JP2001153579A - Heat-storing bath, heat-storing device, and heat-storing and heat-recovering method - Google Patents

Heat-storing bath, heat-storing device, and heat-storing and heat-recovering method

Info

Publication number
JP2001153579A
JP2001153579A JP33249299A JP33249299A JP2001153579A JP 2001153579 A JP2001153579 A JP 2001153579A JP 33249299 A JP33249299 A JP 33249299A JP 33249299 A JP33249299 A JP 33249299A JP 2001153579 A JP2001153579 A JP 2001153579A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage tank
latent
latent heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33249299A
Other languages
Japanese (ja)
Other versions
JP3472795B2 (en
Inventor
Satoshi Hirano
平野  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP33249299A priority Critical patent/JP3472795B2/en
Publication of JP2001153579A publication Critical patent/JP2001153579A/en
Application granted granted Critical
Publication of JP3472795B2 publication Critical patent/JP3472795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-storing device and a heat-recovering method for recovering and utilizing melting heat being generated by a latent heat heat-storing material by inducing coagulation in the latent heat-storing body in an overcooled state. SOLUTION: The heat-storing device consists of a heat-storing bath where a latent heat heat-storing body accommodating a latent heat-storing material is installed, a heating medium channel where space in that a heating medium being formed between the outside of the latent heat-storing body and the heat-storing bath flows is separated into a region for occupying the large part of the heat-storing bath and a region for occupying the slight part of the heat-storing bath by a heat-insulating separation body, the latent heat-storing body penetrates the separation body, a region for occupying the large part of the heat-storing bath and a region for occupying the slight part of the heat-storing bath and a heat-exchange means for heating/cooling the heating medium are connected via an opening/closing means and a heating medium-driving means, and a heating medium channel where a region for occupying the large part of the heat-storing bath and a region for occupying the slight part of the heat-storing bath, and the heat-recovering facilities of the heating medium are connected via the opening/closing means and the heating medium drive means. The heat-recovering method uses the heat-storing device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱槽、蓄熱装置
及びこの蓄熱装置を用いた蓄熱及び熱回収方法に関す
る。
The present invention relates to a heat storage tank, a heat storage device, and a heat storage and heat recovery method using the heat storage device.

【0002】[0002]

【従来の技術】熱の蓄熱保存過程においては蓄熱材を過
冷却状態に維持し、熱の回収過程において、何らかの手
段を用いて過冷却状態にある蓄熱材に凝固を誘発させ
て、相変化に伴い発生する蓄熱材の融解熱を回収利用す
る蓄熱装置がある。この回収装置では、凝固を誘発させ
るための発核手段が種々検討されている。具体的には、
例えば、蓄熱材の部分冷却を行うことによる特開平6−
281372号公報等がある。
2. Description of the Related Art In a heat storage and storage process, a heat storage material is maintained in a supercooled state, and in a heat recovery process, solidification is induced in the supercooled heat storage material by using some means to cause a phase change. There is a heat storage device that recovers and uses the heat of fusion of the heat storage material generated accordingly. In this recovery device, various nucleation means for inducing coagulation have been studied. In particular,
For example, Japanese Patent Application Laid-Open No.
281372 and the like.

【0003】前記公報に記載されている蓄熱装置は、図
3に示す通りである。同図に示される装置において、潜
熱蓄熱器21は、内側容器22と外側容器23とからな
る二重構造をしており、内側容器22には、相変化によ
って潜熱を放出する蓄熱材24が充填されている。内側
容器22は外側容器23内に収容されており、内側容器
22と外側容器23によって形成される空間部23a
に、熱媒体25を流通させるものである。この空間部に
は熱媒体の出入口26、27が設けられている。熱媒体
の入口26からの流体が直面する部分の内側容器の壁に
は、発核装置28が設置されている。発核装置28は、
過冷却状態にある液相蓄熱材24に凝固化を誘発させる
ための発核装置として作用するものであり、熱電素子2
9を備える。この熱電素子29は配線29a、29bを
介して電源30に接続されており、通電時には所定の電
圧がかかるように設定されている。
The heat storage device described in the above publication is as shown in FIG. In the apparatus shown in the figure, the latent heat storage device 21 has a double structure including an inner container 22 and an outer container 23, and the inner container 22 is filled with a heat storage material 24 that releases latent heat by a phase change. Have been. The inner container 22 is housed in the outer container 23 and has a space 23 a formed by the inner container 22 and the outer container 23.
Then, the heat medium 25 is circulated. In this space, ports 26 and 27 for the heat medium are provided. A nucleating device 28 is provided on the wall of the inner container at a portion facing the fluid from the inlet 26 of the heat medium. The nucleation device 28
The thermoelectric element 2 serves as a nucleator for inducing solidification of the liquid-phase heat storage material 24 in a supercooled state.
9 is provided. The thermoelectric element 29 is connected to a power supply 30 via wirings 29a and 29b, and is set so as to apply a predetermined voltage when energized.

【0004】この発核装置の熱電素子29に電圧がかけ
られると、吸熱する部分と発熱する部分とが生じ、吸熱
する部分は過冷却状態にある潜熱蓄熱材24に、局部的
に冷却し、過冷却の状態が崩されて、凝固が開始すると
同時に、潜熱蓄熱材24の潜熱が放出されて蓄熱材から
熱媒体等に熱移動を起こさせることにより、熱回収を行
うことができる。この蓄熱装置では、発核装置が十分的
確に作動することが重要であり、この装置では、熱電素
子29を用いており、電源30が必ず必要となり、その
結果、装置の複雑化をまねいていた。特に潜熱蓄熱材2
4が充填された内側容器22からなる潜熱蓄熱体が複数
ある場合には、複数の熱電素子29を必要とするので、
実現困難であった。
When a voltage is applied to the thermoelectric element 29 of the nucleating device, a portion that absorbs heat and a portion that generates heat are generated, and the portion that absorbs heat is locally cooled by the supercooled latent heat storage material 24, At the same time as the state of supercooling is broken and solidification starts, the latent heat of the latent heat storage material 24 is released to cause heat transfer from the heat storage material to the heat medium or the like, so that heat can be recovered. In this heat storage device, it is important that the nucleating device operates sufficiently accurately. In this device, the thermoelectric element 29 is used, and the power supply 30 is always required, and as a result, the device becomes complicated. . Especially latent heat storage material 2
When there are a plurality of latent heat storage elements composed of the inner container 22 filled with 4, since a plurality of thermoelectric elements 29 are required,
It was difficult to realize.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、過冷
却状態にある潜熱蓄熱体に凝固を誘発させることによ
り、潜熱蓄熱体が発生する融解熱を回収利用する蓄熱
槽、蓄熱装置及びこれらを用いた蓄熱及び熱回収方法を
提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat storage tank, a heat storage device and a heat storage device for recovering and utilizing the heat of fusion generated by a latent heat storage by inducing solidification of the latent heat storage in a supercooled state. It is an object of the present invention to provide a heat storage and heat recovery method using the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、開孔され
た断熱材により仕切られていることにより形成される大
部分の領域を占める部分と僅かな部分を占める部分から
なる潜熱蓄熱体が収容されている蓄熱槽の僅かな部分を
占める部分に、冷却するための熱媒体を流すことによ
り、過冷却の状態にある潜熱蓄熱材に凝固を起こさせる
と、凝固は開孔されている断熱材の開孔を通って過冷却
の状態にある大部分の領域にある潜熱蓄熱材にも伝える
ことができ、その結果、潜熱蓄熱材全体に凝固が起こ
り、潜熱を発生させることができることを見いだし、本
発明を完成させた。
SUMMARY OF THE INVENTION The present inventors have developed a latent heat storage element comprising a portion occupying most of a region formed by being partitioned by a heat insulating material having holes and a portion occupying a small portion thereof. When a latent heat storage material in a supercooled state is caused to solidify by flowing a heat medium for cooling to a portion occupying a small portion of the heat storage tank in which is stored, the solidification is opened. It can be transmitted to the latent heat storage material in most of the supercooled areas through the openings in the heat insulating material, and as a result, solidification occurs throughout the latent heat storage material and latent heat can be generated. Have found and completed the present invention.

【0007】すなわち、本発明によれば、以下の発明が
提供される。潜熱蓄熱槽の内部に潜熱蓄熱材が収容され
ている潜熱蓄熱体が設置され、潜熱蓄熱体の外側と蓄熱
槽の間に形成される熱媒体が流れる空間設けられてお
り、潜熱蓄熱体の外側と蓄熱槽の間の空間が、断熱性の
分離体によって、大部分を占める領域と蓄熱槽の僅かな
部分を占める領域とに分離されており、前記潜熱蓄熱体
は前記分離体を貫通して設置されていることを特徴とす
る蓄熱槽。潜熱蓄熱材が収容されている潜熱蓄熱体が設
置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱槽の間に
形成される熱媒体が流れる空間が、断熱性の分離体によ
って、蓄熱槽の大部分を占める領域と蓄熱槽の僅かな部
分を占める領域とに分離され、前記潜熱蓄熱体は前記分
離体を貫通しており、蓄熱槽の大部分を占める領域及び
蓄熱槽の僅かな部分を占める領域を用いた潜熱蓄熱体の
加熱する手段、及び蓄熱槽の大部分を占める領域と蓄熱
槽の僅かな部分を占める領域を用いた熱回収手段、蓄熱
槽の僅かな部分を占める領域を用いた潜熱蓄熱材の凝固
開始温度以下に冷却する冷却手段からなることを特徴と
する蓄熱装置。潜熱蓄熱材が収容されている潜熱蓄熱体
が設置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱槽の
間に形成される熱媒体が流れる空間が、断熱性の分離体
によって、蓄熱槽の大部分を占める領域と蓄熱槽の僅か
な部分を占める領域とに分離され、前記潜熱蓄熱体は前
記分離体を貫通しており、蓄熱槽の大部分を占める領域
及び蓄熱槽の僅かな部分を占める領域と、熱媒体を加熱
/冷却するための熱交換手段とが、開閉手段及び熱媒体
駆動手段を介して連絡されている熱媒体流路、及び蓄熱
槽の大部分を占める領域と蓄熱槽の僅かな部分を占める
領域と、熱媒体の熱回収設備が開閉手段と熱媒体駆動手
段を介して連絡されている熱媒体流路からなることを特
徴とする蓄熱装置。潜熱蓄熱材が収容されている潜熱蓄
熱体が設置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱
槽の間に形成される熱媒体が流れる空間が、断熱性の分
離体によって蓄熱槽の大部分を占める領域と蓄熱槽の僅
かな部分を占める領域とに分離され、前記潜熱蓄熱体は
前記分離体を貫通しており、蓄熱槽の大部分を占める領
域及び蓄熱槽の僅かな部分を占める領域と、熱媒体を加
熱/冷却するための熱交換手段とが、蓄熱槽に熱媒体を
導入する経路を経て蓄熱槽の僅かな部分を占める領域及
び蓄熱槽の大部分を占める領域に導かれ、更に蓄熱槽か
ら熱媒体が排出され、再び蓄熱槽に熱媒体を導入する経
路からなる熱媒体循環経路に、熱媒体を加熱/冷却する
ための熱交換手段及び熱利用設備が並列に設置され、前
記循環経路中に熱媒体の流れを調節する開閉手段及び熱
媒体駆動手段が設けられており、又蓄熱槽の僅かな部分
を占める領域を経て蓄熱槽から熱媒体が排出されて前記
循環経路に接続される熱媒体流路が開閉手段を介して設
けられていることを特徴とする蓄熱装置。潜熱蓄熱材に
吸液性の物質を添加して用いることを特徴とする前記記
載の蓄熱装置。前記記載の蓄熱装置において、蓄熱槽の
大部分を占める領域及び蓄熱槽の僅かな部分を占める領
域を用いた潜熱蓄熱体の加熱する手段により潜熱蓄熱材
を融解させた後に、蓄熱槽の僅かな部分を占める領域を
冷却手段により潜熱蓄熱材を冷却し、蓄熱槽の大部分を
占める領域と蓄熱槽の僅かな部分を占める領域を用いた
熱回収手段により熱回収を行うことを特徴とする蓄熱及
び熱回収方法。前記記載の蓄熱装置において、熱交換手
段により加熱された熱媒体流路を流れる熱媒体により潜
熱蓄熱材を融解させた後に過冷却状態で保持し、次に、
熱交換手段により冷却された熱媒体を、僅かな部分を占
める領域に熱媒体を流して潜熱蓄熱材を冷却して凝固さ
せた後に、潜熱蓄熱材から発生される融解熱を大部分を
占める領域と熱回収設備に熱媒体を流して熱回収するこ
とを特徴とする蓄熱及び熱回収方法。潜熱蓄熱材に吸液
性の物質を添加して用いることを特徴とする前記記載の
の蓄熱及び熱回収方法。
That is, according to the present invention, the following inventions are provided. A latent heat storage element containing a latent heat storage material is installed inside the latent heat storage tank, and a space in which a heat medium formed between the outside of the latent heat storage element and the heat storage tank flows is provided, and the outside of the latent heat storage element is provided. The space between the heat storage tank and the heat storage tank is separated by an adiabatic separator into a region occupying most and a region occupying a small portion of the heat storage tank, and the latent heat storage body penetrates the separator. A heat storage tank characterized by being installed. The heat storage tank in which the latent heat storage material containing the latent heat storage material is installed, the space in which the heat medium formed between the outside of the latent heat storage material and the heat storage tank flows, is separated from the heat storage tank by the adiabatic separator. Separated into an area that occupies the majority and an area that occupies a small part of the heat storage tank, the latent heat storage element penetrates the separator, and occupies the area that occupies the majority of the heat storage tank and the small part of the heat storage tank. Means for heating the latent heat storage element using the occupied area; heat recovery means using the area occupying most of the heat storage tank and the area occupying a small part of the heat storage tank; and using the area occupying a small part of the heat storage tank. And a cooling means for cooling the latent heat storage material to a temperature lower than a solidification start temperature. The heat storage tank in which the latent heat storage material containing the latent heat storage material is installed, the space in which the heat medium formed between the outside of the latent heat storage material and the heat storage tank flows, is separated from the heat storage tank by the adiabatic separator. Separated into an area that occupies the majority and an area that occupies a small part of the heat storage tank, the latent heat storage element penetrates the separator, and occupies the area that occupies the majority of the heat storage tank and the small part of the heat storage tank. The area occupied by the heat medium and the heat exchange means for heating / cooling the heat medium are connected via the opening / closing means and the heat medium driving means, and the area occupying most of the heat storage tank and the heat storage tank. A heat storage device characterized by comprising a region occupying a small part of the above, and a heat medium passage connected to the opening / closing means and the heat medium drive means by the heat medium heat recovery equipment. The heat storage tank in which the latent heat storage material containing the latent heat storage material is installed, and the space in which the heat medium formed between the outside of the latent heat storage material and the heat storage tank flows, have a large heat storage tank by the heat insulating separator. Is divided into a region occupying a portion and a region occupying a small portion of the heat storage tank, wherein the latent heat storage element penetrates the separator, occupying a region occupying most of the heat storage tank and occupying a small portion of the heat storage tank. The region and the heat exchange means for heating / cooling the heat medium are led to a region occupying a small part of the heat storage tank and a region occupying the majority of the heat storage tank via a path for introducing the heat medium into the heat storage tank. Further, the heat medium is discharged from the heat storage tank, and a heat exchange means for heating / cooling the heat medium and heat utilization equipment are installed in parallel in a heat medium circulation path including a path for introducing the heat medium into the heat storage tank again. Regulate the flow of the heat medium in the circulation path Opening / closing means and heat medium driving means are provided, and the heat medium is discharged from the heat storage tank through an area occupying a small part of the heat storage tank, and the heat medium flow path connected to the circulation path is connected to the heat storage tank via the opening / closing means. A heat storage device, wherein the heat storage device is provided. The heat storage device as described above, wherein a liquid absorbing material is added to the latent heat storage material and used. In the heat storage device described above, after the latent heat storage material is melted by the means for heating the latent heat storage body using the area occupying most of the heat storage tank and the area occupying a small part of the heat storage tank, a small amount of the heat storage tank is used. Heat storage characterized by cooling the latent heat storage material in the area occupying the portion by the cooling means, and performing heat recovery by the heat recovery means using the area occupying the majority of the heat storage tank and the area occupying a small part of the heat storage tank. And heat recovery methods. In the heat storage device described above, after the latent heat storage material is melted by the heat medium flowing through the heat medium flow path heated by the heat exchange unit, the latent heat storage material is held in a supercooled state, and then
After the heat medium cooled by the heat exchange means flows through the heat medium in an area occupying a small portion to cool and solidify the latent heat storage material, the area occupies most of the heat of fusion generated from the latent heat storage material. And recovering heat by flowing a heat medium through a heat recovery facility. The heat storage and heat recovery method as described above, wherein a liquid absorbing material is added to the latent heat storage material and used.

【0008】[0008]

【発明の実施の形態】本発明の蓄熱装置のフローシート
は、図1に示されている通りである。また、図2は、蓄
熱槽1の上面図である。これらを用いて、本発明の内容
を説明する。蓄熱槽1の中に潜熱蓄熱体3が設置されて
いる。潜熱蓄熱体3には潜熱蓄熱材4が充填されてい
る。潜熱蓄熱体3と蓄熱槽1との間に、熱媒体を流通さ
せる空間7が設けられている。潜熱蓄熱材の加熱及び潜
熱蓄熱材により発生される熱を回収するために、前記熱
媒体を流通させる空間に熱媒体が送られ、熱交換操作が
行われる。熱媒体は潜熱蓄熱体に対して、熱の供給及び
発生した熱の回収を行う。又、潜熱蓄熱体の加熱する手
段により潜熱蓄熱材を融解させた後に、潜熱蓄熱体の一
部を潜熱蓄熱材の凝固温度以下に冷却して、凝固を開始
させて、潜熱蓄熱材全体を凝固させ、その際に融解熱を
発生させるものである。このようにして発生させた熱は
前記の熱回収方法により回収される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The flow sheet of the heat storage device of the present invention is as shown in FIG. FIG. 2 is a top view of the heat storage tank 1. The contents of the present invention will be described using these. A latent heat storage element 3 is provided in the heat storage tank 1. The latent heat storage element 3 is filled with a latent heat storage material 4. A space 7 for circulating a heat medium is provided between the latent heat storage element 3 and the heat storage tank 1. In order to heat the latent heat storage material and recover heat generated by the latent heat storage material, a heat medium is sent to a space through which the heat medium flows, and a heat exchange operation is performed. The heat medium supplies heat to the latent heat storage element and recovers generated heat. Also, after the latent heat storage material is melted by the means for heating the latent heat storage material, a part of the latent heat storage material is cooled to a temperature lower than the solidification temperature of the latent heat storage material, solidification is started, and the entire latent heat storage material is solidified. In this case, heat of fusion is generated. The heat thus generated is recovered by the above-described heat recovery method.

【0009】上記の熱の供給及び熱回収、潜熱蓄熱材の
冷却は、蓄熱槽の内部に設けられている空間と熱交換設
備及び熱回収設備を結ぶ熱媒体流路を用いて行われる。
本発明の蓄熱槽1の内部に形成される、潜熱蓄熱体の外
側と蓄熱槽との間に形成される空間7には、熱媒体が流
される。この空間は断熱性の分離体2によって、蓄熱槽
の大部分を占める領域Aと蓄熱槽の僅かな部分を占める
領域Bとに分離され、その際に前記潜熱蓄熱体は前記分
離体3を貫通している構造となっている。そして、蓄熱
槽の大部分を占める領域A及び蓄熱槽の僅かな部分を占
める領域Bと、熱媒体を加熱/冷却するための熱交換手
段とが、開閉手段及び熱媒体駆動手段を介して連絡され
ている熱媒体流路、及び蓄熱槽の大部分を占める領域A
と蓄熱槽の僅かな部分を占める領域Bと、熱媒体の熱回
収設備が開閉手段と熱媒体駆動手段を介して連絡されて
いる熱媒体流路が形成されている。これらの熱媒体流路
に熱媒体を流すことにより熱の供給及び発生した熱の回
収を行う。又、蓄熱槽の大部分を占める領域A及び蓄熱
槽の僅かな部分を占める領域Bと、熱媒体を加熱/冷却
するための熱交換手段とを結び、蓄熱槽に熱媒体を導入
する経路を経て蓄熱槽の僅かな部分を占める領域B及び
蓄熱槽の大部分を占める領域Aに導かれ、更に蓄熱槽を
経て熱媒体が排出され、再び蓄熱槽に熱媒体を導入する
経路からなる熱媒体循環経路に、熱媒体を加熱/冷却す
るための熱交換手段及び熱利用設備が並列に設置され
る。前記循環経路中に熱媒体の流れを調節する開閉手段
及び熱媒体駆動手段が設けられており、又潜熱蓄熱体の
僅かな部分を占める領域を経て蓄熱槽から熱媒体が排出
されて前記循環経路に接続する熱媒体流路が開閉手段を
介して設けられているようにすることにより、効率よく
熱の供給及び発生した熱の回収を行うことができる。
The above-described supply of heat, heat recovery, and cooling of the latent heat storage material are performed using a heat medium passage connecting a space provided inside the heat storage tank with a heat exchange facility and a heat recovery facility.
A heat medium flows through a space 7 formed between the outside of the latent heat storage element and the heat storage tank, which is formed inside the heat storage tank 1 of the present invention. This space is separated by a heat insulating separator 2 into an area A occupying most of the heat storage tank and an area B occupying a small part of the heat storage tank, in which case the latent heat storage element penetrates through the separator 3. It has a structure. The area A occupying most of the heat storage tank and the area B occupying a small part of the heat storage tank communicate with the heat exchange means for heating / cooling the heat medium via the opening / closing means and the heat medium driving means. Area A occupying most of the heat medium flow path and the heat storage tank
And a region B occupying a small portion of the heat storage tank, and a heat medium flow path in which the heat medium heat recovery equipment is connected via the opening and closing means and the heat medium driving means. By supplying a heat medium to these heat medium channels, heat is supplied and generated heat is recovered. A region A occupying most of the heat storage tank and a region B occupying a small portion of the heat storage tank are connected to a heat exchange means for heating / cooling the heat medium, and a path for introducing the heat medium into the heat storage tank is formed. The heat medium is guided to an area B occupying a small portion of the heat storage tank and an area A occupying most of the heat storage tank via the heat storage tank, and further the heat medium is discharged through the heat storage tank and is again introduced into the heat storage tank. A heat exchange means and a heat utilization facility for heating / cooling the heat medium are installed in parallel in the circulation path. Opening / closing means for adjusting the flow of the heat medium and heat medium driving means are provided in the circulation path, and the heat medium is discharged from the heat storage tank through a region occupying a small portion of the latent heat storage medium, and the circulation path is By providing the heat medium flow path connected to the device via the opening / closing means, it is possible to efficiently supply heat and recover generated heat.

【0010】蓄熱槽1内の潜熱蓄熱体の外側と蓄熱槽の
間に形成される前記空間7は、分離体2により、大部分
を占める領域A(以下、単に領域Aともいう)及び僅か
な部分を占める領域B(以下、単に領域Bともいう)に
仕切られている。即ち、この分離体2により、前記空間
7は仕切られているので、熱媒体は、この分離体を越え
て、流入したり流出することはない。又、分離体は断熱
材で形成されるために、各々の空間に存在する熱媒体に
対して、一方の熱媒体が有する熱が移動することもな
い。
The space 7 formed between the outside of the latent heat storage element in the heat storage tank 1 and the heat storage tank is separated by the separator 2 so that the space A occupies most of the space A (hereinafter simply referred to as the area A) and a small amount. The area is divided into an area B occupying the portion (hereinafter, simply referred to as an area B). That is, since the space 7 is partitioned by the separating body 2, the heat medium does not flow in or out of the separating body. Further, since the separator is formed of a heat insulating material, the heat of one heat medium does not move with respect to the heat medium existing in each space.

【0011】僅かな部分を占める領域Bにある潜熱蓄熱
体3の中の潜熱蓄熱材は、熱媒体により凝固開始温度以
下に冷却されると、凝固を引き起こす核を発生させるた
めのものである。このようにして発生させた核を用いる
ことにより、大部分を占める領域に存在する潜熱蓄熱体
の潜熱蓄熱材全体を凝固させることができる。この僅か
な部分を占める領域Bは、文字通り僅かな容積部部分で
あり、十分な効果を達成することができる。僅かな部分
を占める領域Bの体積は、例えば後述する物質を潜熱蓄
熱材4として用いる場合には、大部分を占める領域Aの
体積にかかわらず、1μL程度以上あれば十分にその作
用をはたすことができる。すなわち、領域Bの熱容量は
領域Aに比してごく僅かであるので、短時間で発核操作
を行うことができる。したがって、発核操作にともなう
領域Aから領域Bへの熱損失もごく僅かとすることがで
きる。潜熱蓄熱体3には、潜熱蓄熱材4が充填されてい
る。潜熱蓄熱体3の外側の分離体が設けられている部分
の潜熱蓄熱体の内部部分は開孔状態となっているので、
潜熱蓄熱材は、自由に流通することができる。潜熱蓄熱
材は、相変化現象と温度変化を利用して熱を外部に取り
出すようにすることができる。この蓄熱槽内に設置する
潜熱蓄熱体の個数は用途に応じて、単数から複数個に設
定することができる。
The latent heat storage material in the latent heat storage element 3 in the area B occupying a small portion is for generating a nucleus that causes solidification when cooled by a heat medium to a temperature lower than the solidification start temperature. By using the nuclei generated in this manner, it is possible to solidify the entire latent heat storage material of the latent heat storage element existing in the region occupying most of the core. The region B occupying this small portion is literally a small volume portion, and a sufficient effect can be achieved. The volume of the region B occupying a small portion is sufficient if, for example, a substance described later is used as the latent heat storage material 4, regardless of the volume of the region A occupying a large portion, if it is about 1 μL or more. Can be. That is, since the heat capacity of the region B is extremely small as compared with the region A, the nucleation operation can be performed in a short time. Therefore, the heat loss from the region A to the region B due to the nucleation operation can be very small. The latent heat storage element 3 is filled with a latent heat storage material 4. Since the inner portion of the latent heat storage at the portion where the separation body outside the latent heat storage 3 is provided is in an open state,
The latent heat storage material can be freely distributed. The latent heat storage material can take out heat to the outside using a phase change phenomenon and a temperature change. The number of latent heat storage elements installed in the heat storage tank can be set from a single to a plurality depending on the application.

【0012】潜熱蓄熱材4は、必要とする温度や過冷却
度に応じて種々の物質を用いることができる。例えば、
りん酸水素二ナトリウム・十二水和物(NaHPO
・12HO)を用いる場合には、融点は約309K
(36℃)であり、凝固開始温度は296K(23℃)
程度である。酢酸ナトリウム三水和物(CHCOOH
Na・3HO)を用いる場合には、融点は約331K
(58℃)であり、凝固開始温度は250K(−23
℃)程度である。 又、蓄熱材を加熱したり、熱を回収
するために用いられる熱媒体は、上記の使用温度範囲に
おいて液体で安定に存在するものであれば用いることが
できる。具体的には、水やエチレングリコール等各種ア
ルコール水溶液、シリコンオイル等を挙げることができ
る。
Various materials can be used for the latent heat storage material 4 depending on the required temperature and the degree of supercooling. For example,
Disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4
When using 12H 2 O), the melting point is about 309K
(36 ° C) and the solidification start temperature is 296K (23 ° C)
It is about. Sodium acetate trihydrate (CH 3 COOH
When using Na.3H 2 O), the melting point is about 331K.
(58 ° C.) and the solidification start temperature is 250 K (−23)
Degrees Celsius). Further, as the heat medium used for heating the heat storage material or recovering the heat, any heat medium can be used as long as it is liquid and stable in the above-mentioned operating temperature range. Specific examples include water, various alcohol aqueous solutions such as ethylene glycol, and silicone oil.

【0013】潜熱蓄熱材4に対して、潜熱蓄熱体3の外
側から熱媒体により加熱を行うと、潜熱蓄熱材4の温度
は上昇し、融点に到達して融解する。潜熱蓄熱材4を完
全に融解させた後に熱媒体による加熱を終えると、高温
にある蓄熱槽1から低温にある蓄熱槽1の周囲環境への
熱移動により、蓄熱槽1すなわち潜熱蓄熱材4の温度は
除々に低下して行く。潜熱蓄熱材4の温度はやがて融点
に到達するが、過冷却現象により、凝固が直ちに開始さ
れることはない。温度はさらに低下を続け、融点よりも
低い温度の凝固開始温度まで液体のまま存在し続ける。
この操作では、潜熱蓄熱材4は凝固開始温度を下回らな
いようにすることが必要であり、潜熱蓄熱材4が凝固開
始温度に達することはないように制御する。蓄熱した熱
を取り出す場合には、過冷却の状態にある潜熱蓄熱材に
凝固を発生させるようにすると、過冷却の状態は壊され
て凝固が起こり、その際に潜熱を放出する。このように
して発生させた潜熱を熱媒体と熱交換操作させることに
より回収利用する。
When the latent heat storage material 4 is heated by a heat medium from outside the latent heat storage material 3, the temperature of the latent heat storage material 4 rises, reaches a melting point, and is melted. When the heating by the heat medium is completed after the latent heat storage material 4 is completely melted, the heat transfer from the high temperature heat storage tank 1 to the surrounding environment of the low temperature heat storage tank 1 causes the heat storage tank 1, that is, the latent heat storage material 4 to be heated. The temperature gradually decreases. The temperature of the latent heat storage material 4 eventually reaches the melting point, but solidification does not immediately start due to the supercooling phenomenon. The temperature continues to drop further and remains liquid until the solidification onset temperature below the melting point.
In this operation, it is necessary that the latent heat storage material 4 does not fall below the solidification start temperature, and control is performed so that the latent heat storage material 4 does not reach the solidification start temperature. When taking out the stored heat, if the latent heat storage material in the supercooled state is caused to solidify, the supercooled state is broken and solidification occurs, and at that time, the latent heat is released. The latent heat generated in this manner is recovered and used by performing a heat exchange operation with a heat medium.

【0014】潜熱蓄熱材4には、吸液性の物質、例え
ば、高分子物、木綿等の繊維、綿、合成高分子からなる
不織布やスポンジ等を混入させることにより、潜熱蓄熱
材4の成分が分離するのを防ぎ、繰り返し過冷却現象が
起きるようにすることができる。
The latent heat storage material 4 is mixed with a liquid-absorbing substance, for example, a polymer material, a fiber such as cotton, a nonwoven fabric or a sponge made of cotton or a synthetic polymer, and the like. Can be prevented from being separated, and the supercooling phenomenon can be repeatedly caused.

【0015】本発明では、前記潜熱蓄熱材の加熱(蓄
熱)工程と、熱の保存工程、及び前記潜熱蓄熱材からの
熱回収(熱の放出)工程を、順次行うものである。蓄熱
工程においては、熱交換手段を用いて、蓄熱槽の大部分
を占める領域A及び蓄熱槽の僅かな部分を占める領域B
に、潜熱蓄熱材の融点以上の温度にある熱媒体を流入さ
せ、流通移動させることにより、潜熱蓄熱体中の潜熱蓄
熱材を加熱させる。具体的な操作は次の通りである。こ
の通路には経路を特定するための開閉手段(バルブ)及
び駆動手段(ポンプ)が設置されている。この経路は、
次の通りである。開閉手段(バルブ)8、11を閉じ、
開閉手段(バルブ)9、10を開き、熱媒体手段(ポン
プ)12を動作させる。潜熱蓄熱材4の融解開始温度以
上の温度とされた熱媒体を用い、連通管b→領域B→連
通管d→領域A→連通管aの順に循環させて、潜熱蓄熱
材4を加熱し、融解させる。
In the present invention, the step of heating (heat storage) the latent heat storage material, the step of storing heat, and the step of recovering heat (release of heat) from the latent heat storage material are sequentially performed. In the heat storage step, a region A occupying most of the heat storage tank and a region B occupying a small portion of the heat storage tank are formed by using the heat exchange means.
Then, a heat medium having a temperature equal to or higher than the melting point of the latent heat storage material is caused to flow in and flow through, thereby heating the latent heat storage material in the latent heat storage material. The specific operation is as follows. Opening / closing means (valve) and driving means (pump) for specifying the path are installed in this passage. This route is
It is as follows. Closing the opening / closing means (valves) 8, 11;
The opening and closing means (valves) 9 and 10 are opened, and the heat medium means (pump) 12 is operated. Using a heat medium having a temperature equal to or higher than the melting start temperature of the latent heat storage material 4, the latent heat storage material 4 is heated by circulating in the order of the communication pipe b → the area B → the communication pipe d → the area A → the communication pipe a, Let melt.

【0016】熱の保存工程では、潜熱蓄熱材の熱は蓄熱
槽を通して外部環境へ移動することとなるため、潜熱蓄
熱材の温度は徐々に下降する。潜熱蓄熱材の温度が凝固
の始まる温度(凝固開始温度)よりも高く保たれている
限り、この過冷却状態は持続され、熱は保存される。蓄
熱槽1の形状や蓄熱槽1を構成する断熱材は、貯蔵期間
内に潜熱蓄熱材4が凝固開始温度を下回らないように設
計されているため、潜熱蓄熱材4の温度は融点を下回
り、凝固開始温度に近づいて行くが、貯蔵期間内に凝固
を開始し、結晶化することはない。
In the heat preservation step, since the heat of the latent heat storage material moves to the outside environment through the heat storage tank, the temperature of the latent heat storage material gradually decreases. As long as the temperature of the latent heat storage material is kept higher than the temperature at which solidification starts (solidification start temperature), this supercooled state is maintained and heat is preserved. Since the shape of the heat storage tank 1 and the heat insulating material constituting the heat storage tank 1 are designed so that the latent heat storage material 4 does not fall below the solidification start temperature during the storage period, the temperature of the latent heat storage material 4 falls below the melting point, It approaches the solidification onset temperature, but begins to solidify within the storage period and does not crystallize.

【0017】熱回収過程においては、熱交換手段を操作
して熱媒体を潜熱蓄熱材4の凝固開始温度以下にする。
熱交換手段により潜熱蓄熱材4の凝固開始温度以下に冷
却されている熱媒体を、僅かな部分を占める領域B中を
移動させることにより、結晶を発生させ、これを核とし
て(凝固を誘発させるようにして)潜熱蓄熱体全体に凝
固を起こさせて、融解熱を発生させる。具体的な操作は
次の通りである。大部分を占める領域Aと僅かな部分を
占める領域Bは、分離体で仕切られている。したがっ
て、熱媒体が大部分を占める領域Aに流入することはな
い。僅かな領域を占める領域Bにのみに注入された熱媒
体は大部分を占める領域Aに影響を及ぼすことなく、僅
かな部分を占める領域Bに存在する潜熱蓄熱材のみを冷
却することができる。潜熱蓄熱体は開孔を有する分離体
で仕切られているが、僅かな領域を占める領域Bで発生
した凝固の誘発によるごく微小な結晶が核となって、結
晶は成長し、大部分の領域を占める領域に存在する潜熱
蓄熱体の潜熱蓄熱材へと進展する。凝固が開始される
と、上記の過冷却の状態が破られ、潜熱蓄熱材の温度は
融点まで上昇し、発生した熱は熱媒体により回収され
る。熱の放出過程の凝固の誘発は以下のような操作によ
り行う。この工程の経路には開閉手段(バルブ)及び熱
媒体駆動手段(ポンプ)が設置されている。開閉手段
(バルブ8、10)を開け、開閉手段(バルブ9、1
1)を閉じ、熱媒体駆動手段(ポンプ12)を動作させ
る。熱交換手段5で凝固開始点より低い温度とされた熱
媒体を、連通管b→僅かな部分を占める領域B→連通管
cの経路で循環させる。
In the heat recovery process, the heat exchange means is operated to set the heat medium to a temperature lower than the solidification start temperature of the latent heat storage material 4.
By moving the heat medium cooled by the heat exchange means below the solidification start temperature of the latent heat storage material 4 in the region B occupying a small portion, crystals are generated, and the crystals are used as nuclei (to induce solidification). In this way, the entire latent heat storage element is solidified to generate heat of fusion. The specific operation is as follows. The area A occupying the majority and the area B occupying a small part are separated by a separator. Therefore, the heat medium does not flow into the region A that occupies most of the heat medium. The heat medium injected only into the area B occupying a small area can cool only the latent heat storage material existing in the area B occupying the small area without affecting the area A occupying the most area. The latent heat storage element is partitioned by a separator having openings, but a very small crystal caused by the induction of solidification generated in the area B occupying a small area becomes a nucleus, and the crystal grows. To the latent heat storage material of the latent heat storage body existing in the area occupying the area. When the solidification is started, the supercooled state is broken, the temperature of the latent heat storage material rises to the melting point, and the generated heat is recovered by the heat medium. Induction of coagulation in the process of releasing heat is performed by the following operation. Opening / closing means (valves) and heat medium driving means (pumps) are provided in the path of this step. Open the opening / closing means (valves 8, 10) and open / close the opening / closing means (valves 9, 1).
1) is closed, and the heat medium driving means (pump 12) is operated. The heat medium having a temperature lower than the solidification start point by the heat exchange means 5 is circulated through the communication pipe b → the area B occupying a small portion → the communication pipe c.

【0018】このようにして、潜熱蓄熱材4の一部(僅
かな部分を占める領域B)の温度を凝固の始まる温度ま
で低下させることにより、凝固を誘発させる。大部分を
占める領域Aにある残りの潜熱蓄熱材は、凝固開始温度
まで温度が降下しなくとも、前述したように発生した微
小な結晶が核となって、潜熱蓄熱材4全体に結晶化の動
きが波及することにより凝固が起こる。凝固が開始され
ると、貯蔵していた融解熱によって蓄熱材の温度が融点
あるいは融点近くまで上昇する。次に、開閉手段(バル
ブ8、10)を閉じ、開閉手段(バルブ9、11)を開
け、熱媒体駆動手段(ポンプ12)を動作させて熱媒体
を流す。熱媒体は、連通管b→僅かな部分を占める領域
B→連通管d→大部分を占める領域A→連通管aの経路
で流すことにより、潜熱蓄熱材4の融点あるいは融点に
近い温度となった熱は熱媒体で回収される。回収された
熱は、熱利用設備6に流され、熱交換させることにより
熱利用される。
In this manner, the solidification is induced by lowering the temperature of a part (region B occupying a small part) of the latent heat storage material 4 to the temperature at which solidification starts. The remaining latent heat storage material in the region A, which occupies the most part, has the fine crystals generated as described above serving as nuclei even if the temperature does not drop to the solidification start temperature, and the entire latent heat storage material 4 is crystallized. Coagulation occurs due to ripples in movement. When the solidification is started, the temperature of the heat storage material rises to or near the melting point due to the stored heat of fusion. Next, the opening and closing means (valves 8 and 10) are closed, the opening and closing means (valves 9 and 11) are opened, and the heating medium driving means (pump 12) is operated to flow the heating medium. The heat medium flows through the path of the communication pipe b → the area B occupying a small portion → the communication pipe d → the area A occupying the majority → the communication pipe a, so that the temperature of the latent heat storage material 4 becomes a melting point or a temperature close to the melting point. The recovered heat is recovered by a heat carrier. The recovered heat is passed to the heat utilization facility 6 and is used by heat exchange.

【0019】蓄熱槽1の形状や蓄熱槽1を構成する断熱
材を適切に設計することにより、潜熱蓄熱材4の温度が
凝固開始温度を下回らないようにしたが、蓄熱期間内に
熱源5を動作させ、蓄熱槽1の領域A及び領域Bに熱を
注入することにより、潜熱蓄熱材4の温度が凝固開始温
度を下回らないにすることもできる。このような場合
は、外部環境の急変や何らかの事情で潜熱蓄熱材4が凝
固開始温度を下回りそうなときに有効である。また、本
発明では、蓄熱槽1の形状を円筒とし、潜熱蓄熱体3を
蓄熱槽1の長手方向に縦置きに配列し、上方に領域A、
下方に領域Bを設けてあるが、蓄熱槽が直方体であった
り、領域Aと領域Bの位置関係が逆転しても機能的な問
題はない。すなわち、蓄熱槽1、潜熱蓄熱体3の形状、
および大部分を占める領域Aと僅かな部分を占める領域
Bの位置関係は、任意に設定することが可能である。
By appropriately designing the shape of the heat storage tank 1 and the heat insulating material constituting the heat storage tank 1, the temperature of the latent heat storage material 4 is prevented from falling below the solidification start temperature. By operating and injecting heat into the area A and the area B of the heat storage tank 1, the temperature of the latent heat storage material 4 can be prevented from falling below the solidification start temperature. Such a case is effective when the latent heat storage material 4 is likely to fall below the solidification start temperature due to a sudden change in the external environment or some circumstances. Further, in the present invention, the shape of the heat storage tank 1 is cylindrical, and the latent heat storage elements 3 are arranged vertically in the longitudinal direction of the heat storage tank 1, and the region A,
Although the area B is provided below, there is no functional problem even if the heat storage tank is a rectangular parallelepiped or the positional relationship between the area A and the area B is reversed. That is, the shapes of the heat storage tank 1 and the latent heat storage body 3,
The positional relationship between the region A occupying the majority and the region B occupying a small portion can be set arbitrarily.

【0020】[0020]

【実施例】実施例1 図1に示される潜熱蓄熱材4として、りん酸水素二ナト
リウム・十二水和物(NaHPO ・12HO)
(融点、約309K(36℃)。凝固開始温度、296
K(23℃)程度。)を用いた。開閉手段(バルブ8、
11)を閉じ、開閉手段(バルブ9、10)を開き、熱
媒体駆動手段(ポンプ12)を動作させた。潜熱蓄熱材
4の融点より高い温度(40℃)の熱媒体(水)を連通
管b→領域B→連通管d→領域A→連通管aの順に循環
し、潜熱蓄熱材4を加熱し、完全に融解させた。外部環
境の影響を受けて潜熱蓄熱材4の温度は徐々に低下し、
やがて融点に到達するが、過冷却現象のために凝固は開
始されなかった。潜熱蓄熱材4の温度はさらに低下し、
融点よりも低い温度になるが、液体のまま存在すること
ができた。次に、バルブ8、10を開け、バルブ9、1
1を閉じ、ポンプ12を動作させる。熱交換手段5によ
り潜熱蓄熱材4の凝固開始点より低い温度(15℃)と
された熱媒体(水)を、連通管b→領域B→連通管cの
経路で循環させ、潜熱蓄熱材4の一部の温度を凝固の始
まる温度まで低下させて凝固を誘発させた。凝固が開始
されると、貯蔵していた融解熱によって蓄熱材の温度が
融点あるいは融点近くに回復し、バルブ8、10を閉
じ、バルブ9、11を開け、ポンプ12を動作させるこ
とにより、連通管b→領域B→連通管d→領域A→連通
管aの経路で蓄熱槽1から潜熱蓄熱材4の融点あるいは
融点に近い温度の熱媒体から熱を回収した。
EXAMPLE 1 As a latent heat storage material 4 shown in FIG. 1, disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 .12H 2 O) was used.
(Melting point: about 309K (36 ° C). Solidification onset temperature: 296
About K (23 ° C). ) Was used. Opening / closing means (valve 8,
11) was closed, the opening / closing means (valves 9 and 10) were opened, and the heat medium driving means (pump 12) was operated. A heat medium (water) having a temperature (40 ° C.) higher than the melting point of the latent heat storage material 4 is circulated in the order of the communication pipe b → the area B → the communication pipe d → the area A → the communication pipe a to heat the latent heat storage material 4, Thawed completely. Under the influence of the external environment, the temperature of the latent heat storage material 4 gradually decreases,
Eventually the melting point was reached, but no solidification was initiated due to the supercooling phenomenon. The temperature of the latent heat storage material 4 further decreases,
The temperature was lower than the melting point, but could remain liquid. Next, the valves 8 and 10 are opened, and the valves 9 and 1 are opened.
1 is closed, and the pump 12 is operated. The heat medium (water) whose temperature (15 ° C.) is lower than the solidification start point of the latent heat storage material 4 by the heat exchanging means 5 is circulated through the communication pipe b → region B → communication pipe c. Was reduced to the temperature at which coagulation began to induce coagulation. When the solidification is started, the temperature of the heat storage material is restored to the melting point or near the melting point by the stored heat of fusion, and the valves 8 and 10 are closed, the valves 9 and 11 are opened, and the pump 12 is operated to communicate. Heat was recovered from the heat storage tank 1 from the heat medium of the melting point of the latent heat storage material 4 or a temperature close to the melting point from the heat storage tank 1 through the path of the pipe b → the area B → the communication pipe d → the area A → the communication pipe a.

【0021】[0021]

【発明の効果】本発明の蓄熱装置は、蓄熱材の結晶化の
きっかけを単一の熱交換手段で自由に行わせることがで
き、しかも、結晶化のきっかけの領域を領域Bのみと限
定しているため、結晶化のためのエネルギーを効率よく
利用することができる。また、本発明の蓄熱装置の潜熱
蓄熱体内部に吸液性の物質を散在させることによって、
蓄熱材の相分離を防止することができ、したがって繰り
返し安定した過冷却現象を起こさせることができる。し
かも、熱交換手段を用いて蓄熱材の温度が凝固開始温度
を下回らないようにすることもでき、蓄熱期間や環境温
度が外乱によって予定外に変動しても、不必要な結晶化
を回避することができる。
According to the heat storage device of the present invention, the crystallization of the heat storage material can be freely started by a single heat exchange means, and the crystallization start region is limited to only the region B. Therefore, energy for crystallization can be used efficiently. Further, by dispersing the liquid absorbing material inside the latent heat storage body of the heat storage device of the present invention,
It is possible to prevent phase separation of the heat storage material, and therefore, it is possible to repeatedly and stably cause a supercooling phenomenon. Moreover, it is possible to prevent the temperature of the heat storage material from falling below the solidification start temperature by using the heat exchange means, and to avoid unnecessary crystallization even if the heat storage period and the environmental temperature fluctuate unexpectedly due to disturbance. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蓄熱装置のフローを示す図である。FIG. 1 is a diagram showing a flow of a heat storage device of the present invention.

【図2】本発明の蓄熱槽の分離体の部分を含む上面図で
ある。
FIG. 2 is a top view including a part of a separator of the heat storage tank of the present invention.

【図3】従来の蓄熱装置の断面図である。FIG. 3 is a sectional view of a conventional heat storage device.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 分離体 3 潜熱蓄熱体 4 潜熱蓄熱材 5 熱交換手段 6 熱利用設備 7 潜熱蓄熱体の外側と蓄熱槽の間の空間 8〜11 開閉手段(バルブ) 12熱媒体駆動手段(ポンプ) DESCRIPTION OF SYMBOLS 1 Heat storage tank 2 Separator 3 Latent heat storage material 4 Latent heat storage material 5 Heat exchange means 6 Heat utilization equipment 7 Space between the outside of a latent heat storage material and a heat storage tank 8-11 Opening / closing means (valve) 12 Heat medium drive means (Pump )

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】潜熱蓄熱槽の内部に潜熱蓄熱材が収容され
ている潜熱蓄熱体が設置され、潜熱蓄熱体の外側と蓄熱
槽の間に形成される熱媒体が流れる空間設けられてお
り、潜熱蓄熱体の外側と蓄熱槽の間の空間が、断熱性の
分離体によって、大部分を占める領域と蓄熱槽の僅かな
部分を占める領域とに分離されており、前記潜熱蓄熱体
は前記分離体を貫通して設置されていることを特徴とす
る蓄熱槽。
1. A latent heat storage element containing a latent heat storage material is installed inside a latent heat storage tank, and a space through which a heat medium formed between the outside of the latent heat storage element and the heat storage tank flows is provided. The space between the outside of the latent heat storage element and the heat storage tank is separated by an adiabatic separator into an area that occupies most and an area that occupies a small part of the heat storage tank. A heat storage tank characterized by being installed through a body.
【請求項2】潜熱蓄熱材が収容されている潜熱蓄熱体が
設置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱槽の間
に形成される熱媒体が流れる空間が、断熱性の分離体に
よって、蓄熱槽の大部分を占める領域と蓄熱槽の僅かな
部分を占める領域とに分離され、前記潜熱蓄熱体は前記
分離体を貫通しており、蓄熱槽の大部分を占める領域及
び蓄熱槽の僅かな部分を占める領域を用いた潜熱蓄熱体
の加熱する手段、及び蓄熱槽の大部分を占める領域と蓄
熱槽の僅かな部分を占める領域を用いた熱回収手段、蓄
熱槽の僅かな部分を占める領域を用いた潜熱蓄熱材の凝
固開始温度以下に冷却する冷却手段からなることを特徴
とする蓄熱装置。
2. A heat storage tank in which a latent heat storage element containing a latent heat storage material is installed, and a space in which a heat medium formed between the outside of the latent heat storage element and the heat storage tank flows is a heat insulating separator. Thus, the latent heat storage element is separated into an area occupying most of the heat storage tank and an area occupying a small part of the heat storage tank, and the latent heat storage element penetrates the separator, and occupies the most of the heat storage tank and the heat storage tank. Means for heating a latent heat storage element using an area occupying a small part of the heat storage means, and heat recovery means using an area occupying a large part of the heat storage tank and an area occupying a small part of the heat storage tank, and a small part of the heat storage tank A heat storage device comprising cooling means for cooling the latent heat storage material to a temperature not higher than the solidification start temperature using a region occupied by the heat storage material.
【請求項3】潜熱蓄熱材が収容されている潜熱蓄熱体が
設置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱槽の間
に形成される熱媒体が流れる空間が、断熱性の分離体に
よって、蓄熱槽の大部分を占める領域と蓄熱槽の僅かな
部分を占める領域とに分離され、前記潜熱蓄熱体は前記
分離体を貫通しており、蓄熱槽の大部分を占める領域及
び蓄熱槽の僅かな部分を占める領域と、熱媒体を加熱/
冷却するための熱交換手段とが、開閉手段及び熱媒体駆
動手段を介して連絡されている熱媒体流路、及び蓄熱槽
の大部分を占める領域と蓄熱槽の僅かな部分を占める領
域と、熱媒体の熱回収設備が開閉手段と熱媒体駆動手段
を介して連絡されている熱媒体流路からなることを特徴
とする蓄熱装置。
3. A heat storage tank in which a latent heat storage element containing a latent heat storage material is installed, and a space in which a heat medium formed between the outside of the latent heat storage element and the heat storage tank flows is a heat insulating separator. Thus, the latent heat storage element is separated into an area occupying most of the heat storage tank and an area occupying a small part of the heat storage tank, and the latent heat storage element penetrates the separator, and occupies the most of the heat storage tank and the heat storage tank. Heating the heating medium and the area occupying a small part of
Heat exchange means for cooling, the heat medium flow path connected via the opening and closing means and the heat medium drive means, and a region occupying most of the heat storage tank and an area occupying a small part of the heat storage tank, A heat storage device characterized in that the heat recovery equipment for the heat medium comprises a heat medium flow passage connected to the switching means and the heat medium drive means.
【請求項4】潜熱蓄熱材が収容されている潜熱蓄熱体が
設置されている蓄熱槽、潜熱蓄熱体の外側と蓄熱槽の間
に形成される熱媒体が流れる空間が、断熱性の分離体に
よって蓄熱槽の大部分を占める領域と蓄熱槽の僅かな部
分を占める領域とに分離され、前記潜熱蓄熱体は前記分
離体を貫通しており、蓄熱槽の大部分を占める領域及び
蓄熱槽の僅かな部分を占める領域と、熱媒体を加熱/冷
却するための熱交換手段とが、蓄熱槽に熱媒体を導入す
る経路を経て蓄熱槽の僅かな部分を占める領域及び蓄熱
槽の大部分を占める領域に導かれ、更に蓄熱槽から熱媒
体が排出され、再び蓄熱槽に熱媒体を導入する経路から
なる熱媒体循環経路に、熱媒体を加熱/冷却するための
熱交換手段及び熱利用設備が並列に設置され、前記循環
経路中に熱媒体の流れを調節する開閉手段及び熱媒体駆
動手段が設けられており、又蓄熱槽の僅かな部分を占め
る領域を経て蓄熱槽から熱媒体が排出されて前記循環経
路に接続される熱媒体流路が開閉手段を介して設けられ
ていることを特徴とする蓄熱装置。
4. A heat storage tank in which a latent heat storage element containing a latent heat storage material is installed, and a space in which a heat medium formed between the outside of the latent heat storage element and the heat storage tank flows is a heat insulating separator. The latent heat storage element is separated into an area occupying most of the heat storage tank and an area occupying a small part of the heat storage tank, and the latent heat storage element penetrates the separator, and occupies the area occupying most of the heat storage tank and the heat storage tank. The area occupying a small part and the heat exchange means for heating / cooling the heat medium form the area occupying a small part of the heat storage tank and most of the heat storage tank via a path for introducing the heat medium into the heat storage tank. Heat exchange means for heating / cooling the heat medium and a heat utilization facility in a heat medium circulation path including a path for introducing the heat medium into the heat storage tank and introducing the heat medium again into the heat storage tank. Are installed in parallel, and heat medium Opening / closing means and a heat medium driving means are provided for adjusting the heat medium.The heat medium is discharged from the heat storage tank through an area occupying a small portion of the heat storage tank, and a heat medium flow path connected to the circulation path is provided. A heat storage device provided via opening and closing means.
【請求項5】潜熱蓄熱材に吸液性の物質を添加して用い
ることを特徴とする請求項2乃至4記載のいずれかであ
る蓄熱装置。
5. The heat storage device according to claim 2, wherein a liquid absorbing material is added to the latent heat storage material.
【請求項6】請求項2記載の蓄熱装置において、蓄熱槽
の大部分を占める領域及び蓄熱槽の僅かな部分を占める
領域を用いた潜熱蓄熱体の加熱する手段により潜熱蓄熱
材を融解させた後に、蓄熱槽の僅かな部分を占める領域
を冷却手段により潜熱蓄熱材を冷却し、蓄熱槽の大部分
を占める領域と蓄熱槽の僅かな部分を占める領域を用い
た熱回収手段により熱回収を行うことを特徴とする蓄熱
及び熱回収方法。
6. The heat storage device according to claim 2, wherein the latent heat storage material is melted by means for heating the latent heat storage body using an area occupying most of the heat storage tank and an area occupying a small part of the heat storage tank. Later, the latent heat storage material is cooled by the cooling means in the area occupying a small part of the heat storage tank, and heat recovery is performed by the heat recovery means using the area occupying the large part of the heat storage tank and the area occupying a small part of the heat storage tank. Heat storage and heat recovery method characterized by performing.
【請求項7】請求項3又は4記載の蓄熱装置において、
熱交換手段により加熱された熱媒体流路を流れる熱媒体
により潜熱蓄熱材を融解させた後に過冷却状態で保持
し、次に、熱交換手段により冷却された熱媒体を、僅か
な部分を占める領域に熱媒体を流して潜熱蓄熱材を冷却
して凝固させた後に、潜熱蓄熱材から発生される融解熱
を大部分を占める領域と熱回収設備に熱媒体を流して熱
回収することを特徴とする蓄熱及び熱回収方法。
7. The heat storage device according to claim 3, wherein
After the latent heat storage material is melted by the heat medium flowing through the heat medium flow path heated by the heat exchange means, the latent heat storage material is kept in a supercooled state, and then the heat medium cooled by the heat exchange means occupies a small portion. After the latent heat storage material is cooled and solidified by flowing the heat medium through the area, heat is recovered by flowing the heat medium through the area and the heat recovery facility that occupies most of the heat of fusion generated from the latent heat storage material. Heat storage and heat recovery method.
【請求項8】潜熱蓄熱材に吸液性の物質を添加して用い
ることを特徴とする請求項6又は7記載の蓄熱及び熱回
収方法。
8. The heat storage and heat recovery method according to claim 6, wherein a liquid absorbing material is added to the latent heat storage material and used.
JP33249299A 1999-11-24 1999-11-24 Thermal storage tank, thermal storage device, and thermal storage and heat recovery method Expired - Lifetime JP3472795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33249299A JP3472795B2 (en) 1999-11-24 1999-11-24 Thermal storage tank, thermal storage device, and thermal storage and heat recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33249299A JP3472795B2 (en) 1999-11-24 1999-11-24 Thermal storage tank, thermal storage device, and thermal storage and heat recovery method

Publications (2)

Publication Number Publication Date
JP2001153579A true JP2001153579A (en) 2001-06-08
JP3472795B2 JP3472795B2 (en) 2003-12-02

Family

ID=18255558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33249299A Expired - Lifetime JP3472795B2 (en) 1999-11-24 1999-11-24 Thermal storage tank, thermal storage device, and thermal storage and heat recovery method

Country Status (1)

Country Link
JP (1) JP3472795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052423A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Heat storage device
US9389024B2 (en) 2009-03-09 2016-07-12 Rawema Countertrade Handelsgesellschaft Mbh Heat storage system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714923B2 (en) * 2005-03-31 2011-07-06 独立行政法人産業技術総合研究所 Heat storage device
JP5594752B2 (en) * 2007-10-22 2014-09-24 独立行政法人産業技術総合研究所 Heat storage device
JP5083881B2 (en) * 2007-10-22 2012-11-28 独立行政法人産業技術総合研究所 Thermal storage device and thermal management method thereof
JP5604190B2 (en) * 2010-06-24 2014-10-08 パナソニック株式会社 Heat storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389024B2 (en) 2009-03-09 2016-07-12 Rawema Countertrade Handelsgesellschaft Mbh Heat storage system
JP2015052423A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Heat storage device

Also Published As

Publication number Publication date
JP3472795B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US4258696A (en) Passive thermal energy phase change storage apparatus
CA1183447A (en) Method and apparatus for inoculating crystallization seeds into a liquid latent heat storage substance
JP3472795B2 (en) Thermal storage tank, thermal storage device, and thermal storage and heat recovery method
JP2007085629A (en) Operating method of ice thermal storage equipment and ice thermal storage equipment
JP4714923B2 (en) Heat storage device
JPS5926878B2 (en) latent heat storage
JP3472796B2 (en) Heat storage tank, heat storage device, and heat storage and heat recovery method
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JP3443636B2 (en) Thermal storage device and thermal storage and heat recovery method.
JP5594752B2 (en) Heat storage device
JPH0245114B2 (en)
JP2005009837A (en) Heat storage device
KR102606036B1 (en) Active crystallization control in phase change material thermal storage system
JP5083881B2 (en) Thermal storage device and thermal management method thereof
JP3907539B2 (en) Latent heat storage system
JPH08270989A (en) Regenerator and operating method for the same
JPH05215369A (en) Cooling or heating method utilizing latent heat
JP3020653B2 (en) Latent heat storage device
JP3842413B2 (en) Sensible heat recovery device and heat storage tank
JPH10238828A (en) Ice heat reserve system and ice heat reserve cooling method using the system
JP2007285701A (en) Heat storage device and method of operating heat storage device
JPH0842984A (en) Cold heat accumulator and latent heat accumulating capsule
JPH0261443A (en) Cooling water feeding device
US4993486A (en) Heat transfer loop with cold trap
JP2013178041A (en) Refrigerator and cooling method of the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3472795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term