JP2001157968A - Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool - Google Patents

Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool

Info

Publication number
JP2001157968A
JP2001157968A JP34352399A JP34352399A JP2001157968A JP 2001157968 A JP2001157968 A JP 2001157968A JP 34352399 A JP34352399 A JP 34352399A JP 34352399 A JP34352399 A JP 34352399A JP 2001157968 A JP2001157968 A JP 2001157968A
Authority
JP
Japan
Prior art keywords
abrasive
layer
grains
superabrasive
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34352399A
Other languages
Japanese (ja)
Inventor
Takuya Senba
卓弥 仙波
Keizo Takeuchi
恵三 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Diamond Industries Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Diamond Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Diamond Industries Co Ltd filed Critical Noritake Co Ltd
Priority to JP34352399A priority Critical patent/JP2001157968A/en
Publication of JP2001157968A publication Critical patent/JP2001157968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shorten time required for formation of an abrasive grain layer, and facilitate adjustment of concentration degree of abrasive grains in manufacturing an electrodeposition tool for forming a multilayer structure of abrasive grain layers. SOLUTION: An upper part of a deposited abrasive grain layer deposited on a substrate 11 immersed in nickel plating liquid M in which diamond abrasive grains are dispersed is evened by moving an evening plate 12 relatively to the substrate 11 for forming a multilayer structure of abrasive grain layers, so time required for forming the abrasive grain layers can be shortened. By adjusting relative movement speed between the substrate 11 and the evening plate 12, concentration degree of abrasive grains in the abrasive grain layers can be adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はダイヤモンド砥粒、
CBN砥粒などの超砥粒を用いた電着工具、とくに多層
の砥粒層を形成した電着工具に関する。
TECHNICAL FIELD The present invention relates to a diamond abrasive,
The present invention relates to an electrodeposition tool using superabrasive grains such as CBN abrasive grains, and more particularly to an electrodeposition tool having a multi-layered abrasive layer.

【0002】[0002]

【従来の技術】超硬合金、セラミック、ガラス、半導体
材料、鋳鉄、各種鋼など各種材料の研削や研磨などに、
電着法により基材表面に砥粒層を形成した超砥粒電着工
具が使用されている。この電着工具は、総型形状、カッ
プ形状、円盤形状などの基材を、ダイヤモンド砥粒、C
BN砥粒などの超砥粒を分散させたメッキ液内に浸漬
し、基材に超砥粒を電着させて砥粒層を形成したもので
ある。
2. Description of the Related Art For grinding and polishing of various materials such as cemented carbides, ceramics, glass, semiconductor materials, cast iron and various steels,
A superabrasive electrodeposition tool having an abrasive layer formed on a substrate surface by an electrodeposition method is used. This electrodeposited tool can be used to form a base material such as a total shape, a cup shape,
The abrasive layer is formed by immersing in a plating solution in which superabrasive grains such as BN abrasive grains are dispersed, and electrodepositing the superabrasive grains on a substrate.

【0003】このような超砥粒電着工具は、超砥粒を単
層に固着させたものが一般的であるが、特殊な用途、形
状により多層構造のものも製造され使用されている。単
層構造のものは、砥粒の保持力には優れるものの、研削
あるいは研磨可能な砥粒層そのものの厚みが薄く、砥粒
の20〜30%が摩耗した時点で研削抵抗が上昇して脱
落し、製品寿命が短くなるという短所がある。これに対
し多層構造のものは、上層の砥粒層が使用により摩耗す
ると下層の砥粒層が出現し、砥粒の使用領域が増加して
製品寿命が長くなるという長所がある。
[0003] Such a superabrasive electrodeposition tool is generally a tool in which superabrasive grains are fixed in a single layer, but a multilayer structure having a multi-layer structure is also manufactured and used depending on a special application and shape. The single-layer structure has excellent abrasive grain holding power, but the thickness of the abrasive grain layer itself that can be ground or polished is small, and when 20 to 30% of the abrasive grains are worn, the grinding resistance increases and falls off. However, there is a disadvantage that the product life is shortened. On the other hand, the multilayer structure has an advantage that when the upper abrasive layer is worn by use, a lower abrasive layer appears, and the use area of the abrasive grains increases, thereby extending the product life.

【0004】従来、多層構造の超砥粒電着工具は、大別
して次の二つの方法で製造されている。第1の方法は、
比較的粒度の大きい砥粒を用いる場合の方法で、基材の
砥粒層形成面に砥粒を分散配置し、メッキ層を析出させ
砥粒を固定して1層目の砥粒層を形成した後、1層目の
砥粒層中の砥粒の間に位置するように2層目の砥粒を分
散配置し、メッキ層を析出させ砥粒を固定して2層目の
砥粒層を形成し、以下同様にして多層の砥粒層を形成す
る方法である。このような方法で製造される電着工具
は、砥粒に高負荷が加わる切断ホイール、バンドソーの
切断作業やバリ取りなどの重研削加工などの用途に使用
される。
Conventionally, superabrasive electrodeposition tools having a multilayer structure have been roughly classified into the following two methods. The first method is
In the case of using abrasive grains with relatively large grain size, the abrasive grains are dispersed and arranged on the abrasive grain layer forming surface of the base material, the plating layer is deposited, the abrasive grains are fixed, and the first abrasive grain layer is formed. After that, the second layer of abrasive grains is dispersed and arranged so as to be located between the abrasive grains in the first layer of abrasive grains, the plating layer is deposited, the abrasive grains are fixed, and the second abrasive layer is formed. And forming a multi-layered abrasive layer in the same manner. The electrodeposition tool manufactured by such a method is used for applications such as a cutting wheel that applies a high load to abrasive grains, a band saw cutting operation, and heavy grinding such as deburring.

【0005】第2の方法は、微粒の砥粒を用いる場合の
方法で、メッキ液中に砥粒を撹拌分散させ、基材上に砥
粒を沈降させるとともに通電メッキをすることにより基
材上に砥粒を固定して多層の砥粒層を形成させる方法で
ある。このような方法で製造される電着工具は、ICチ
ップの精密切断、微小な電子部品や光学部品の精密研削
および精密切断などの用途に使用される。本発明はこの
ような砥粒層形成技術を対象とするものである。
[0005] The second method is a method in which fine abrasive grains are used. The abrasive grains are stirred and dispersed in a plating solution, and the abrasive grains are settled on the base material. This is a method of forming a multilayered abrasive layer by fixing abrasive grains to the surface. The electrodeposition tool manufactured by such a method is used for applications such as precision cutting of IC chips, precision grinding and precision cutting of minute electronic components and optical components. The present invention is directed to such an abrasive layer forming technique.

【0006】[0006]

【発明が解決しようとする課題】砥粒を分散させたメッ
キ液内に基材を浸漬し、基材上に砥粒を堆積させて多層
の砥粒層を形成する場合、低い電流密度条件下でメッキ
を長時間継続的に行い、厚いメッキ層を析出させる必要
があり、同時に、砥粒の堆積層を通してメッキ液および
メッキ金属イオンを充分に供給する必要がある。ここで
メッキ速度を増加させるためには、原理的に電流密度を
高くすることにより電流供給すなわちメッキ金属イオン
の供給を高める必要がある。しかし、電流密度が高すぎ
ると堆積した砥粒がメッキ液の供給を妨げて、メッキ金
属イオンと電子の授受がなされず、カソード表面に酸化
膜が形成された状態、いわゆる焼けが発生し、継続的な
メッキができなくなる。このため、電流密度の増加には
限界がある。
When a base material is immersed in a plating solution in which abrasive grains are dispersed and the abrasive grains are deposited on the base material to form a multi-layered abrasive layer, a low current density condition is required. It is necessary to continuously perform plating for a long time to deposit a thick plating layer, and at the same time, it is necessary to sufficiently supply a plating solution and plating metal ions through a deposited layer of abrasive grains. Here, in order to increase the plating speed, it is necessary to increase the current supply, that is, the supply of plating metal ions by increasing the current density in principle. However, if the current density is too high, the deposited abrasive grains impede the supply of the plating solution, and exchange of plating metal ions and electrons is not performed, and a state in which an oxide film is formed on the cathode surface, so-called burning, continues, Plating cannot be performed. For this reason, there is a limit to the increase in current density.

【0007】この電流密度の限界は、砥粒粒径とその分
布状態および砥粒形状により決まるものであり、堆積す
る砥粒層が厚く、また充填密度が高い方が、限界電流密
度が低くなる。多層の砥粒層を形成するためには、堆積
砥粒層を厚くせざるを得ないため、従来の電着方法では
メッキ速度を増加させることには限界があり、砥粒層形
成に要する合計時間を短縮することが困難である。
The limit of the current density is determined by the grain size of the abrasive grains, their distribution and the shape of the abrasive grains. The thicker the grain layer to be deposited and the higher the filling density, the lower the limiting current density. . In order to form a multilayered abrasive layer, it is necessary to increase the thickness of the deposited abrasive layer.Therefore, there is a limit in increasing the plating rate in the conventional electrodeposition method, and the total amount required for forming the abrasive layer is It is difficult to reduce the time.

【0008】このような条件のもとで多層の砥粒層を形
成させるために従来は、メッキ液と砥粒を撹拌して砥粒
の分散浮遊と沈降を何回も繰り返していた。しかしなが
ら、このような方法では撹拌による浮遊分散と沈降に長
時間を要するとともに、分散と沈降の状態に合った適正
な電流条件を設定することが難しかった。
Conventionally, in order to form a multi-layered abrasive layer under such conditions, the plating solution and the abrasive particles have been agitated and the dispersion floating and sedimentation of the abrasive particles have been repeated many times. However, in such a method, it takes a long time to suspend and disperse and settle by stirring, and it is difficult to set appropriate current conditions according to the state of dispersion and sedimentation.

【0009】図5は電流密度と砥粒層形成に要する合計
時間との関係の一例を示す図である。この測定データ
は、砥粒として#3000の合成ダイヤモンドを使用
し、光沢ニッケルメッキ液中に分散させ、撹拌と沈殿を
繰り返しながら電着した場合の測定結果である。同図か
らわかるように、電流密度が低いとメッキ時間が長くな
り、電流密度が高いと沈殿時間が長くなり、この条件の
もとでは砥粒層形成に要する合計時間は、電流密度が約
1A/dmのときに最短で約30時間となり、これ以
上の時間短縮は望めない。
FIG. 5 is a diagram showing an example of the relationship between the current density and the total time required for forming the abrasive layer. This measurement data is a measurement result in the case where synthetic diamond # 3000 is used as abrasive grains, dispersed in a bright nickel plating solution, and electrodeposited while repeating stirring and precipitation. As can be seen from the figure, when the current density is low, the plating time is long, and when the current density is high, the precipitation time is long. Under these conditions, the total time required for forming the abrasive layer is about 1 A At / dm 2 , the shortest time is about 30 hours, and no further time reduction can be expected.

【0010】また、砥粒層中の砥粒の集中度は、電着工
具の研削性能に影響する重要な要因であるが、この集中
度はメッキ液中の基材上に堆積する砥粒数によって決ま
るものであり、従来の電着方法では堆積砥粒数を調整す
る手段がなかったので、要求される電着工具の研削性能
に応じた最適な集中度に調整することができなかった。
The degree of concentration of the abrasive grains in the abrasive layer is an important factor affecting the grinding performance of the electrodeposition tool. The degree of concentration is determined by the number of abrasive grains deposited on the substrate in the plating solution. In the conventional electrodeposition method, there is no means for adjusting the number of deposited abrasive grains, so that it was not possible to adjust the degree of concentration to an optimum concentration according to the required grinding performance of the electrodeposition tool.

【0011】本発明が解決すべき課題は、多層構造の砥
粒層を形成させる電着工具の製造において、砥粒層形成
に要する時間を短縮し、さらに砥粒の集中度の調整を容
易にすることにある。
An object of the present invention is to reduce the time required for forming an abrasive layer and easily adjust the degree of concentration of abrasive grains in the production of an electrodeposited tool for forming an abrasive layer having a multilayer structure. Is to do.

【0012】[0012]

【課題を解決するための手段】本発明の超砥粒電着工具
の製造方法は、基材に超砥粒を多層に電着させて砥粒層
を形成する電着工具の製造方法において、超砥粒を分散
させたメッキ液内に浸漬した基材に堆積した超砥粒の上
部を均しながら電着を行うことを特徴とする。
According to the present invention, there is provided a method of manufacturing a super-abrasive electrodeposited tool, comprising the steps of: Electrodeposition is performed while leveling the upper part of the superabrasive particles deposited on the substrate immersed in a plating solution in which the superabrasive particles are dispersed.

【0013】メッキ液中に分散させた砥粒を撹拌し、基
材に堆積させることを順次繰り返す従来の方法ではな
く、砥粒堆積層の上部にある砥粒の一部を均す(掻き取
る)ことにより従来法における砥粒の浮遊、沈殿に要す
る時間を省略することができ、継続的に砥粒堆積層の下
部にメッキ金属イオンを効率的に供給することができ
て、砥粒層形成に要する時間を短縮することができる。
[0013] This is not a conventional method in which the abrasive grains dispersed in the plating solution are agitated and deposited on the substrate sequentially, but a part of the abrasive grains on the abrasive grain deposited layer is leveled (scraped). ) Makes it possible to omit the time required for floating and sedimentation of the abrasive grains in the conventional method, and to efficiently supply the plating metal ions to the lower portion of the abrasive grain deposition layer, thereby forming the abrasive grain layer. Can be shortened.

【0014】前記堆積した超砥粒の上部を均すには、均
し板を用いるのが望ましい。均し板としては、たとえば
ゴム製の板材を用い、この均し板を基材に対して相対的
に移動させることによって、堆積砥粒層の上部にある砥
粒の一部を均す(掻き取る)ことができる。ゴム製の均
し板を使用することにより、堆積砥粒層に対して加わる
力は緩やかなものとなり、またすでに固着した砥粒に対
しても大きな力が加わることなく、不必要な堆積砥粒の
排除を行うことができる。また逐次増加する電着表面高
さに対して継続的に対応できる。
It is desirable to use a leveling plate to level the upper part of the deposited superabrasive grains. As the leveling plate, for example, a rubber plate material is used, and the leveling plate is moved relative to the base material to level a part of the abrasive grains above the deposited abrasive layer (scraping). Take). By using a rubber leveling plate, the force applied to the deposited abrasive layer becomes gentle, and no large force is applied to the already adhered abrasive grains, and unnecessary accumulated abrasive grains are applied. Can be eliminated. In addition, it is possible to continuously cope with the electrodeposition surface height that is gradually increased.

【0015】均し板と基材の相対移動としては、基材に
対して均し板を回転させる方法が最も確実で容易な方法
である。均し板の回転は連続的であってもよく、また断
続的であってもよい。ここで、均し板と基材の相対移動
速度(均し板の回転速度)を調整することにより、砥粒
層の砥粒集中度を調整することができる。均し板の回転
速度を増加させると、固着されつつある砥粒のうち固着
が不十分な砥粒は堆積した砥粒層の流動とともに表面か
ら除去されることにより、本来静止した状態でのメッキ
条件下で得られる砥粒集中度に対して低い集中度の砥粒
層が得られる。この回転速度の調整により、固着砥粒層
の砥粒集中度を調整することができる。
As the relative movement between the leveling plate and the substrate, the method of rotating the leveling plate with respect to the substrate is the most reliable and easy method. The rotation of the leveling plate may be continuous or intermittent. Here, by adjusting the relative moving speed (rotational speed of the leveling plate) between the leveling plate and the base material, the degree of concentration of the abrasive grains in the abrasive layer can be adjusted. When the rotating speed of the leveling plate is increased, the insufficiently adhered abrasive grains among the abrasive grains that are being fixed are removed from the surface together with the flow of the deposited abrasive layer, so that the plating in an originally stationary state An abrasive layer having a low degree of concentration relative to the degree of concentration of the abrasive obtained under the conditions can be obtained. By adjusting the rotation speed, the degree of concentration of the abrasive grains in the fixed abrasive layer can be adjusted.

【0016】[0016]

【発明の実施の形態】以下、実験例に基づき本発明を具
体的に説明する。図1は実験に用いた装置の概略構成図
である。図1において、10はメッキ槽、11は基材、
12は均し板、Dは後述する固着砥粒層D1、堆積砥粒
層D2からなるダイヤモンド砥粒群である。メッキ槽1
0にはニッケルメッキ液Mが満たされ、円筒容器13に
電着工具としての基材11が配置されている。均し板1
2はゴム製の板材であり、図示しない駆動装置により回
転駆動される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described based on experimental examples. FIG. 1 is a schematic configuration diagram of an apparatus used in the experiment. In FIG. 1, 10 is a plating tank, 11 is a base material,
Reference numeral 12 denotes a leveling plate, and D denotes a group of diamond abrasive grains composed of a fixed abrasive layer D1 and a deposited abrasive layer D2, which will be described later. Plating tank 1
0 is filled with a nickel plating solution M, and a substrate 11 as an electrodeposition tool is disposed in a cylindrical container 13. Leveling board 1
Reference numeral 2 denotes a rubber plate member, which is rotationally driven by a driving device (not shown).

【0017】図2は基材11上の堆積砥粒層D2の均し
作業の説明図である。図において、基材11上にはすで
に固着された2層の固着砥粒層D1が形成されており、
この固着砥粒層D1の上に堆積砥粒層D2が存在する。
堆積砥粒層D2には、メッキ液M内に分散された砥粒が
沈殿して数層分に相当する砥粒が堆積している。本実験
装置においては、図2に示すように、均し板12の下端
をこの堆積砥粒層D2の中間に位置させ、均し板12を
回転させて堆積砥粒層D2の上部の砥粒を移動させ排除
する構成としている。
FIG. 2 is an explanatory view of the leveling operation of the deposited abrasive layer D2 on the base material 11. In the figure, two fixed abrasive grain layers D1 already fixed are formed on a base material 11,
The deposited abrasive layer D2 exists on the fixed abrasive layer D1.
In the deposited abrasive layer D2, abrasive grains dispersed in the plating solution M precipitate and abrasive grains corresponding to several layers are deposited. In this experimental apparatus, as shown in FIG. 2, the lower end of the leveling plate 12 is positioned in the middle of the deposited abrasive layer D2, and the leveling plate 12 is rotated to remove the abrasive particles on the upper side of the deposited abrasive layer D2. Is moved and eliminated.

【0018】図3は、図1の実験装置を用い、均し板1
2の回転速度を変化させたときの電流密度とメッキ継続
可能時間との関係を調査した結果を示すグラフである。
同図の横軸は電流密度(A/dm)、縦軸はメッキ継
続可能時間(hr)を示し、図中曲線の△印は回転速度
3min−1、□印は5min−1、●印は7min
−1を示し、○印は均し板を用いなかったとき(従来
法)のそれぞれのプロットである。
FIG. 3 shows a leveling plate 1 using the experimental apparatus of FIG.
Current density and plating continuation when the rotation speed of 2 is changed
It is a graph which shows the result of having investigated the relation with possible time.
The horizontal axis in the figure is the current density (A / dm2), Vertical axis is plating joint
The continuation time (hr) is shown.
3 min-1, □ mark is 5min-1, ● mark is 7 min
-1Indicates that no leveling plate was used (conventional
2) is a plot of each method.

【0019】図3からわかるように、均し板12を用い
て堆積砥粒層の上部の砥粒を排除した場合は、従来法に
比して限界電流密度が大幅に上昇し、また均し板12の
回転速度を高めるにしたがい限界電流密度はさらに上昇
する。すなわち、従来法では電流密度0.5A/dm
のときに8時間しか継続してメッキができないのに対し
て、均し板12を回転速度7min−1で回転させた場
合は5.5A/dmの高い電流密度においても8時間
以上のメッキが可能であり、従来法に比して10倍以上
の速度でメッキが可能になることがわかる。
As can be seen from FIG. 3, when the leveling plate 12 is used to remove the abrasive grains on the upper side of the deposited abrasive layer, the limit current density is greatly increased as compared with the conventional method, and As the rotational speed of the plate 12 increases, the limit current density further increases. That is, in the conventional method, the current density is 0.5 A / dm 2
When the leveling plate 12 is rotated at a rotation speed of 7 min -1 , plating can be continued for only 8 hours at the time of the above, and plating can be performed for 8 hours or more even at a high current density of 5.5 A / dm 2. It can be seen that plating can be performed at a speed 10 times or more as compared with the conventional method.

【0020】図4は、均し板12の回転速度と形成され
た多層砥粒層の砥粒集中度の関係を示すグラフである。
図4からわかるように、均し板12の回転速度を高める
に従い砥粒集中度は低下する。従来法(回転速度0)で
は集中度は220であり、これに対し回転速度20mi
−1のときは集中度は30であり、集中度が大きく低
下している。ただし、本実験に使用した#3000のダ
イヤモンド砥粒の場合は、均し板12の回転速度は20
min−1が上限であり、これ以上の回転速度だと砥粒
の浮遊、流動が激しくなり過ぎ、固着砥粒層における砥
粒の分散が不均質かつ不安定となる傾向がみられた。
FIG. 4 is a graph showing the relationship between the rotation speed of the leveling plate 12 and the degree of concentration of the abrasive grains of the formed multilayer abrasive layer.
As can be seen from FIG. 4, the abrasive concentration decreases as the rotation speed of the leveling plate 12 increases. In the conventional method (rotation speed 0), the degree of concentration is 220, while the rotation speed is 20 mi.
At the time of n- 1, the degree of concentration is 30, and the degree of concentration is greatly reduced. However, in the case of # 3000 diamond abrasive grains used in this experiment, the rotation speed of the leveling plate 12 was 20
Min -1 is the upper limit, and when the rotation speed is higher than this, the floating and flow of the abrasive grains become too intense, and the dispersion of the abrasive grains in the fixed abrasive layer tends to be uneven and unstable.

【0021】以上の実験結果からわかるように、超砥粒
を分散させたメッキ液内に浸漬した基材に堆積した超砥
粒の上部を均しながら電着を行うことにより、砥粒層形
成に要する時間を短縮することができるとともに、固着
砥粒層の砥粒集中度を調整することができる。
As can be seen from the above experimental results, the abrasive layer is formed by performing electrodeposition while leveling the upper part of the superabrasive particles deposited on the substrate immersed in the plating solution in which the superabrasive particles are dispersed. Can be reduced, and the degree of concentration of abrasive grains in the fixed abrasive layer can be adjusted.

【0022】[0022]

【発明の効果】本発明によって以下の効果を奏すること
ができる。
According to the present invention, the following effects can be obtained.

【0023】(1)超砥粒を分散させたメッキ液内に浸
漬した基材に堆積した超砥粒の上部を均しながら電着を
行うことにより、従来法における砥粒の浮遊、沈殿に要
する時間を省略することができ、継続的に砥粒堆積層の
下部にメッキ金属イオンを効率的に供給することができ
て、砥粒層形成に要する時間を短縮することができる。
(1) Electrodeposition is performed while leveling the upper part of the superabrasive particles deposited on the substrate immersed in a plating solution in which the superabrasive particles are dispersed, so that the floating and sedimentation of the abrasive particles in the conventional method can be reduced. The required time can be omitted, the plating metal ions can be efficiently supplied continuously to the lower part of the abrasive grain deposition layer, and the time required for forming the abrasive grain layer can be reduced.

【0024】(2)均し板としてたとえばゴム製の板材
を使用することにより、堆積砥粒層に対して加わる力は
緩やかなものとなり、またすでに固着した砥粒に対して
も大きな力が加わることなく、不必要な堆積砥粒の排除
を行うことができる。また逐次増加する電着表面高さに
対して継続的に対応できる。
(2) By using, for example, a rubber plate material as the leveling plate, the force applied to the deposited abrasive grain layer becomes gentle, and a large force is applied to the already fixed abrasive grains. Unnecessary elimination of the deposited abrasive grains can be performed without the need. In addition, it is possible to continuously cope with the electrodeposition surface height that is gradually increased.

【0025】(3)均し板と基材の相対移動速度を調整
することにより、砥粒層の砥粒集中度を調整することが
できる。
(3) The degree of concentration of the abrasive grains in the abrasive layer can be adjusted by adjusting the relative moving speed of the leveling plate and the base material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実験に用いた装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus used for an experiment.

【図2】 基材上の堆積砥粒層の均し作業の説明図であ
る。
FIG. 2 is an explanatory view of an operation for leveling a deposited abrasive layer on a substrate.

【図3】 実験結果を示すグラフである。FIG. 3 is a graph showing experimental results.

【図4】 実験結果を示すグラフである。FIG. 4 is a graph showing experimental results.

【図5】 電流密度と砥粒層形成に要する合計時間との
関係の一例を示す図である
FIG. 5 is a diagram showing an example of a relationship between a current density and a total time required for forming an abrasive layer.

【符号の説明】[Explanation of symbols]

10 メッキ槽 11 基材 12 均し板 13 円筒容器 D ダイヤモンド砥粒群 D1 固着砥粒層 D2 堆積砥粒層 M ニッケルメッキ液 DESCRIPTION OF SYMBOLS 10 Plating tank 11 Base material 12 Leveling plate 13 Cylindrical container D Diamond abrasive grain group D1 Fixed abrasive layer D2 Deposited abrasive layer M Nickel plating liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 恵三 愛知県津島市神守町字二ノ割16番地の1 ノリタケダイヤ株式会社名古屋工場内 Fターム(参考) 3C063 AA10 BA37 BB02 BB23 CC13 EE10 EE31 FF08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Keizo Takeuchi 1 at Nominake Daiya Co., Ltd. Nagoya Plant, No. 16 at Jinomori-cho, Tsushima-shi, Aichi F-term (reference) 3C063 AA10 BA37 BB02 BB23 CC13 EE10 EE31 FF08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材に超砥粒を多層に電着させて砥粒層
を形成する電着工具の製造方法において、超砥粒を分散
させたメッキ液内に浸漬した基材に堆積した超砥粒の上
部を均しながら電着を行うことを特徴とする超砥粒電着
工具の製造方法。
1. A method for manufacturing an electrodeposition tool in which superabrasive grains are electrodeposited in multiple layers on a substrate to form an abrasive layer, wherein the superabrasive grains are deposited on a substrate immersed in a plating solution in which the superabrasive grains are dispersed. A method for manufacturing a superabrasive electrodeposited tool, comprising performing electrodeposition while leveling the upper part of the superabrasive.
【請求項2】 前記超砥粒の表層を均すのに均し板を用
い、この均し板を基材に対して相対的に移動させながら
均し作業を行うことを特徴とする請求項1記載の超砥粒
電着工具の製造方法。
2. A smoothing operation, wherein a smoothing plate is used to smooth the surface layer of the superabrasive grains, and the smoothing operation is performed while moving the smoothing plate relative to a base material. 2. The method for producing a superabrasive electrodeposited tool according to 1.
【請求項3】 前記基材と均し板の相対移動速度を調整
することにより砥粒層の砥粒集中度を調整することを特
徴とする請求項2記載の超砥粒電着工具の製造方法。
3. The superabrasive electrodeposition tool according to claim 2, wherein the degree of concentration of the abrasive grains in the abrasive layer is adjusted by adjusting the relative moving speed of the base material and the leveling plate. Method.
【請求項4】 基材に超砥粒を多層に電着させて砥粒層
を形成した電着工具であって、超砥粒を分散させたメッ
キ液内に浸漬した基材に堆積した超砥粒の上部を均しな
がら電着を行って多層の砥粒層を形成した超砥粒電着工
具。
4. An electrodeposition tool in which superabrasive grains are electrodeposited in multiple layers on a substrate to form an abrasive layer, wherein the superabrasive particles are deposited on a substrate immersed in a plating solution in which the superabrasive grains are dispersed. A superabrasive electrodeposition tool in which a multi-layered abrasive layer is formed by performing electrodeposition while leveling the top of the abrasive grains.
JP34352399A 1999-12-02 1999-12-02 Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool Pending JP2001157968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34352399A JP2001157968A (en) 1999-12-02 1999-12-02 Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34352399A JP2001157968A (en) 1999-12-02 1999-12-02 Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool

Publications (1)

Publication Number Publication Date
JP2001157968A true JP2001157968A (en) 2001-06-12

Family

ID=18362185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34352399A Pending JP2001157968A (en) 1999-12-02 1999-12-02 Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool

Country Status (1)

Country Link
JP (1) JP2001157968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192829A1 (en) * 2014-06-18 2015-12-23 Klingspor Ag Multilayer grinding particle
US10308851B2 (en) 2013-12-19 2019-06-04 Klingspor Ag Abrasive particle and abrasive exhibiting high grinding performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308851B2 (en) 2013-12-19 2019-06-04 Klingspor Ag Abrasive particle and abrasive exhibiting high grinding performance
WO2015192829A1 (en) * 2014-06-18 2015-12-23 Klingspor Ag Multilayer grinding particle
CN106414652A (en) * 2014-06-18 2017-02-15 金世博股份公司 Multilayer grinding particle
US10081747B2 (en) 2014-06-18 2018-09-25 Klingspor Ag Multilayer abrasive particle

Similar Documents

Publication Publication Date Title
US6312324B1 (en) Superabrasive tool and method of manufacturing the same
KR100321271B1 (en) Dressing tools for abrasive cloth surfaces and manufacturing methods
JPH0639729A (en) Precision grinding wheel and its manufacture
US6540597B1 (en) Polishing pad conditioner
US20070128994A1 (en) Electroplated abrasive tools, methods, and molds
US20050227590A1 (en) Fixed abrasive tools and associated methods
KR101085891B1 (en) Grinding wheel containing hollow particles along with abrasive grains, and method for manufacturing same
JPS6080562A (en) Electrodeposited grinding wheel
TWM294991U (en) Polishing pad conditioner with shaped abrasive patterns and channels
CN1285261A (en) Abrading tool
JP4157724B2 (en) Wire saw manufacturing method and manufacturing apparatus
CN1931522A (en) Trimmer for trimming wafer grinding pan and its making process
JP2001157968A (en) Method of manufacturing super-abrasive grain electrodeposition tool, and super-abrasive grain electrodeposition tool
JP4767548B2 (en) Electrodeposition whetstone and method of manufacturing electrodeposition whetstone
CN108588799A (en) A kind of sand device and preparation method of electroplating abrasion wheel
JP2000127046A (en) Electrodeposition dresser for polishing by polisher
Yun et al. Effect of the properties of uniformly patterned micro-diamond pellets on sapphire grinding
JP3695842B2 (en) Wafer polishing apparatus and wafer polishing method
JP4281253B2 (en) Electrodeposition whetstone, manufacturing apparatus and manufacturing method thereof
JP2002086350A (en) Polishing fluid for electrophoretic polishing and polishing method
JPH10329029A (en) Electrodepositioning super grain grinding wheel
JP2806674B2 (en) Method and apparatus for manufacturing grinding wheel for grinding machine
JP2000084831A (en) Dressing device, polishing device using it, and cmp device
JPH04223878A (en) Grindwheel for grinding lens and manufacture thereof
JP2003285271A (en) Diamond tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027