro Asp Arg Pro Asp Trp Asn Asp Tyr Tyr Ala Arg 260 265 270 Arg Val Gln Phe Cys Gln Trp Thr Ile Ala Ala Ala Pro Gly His Pro 275 280 285 Ile Leu Trp Glu Leu Val Arg Arg Ile Thr Asp Glu Thr Trp Lys Leu 290 295 300 His Asp Ser Lys Lys Leu Ser Lys Asn Gly Glu Ser Val Met Glu Trp 305 310 315 320 Thr Gly Pro Gly Ile Trp Thr Asp Ala Ile Met Asp Tyr Leu Asn Trp 325 330 335 Gln Tyr Gly Pro Phe Ser Val Glu Asn Ile Thr Asn Leu Glu Glu Pro 340 345 350 Tyr Leu Val Gly Asp Val Leu Ile Leu Pro Ile Thr Ala Phe Ser Pro 355 360 365 Gly Val Gly His Met Gly Ser Lys Ser Pro Asn Asp Pro Met Ala Tyr 370 375 380 Val Gln His Phe Phe Ala Gly Ser Trp Lys Asp Asp 385 390 395[Sequence List] SEQUENCE LISTING <110> Eisai Co., Ltd. AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY <120> glycosyltransferase gene och1 + <130> E1-102DP1 <150> JP 1999-246494 <151> 1999-08-31 <160> 2 <170> PatentIn Ver. 2.0 <210> 1 <211> 1191 <212> DNA <213> Schizosaccharomyces pombe <220><221> CDS <222> (1) .. (1191) <400> 1 atg ttg aga ctc cga ttg aga agt att gta ata gga gct gcg ata gcg 48 Met Leu Arg Leu Arg Leu Arg Ser Ile Val Ile Gly Ala Ala Ila Ala 1 5 10 15 gga tcc ata ctg ttg tta ttc aat cat ggt agc ata atg gaa 96 Gly Ser Ile Leu Leu Leu Phe Asn His Gly Ser Ile Glu Gly Met Glu 20 25 30 gat ttg aca gag att tcg atg ttg gag gat tac act ccg gaa gcc gct 144 Asp Leu Thr Glu Ile Ser Met Leu Glu Asp Tyr Thr Pro Glu Ala Ala 35 40 45 aat aaa gat tat gtt ggt caa cag gag gag gag gaa ctt ttg tat gat 192 Asn Lys Asp Tyr Val Gly Gln Gln Glu Glu Glu Glu Leu Leu Tyr Asp 50 55 60 caa ccg tct tac att gaa gaa gaa gaa gat cca gat ttg gaa gct tac 240 Gln Pro Ser Tyr Ile Glu Glu Glu Glu Asp Pro Asp Leu Glu Ala Tyr 65 70 75 80 ttg agc gat ttg gag agg gaa gag ctg gaa cac agc ttg gaa gaa ctt 288 Leu Ser Asp Leu Glu Arg Glu Glu Leu Glu His Ser Leu Glu Glu Leu 85 90 95 agat gaaga tat aaa ctt cat cta cgg tac tcc ttt tca cag 336 Asp Glu Glu Asn Asn Tyr Lys Leu His Leu Arg Tyr Ser Phe Ser Gln 100 105 110 ctt caa gat ttt gac gaa gaa aat gaa gct gta cac atg atc gtt cct 384 Leu Gln Asp Phe Asp Glu Glu Asn Glu Ala Val His Met Ile Val Pro 115 120 125 aaa gat act tat gaa ttt gag gtg cct tat cac gct gac att ccc aag 432 Lys Asp Thr Tyr Glu Phe Glu Val Pro Tyr His Ala Asp Ile Pro Lys 130 135 140 tta ata tgg caa act tcc aag gac cct ttt gat aga gag gtt atg aag 480 Leu Ile Trp Gln Thr Ser Lys Asp Pro Phe Asp Arg Glu Val Met Lys 145 150 155 160 tac act cgg ttt tgg aga atc aac cat ccc agt tat tct cat gct gtt 528 Tyr Thr Arg Phe Trp Arg Ile Asn His Pro Ser Tyr Ser His Ala Val 165 170 175 tta gac gat gag cag tct aaa aaa gca ttg gtc atc agt agc ttt ggc gat 576 Leu Asp Asp Glu Gln Ser Lys Ala Le u Val Ile Ser Ser Phe Gly Asp 180 185 190 tca tca gtt tcc aag att tca caa gcg tat gca atg atg cct ctg cct 624 Ser Ser Val Ser Lys Ile Ser Gln Ala Tyr Ala Met Met Pro Leu Pro 195 200 205 gtt ctg aag gcc gat ttc ttt cgg tat cta gtg tta ttg gca aaa ggt 672 Val Leu Lys Ala Asp Phe Phe Arg Tyr Leu Val Leu Leu Ala Lys Gly 210 215 220 ggt att tat agc gac att gat acg gca cca ttg aag cat ata aac at Gly Ile Tyr Ser Asp Ile Asp Thr Ala Pro Leu Lys His Ile Asn Asn 225 230 235 240 tgg atc cct cgt gaa tat cgt aag cgt aat att cga ctg atc gtt ggc 768 Trp Ile Pro Arg Glu Tyr Arg Lys Arg Asn Ile Arg Leu Ile Val Gly 245 250 255 att gaa gca gat ccc gac cgc cct gat tgg aac gac tac tat gcc agg 816 Ile Glu Ala Asp Pro Asp Arg Pro Asp Trp Asn Asp Tyr Tyr Ala Arg 260 265 270 cgt gta caa ttc tgt cag tgg acc ata gct gct gca cca ggc cat cca 864 Arg Val Gln Phe Cys Gln Trp Thr Ile Ala Ala Ala Pro Gly His Pro 275 280 285 att ctt tgg gaa ctt gtt cgt aga att acc gat gaa act tgg aag ctg 912 Ile Leu Trp Glu Leu Va l Arg Arg Ile Thr Asp Glu Thr Trp Lys Leu 290 295 300 cat gat tca aag aag ctt tcg aaa aat ggc gag tca gta atg gag tgg 960 His Asp Ser Lys Lys Leu Ser Lys Asn Gly Glu Ser Val Met Glu Trp 305 310 315 320 act ggt cca ggt att tgg acc gat gcc att atg gat tat tta aat tgg 1008 Thr Gly Pro Gly Ile Trp Thr Asp Ala Ile Met Asp Tyr Leu Asn Trp 325 330 335 cag tat ggc cct ttc tcg gtt gag aat atc acc aat tta gaa gaa cct 1056 Gln Tyr Gly Pro Phe Ser Val Glu Asn Ile Thr Asn Leu Glu Glu Pro 340 345 350 tat ctt gtt gga gat gtt tta atc cta ccc ata act gca ttt agt cct 1104 Tyr Leu Val Gly Asp Val Leu Ile Leu Pro Ile Thr Ala Phe Ser Pro 355 360 365 ggt gtc ggt cac atg ggt agc aag tct cca aat gat ccg atg gcg tat 1152 Gly Val Gly His Met Gly Ser Lys Ser Pro Asn Asp Pro Met Ala Tyr 370 375 380 gtt caa cat ttc ttt gcc ggt tca tgg aaa gat gat tga 1191 Val Gln His Phe Phe Ala Gly Ser Trp Lys Asp Asp 385 390 395 <210> 2 <211> 396 <212> PRT <213> Schizosaccharomyces pombe <400> 2 Met Leu Arg Leu Arg Leu Arg Ser I le Val Ile Gly Ala Ala Ile Ala 1 5 10 15 Gly Ser Ile Leu Leu Leu Phe Asn His Gly Ser Ile Glu Gly Met Glu 20 25 30 Asp Leu Thr Glu Ile Ser Met Leu Glu Asp Tyr Thr Pro Glu Ala Ala 35 40 45 Asn Lys Asp Tyr Val Gly Gln Gln Glu Glu Glu Glu Leu Leu Tyr Asp 50 55 60 Gln Pro Ser Tyr Ile Glu Glu Glu Glu Asp Pro Asp Leu Glu Ala Tyr 65 70 75 80 Leu Ser Asp Leu Glu Arg Glu Glu Leu Glu His Ser Leu Glu Glu Leu 85 90 95 Asp Glu Glu Asn Asn Tyr Lys Leu His Leu Arg Tyr Ser Phe Ser Gln 100 105 110 Leu Gln Asp Phe Asp Glu Glu Asn Glu Ala Val His Met Ile Val Pro 115 120 125 Lys Asp Thr Tyr Glu Phe Glu Val Pro Tyr His Ala Asp Ile Pro Lys 130 135 140 Leu Ile Trp Gln Thr Ser Lys Asp Pro Phe Asp Arg Glu Val Met Lys 145 150 155 160 Tyr Thr Arg Phe Trp Arg Ile Asn His Pro Ser Tyr Ser His Ala Val 165 170 175 Leu Asp Asp Glu Gln Ser Lys Ala Leu Val Ile Ser Ser Phe Gly Asp 180 185 190 Ser Ser Val Ser Lys Ile Ser Gln Ala Tyr Ala Met Met Pro Leu Pro 195 200 205 Val Leu Lys Ala Asp Phe Phe Arg Tyr Leu Val Leu Leu Ala Lys Gly 210 215 220 Gly Ile Tyr Ser Asp Ile Asp Thr Ala Pro Leu Lys His Ile Asn Asn 225 230 235 240 Trp Ile Pro Arg Glu Tyr Arg Lys Arg Asn Ile Arg Leu Ile Val Gly 245 250 255 255 Ile Glu Ala Asp Pro Asp Arg Pro Asp Trp Asn Asp Tyr Tyr Ala Arg 260 265 270 Arg Val Gln Phe Cys Gln Trp Thr Ile Ala Ala Ala Pro Gly His Pro 275 280 285 Ile Leu Trp Glu Leu Val Arg Arg Ile Thr Asp Glu Thr Trp Lys Leu 290 295 300 His Asp Ser Lys Lys Leu Ser Lys Asn Gly Glu Ser Val Met Glu Trp 305 310 315 320 Thr Gly Pro Gly Ile Trp Thr Asp Ala Ile Met Asp Tyr Leu Asn Trp 325 330 335 Gln Tyr Gly Pro Phe Ser Val Glu Asn Ile Thr Asn Leu Glu Glu Pro 340 345 350 Tyr Leu Val Gly Asp Val Leu Ile Leu Pro Ile Thr Ala Phe Ser Pro 355 360 365 Gly Val Gly His Met Gly Ser Lys Ser Pro Asn Asp Pro Met Ala Tyr 370 375 380 val Gln His Phe Phe Ala Gly Ser Trp Lys Asp Asp 385 390 395

【図面の簡単な説明】[Brief description of the drawings]

【図1】 分裂酵母och1+と出芽酵母OCH1のホモロジー
を示す図である。
FIG. 1 is a diagram showing the homology of fission yeast och1 + and budding yeast OCH1.

【図2】 och1+の中央にura4+を挿入したDNAの構築を
示す図である。
2 is a diagram showing the inserted construct of DNA the och1 + center of ura4 +.

【図3】 och1+を欠失させた分裂酵母の形態を示す写
真である。
FIG. 3 is a photograph showing the form of fission yeast in which och1 + has been deleted.

【図4】 och1+破壊株で産生された酸性フォスファタ
ーゼの解析結果を示す写真である。
FIG. 4 is a photograph showing an analysis result of acid phosphatase produced in an och1 + disrupted strain.

【図5】 och1+遺伝子産物のマンノース転移酵素活性
を示す図である。
FIG. 5 shows the mannose transferase activity of the och1 + gene product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 1/19 C12N 1/21 1/21 9/10 5/10 C12P 21/02 C 9/10 C12R 1:645) C12P 21/02 (C12N 1/00 U //(C12N 15/09 ZNA C12R 1:645) C12R 1:645) (C12N 9/10 (C12N 1/00 C12R 1:645) C12R 1:645) (C12P 21/02 C (C12N 9/10 C12R 1:645) C12R 1:645) C12N 15/00 ZNAA (C12P 21/02 5/00 A C12R 1:645) C12R 1:645) (72)発明者 渡辺達夫 千葉県印西市木下東4−14−9 (72)発明者 横尾岳彦 茨城県つくば市東1丁目1番3 工業技術 院生命工学工業技術研究所内 (72)発明者 地神芳文 茨城県つくば市東1丁目1番3 工業技術 院生命工学工業技術研究所内 Fターム(参考) 4B024 AA20 BA10 CA01 DA12 EA04 FA01 GA11 GA25 HA01 HA03 4B050 CC01 DD04 LL05 4B064 AG01 CA06 CA19 CC24 4B065 AA72X AA72Y AB01 AC14 CA24 CA29 4H045 AA10 BA53 CA15 DA89 FA72 FA74 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C12N 1/19 C12N 1/21 1/21 9/10 5/10 C12P 21/02 C 9/10 C12R 1 : 645) C12P 21/02 (C12N 1/00 U // (C12N 15/09 ZNA C12R 1: 645) C12R 1: 645) (C12N 9/10 (C12N 1/00 C12R 1: 645) C12R 1: 645 ) (C12P 21/02 C (C12N 9/10 C12R 1: 645) C12R 1: 645) C12N 15/00 ZNAA (C12P 21/02 5/00 A C12R 1: 645) C12R 1: 645) (72) Invention Person Tatsuo Watanabe 4-14-9 Kinoshitahigashi, Inzai City, Chiba Prefecture (72) Inventor Takehiko Yokoo 1-3-1 Higashi, Tsukuba City, Ibaraki Prefecture Within the Institute of Biotechnology, Industrial Technology Institute (72) Inventor Yoshifumi Jigami Tsukuba, Ibaraki Prefecture 1 city east No. 1-3 F-term in the Institute of Biotechnology, Industrial Technology Research Institute (Reference) 4B024 AA20 BA10 CA01 DA12 EA04 FA01 GA11 GA25 HA01 HA03 4B050 CC01 DD04 LL05 4B064 AG01 CA06 CA19 CC24 4B065 AA72X AA72Y AB01 AC14 CA24 CA29 4H045 DA8953 FA74

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 下記の(a)から(c)のいずれかに記載のDN
Aからなる糖転移酵素をコードするDNA。 (a)配列番号2に記載のアミノ酸配列からなる蛋白質を
コードするDNA。 (b)配列番号1に記載の塩基配列からなるDNA。 (c)配列番号1に記載の塩基配列からなるDNAとストリン
ジェントな条件下でハイブリダイズし、糖転移酵素活性
を有する蛋白質をコードする分裂酵母由来のDNA。
1. A DN according to any one of the following (a) to (c):
DNA encoding a glycosyltransferase consisting of A. (a) DNA encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2. (b) DNA comprising the nucleotide sequence of SEQ ID NO: 1. (c) a fission yeast-derived DNA that hybridizes with a DNA consisting of the nucleotide sequence of SEQ ID NO: 1 under stringent conditions and encodes a protein having glycosyltransferase activity.
【請求項2】 請求項1に記載のDNAが挿入されたベク
ター。
2. A vector into which the DNA according to claim 1 has been inserted.
【請求項3】 請求項2に記載のベクターが導入された
宿主細胞。
3. A host cell into which the vector according to claim 2 has been introduced.
【請求項4】 請求項1に記載のDNAがコードする蛋白
質。
A protein encoded by the DNA according to claim 1.
【請求項5】 糖鎖付加が減少された蛋白質を産生する
能力を有する分裂酵母の製造方法であって、分裂酵母ゲ
ノム中の請求項1に記載のDNAの機能を欠損させること
を特徴とする方法。
5. A method for producing a fission yeast having the ability to produce a protein with reduced glycosylation, wherein the function of the DNA according to claim 1 in the genome of the fission yeast is deleted. Method.
【請求項6】 分裂酵母ゲノム中の請求項1に記載のDN
Aの蛋白質コード領域を変異させることにより該DNAの機
能を欠損させる、請求項5に記載の方法。
6. The DN of claim 1 in the fission yeast genome.
The method according to claim 5, wherein the function of the DNA is deleted by mutating the protein coding region of A.
【請求項7】 分裂酵母ゲノム中の請求項1に記載のDN
Aの発現を減少させることにより該DNAの機能を欠損させ
る、請求項5に記載の方法。
7. The DN of claim 1 in a fission yeast genome.
The method according to claim 5, wherein the function of the DNA is lost by decreasing the expression of A.
【請求項8】 蛋白質コード領域に変異が導入された請
求項1に記載のDNAまたはその一部の導入および該DNAに
よる相同組換えにより、分裂酵母ゲノム中の請求項1に
記載のDNAの機能を欠損させる、請求項6に記載の方
法。
8. The function of the DNA of claim 1 in the fission yeast genome by introducing the DNA of claim 1 or a part thereof into which a mutation has been introduced into the protein coding region and by homologous recombination with the DNA. 7. The method according to claim 6, wherein is deleted.
【請求項9】 変異が導入された、請求項1に記載のDN
Aの発現調節領域であるDNAまたはその一部の導入および
該DNAによる相同組換えにより、分裂酵母ゲノム中の請
求項1に記載のDNAの機能を欠損させる、請求項7に記
載の方法。
9. The DN according to claim 1, wherein the mutation has been introduced.
8. The method according to claim 7, wherein the function of the DNA according to claim 1 in the fission yeast genome is deleted by introducing DNA which is an expression control region of A or a part thereof and homologous recombination with the DNA.
【請求項10】 請求項1に記載のDNAの転写産物に相
補的なRNAをコードするDNAの導入および発現により、分
裂酵母ゲノム中の請求項1に記載のDNAの機能を欠損さ
せる、請求項7に記載の方法。
10. The function of the DNA of claim 1 in the fission yeast genome is deleted by introducing and expressing a DNA encoding an RNA complementary to the transcription product of the DNA of claim 1. 7. The method according to 7.
【請求項11】 分裂酵母ゲノム中の請求項1に記載の
DNAの機能の欠損により糖鎖付加が減少された蛋白質を
産生する能力を有する分裂酵母。
11. The fission yeast genome according to claim 1, which is in the fission yeast genome.
A fission yeast capable of producing a protein having a reduced glycosylation due to a loss of DNA function.
【請求項12】 Schizosaccharomyces pombeである、
請求項11に記載の分裂酵母。
12. A Schizosaccharomyces pombe,
The fission yeast according to claim 11.
【請求項13】 請求項11または12に記載の分裂酵
母を用いて、糖鎖付加の減少された蛋白質を産生する方
法。
13. A method for producing a protein with reduced glycosylation using the fission yeast according to claim 11 or 12.
【請求項14】 請求項13に記載の方法により産生さ
れた、糖鎖付加の減少された蛋白質。
14. A protein with reduced glycosylation produced by the method according to claim 13.
JP2000263266A 1999-08-31 2000-08-28 Fission yeast glycosyltransferase gene och1 Expired - Lifetime JP3905695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263266A JP3905695B2 (en) 1999-08-31 2000-08-28 Fission yeast glycosyltransferase gene och1

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-246494 1999-08-31
JP24649499 1999-08-31
JP2000263266A JP3905695B2 (en) 1999-08-31 2000-08-28 Fission yeast glycosyltransferase gene och1

Publications (2)

Publication Number Publication Date
JP2001161376A true JP2001161376A (en) 2001-06-19
JP3905695B2 JP3905695B2 (en) 2007-04-18

Family

ID=26537753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263266A Expired - Lifetime JP3905695B2 (en) 1999-08-31 2000-08-28 Fission yeast glycosyltransferase gene och1

Country Status (1)

Country Link
JP (1) JP3905695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202523B2 (en) * 2005-09-22 2012-06-19 ProSci, Inc. Glycosylated polypeptides produced in yeast mutants and methods of use thereof
JP2018061520A (en) * 2018-01-26 2018-04-19 東洋紡株式会社 Methods for modifying n-type sugar chain structure of proteins produced by microorganisms of genus aspergillus
JP2019071912A (en) * 2019-02-22 2019-05-16 東洋紡株式会社 Method for modifying n-glycan chain structure of the protein produced by aspergillus microorganism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202523B2 (en) * 2005-09-22 2012-06-19 ProSci, Inc. Glycosylated polypeptides produced in yeast mutants and methods of use thereof
JP2018061520A (en) * 2018-01-26 2018-04-19 東洋紡株式会社 Methods for modifying n-type sugar chain structure of proteins produced by microorganisms of genus aspergillus
JP2019071912A (en) * 2019-02-22 2019-05-16 東洋紡株式会社 Method for modifying n-glycan chain structure of the protein produced by aspergillus microorganism

Also Published As

Publication number Publication date
JP3905695B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US11220692B2 (en) Pichia pastoris strains for producing predominantly homogeneous glycan structure
JP5562647B2 (en) Genetically modified yeast for the production of homogeneous glycoproteins
US5821090A (en) Riboflavin-biosynthesis in fungi
MX2012004994A (en) Method for producing therapeutic proteins in pichia pastoris lacking dipeptidyl aminopeptidase activity.
CN113667682B (en) YH66-RS11190 gene mutant and application thereof in preparation of L-valine
KR20010033469A (en) Promoter from Ashbya Gossypii
JP2000136199A (en) Signal peptide usable in schizosaccharomyces pombe, secretion-type expression vector, and production of protein by using the same
JP4815219B2 (en) DNA containing an alkalophilic cyclodextran synthase gene, recombinant DNA, and method for producing an alkalophilic cyclodextran synthase
KR20150077412A (en) Crz1 mutant fungal cells
JP2001161376A (en) GLYCOSYLTRANSFERASE GENE och1 DERIVED FROM FISSION YEAST
JP3531997B2 (en) Method for producing amide compound using transformant
CN113549560B (en) Construction method of engineering yeast for glycoprotein preparation and strain thereof
CN106459940B (en) Novel catalase signal sequence and catalase expression method using same
WO2003027280A1 (en) Gene overexpression system
WO2008047936A1 (en) LYTIC ENZYME INHIBITOR, LYSIS INHIBITOR, INHIBITOR OF DEGRADATION OF POLY-γ-GLUTAMIC ACID, AND METHOD FOR PRODUCTION OF POLY-γ-GLUTAMIC ACID
AU2022318574B2 (en) Methods and compositions for protein synthesis and secretion
JP2021517806A (en) Use in the production of recombinant microorganisms, their production methods and coenzyme Q10
WO2017163946A1 (en) Induction-type promoter
JPH11313683A (en) New xylosidase gene, vector, transformant using the same and its use
JP6474477B2 (en) Marker gene
CN117794941A (en) Methods and compositions for protein synthesis and secretion
JPH0622765A (en) Dna compound for coding activity of riboflavin synthetase of s. cerevisiae and recombinant dna expressing vector
WO2017002733A1 (en) Cloning vector
BRPI0609675A2 (en) method for producing a protein
CA2392000A1 (en) Glmu polypeptide and dna encoding for the polypeptide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3905695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term