JP2001153902A - Method of measuring resistance - Google Patents

Method of measuring resistance

Info

Publication number
JP2001153902A
JP2001153902A JP34013299A JP34013299A JP2001153902A JP 2001153902 A JP2001153902 A JP 2001153902A JP 34013299 A JP34013299 A JP 34013299A JP 34013299 A JP34013299 A JP 34013299A JP 2001153902 A JP2001153902 A JP 2001153902A
Authority
JP
Japan
Prior art keywords
current
measured
voltage
resistance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34013299A
Other languages
Japanese (ja)
Inventor
Hidehiko Mitsuki
秀彦 満木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP34013299A priority Critical patent/JP2001153902A/en
Publication of JP2001153902A publication Critical patent/JP2001153902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure the resistance of a substance to be measured, without being influenced by oxide films existing at probe points. SOLUTION: This concerns a resistance measuring method by a two-terminal method which causes specified measuring current to flow by bringing a pair of probes P1, P2 connected to a constant current source 10 into contact with a substance to be measured X, measures voltage generated then in the substance X by a voltage measuring means 20 through the pair of probes P1, P2, and finds the resistance value of the substance X from this measured voltage and the measuring current. After the pair of probes P1, P2 is brought into contact with the substance X and a specified high-voltage current is caused to flow from the current source 10, and an oxide film existing in the touching region of each probe P1, P2 is removed, the current of the current source 10 is switched over to the specified measuring current, and the resistance value of the substance X is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被測定物の抵抗値を
測定する抵抗測定方法に関し、さらに詳しく言えば、プ
ロービングポイントに存在する酸化皮膜の影響を受ける
ことなく正確な測定ができる抵抗測定方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance measuring method for measuring a resistance value of an object to be measured, and more particularly, to a resistance measuring method capable of performing accurate measurement without being affected by an oxide film existing at a probing point. It is about.

【0002】[0002]

【従来の技術】インサーキットテスタやベアボードテス
タなどにおいて、導通検査や絶縁耐圧検査は、結局のと
ころ被測定物の抵抗値を測定し、その測定値と基準値と
を比較することにより行なわれている。
2. Description of the Related Art In an in-circuit tester or a bare board tester, a continuity test or a dielectric strength test is performed by measuring a resistance value of an object to be measured and comparing the measured value with a reference value. I have.

【0003】抵抗測定法には、二端子法と四端子法とが
ある。四端子法は被測定物の両端に発生する電位差のみ
を測定可能であり、プローブが有する抵抗による誤差を
排除することができるため、インサーキットテスタなど
の計測回路に一般的に採用されている。
The resistance measurement method includes a two-terminal method and a four-terminal method. The four-terminal method can measure only the potential difference generated at both ends of the object to be measured, and can eliminate an error due to the resistance of the probe. Therefore, the four-terminal method is generally employed in a measurement circuit such as an in-circuit tester.

【0004】しかしながら、四端子法の場合には、一つ
の測定ポイント(回路基板のパッドやビア)に電流供給
用プローブと電圧検出用プローブの2本のプローブを接
触させる必要があるため、近年ますますファインピッチ
化されている回路パターンに対しては四端子計測が困難
な事態が生ずる。そこで、ファインピッチの測定ポイン
トに対しては、二端子法によらざるを得ないことにな
る。
However, in the case of the four-terminal method, it is necessary to bring two probes, a current supply probe and a voltage detection probe, into contact with one measurement point (pad or via of a circuit board), and in recent years, it has been increasingly used in recent years. For a circuit pattern having an increasingly fine pitch, it may be difficult to measure four terminals. Therefore, the two-terminal method must be used for the fine pitch measurement points.

【0005】[0005]

【発明が解決しようとする課題】ところで、問題は測定
ポイントの表面に酸化皮膜がある場合である。四端子法
によれば、ある程度の導通がとられていれば酸化皮膜の
抵抗分をキャンセルすることは可能であるが、二端子法
による計測ではその酸化皮膜の抵抗分をキャンセルする
ことができない。
The problem is that there is an oxide film on the surface of the measuring point. According to the four-terminal method, it is possible to cancel the resistance of the oxide film if a certain degree of continuity is achieved, but the measurement by the two-terminal method cannot cancel the resistance of the oxide film.

【0006】したがって、二端子法での回路パターンの
抵抗測定時には、酸化皮膜の抵抗分が誤差として加算さ
れることになるため、その酸化皮膜が厚い場合には、パ
ターン抵抗値が十分小さく本来良品であるべきものに対
してオープン判定がなされてしまう場合がある。
Therefore, when the resistance of the circuit pattern is measured by the two-terminal method, the resistance of the oxide film is added as an error. There is a case where an open judgment is made for an item that should be.

【0007】一方、絶縁耐圧検査を行なう場合には、例
えば回路パターン間が本来絶縁耐圧不良であるにも関わ
らず、それらの間に酸化皮膜があるため良品と誤判定さ
れる場合がある。なお、酸化皮膜を突き破るようにプロ
ービングすれば、酸化皮膜の抵抗分をある程度減らすこ
とができるが、このようにすると打痕が残るため、好ま
しい解決策とは言えない。
[0007] On the other hand, when a dielectric strength test is performed, for example, although there is an inherent dielectric strength failure between circuit patterns, an oxide film exists between them, which may result in erroneous determination as a good product. In addition, if the probing is performed so as to penetrate the oxide film, the resistance of the oxide film can be reduced to some extent, but this method is not a preferable solution because a dent remains.

【0008】[0008]

【課題を解決するための手段】本発明は、このような課
題を解決するためになされたもので、その目的は、打痕
を生じさせることなく酸化皮膜を除去して、酸化皮膜の
抵抗分の影響を受けることなく、正確に導通検査や絶縁
耐圧検査などが行なえるようにした抵抗測定方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to remove an oxide film without forming a dent and to reduce the resistance of the oxide film. It is an object of the present invention to provide a resistance measurement method capable of accurately performing a continuity test, a dielectric strength test, and the like without being affected by the resistance.

【0009】上記目的を達成するため、本発明は、定電
流源に接続された一対のプローブを被測定物に接触させ
て所定の測定電流を印加し、このときに上記被測定物に
発生する電圧を上記一対のプローブを介して電圧測定手
段で測定し、この測定電圧と上記測定電流とから上記被
測定物の抵抗値を求める二端子法による抵抗測定方法に
おいて、上記一対のプローブを上記被測定物に接触さ
せ、上記定電流源より所定の高圧電流を印加して、上記
各プローブの接触部位に存在する酸化皮膜を除去した
後、上記定電流源の電流を上記所定の測定電流に切り替
えて上記被測定物の抵抗値を求めることを特徴としてい
る。
In order to achieve the above object, according to the present invention, a predetermined measurement current is applied by bringing a pair of probes connected to a constant current source into contact with an object to be measured. The voltage is measured by voltage measuring means via the pair of probes, and the resistance value of the device under test is determined from the measured voltage and the measured current. After contacting with a measurement object and applying a predetermined high-voltage current from the constant current source to remove an oxide film present at a contact portion of each probe, the current of the constant current source is switched to the predetermined measurement current. Thus, the resistance value of the object to be measured is obtained.

【0010】本発明によれば、酸化皮膜がある場合、高
圧電流の印加によってジュール熱が発生し、これにより
酸化皮膜が除去され、酸化皮膜に影響されることなく、
被測定物の抵抗値を測定することができる。なお、上記
高圧電流とは、定電流源の所定の測定電流における開放
端子間電圧よりも高い開放端子間電圧を有する電流であ
る。
According to the present invention, when an oxide film is present, Joule heat is generated by application of a high-voltage current, whereby the oxide film is removed, and without being affected by the oxide film.
The resistance value of the device under test can be measured. The high-voltage current is a current having an open-terminal voltage higher than the open-terminal voltage at a predetermined measurement current of the constant current source.

【0011】なお、このときプロービングポイントは電
力損失により局部的に加熱されるため熱起電力が発生す
ることがある。この熱起電力による電圧は、特に微小抵
抗測定では誤差原因となるおそれがある。
At this time, since the probing point is locally heated by power loss, a thermoelectromotive force may be generated. The voltage due to the thermoelectromotive force may cause an error particularly in the case of measuring a small resistance.

【0012】このため、上記被測定物の抵抗値を求める
際、上記被測定物に対する電流の流れ方向を切り替えて
電圧測定を少なくとも2回行ない、その平均値と上記測
定電流とから上記被測定物の抵抗値を求めることが好ま
しい。なお、これに代えてAC計測を行なってもよい。
For this reason, when obtaining the resistance value of the DUT, voltage measurement is performed at least twice by switching the direction of current flow to the DUT, and the DUT is determined from the average value and the measured current. Is preferably obtained. Note that AC measurement may be performed instead.

【0013】[0013]

【発明の実施の形態】次に、本発明を図1に示されてい
る実施例により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to an embodiment shown in FIG.

【0014】この抵抗測定方法を実施するにあたって
は、直流定電流源10と電圧計20とが用いられる。直
流定電流源10には一対の電流供給用プローブP1,P
2が接続されるが、この実施例では、それらの間に切替
器30が接続されている。
In carrying out this resistance measuring method, a DC constant current source 10 and a voltmeter 20 are used. The DC constant current source 10 has a pair of current supply probes P1 and P
2 are connected, and in this embodiment, a switch 30 is connected between them.

【0015】切替器30は、連動して動作する第1およ
び第2の2つのスイッチ31,32を備えている。第1
スイッチ31は一方の電流供給用プローブP1が接続さ
れる切替接点31a、他方の電流供給用プローブP2が
接続される切替接点31bおよびこれらのいずれか一方
に切り替えられる可動接点31cを有し、この場合、可
動接点31cは直流定電流源10の正極10a側に接続
されている。
The switch 30 includes first and second two switches 31 and 32 that operate in conjunction with each other. First
The switch 31 has a switching contact 31a to which one current supply probe P1 is connected, a switching contact 31b to which the other current supply probe P2 is connected, and a movable contact 31c to be switched to any one of them. The movable contact 31c is connected to the positive electrode 10a side of the DC constant current source 10.

【0016】第2スイッチ32も、2つの切替接点32
a,32bと、これらのいずれか一方に切り替えられる
可動接点32cとを備えているが、上記第1スイッチ3
1とは反対に、切替接点32aには他方の電流供給用プ
ローブP2が接続され、切替接点32bには一方の電流
供給用プローブP1が接続されている。また、可動接点
32cは直流定電流源10の負極10b側に接続されて
いる。
The second switch 32 also has two switching contacts 32
a and 32b, and a movable contact 32c that can be switched to either one of them.
Contrary to 1, the switching contact 32a is connected to the other current supply probe P2, and the switching contact 32b is connected to one current supply probe P1. The movable contact 32c is connected to the negative electrode 10b of the DC constant current source 10.

【0017】この抵抗測定方法は二端子法であるため、
電圧計20は電流供給用プローブP1,P2間に接続さ
れている。なお図示されていないが、この実施例では、
電圧計20にはA/D変換器を介して演算制御手段とし
てのCPU(もしくはマイクロコンピュータ)が接続さ
れている。
Since this resistance measuring method is a two-terminal method,
The voltmeter 20 is connected between the current supply probes P1 and P2. Although not shown, in this embodiment,
The voltmeter 20 is connected via an A / D converter to a CPU (or microcomputer) as arithmetic and control means.

【0018】被測定物Xの抵抗値を測定するには、電流
供給用プローブP1とP2とを被測定物Xの各リード部
L1,L2にそれぞれ接触させるが、この場合、各リー
ド部L1,L2の表面には酸化皮膜が形成されているも
のとし、図1にはその抵抗分がReで示されている。
In order to measure the resistance value of the device under test X, the current supply probes P1 and P2 are brought into contact with the leads L1 and L2 of the device under test X, respectively. It is assumed that an oxide film is formed on the surface of L2, and its resistance is indicated by Re in FIG.

【0019】本発明においては、すぐに抵抗測定には入
らない。まず、各スイッチ31,32の各可動接点31
c,32cを例えば切替接点31a,32a側に切り替
えたうえで、直流定電流源10より被測定物Xに対し
て、例えば直流定電流源10の開放端子間電圧が50〜
100V程度の高圧電流を印加し、プロービングポイン
トにジュール熱を発生させて酸化皮膜を飛ばして除去す
る。このとき、電圧計20はオフとしておくとよい。
In the present invention, the resistance measurement is not immediately started. First, each movable contact 31 of each switch 31, 32
After switching c and 32c to, for example, the switching contacts 31a and 32a, the DC constant current source 10 applies a voltage between the open terminals of the DC constant current source 10 to the device under test X of 50 to 50, for example.
A high-voltage current of about 100 V is applied to generate Joule heat at the probing point to fly away the oxide film and remove it. At this time, the voltmeter 20 may be turned off.

【0020】このようにして、電流供給用プローブP
1,P2の各接触面を活性化して電気的導通を良好とし
た後、直流定電流源10の出力レンジを切り替えて、被
測定物Xに所定の測定電流Iを供給するとともに、電圧
計20をオンとして、そのときに被測定物Xに発生する
電圧V1を測定する。
Thus, the current supply probe P
After activating the respective contact surfaces of P1 and P2 to improve the electrical continuity, the output range of the DC constant current source 10 is switched to supply a predetermined measurement current I to the device under test X, and the voltmeter 20 Is turned on, and a voltage V1 generated at the object X at that time is measured.

【0021】この測定電圧V1には、酸化皮膜による抵
抗分Reが含まれていないため、測定電圧V1と測定電
流Iとからオームの法則にしたがって、酸化皮膜の影響
のない被測定物Xの抵抗値が求められる。
Since the measurement voltage V1 does not include the resistance component Re due to the oxide film, the resistance of the object X not affected by the oxide film is determined from the measurement voltage V1 and the measurement current I according to Ohm's law. A value is required.

【0022】ところで、上記の高圧電流印加により、電
流供給用プローブP1,P2のプロービングポイントに
熱起電力による電圧Ve1,Ve2が発生した場合に
は、被測定物Xの抵抗値をRとすると、電圧計20にて
測定された測定電圧V1は、V1=IR+(Ve1+V
e2)となり、熱起電力の影響を受けることになる。
By the way, when the voltages Ve1 and Ve2 due to the thermoelectromotive force are generated at the probing points of the current supply probes P1 and P2 due to the application of the high-voltage current, if the resistance value of the object X is R, The measured voltage V1 measured by the voltmeter 20 is V1 = IR + (Ve1 + V
e2), which is affected by the thermoelectromotive force.

【0023】そこで、この実施例では、上記の電圧測定
を第1回目として、第2回目の電圧測定を行なう。すな
わち、今度は各スイッチ31,32の各可動接点31
c,32cを切替接点31b,32b側に切り替え、被
測定物Xに対してリード部L2側からリード部L1側に
向けて測定電流Iを流し、電圧計20にてそのときに被
測定物Xに発生する電圧V2を測定する。
Therefore, in this embodiment, the above-described voltage measurement is set as the first time, and the second voltage measurement is performed. That is, this time each movable contact 31 of each switch 31, 32
c, 32c are switched to the switching contacts 31b, 32b, and a measurement current I is passed from the lead portion L2 toward the lead portion L1 toward the DUT X. Is measured.

【0024】この測定電圧V2は、測定電流Iの流れ方
向が上記第1回目とは逆であるため、V2=IR−(V
e1+Ve2)で表される。したがって、第1回目の測
定電圧V1と第2回目の測定電圧V2の平均値Vaを求
めることにより、熱起電力による電圧Ve1,Ve2が
相殺され、熱起電力の影響がない測定電圧Vが得られ、
これにより、被測定物Xの真の抵抗値が求められること
になる。
The measured voltage V2 has a flow direction of the measured current I opposite to that of the first measurement, and therefore, V2 = IR- (V
e1 + Ve2). Therefore, by obtaining the average value Va of the first measurement voltage V1 and the second measurement voltage V2, the voltages Ve1 and Ve2 due to the thermoelectromotive force are offset, and the measurement voltage V without the influence of the thermoelectromotive force is obtained. And
Thus, the true resistance value of the device under test X is obtained.

【0025】また、回路パターン間の絶縁耐圧検査につ
いても、上記実施例と同様して被測定物Xの抵抗値測定
を行なうことにより、酸化皮膜に影響を排除することが
できる。なお、本発明はインサーキットテスタやベアボ
ードテスタなどに組み込まれて使用されることはもとよ
り、単機能の抵抗測定装置にも適用可能であることは言
うまでもない。
In the dielectric strength test between circuit patterns, the influence on the oxide film can be eliminated by measuring the resistance value of the object X in the same manner as in the above embodiment. It is needless to say that the present invention can be applied not only to being incorporated in an in-circuit tester or a bare board tester, but also to a single-function resistance measuring device.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
被測定物の抵抗を測定するに先立って、そのプローブポ
イントに高圧電流を印加して酸化皮膜を除去するように
したことにより、プローブポイントに打痕を生じさせる
ことなく、正確に被測定物の抵抗値を測定することがで
きる。
As described above, according to the present invention,
Prior to measuring the resistance of the device under test, a high-voltage current was applied to the probe point to remove the oxide film, so that no dents were formed at the probe point, and the probe point was accurately measured. The resistance value can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための回路構成図。FIG. 1 is a circuit configuration diagram for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 定電流源 20 電圧計 30 切替器 P1,P2 プローブ L1,L2 リード部 X 被測定物 Reference Signs List 10 constant current source 20 voltmeter 30 switch P1, P2 probe L1, L2 lead part X DUT

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 定電流源に接続された一対のプローブを
被測定物に接触させて所定の測定電流を印加し、このと
きに上記被測定物に発生する電圧を上記一対のプローブ
を介して電圧測定手段で測定し、この測定電圧と上記測
定電流とから上記被測定物の抵抗値を求める二端子法に
よる抵抗測定方法において、 上記一対のプローブを上記被測定物に接触させ、上記定
電流源より所定の高圧電流を印加して、上記各プローブ
の接触部位に存在する酸化皮膜を除去した後、上記定電
流源の電流を上記所定の測定電流に切り替えて上記被測
定物の抵抗値を求めることを特徴とする抵抗測定方法。
1. A predetermined measurement current is applied by bringing a pair of probes connected to a constant current source into contact with an object to be measured, and at this time, a voltage generated in the object to be measured is applied through the pair of probes. In a resistance measurement method by a two-terminal method of measuring a resistance value of the object to be measured from the measured voltage and the measured current, the pair of probes are brought into contact with the object to be measured, and the constant current is measured. After applying a predetermined high-voltage current from the source to remove the oxide film present at the contact portion of each probe, the current of the constant current source is switched to the predetermined measurement current to change the resistance value of the DUT. A resistance measuring method characterized by being determined.
【請求項2】 上記被測定物の抵抗値を求める際、上記
被測定物に対する電流の流れ方向を切り替えて電圧測定
を少なくとも2回行ない、その平均値と上記測定電流と
から上記被測定物の抵抗値を求めることを特徴とする請
求項1に記載の抵抗測定方法。
2. When obtaining the resistance value of the device under test, voltage measurement is performed at least twice by switching the direction of current flow with respect to the device under test, and the average value and the measurement current are used to measure the voltage of the device under test. The resistance measuring method according to claim 1, wherein a resistance value is obtained.
JP34013299A 1999-11-30 1999-11-30 Method of measuring resistance Pending JP2001153902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34013299A JP2001153902A (en) 1999-11-30 1999-11-30 Method of measuring resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34013299A JP2001153902A (en) 1999-11-30 1999-11-30 Method of measuring resistance

Publications (1)

Publication Number Publication Date
JP2001153902A true JP2001153902A (en) 2001-06-08

Family

ID=18334040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34013299A Pending JP2001153902A (en) 1999-11-30 1999-11-30 Method of measuring resistance

Country Status (1)

Country Link
JP (1) JP2001153902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199519A (en) * 2000-12-27 2002-07-12 Hioki Ee Corp Connection switcher and measuring instrument
JP2015059885A (en) * 2013-09-20 2015-03-30 日本電産リード株式会社 Board inspection method and device
KR101973070B1 (en) * 2018-11-22 2019-04-26 울산과학기술원 Apparatus and method for measuring resistance
CN113777471A (en) * 2021-09-09 2021-12-10 杭州广立微电子股份有限公司 Method for calibrating relative voltage offset error of measurement module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199519A (en) * 2000-12-27 2002-07-12 Hioki Ee Corp Connection switcher and measuring instrument
JP4508409B2 (en) * 2000-12-27 2010-07-21 日置電機株式会社 Connection switcher and measuring device
JP2015059885A (en) * 2013-09-20 2015-03-30 日本電産リード株式会社 Board inspection method and device
KR101973070B1 (en) * 2018-11-22 2019-04-26 울산과학기술원 Apparatus and method for measuring resistance
CN113777471A (en) * 2021-09-09 2021-12-10 杭州广立微电子股份有限公司 Method for calibrating relative voltage offset error of measurement module

Similar Documents

Publication Publication Date Title
TW200809226A (en) Substrate inspecting apparatus and substrate inspecting method
JP2002014134A (en) Device for inspecting circuit board
JP2001153902A (en) Method of measuring resistance
JP3675678B2 (en) Probe contact state detection method and probe contact state detection device
JP4219489B2 (en) Circuit board inspection equipment
JP3784479B2 (en) Circuit board inspection method
JPH0774218A (en) Test method of ic and its probe card
JP4259692B2 (en) Circuit board inspection equipment
JP4467373B2 (en) Resistance measuring method and apparatus
JPH04501763A (en) circuit test
JPH034179A (en) Electric testing method by contact probe
JP3281164B2 (en) Foot Lift Detection Method Using IC In-Circuit Tester
JP2004184374A (en) Impedance measuring apparatus
JP2004012330A (en) Measuring instrument for measuring micro electric current
JP2735048B2 (en) Method and apparatus for inspecting solder connection of electronic components
JPH03154879A (en) Substrate inspecting device
JP2000074975A (en) Substrate inspection device and substrate inspection method
JP2001066334A (en) Low-resistance measuring instrument and circuit board inspecting device
JPH03252565A (en) Wiring board inspection device
JPH03101146A (en) Ic inspection apparatus
JPH01170860A (en) Testing device for printed circuit board
TWI604204B (en) Testing device for testing electrical property of probe head and testing method thereof
JP2002217254A (en) Semiconductor measuring instrument
JP2004286605A (en) Impedance measuring instrument
JP2001153911A (en) Method and apparatus for inspecting wiring pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070411