JP2001155187A - Automatic mesh generation method for numerical analysis - Google Patents

Automatic mesh generation method for numerical analysis

Info

Publication number
JP2001155187A
JP2001155187A JP33386399A JP33386399A JP2001155187A JP 2001155187 A JP2001155187 A JP 2001155187A JP 33386399 A JP33386399 A JP 33386399A JP 33386399 A JP33386399 A JP 33386399A JP 2001155187 A JP2001155187 A JP 2001155187A
Authority
JP
Japan
Prior art keywords
space
points
boundary surface
numerical analysis
generation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33386399A
Other languages
Japanese (ja)
Inventor
Shoichiro Uesono
昌一郎 上園
Makoto Koizumi
眞 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33386399A priority Critical patent/JP2001155187A/en
Publication of JP2001155187A publication Critical patent/JP2001155187A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automatic method of generating three dimensional space meshes used for numerical analysis which can automatically generate hexahedral three-dimensional space meshes for numerical analysis even for a large-scale analysis system that includes millions of three-dimensional space meshes or more for numerical analysis, which can reduce the working burden on operator and which is also advantageous in terms of a numerical analysis error. SOLUTION: When a three-dimensional closed space including an optional shape is automatically divided, eight of configuration points of a plurality of interfaces forming the closed space are extracted and the interfaces are reconfigured by four adjacent points of these eight extracted component points. Then the number of division of the closed space is set again so as to equalize the number of division of the opposite sides of the interfaces, and an interface is automatically divided into tetragonal elements. A cross section that is adjacent to one of reconfigured interfaces is generated in a space and this cross section is automatically divided into tetragonal elements, a hexahedral element is formed in a space by using the tetragonal elements which are opposite to each other on the adjacent cross sections. Thus, the hexahedral elements are automatically generated in the closed space.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は数値解析用の解析用
メッシュデータの生成方法、特に三次元空間メッシュ生
成方法にかかわり、数値解析誤差の点で有利な六面体の
解析用三次元空間メッシュを自動生成し、メッシュ作成
作業者の負担を軽減するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for generating mesh data for analysis for numerical analysis, and more particularly to a method for generating a three-dimensional spatial mesh. It is generated to reduce the burden on the mesh creation operator.

【0002】[0002]

【従来の技術】数値解析では、解析対象の実際の形状
を、節点と要素で近似して数値解析用の格子またはメッ
シュ(以下メッシュ)で表現している。メッシュのデー
タには、節点データとして節点番号と節点の座標デー
タ、要素データとして要素番号と要素を構成する節点番
号の情報、要素の解析条件を記述する属性データがあ
る。これらメッシュデータをオペレータが手入力で作成
・編集するには限界があり、複雑な解析体系の2次元の
メッシュや、三次元空間メッシュを作成する際、通常、
メッシュを作成する専用のアプリケーションソフトを用
いて作成する。メッシュ作成専用のアプリケーションソ
フトで、メッシュを作成する場合、形状の作成作業と、
数値解析用のメッシュ作成作業に大別できる。形状の作
成作業では、境界線、境界面、空間要素を作成する。こ
れら形状データには、各々の形状データ同士の接続関係
や、属性データが含まれる。次に、数値解析用のメッシ
ュデータ作成作業では、形状を構成する境界線上の分割
数を設定する。境界線の分割情報に従って、境界面と空
間要素を分割し、節点と要素データを作成する。境界面
上の要素自動分割方法は、デローニ法などにより確立し
ている。また、空間を分割する方法についても、四面体
要素で自動生成する方法が確立している。
2. Description of the Related Art In a numerical analysis, an actual shape to be analyzed is approximated by nodes and elements and is represented by a grid or a mesh for numerical analysis (hereinafter, mesh). The mesh data includes a node number and coordinate data of the node as node data, an element number and information of a node number constituting the element as element data, and attribute data describing an element analysis condition. There is a limit in creating and editing these mesh data manually by an operator. When creating a two-dimensional mesh or a three-dimensional spatial mesh of a complex analysis system,
It is created using dedicated application software for creating meshes. When creating mesh with application software dedicated to mesh creation, shape creation work,
It can be roughly divided into mesh creation work for numerical analysis. In the work of creating a shape, a boundary line, a boundary surface, and a space element are created. The shape data includes a connection relationship between the shape data and attribute data. Next, in the mesh data creation work for numerical analysis, the number of divisions on the boundary line that configures the shape is set. The boundary surface and the space element are divided according to the boundary line division information, and nodes and element data are created. The automatic element division method on the boundary surface is established by the Deloni method or the like. As for a method of dividing a space, a method of automatically generating a tetrahedral element has been established.

【0003】しかし、数値解析誤差の点で有利な、六面
体要素で三次元空間を分割する自動メッシュ分割方法
は、確立されていない。従来、三次元空間を六面体要素
に分割する場合、以下の手順で行っていた。まず、図4
に示すように多角形の境界面50に囲まれる空間要素5
1を六面体要素で分割する場合を考える。図5は図6に
示した空間要素51の上部境界面50を示している。ま
ず、多角形の境界面50を四辺形形状52に分割する。
四辺形形状52に分割した境界面に対向する境界面53
についても、境界面同士で不整合が生じないように四辺
形形状に分割する。次に、四辺形形状の境界線について
も、対向する辺の分割数54が等しくなるよう境界線に
要素分割数を設定し、その空間を六面体要素に分割して
いた。上記のように、空間を構成する境界面を四辺形形
状に分割する作業、対向する境界面について境界線の分
割に不整合が生じないように境界線の分割数を揃える作
業は、オペレータの判断で実施していた。これらの作業
は、オペレータにとって、かなりの作業量であった。更
に、近年のハードウェア技術の発達で、解析用メッシュ
に数100万節点を越える大規模なメッシュによる数値
解析が実現可能になりつつある。メッシュ作成専用のア
プリケーションソフトを用いて、従来の手順で数100
万節点に及ぶ三次元のメッシュデータを作成するには、
多大な負荷がオペレータにかかってしまう。
However, an automatic mesh division method for dividing a three-dimensional space by hexahedral elements, which is advantageous in terms of numerical analysis errors, has not been established. Conventionally, when dividing a three-dimensional space into hexahedral elements, the following procedure has been used. First, FIG.
A space element 5 surrounded by a polygonal boundary surface 50 as shown in FIG.
Consider a case where 1 is divided by a hexahedral element. FIG. 5 shows the upper boundary surface 50 of the spatial element 51 shown in FIG. First, the polygonal boundary surface 50 is divided into quadrilateral shapes 52.
A boundary surface 53 facing the boundary surface divided into the quadrilateral shape 52
Is also divided into quadrilateral shapes so that no inconsistency occurs between the boundary surfaces. Next, also regarding the quadrilateral-shaped boundary line, the number of element divisions is set to the boundary line so that the division number 54 of the opposite side is equal, and the space is divided into hexahedral elements. As described above, the operation of dividing the boundary surface forming the space into a quadrilateral shape and the operation of aligning the number of boundary lines so that the division of the boundary line on the opposing boundary surface does not cause inconsistency are determined by the operator. Had been implemented. These tasks were a considerable amount of work for the operator. Furthermore, with the development of hardware technology in recent years, it has become possible to realize numerical analysis using a large-scale mesh exceeding several million nodes in an analysis mesh. Using application software dedicated to mesh creation, several hundreds
To create three-dimensional mesh data covering all nodes,
A large load is placed on the operator.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、数値
解析用の三次元空間メッシュが数100万点を超える大規
模な解析体系においても、六面体の数値解析用三次元空
間メッシュを自動的に生成し、オペレータの作業負担を
軽減し、かつ、数値解析誤差の点で有利な、数値解析用
三次元空間メッシュ自動的生成方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to automatically convert a three-dimensional mesh for hexahedral numerical analysis into a large-scale analysis system in which the number of three-dimensional meshes for numerical analysis exceeds several million. Another object of the present invention is to provide a method for automatically generating a three-dimensional spatial mesh for numerical analysis, which reduces the work load on the operator and is advantageous in terms of numerical analysis errors.

【0005】[0005]

【課題を解決するための手段】上記問題点を解消するた
め、以下に示すアルゴリズムで自動分割を実施する。
In order to solve the above problem, automatic division is performed by the following algorithm.

【0006】(1)閉空間を構成する境界面の構成点の
うち8点を抽出する。
(1) Eight points are extracted from constituent points of a boundary surface forming a closed space.

【0007】(2)抽出した8点のうち4点で境界面を構
成し直す。
(2) A boundary surface is reconstructed from four of the eight extracted points.

【0008】(3)(2)で構成し直したそれぞれの境
界面の境界線は、抽出した8点の構成点のうちの4点によ
り、4本の境界線に分割されている。対向する境界線の
分割数が等しくなるように分割数を再設定する。
(3) The boundary line of each boundary surface reconfigured in (2) is divided into four boundary lines by four of the eight constituent points extracted. The number of divisions is reset so that the number of divisions of opposing boundary lines becomes equal.

【0009】(4)空間を構成する全ての対向する境界
線の分割数が等しくなるように再設定する。
(4) The number of divisions of all the opposing boundary lines constituting the space is reset so as to be equal.

【0010】(5)境界面上を四辺形要素にメッシュ分
割する。
(5) The mesh on the boundary surface is divided into quadrilateral elements.

【0011】(6)境界面の一つを選択し、その境界面
に隣接する断面を閉空間に生成する。
(6) One of the boundary surfaces is selected, and a section adjacent to the boundary surface is generated in a closed space.

【0012】(7)生成した断面上を四辺形要素にメッ
シュ分割する。
(7) The generated cross section is mesh-divided into quadrilateral elements.

【0013】(8)隣接する断面上で相対する四辺形要
素同士で六面体要素を生成する。
(8) A hexahedral element is generated from quadrilateral elements that are opposed on adjacent cross sections.

【0014】[0014]

【発明の実施の形態】本発明による自動メッシュ生成方
法を図1、図2、図3に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An automatic mesh generation method according to the present invention is shown in FIGS.

【0015】本発明の構成は、閉空間1を構成する境界
面2、境界面2を構成する閉曲線3、閉曲線3を構成す
る境界線4、境界線4の端点5、閉曲線3で囲まれた第
1領域6、第2領域7、各境界線の分割数8、閉空間1
の上記端点5のうち抽出した節点60、抽出した上記節
点60で再構成した境界面61、対向辺の分割数10、
閉空間1の重心点100とする。
In the configuration of the present invention, a boundary surface 2 forming the closed space 1, a closed curve 3 forming the boundary surface 2, a boundary line 4 forming the closed curve 3, an end point 5 of the boundary line 4, and a closed curve 3 are enclosed. First area 6, second area 7, number of divisions of each boundary line 8, closed space 1
Among the end points 5 described above, the extracted node 60, the boundary surface 61 reconstructed by the extracted node 60, the number of divisions of the opposite side 10,
The center of gravity 100 of the closed space 1 is set.

【0016】図1は、閉空間1を構成する境界面2と空
間要素1と隣接する閉空間11の境界面12を示してい
る。境界面2を構成する閉曲線3は、複数の境界線4か
らなり、境界線の端点5の内、8点を自動判定で抽出す
る。判定には、例えば、閉空間1の重心点100から上
記端点5までの距離を判定して、最遠隔点から、8点を
抽出する。抽出した上記節点6のうちの4点で境界面を
再構成する。すべての閉空間について境界面を再構成す
る。再構成した閉曲面のうち、閉曲面2と閉曲面12を
図2に示す。閉曲線の対向辺21について、各境界線の
分割数8を検索し、最大分割数に合わせ、分割数を自動
で再設定する。全ての対向辺21について分割数8を検
索、再設定し、対向辺21同士の分割数が等しく設定し
たあと、境界面2上を、四角形要素にメッシュ生成す
る。メッシュ生成には、例えば、等各写像法や、bounda
ry fit法を用いる。
FIG. 1 shows a boundary surface 2 constituting a closed space 1 and a boundary surface 12 of a closed space 11 adjacent to the space element 1. The closed curve 3 constituting the boundary surface 2 is composed of a plurality of boundary lines 4, and eight of the end points 5 of the boundary line are extracted by automatic judgment. In the determination, for example, the distance from the center of gravity 100 of the closed space 1 to the end point 5 is determined, and eight points are extracted from the farthest points. A boundary surface is reconstructed at four of the extracted nodes 6. Reconstruct boundary surfaces for all closed spaces. FIG. 2 shows the closed surface 2 and the closed surface 12 among the reconstructed closed surfaces. For the opposing side 21 of the closed curve, the division number 8 of each boundary line is searched, and the division number is automatically reset according to the maximum division number. The number of divisions 8 is searched and reset for all the opposing sides 21 and the number of divisions between the opposing sides 21 is set to be equal. Then, the mesh on the boundary surface 2 is formed into a quadrilateral element. For mesh generation, for example, mapping methods such as
Use the ry fit method.

【0017】図3に、境界面上に四角形要素を生成した
後、空間要素1について、六面体要素を生成方法を示
す。境界面2と対向する境界面を22の間には、境界線
上の分割節点により、断面31が構成でき、断面を構成
する対向辺の分割数は、境界面2、12と等しい。断面
3上を四辺形要素分割すると、境界面2と断面31上の
四辺形要素同士71、72で、空間に六面体要素を生成
できる。これを繰り返して、空間要素1内に六面体要素
を自動生成できる。全解析体系について、上記方法によ
り、自動で空間要素に六面体要素を生成できる。
FIG. 3 shows a method of generating a hexahedral element for the spatial element 1 after generating a rectangular element on the boundary surface. A cross section 31 can be formed between the boundary surface 22 facing the boundary surface 2 and the dividing nodes on the boundary line, and the number of divisions of the opposing sides forming the cross section is equal to the boundary surfaces 2 and 12. When the quadrilateral element is divided on the cross section 3, a hexahedral element can be generated in space by the boundary surface 2 and the quadrilateral elements 71 and 72 on the cross section 31. By repeating this, a hexahedral element can be automatically generated in the space element 1. For all analysis systems, hexahedral elements can be automatically generated as spatial elements by the above method.

【0018】[0018]

【発明の効果】請求項1から請求項4によれば、数値解
析用の三次元空間メッシュが数100万点を超える大規模
な解析体系になっても、数値解析誤差の点で有利な六面
体の数値解析用三次元空間メッシュを自動的に生成で
き、オペレータの作業負担の軽減する効果がある。
According to the first to fourth aspects, even if the three-dimensional spatial mesh for numerical analysis is a large-scale analysis system exceeding several million points, the hexahedron is advantageous in terms of numerical analysis error. Can automatically generate a three-dimensional spatial mesh for numerical analysis, which has the effect of reducing the operator's work load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の閉曲線の4分割点決定の説明
図。
FIG. 1 is an explanatory diagram of determining a four-divided point of a closed curve according to an embodiment of the present invention.

【図2】本発明の実施例の境界面上の四辺形要素分割の
説明図。
FIG. 2 is an explanatory diagram of quadrilateral element division on a boundary surface according to the embodiment of the present invention.

【図3】本発明の実施例の空間要素の六面体要素分割の
説明図。
FIG. 3 is an explanatory diagram of a hexahedral element division of a spatial element according to the embodiment of the present invention.

【図4】従来の空間要素の六面体要素分割の説明図。FIG. 4 is an explanatory diagram of a conventional hexahedral element division of a space element.

【図5】従来の空間要素の六面体要素分割の説明図。FIG. 5 is an explanatory diagram of a conventional hexahedral element division of a space element.

【符号の説明】[Explanation of symbols]

1…空間要素、2…空間要素1を構成する境界面、3…
境界面2を構成する閉曲線、4…閉曲線3を構成する境
界線、5…境界線4の端点、6…閉曲線3で囲まれた第
1領域6、8…各境界線の分割数、9…閉曲線の4分割
点、10…対向辺の分割数。
1 ... spatial element, 2 ... boundary surface forming spatial element 1, 3 ...
Closed curve forming the boundary surface 2, 4 ... Boundary line forming the closed curve 3, 5 ... End point of the boundary line 4, 6 ... First areas 6, 8 surrounded by the closed curve 3, ... Division number of each boundary line, 9 ... 4 divided points of the closed curve, 10 ... number of divisions of the opposite side.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 任意形状を含む三次元閉空間を自動分割
する方法において、上記閉空間を構成する複数の境界面
の構成点のうち8点を抽出して、前記8点のうち隣接する
4点で境界面を再構成し、前記境界面の対辺の分割数が
等しくなるように分割数を再設定し、前記再構成した境
界面上を四辺形要素で自動分割し、前記の再構成した境
界面の内の一つに隣接する断面を空間内に生成し、その
断面上を四辺形要素で自動分割して、隣接する断面上で
相対する四辺形要素同士で六面体要素を空間に生成する
ことで、前記閉空間内に六面体要素を自動生成する自動
格子生成方法。
1. A method for automatically dividing a three-dimensional closed space including an arbitrary shape, wherein eight points are extracted from constituent points of a plurality of boundary surfaces constituting the closed space, and adjacent points among the eight points are extracted.
Reconstruct the boundary surface at four points, reset the number of divisions so that the number of divisions on the opposite side of the boundary surface is equal, automatically divide the reconstructed boundary surface with quadrilateral elements, Generates a cross section adjacent to one of the boundary surfaces in the space, automatically divides the cross section with a quadrilateral element, and generates a hexahedral element in the space between adjacent quadrilateral elements on the adjacent cross section An automatic grid generation method for automatically generating a hexahedral element in the closed space.
【請求項2】 請求項1の自動格子生成方法において、
空間を構成する複数の構成点のうち8点を抽出する方法
として、空間の重心点から構成点までの距離を判定し
て、最遠隔点から、8点を選択する自動格子生成方法。
2. The automatic grid generation method according to claim 1, wherein
As a method of extracting eight points from a plurality of constituent points constituting a space, an automatic grid generation method in which the distance from the center of gravity of the space to the constituent points is determined, and eight points are selected from the farthest points.
【請求項3】 請求項1の自動格子生成方法において、
再構成した境界面上に四辺形要素を生成する方法とし
て、等角写像法を用いる自動格子生成方法。
3. The automatic grid generation method according to claim 1, wherein
An automatic grid generation method using a conformal mapping method as a method for generating a quadrilateral element on a reconstructed boundary surface.
【請求項4】 請求項1の自動格子生成方法において、
再構成した境界面上に四辺形要素を生成する方法とし
て、boundary fit法を用いる自動格子生成方法。
4. The automatic grid generation method according to claim 1, wherein
An automatic grid generation method using a boundary fit method as a method for generating a quadrilateral element on a reconstructed boundary surface.
JP33386399A 1999-11-25 1999-11-25 Automatic mesh generation method for numerical analysis Pending JP2001155187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33386399A JP2001155187A (en) 1999-11-25 1999-11-25 Automatic mesh generation method for numerical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33386399A JP2001155187A (en) 1999-11-25 1999-11-25 Automatic mesh generation method for numerical analysis

Publications (1)

Publication Number Publication Date
JP2001155187A true JP2001155187A (en) 2001-06-08

Family

ID=18270797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33386399A Pending JP2001155187A (en) 1999-11-25 1999-11-25 Automatic mesh generation method for numerical analysis

Country Status (1)

Country Link
JP (1) JP2001155187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157724A (en) * 2002-11-06 2004-06-03 Canon Inc Analytic model conversion method
KR100960085B1 (en) 2008-04-29 2010-05-31 삼성중공업 주식회사 Method and apparatus for generating automatic mesh in a vessel
US8014978B2 (en) 2004-03-09 2011-09-06 Fujitsu Limited Numerical analysis model data generating method for filling holes in a mesh
US8026914B2 (en) 2006-02-08 2011-09-27 Fujitsu Limited Numerical analysis mesh generation apparatus, numerical analysis mesh generation method, and numerical analysis generation program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157724A (en) * 2002-11-06 2004-06-03 Canon Inc Analytic model conversion method
US8014978B2 (en) 2004-03-09 2011-09-06 Fujitsu Limited Numerical analysis model data generating method for filling holes in a mesh
US8026914B2 (en) 2006-02-08 2011-09-27 Fujitsu Limited Numerical analysis mesh generation apparatus, numerical analysis mesh generation method, and numerical analysis generation program
KR100960085B1 (en) 2008-04-29 2010-05-31 삼성중공업 주식회사 Method and apparatus for generating automatic mesh in a vessel

Similar Documents

Publication Publication Date Title
CN100468418C (en) Method and program for generating volume data from boundary representation data
JP2941653B2 (en) Analytical mesh generator
Miyoshi et al. Hexahedral Mesh Generation Using Multi-Axis Cooper Algorithm.
KR20120055783A (en) Apparatus and method of cloud computing for online visualization of noise map
JP2001155187A (en) Automatic mesh generation method for numerical analysis
CN106649776A (en) Method of semi-automating comprehensive vector polygon
CN107886573B (en) Slope three-dimensional finite element grid generation method under complex geological conditions
Merkley et al. Methods and applications of generalized sheet insertion for hexahedral meshing
CN108491654A (en) A kind of 3D solid structural topological optimization method and system
JP2018136928A (en) Method for supporting mechanical working, system for supporting mechanical working, and program for supporting mechanical working
CN104732589A (en) Rapid generation method of hybrid grid
CN109933588B (en) Method and system for converting dwg data into gdb data
CN116205100A (en) Method for optimizing CAE grid of battery pack
CN113484909B (en) Method for establishing fracture-cavity reservoir based on geometric gridding and parameter distribution
CN109472046A (en) Complicated dam foundation arch dam three-dimensional finite element tetrahedral grid automatic division method
KR20200076458A (en) System and method of generating 3d topography data for construction basic excavation, and a recording medium having computer readable program for executing the method
CN105486249A (en) Three-dimension scanning data self-adaptive bottom surface elimination method
JP2021140285A (en) Mesh model generation apparatus and mesh model generation method
JPH07121579A (en) Method for generating finite element mesh
JPH06231217A (en) Finite element mesh generating method
US7394463B2 (en) Method for generating three-dimensional mesh method for magnetic field of rotating machine, system for generating three-dimensional mesh, system for analyzing magnetic field of rotating machine, computer program, and recording medium
CN113705058B (en) Modeling method for complex phase material interface damage model
CN110781623B (en) Unit interface generation method for finite volume method
JPH01311373A (en) Method and device for meshing
JP3302768B2 (en) Finite element splitting device