JP2001156328A - Epitaxial wafer for light-emitting device and light- emitting element - Google Patents

Epitaxial wafer for light-emitting device and light- emitting element

Info

Publication number
JP2001156328A
JP2001156328A JP34053499A JP34053499A JP2001156328A JP 2001156328 A JP2001156328 A JP 2001156328A JP 34053499 A JP34053499 A JP 34053499A JP 34053499 A JP34053499 A JP 34053499A JP 2001156328 A JP2001156328 A JP 2001156328A
Authority
JP
Japan
Prior art keywords
epitaxial wafer
light
emitting device
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34053499A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
憲治 柴田
Masatomo Shibata
真佐知 柴田
Taiichiro Konno
泰一郎 今野
Naoki Kaneda
直樹 金田
Masahiro Noguchi
雅弘 野口
Yukio Kikuchi
幸夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP34053499A priority Critical patent/JP2001156328A/en
Publication of JP2001156328A publication Critical patent/JP2001156328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial wafer for light-emitting devices that can improve light emission intensity and light take-out efficiency, and the light- emitting devices using it. SOLUTION: In the epitaxial wafer for light-emitting devices in multiple quantum well structure where a plurality of barrier layers 7 and well layers 8 are alternately laminated in an active layer 9 on a GaAs substrate 1, the thickness of each well layer 8 is changed, thus distributing a band gap and widening the width (half-value width) of emission spectrum and hence drastically improving the emission intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaAs基板上の
活性層が複数の障壁層と井戸層とを交互に積層した多重
量子井戸構造となっている発光素子用エピタキシャルウ
ェハ及びこれを用いた発光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial wafer for a light emitting device in which an active layer on a GaAs substrate has a multiple quantum well structure in which a plurality of barrier layers and well layers are alternately stacked, and light emission using the same. It relates to an element.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】図4
は、従来の発光ダイオード用エピタキシャルウェハのう
ち、発光波長630nmの多重量子井戸構造からなる活
性層を有するAlGaInP系発光ダイオード用エピタ
キシャルウェハの典型的な構造を示したものである。
2. Description of the Related Art FIG.
Fig. 1 shows a typical structure of an AlGaInP-based light emitting diode epitaxial wafer having an active layer having a multiple quantum well structure with a light emission wavelength of 630 nm among conventional light emitting diode epitaxial wafers.

【0003】図示するように、このエピタキシャルウェ
ハは、有機金属気相成長法(MOVPE法)によってn
型GaAs基板1上にn型GaAsバッファ層2を介し
てn型(Al0.7 Ga0.3 0.5 In0.5 Pクラッド層
3を積層し、さらにこのクラッド層3上に多重量子井戸
活性層4とP型(Al0.7 Ga0.3 0.5 In0.5 Pク
ラッド層5とP型GaP層6を順次積層した構造となっ
ている。
[0003] As shown in the figure, this epitaxial wafer is formed by metalorganic vapor phase epitaxy (MOVPE).
(Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 3 is laminated on an n-type GaAs substrate 1 with an n-type GaAs buffer layer 2 interposed therebetween, and a multiple quantum well active layer 4 and a P-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 5 and P-type GaP layer 6 are sequentially laminated.

【0004】また、この多重量子井戸活性層4は、同図
に示すように複数のun−( Al0.5 Ga0.5 ) 0.5
0.5 P障壁層7と、un−Ga0.5 In0.5 P井戸層
8とをそれぞれ交互に多重に積層した構造となってい
る。
The multiple quantum well active layer 4 has a plurality of un- (Al 0.5 Ga 0.5 ) 0.5 I as shown in FIG.
The structure is such that n 0.5 P barrier layers 7 and un-Ga 0.5 In 0.5 P well layers 8 are alternately and multiplexed.

【0005】そして、このような多重量子井戸活性層4
を有するエピタキシャルウェハによって得られる発光ダ
イオードにあっては、図5に示すように通常のダブルへ
テロ(DH)構造の発光ダイオードと比較してその輝度
が約1.5倍程度向上することから、高輝度仕様の発光
ダイオードとして頻繁に採用されてきている。
The multiple quantum well active layer 4
In the light emitting diode obtained by the epitaxial wafer having the above, the brightness is improved about 1.5 times as compared with the light emitting diode of a normal double hetero (DH) structure as shown in FIG. It has been frequently adopted as a light emitting diode of high brightness specification.

【0006】一方、このような従来のエピタキシャルウ
ェハを用いた発光ダイオードにあっては、その輝度は約
100mcd程度が限界であることから、今後その適用
範囲を拡大するためには、さらなる高輝度仕様の発光ダ
イオードが望まれている。
On the other hand, in the light emitting diode using such a conventional epitaxial wafer, the luminance is limited to about 100 mcd. Therefore, in order to expand the applicable range in the future, a higher luminance specification is required. Are desired.

【0007】そこで、本発明はこのような課題を解決す
るために案出されたものであり、その目的は、輝度を従
来のものよりも大幅に向上させることができる新規な発
光素子用エピタキシャルウェハおよびこれを用いた発光
素子を提供するものである。
Accordingly, the present invention has been devised in order to solve such a problem, and an object of the present invention is to provide a novel epitaxial wafer for a light emitting device capable of greatly improving the luminance as compared with the conventional one. And a light-emitting element using the same.

【0008】[0008]

【課題を解決するための手段】ところで、この多重量子
井戸活性層4では、図6に示すように量子効果によって
井戸層8の価電子帯Ev側及び伝導体Ec側にそれぞれ
量子準位が形成され、これら量子準位間のエネルギー差
が井戸層8の実質的なバンドギャップとなるが、このバ
ンドギャップを決定する量子準位の絶対値は、井戸層8
の膜厚又は組成、あるいは障壁層7側の膜厚又は組成に
よって変化することが知られている。
In the multiple quantum well active layer 4, quantum levels are formed on the valence band Ev side and the conductor Ec side of the well layer 8 by the quantum effect as shown in FIG. The energy difference between these quantum levels becomes the substantial band gap of the well layer 8, and the absolute value of the quantum level that determines this band gap is
It is known that the thickness varies depending on the film thickness or composition of the barrier layer 7 or the film thickness or composition on the barrier layer 7 side.

【0009】そのため、従来の多重量子井戸活性層4に
あっては、図4及び図7に示すように、その各障壁層7
と井戸層8がそれぞれ全て同じ膜厚及び同じ組成となっ
ていることから、各井戸層8の量子準位の絶対値は全て
同一となり、結果的に実質的なバンドギャップも全ての
井戸層7で同一となっている。
Therefore, in the conventional multiple quantum well active layer 4, as shown in FIGS.
And the well layers 8 have the same thickness and the same composition, respectively, so that the absolute values of the quantum levels of the well layers 8 are all the same, and consequently, the substantial band gap is also reduced in all the well layers 7. Are the same.

【0010】そして、このように各井戸層8の実質的な
バンドギャップが全て同一となっていると、発光スペク
トルの幅(半値幅)が狭くなるため、これを用いて得ら
れる発光ダイオードの輝度をさらに向上させることは困
難である。また、いずれの井戸層8のバンドギャップが
全て同一であると、光取り出し面から離れた位置にある
井戸層8の発光が光取り出し面に到達するまでに吸収さ
れてしまい、外部への光取り出し効率が低いものであっ
た。
If the substantial band gaps of the respective well layers 8 are all the same as described above, the width (half width) of the emission spectrum becomes narrower, and the luminance of the light emitting diode obtained by using the same is obtained. Is difficult to further improve. If the band gaps of all the well layers 8 are the same, light emitted from the well layer 8 located at a position distant from the light extraction surface is absorbed before reaching the light extraction surface. The efficiency was low.

【0011】そこで、本発明は上記特許請求の範囲に記
載したように、GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記井
戸層側の膜厚又は組成のいずれか、あるいは障壁層側の
膜厚又は組成のいずれか、若しくは両層を単一でなくし
たものである。
Accordingly, the present invention provides a light emitting device having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, as described in the above claims. In the epitaxial wafer, any one of the film thickness or composition on the well layer side, any one of the film thickness or composition on the barrier layer side, or both layers are not single.

【0012】これによって、量子準位の絶対値が変化し
て実質的なバンドギャップに分布を持たせることができ
るため、発光スペクトルの幅(半値幅)を広くすること
が可能となって発光強度が向上し、これを用いた発光素
子の輝度を大幅に向上させることができる。
As a result, the absolute value of the quantum level changes and a substantial band gap can be distributed, so that the width (half width) of the emission spectrum can be increased, and the emission intensity can be increased. And the luminance of a light emitting element using the same can be greatly improved.

【0013】また、各井戸層8の実質的なバンドギャッ
プを光取り出し面側になるに従って徐々に大きくするこ
とによって各井戸層8の実質的なバンドギャップが光取
り出し面側になるに従って徐々に大きくなるため、活性
層中での光の吸収が抑制され、外部への光取り出し効率
が向上してさらにその輝度を向上させることができる。
The substantial band gap of each well layer 8 is gradually increased toward the light extraction surface, so that the substantial band gap of each well layer 8 is gradually increased toward the light extraction surface. Therefore, the absorption of light in the active layer is suppressed, the efficiency of extracting light to the outside is improved, and the luminance can be further improved.

【0014】[0014]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0015】図1は本発明に係る発光素子用エピタキシ
ャルウェハ(以下、エピタキシャルウェハと称す)の実
施の一形態を示したものである。
FIG. 1 shows an embodiment of an epitaxial wafer for a light emitting device (hereinafter, referred to as an epitaxial wafer) according to the present invention.

【0016】図示するように、このエピタキシャルウェ
ハは、従来と同様に有機金属気相成長法(MOVPE
法)を用いてn型GaAs基板1上にn型GaAsバッ
ファ層2を介してn型(Al0.7 Ga0.3 0.5 In
0.5 Pクラッド層3を成長させると共にこのクラッド層
3上に多重量子井戸活性層9(以下、活性層9と称す)
を形成し、さらにこの活性層9上にP型(Al0.7 Ga
0.3 0.5 In0.5 Pクラッド層5とP型GaP層6を
順次成長させて多重に積層した構造となっている。
As shown in the figure, this epitaxial wafer is formed by a metalorganic vapor phase epitaxy (MOVPE) as in the prior art.
N) (Al 0.7 Ga 0.3 ) 0.5 In on an n-type GaAs substrate 1 via an n-type GaAs buffer layer 2
A 0.5 P clad layer 3 is grown, and a multiple quantum well active layer 9 (hereinafter referred to as an active layer 9) is formed on the clad layer 3.
Is formed, and a P-type (Al 0.7 Ga) is formed on the active layer 9.
0.3 ) 0.5 In 0.5 P clad layer 5 and P-type GaP layer 6 are sequentially grown and stacked in multiple layers.

【0017】また、この活性層9は、複数のun−( A
0.5 Ga0.5 ) 0.5 In0.5 P障壁層7(以下、障壁
層7と称す)と、un−Ga0.5 In0.5 P井戸層8
(以下、井戸層8と称す)とをそれぞれ交互に成長させ
て多重に積層した構造となっている。
The active layer 9 includes a plurality of un- (A
l 0.5 Ga 0.5 ) 0.5 In 0.5 P barrier layer 7 (hereinafter referred to as barrier layer 7) and un-Ga 0.5 In 0.5 P well layer 8
(Hereinafter, referred to as well layers 8) are alternately grown and stacked in multiple layers.

【0018】ここで、本実施の形態にあっては、各障壁
層7の膜厚は全て10nmとなっているのに対し、各井
戸層8は、積層方向になるに従って徐々に薄くなるよう
に全ての膜厚が異なっている。具体的には、図1及び図
2に示すようにこれら各井戸層8のうち、光取り出し面
から最も遠い位置にある井戸層8aの厚さは6.3nm
であり、これより光取り出し面側になるに従ってそれぞ
れ0.1nmずつ薄くなっており、最も光取り出し面側
に近い位置にある井戸層8gの膜厚は5.7nmと最も
薄い状態となっている。
Here, in the present embodiment, the thickness of each barrier layer 7 is all 10 nm, whereas the thickness of each well layer 8 is gradually reduced in the laminating direction. All film thicknesses are different. Specifically, as shown in FIG. 1 and FIG. 2, the thickness of the well layer 8a farthest from the light extraction surface in each of the well layers 8 is 6.3 nm.
The thickness of the well layer 8g at the position closest to the light extraction surface is 5.7 nm, which is the thinnest state. .

【0019】このため、図2に示すように各井戸層8a
〜8gの量子準位の絶対値がそれぞれ異なることによっ
て実質的なバンドギャップが光取り出し面側になるに従
って徐々に広くなる。
For this reason, as shown in FIG.
When the absolute values of the quantum levels of ~ 8 g are different from each other, the substantial band gap gradually increases toward the light extraction surface.

【0020】従って、井戸層8の実質的なバンドギャッ
プに分布を持たせることができるため、発光スペクトル
幅(半値幅)が広がり、活性層9の発光強度が従来のそ
れに比べて大幅に向上する。また、各井戸層8a〜8g
の実質的なバンドギャップが光取り出し面方向に徐々広
くなることによって活性層9中での光の吸収が抑制され
るため、外部への光取り出し効率が向上する。
Therefore, since the substantial band gap of the well layer 8 can have a distribution, the emission spectrum width (half width) is widened, and the emission intensity of the active layer 9 is greatly improved as compared with the conventional one. . In addition, each of the well layers 8a to 8g
The light absorption in the active layer 9 is suppressed by gradually increasing the substantial band gap in the direction of the light extraction surface, so that the efficiency of light extraction to the outside is improved.

【0021】また、このバンドギャップの変化は、井戸
層8の膜厚を変えるだけでなく、障壁層7側の膜厚ある
いは両層を適宜変えることによっても得ることができ、
さらに、これら井戸層8又は障壁層7の組成を変えるこ
とによっても達成することができるため、これらの方法
によっても上記と同様な作用・効果を得ることができ
る。また、井戸層8(又は障壁層7)の全ての層を変化
させなくとも一部のみを変化させるようにしても良い。
The change in the band gap can be obtained not only by changing the thickness of the well layer 8 but also by appropriately changing the thickness of the barrier layer 7 or both layers.
Further, the above-mentioned effect can be achieved by changing the composition of the well layer 8 or the barrier layer 7, and therefore, the same operation and effect as described above can be obtained by these methods. Further, it is possible to change only a part of the well layer 8 (or the barrier layer 7) without changing all the layers.

【0022】[0022]

【実施例】次に、本発明の具体的実施例を説明する。Next, specific examples of the present invention will be described.

【0023】(実施例)図1に示すように、先ず、MO
VPE法によってn型GaAs基板1上にn型(Seド
ープ)GaAsバッファ層2を介してn型(Seドー
プ)(Al0.7 Ga0.3 0.5 In0.5 Pクラッド層3
を積層すると共にこのクラッド層3上に、発光波長63
0nm付近の多重量子井戸活性層9を形成した。ここ
で、この多重量子井戸活性層9は、膜厚10nmのun
−( Al0.5 Ga0.5 ) 0.5 In0.5P障壁層7を8層
と、un−Ga0.5 In0.5 P井戸層8とをそれぞれ交
互に多重に積層すると共に、井戸層8の膜厚を6.3n
m〜5.7nmまでの範囲で0.1nmずつ変えたもの
を光取り出し面方向に順に亘って薄くなるように積層し
た構造とした。
(Embodiment) As shown in FIG.
An n-type (Se-doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 3 is provided on an n-type GaAs substrate 1 via an n-type (Se-doped) GaAs buffer layer 2 by a VPE method.
And an emission wavelength of 63 on the cladding layer 3.
A multiple quantum well active layer 9 near 0 nm was formed. Here, the multi-quantum well active layer 9 has a thickness of 10 nm.
Eight-(Al 0.5 Ga 0.5 ) 0.5 In 0.5 P barrier layers 7 and un-Ga 0.5 In 0.5 P well layers 8 are alternately and multiplexed, and the thickness of the well layer 8 is 6.3 n.
A structure in which the thickness was changed in steps of 0.1 nm in the range of m to 5.7 nm so as to become thinner in order in the direction of the light extraction surface was adopted.

【0024】次いで、同じくMOVPE法によってこの
多重量子井戸活性層9上にp型(亜鉛ドープ)(Al
0.7 Ga0.3 0.5 In0.5 Pクラッド層5とp型(亜
鉛ドープ)GaP層6をそれぞれ10μmの厚さで積層
して本発明に係る発光素子用エピタキシャルウェハを形
成した。尚、全てのエピタキシャル層の成膜は、成膜温
度700℃、成膜圧力50Toor、成膜速度0.3〜
3.0nm/s、V/III 比は100〜600で行っ
た。
Next, p-type (zinc-doped) (Al) is formed on the multiple quantum well active layer 9 by the MOVPE method.
The 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 5 and the p-type (zinc-doped) GaP layer 6 were each laminated to a thickness of 10 μm to form an epitaxial wafer for a light emitting device according to the present invention. All the epitaxial layers were formed at a film forming temperature of 700 ° C., a film forming pressure of 50 Tool, and a film forming speed of 0.3 to 0.3 ° C.
The measurement was performed at 3.0 nm / s and the V / III ratio was 100 to 600.

【0025】次に、この発光素子用エピタキシャルウェ
ハに従来と同様な加工を施して発光ダイオードチップを
作製した。尚、このチップの大きさは300μm角でチ
ップ下面全体にn型電極を形成し、チップ上面に直径1
50μmの円形のp型電極を形成した。n型電極は、金
ゲルマニウム、ニッケル、金をそれぞれ60nm,10
nm,1000nmの順に蒸着し、p型電極は、金亜
鉛、ニッケル、金をそれぞれ60nm,10nm,10
00nmの順に蒸着した。さらに、このチップをステム
組して、樹脂モールドまで行い、発光ダイオードの発光
特性を調べた。
Next, the same process as in the prior art was performed on the epitaxial wafer for a light emitting device to produce a light emitting diode chip. The size of this chip was 300 μm square, and an n-type electrode was formed on the entire lower surface of the chip.
A 50 μm circular p-type electrode was formed. The n-type electrode is made of gold germanium, nickel, and gold at 60 nm and 10 nm, respectively.
nm, then 1000 nm, and the p-type electrode is made of gold, zinc, nickel and gold at 60 nm, 10 nm and 10 nm, respectively.
Deposition was performed in the order of 00 nm. Further, this chip was assembled into a stem and the process was performed up to resin molding, and the light emitting characteristics of the light emitting diode were examined.

【0026】(従来例)上記多重量子井戸活性層とし
て、全ての障壁層と井戸層との膜厚を均一にした他は、
上記実施例1と同様な方法によって発光素子用エピタキ
シャルウェハを形成した後、発光素子用エピタキシャル
ウェハに従来と同様な加工を施して実施例と同様なサイ
ズの発光ダイオードを作製し、その発光ダイオードの発
光特性を調べた。
(Conventional Example) As the multiple quantum well active layer, except that the thicknesses of all barrier layers and well layers are made uniform,
After forming an epitaxial wafer for a light emitting device by the same method as in the first embodiment, the same processing as before was performed on the epitaxial wafer for a light emitting device to produce a light emitting diode having a size similar to that of the embodiment. The light emission characteristics were examined.

【0027】先ず、実施例及び従来例の発光ダイオード
に対して20mA通電した際の発光スペクトルを比較す
ると、図3に示すように本実施例では、従来例に比べて
発光スペクトルの幅が広くなっており、発光強度が従来
例よりも大きく向上した。
First, comparing the emission spectra of the light emitting diodes of the embodiment and the conventional example when a current of 20 mA is applied, as shown in FIG. 3, in the present embodiment, the width of the emission spectrum is wider than that of the conventional example. As a result, the light emission intensity was greatly improved as compared with the conventional example.

【0028】また、両発光ダイオードの輝度を測定した
結果、従来例100mcdであるのに対して、本実施例
は130mcdとなり、従来例に比べてその輝度が30
%も向上した。
Also, as a result of measuring the luminance of both light emitting diodes, the result is 130 mcd in the present embodiment, compared to 100 mcd in the conventional example, and the luminance is 30 mcd in comparison with the conventional example.
% Also improved.

【0029】[0029]

【発明の効果】以上要するに本発明によれば、多重量子
井戸活性層の井戸層又は障壁層の膜厚或いは組成を異な
らしめてバンドギャップに分布を持たせるようにしたた
め、発光スペクトルの幅が広くなり、これによって輝度
が向上する。また、このバンドギャップを光り取り出し
面側に近づくに従って実質的なバンドギャップを広くす
るようにしたため、発光の取り出し効率が向上し、その
輝度をさらに向上することができる等といった優れた効
果を発揮することができる。
In summary, according to the present invention, the thickness or composition of the well layer or barrier layer of the multiple quantum well active layer is varied so as to have a distribution in the band gap, so that the width of the emission spectrum is widened. , Thereby improving the brightness. In addition, since the substantial band gap is widened as the band gap approaches the light extraction surface side, excellent effects such as an improvement in light emission extraction efficiency and further improvement in luminance can be achieved. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発光素子用エピタキシャルウェハ
の実施の一形態を示す構造図である。
FIG. 1 is a structural view showing one embodiment of an epitaxial wafer for a light emitting device according to the present invention.

【図2】本発明に係る発光素子用エピタキシャルウェハ
の多重量子井戸活性層におけるバンドギャップを示す概
念図である。
FIG. 2 is a conceptual diagram showing a band gap in a multiple quantum well active layer of an epitaxial wafer for a light emitting device according to the present invention.

【図3】本発明に係る発光素子(発光ダイオード)と、
従来の発光ダイオードの発光スペクトルを比較した結果
を示すグラフ図である。
FIG. 3 shows a light emitting device (light emitting diode) according to the present invention;
FIG. 9 is a graph showing the result of comparing the emission spectra of conventional light emitting diodes.

【図4】従来の発光素子用エピタキシャルウェハの典型
例を示す構造図である。
FIG. 4 is a structural view showing a typical example of a conventional epitaxial wafer for a light emitting device.

【図5】従来のダブルへテロ活性層を有する発光ダイオ
ードの発光スペクトルと、従来の多重量子井戸活性層を
有する発光ダイオードの発光スペクトルを示すグラフ図
である。
FIG. 5 is a graph showing an emission spectrum of a light emitting diode having a conventional double hetero active layer and an emission spectrum of a light emitting diode having a conventional multiple quantum well active layer.

【図6】多重量子井戸活性層の量子効果による実質的な
バンドギャップを示す説明図である。
FIG. 6 is an explanatory diagram showing a substantial band gap due to a quantum effect of a multiple quantum well active layer.

【図7】従来の多重量子井戸活性層におけるバンドギャ
ップを示す概念図である。
FIG. 7 is a conceptual diagram showing a band gap in a conventional multiple quantum well active layer.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 バッファ層 3,5 クラッド層 4 従来の多重量子井戸活性層 6 GaP層 7 障壁層 8 井戸層 9 本発明の多重量子井戸活性層 DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 Buffer layer 3, 5 Cladding layer 4 Conventional multiple quantum well active layer 6 GaP layer 7 Barrier layer 8 Well layer 9 Multiple quantum well active layer of the present invention

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今野 泰一郎 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 金田 直樹 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 野口 雅弘 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 (72)発明者 菊池 幸夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 5F041 AA04 AA14 CA05 CA22 CA34 CA65 5F073 AA74 CA07 CB07 DA05  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Taiichiro Konno 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within Hitachi Cable Advanced Research Center (72) Inventor Naoki 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture (72) Inventor Masahiro Noguchi 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Hidaka Plant (72) Inventor Yukio Kikuchi 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture No. 1 F-term in the Hidaka Plant of Hitachi Cable, Ltd. (reference) 5F041 AA04 AA14 CA05 CA22 CA34 CA65 5F073 AA74 CA07 CB07 DA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
井戸層の厚さが単一ではないことを特徴とする発光素子
用エピタキシャルウェハ。
In an epitaxial wafer for a light emitting device having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, the thickness of each well layer is a single. An epitaxial wafer for a light-emitting device, characterized in that:
【請求項2】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
井戸層の組成が単一ではないことを特徴とする発光素子
用エピタキシャルウェハ。
2. An epitaxial wafer for a light emitting device having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, wherein the composition of each well layer is single. An epitaxial wafer for a light emitting device, characterized in that it is not provided.
【請求項3】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
障壁層の厚さが単一でないことを特徴とする発光素子用
エピタキシャルウェハ。
3. An epitaxial wafer for a light emitting device having a multiple quantum well structure in which an active layer on a GaAs substrate has a multiple quantum well structure in which a plurality of barrier layers and well layers are alternately stacked, wherein each of the barrier layers has a single thickness. An epitaxial wafer for a light emitting device, characterized in that:
【請求項4】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
障壁層の組成が単一でないことを特徴とする発光素子用
エピタキシャルウェハ。
4. In a light emitting device epitaxial wafer having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, the composition of each barrier layer is not unitary. An epitaxial wafer for a light emitting device, characterized in that:
【請求項5】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
井戸層の実質的なバンドギャップが単一でないことを特
徴とする発光素子用エピタキシャルウェハ。
5. In a light emitting device epitaxial wafer having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, a substantial band gap of each well layer is provided. Is not a single epitaxial wafer for a light emitting device.
【請求項6】 GaAs基板上の活性層が複数の障壁層
と井戸層とを交互に積層した多重量子井戸構造となって
いる発光素子用エピタキシャルウェハにおいて、上記各
井戸層の実質的なバンドギャップが光取り出し面側にな
るに従って大きくなっていることを特徴とする発光素子
用エピタキシャルウェハ。
6. A light emitting device epitaxial wafer having a multiple quantum well structure in which an active layer on a GaAs substrate has a plurality of barrier layers and well layers alternately stacked, wherein a substantial band gap of each well layer is provided. Characterized in that the size of the epitaxial wafer increases toward the light extraction surface.
【請求項7】 上記請求項1〜6のいずれかに記載の発
光素子用エピタキシャルウェハを用いて得られたことを
特徴とする発光素子。
7. A light-emitting device obtained by using the light-emitting device epitaxial wafer according to any one of claims 1 to 6.
JP34053499A 1999-11-30 1999-11-30 Epitaxial wafer for light-emitting device and light- emitting element Pending JP2001156328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34053499A JP2001156328A (en) 1999-11-30 1999-11-30 Epitaxial wafer for light-emitting device and light- emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34053499A JP2001156328A (en) 1999-11-30 1999-11-30 Epitaxial wafer for light-emitting device and light- emitting element

Publications (1)

Publication Number Publication Date
JP2001156328A true JP2001156328A (en) 2001-06-08

Family

ID=18337917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34053499A Pending JP2001156328A (en) 1999-11-30 1999-11-30 Epitaxial wafer for light-emitting device and light- emitting element

Country Status (1)

Country Link
JP (1) JP2001156328A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123878A (en) * 2005-10-25 2007-05-17 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element
WO2008155958A1 (en) * 2007-06-15 2008-12-24 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
WO2009041237A1 (en) * 2007-09-27 2009-04-02 Showa Denko K.K. Iii nitride semiconductor light emitting element
JP2009105423A (en) * 2008-12-08 2009-05-14 Showa Denko Kk Group iii nitride semiconductor light emitting device
JP2012204839A (en) * 2011-03-25 2012-10-22 Lg Innotek Co Ltd Light emitting device and method for manufacturing the same
JP2014038885A (en) * 2012-08-10 2014-02-27 Sumitomo Electric Ind Ltd Light-emitting element and optical device
JP2014165498A (en) * 2013-02-27 2014-09-08 Seoul Semiconductor Co Ltd Light emitting device
CN108281515A (en) * 2018-01-06 2018-07-13 李丹丹 High-brightness LED and its preparation process

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123878A (en) * 2005-10-25 2007-05-17 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting element
WO2008155958A1 (en) * 2007-06-15 2008-12-24 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
WO2009041237A1 (en) * 2007-09-27 2009-04-02 Showa Denko K.K. Iii nitride semiconductor light emitting element
JP2009081379A (en) * 2007-09-27 2009-04-16 Showa Denko Kk Group iii nitride semiconductor light-emitting device
CN101809763B (en) * 2007-09-27 2012-05-23 昭和电工株式会社 III nitride semiconductor light emitting element
US8389975B2 (en) 2007-09-27 2013-03-05 Showa Denko K.K. Group III nitride semiconductor light-emitting device
JP2009105423A (en) * 2008-12-08 2009-05-14 Showa Denko Kk Group iii nitride semiconductor light emitting device
JP2012204839A (en) * 2011-03-25 2012-10-22 Lg Innotek Co Ltd Light emitting device and method for manufacturing the same
JP2014038885A (en) * 2012-08-10 2014-02-27 Sumitomo Electric Ind Ltd Light-emitting element and optical device
JP2014165498A (en) * 2013-02-27 2014-09-08 Seoul Semiconductor Co Ltd Light emitting device
CN108281515A (en) * 2018-01-06 2018-07-13 李丹丹 High-brightness LED and its preparation process
CN108281515B (en) * 2018-01-06 2019-06-21 洲磊新能源(深圳)有限公司 High-brightness LED and its preparation process

Similar Documents

Publication Publication Date Title
CN110416249B (en) Semiconductor light-emitting device and manufacturing method thereof
RU2469435C1 (en) Array of semiconductor light-emitting elements and method of making said element
CN101635255B (en) A method of forming a semiconductor structure
US8659039B2 (en) Semiconductor light emitting diode
JP3643665B2 (en) Semiconductor light emitting device
KR100540548B1 (en) Quantum dot light emiting device and manufacturing method of the same
KR20080052016A (en) The manufacturing method of light emission device including current spreading layer
US8138494B2 (en) GaN series light-emitting diode structure
JP2006332205A (en) Nitride semiconductor light emitting element
JP2002217452A (en) Iii group nitride compound semiconductor device
CN110233427B (en) Two-dimensional exciton laser based on silicon-based gallium nitride and tungsten disulfide single-layer film and preparation method thereof
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
JP2001156328A (en) Epitaxial wafer for light-emitting device and light- emitting element
JP2009059851A (en) Semiconductor light emitting diode
JPH07176826A (en) Gallium nitride compound semiconductor laser element
US20180374994A1 (en) Light-Emitting Diode Chip, and Method for Manufacturing a Light-Emitting Diode Chip
US6465812B1 (en) Semiconductor light emitting device
JPH10321907A (en) Light-emitting semiconductor element and its manufacture
JPH0864913A (en) Semiconductor light emitting element and its manufacture
JP2001015805A (en) AlGaInP LIGHT-EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JPH08125221A (en) Semiconductor light-emitting element
JP2001102627A (en) AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF
TW201225331A (en) Quasi-optical crystal structure and manufacturing method thereof
US20230016028A1 (en) Semiconductor light-emitting component and light-emitting device
JPH0366188A (en) Multi-wavelength laser diode