JP3907539B2 - Latent heat storage system - Google Patents

Latent heat storage system Download PDF

Info

Publication number
JP3907539B2
JP3907539B2 JP2002194917A JP2002194917A JP3907539B2 JP 3907539 B2 JP3907539 B2 JP 3907539B2 JP 2002194917 A JP2002194917 A JP 2002194917A JP 2002194917 A JP2002194917 A JP 2002194917A JP 3907539 B2 JP3907539 B2 JP 3907539B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
temperature
tank
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002194917A
Other languages
Japanese (ja)
Other versions
JP2004036996A (en
Inventor
清和 中村
忠益 舟里
昌信 日野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2002194917A priority Critical patent/JP3907539B2/en
Publication of JP2004036996A publication Critical patent/JP2004036996A/en
Application granted granted Critical
Publication of JP3907539B2 publication Critical patent/JP3907539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は潜熱蓄熱システムに関し、詳しくは、槽一端部の端部取出口から取り出した槽内の熱媒液を熱源装置で冷却又は加熱して槽他端部の戻し口から槽内に戻す蓄熱運転により槽内に冷熱又は温熱を蓄熱する蓄熱槽を設け、潜熱蓄熱材を収容した多数の蓄熱容器を、槽内熱媒液に浸漬させる状態で前記蓄熱槽の槽内に設置してある潜熱蓄熱システムに関する。
【0002】
【従来の技術】
従来、この種の潜熱蓄熱システムでは、図8に示す如く、蓄熱運転において熱源装置2に送る熱媒液Wを蓄熱槽内から取り出すのに、その取り出しを蓄熱槽1における槽一端部の端部取出口Xsからのみ行っていた。
【0003】
【発明が解決しようとする課題】
しかし、この種の潜熱蓄熱システムでは(同図8参照)、蓄熱槽1における槽一端部の端部取出口Xsから取り出した槽内熱媒液Wを熱源装置2(冷凍機)で冷却して槽他端部の戻し口Xrから蓄熱槽内に戻す冷熱蓄熱の蓄熱運転の場合、槽内の潜熱蓄熱材Zを効率的に相変化させ得る低温熱媒液の領域(以下、冷温領域と略称する)が蓄熱運転の進行に伴い蓄熱槽内で戻し口Xrの側から端部取出口Xsの側へ次第に拡がっていくことにおいて、その低温領域の先端側に、相変化前の潜熱蓄熱材Zとの熱交換や先に存在する槽内高温熱媒液との混合で昇温して中間温度になった熱媒液からなる中間温度層が形成されるが、従来システムにおいては、この中間温度層が蓄熱運転の進行に伴い次第に成長して、槽内で大きな領域を占める層になる。
【0004】
そして、このように成長しながら端部取出口Xsの側へ進行する中間温度層が蓄熱運転の開始後、早期に端部取出口Xsに到達することで、端部取出口Xsから取り出して熱源装置2に送る熱媒液Wの温度tsは、図9に示す如く、蓄熱運転の開始後における比較的早い時期から低下を開始して漸次的に低下していくようになり、この為、従来システムでは、熱源装置2が蓄熱運転開始後の早い時期から部分負荷運転の状態になって、熱源装置2での単位時間当たりの冷却量(換言すれば、単位時間当たりの冷熱蓄熱量)が蓄熱運転開始後の早い時期から小さなものに制限されてしまい、これが原因で蓄熱に長時間を要する問題があった。
【0005】
また、熱媒液温度が高くて層中にある潜熱蓄熱材Zの相変化が進み難い中間温度層が大きな領域を占めて蓄熱槽内に形成される為、従来システムでは、熱源装置2に送る熱媒液Wの温度tsが熱源装置2の下限入口温度teまで低下して熱源装置2の停止により蓄熱運転の終了に至った際に、中間温度層の層中にあって相変化が未だ完了していない潜熱蓄熱材Zが多く残り易く、このことで蓄熱量が小さなものに制限されてしまう問題もあった。
【0006】
なお、従来システムでは、槽一端部の端部取出口から取り出した蓄熱槽内の熱媒液を熱源装置で加熱して槽他端部の戻し口から蓄熱槽内に戻す温熱蓄熱の蓄熱運転の場合についても、上記と同様の理由で、蓄熱に長時間を要し、また、蓄熱量が小さなものに制限される問題があった。
【0007】
この実情に鑑み、本発明の主たる課題は、合理的な蓄熱形態を採ることにより上記問題を効果的に解消する点にある。
【0008】
【課題を解決するための手段】
〔1〕請求項1に係る発明は潜熱蓄熱システムに係り、その特徴は、
槽一端部の端部取出口から取り出した槽内の熱媒液を熱源装置で冷却又は加熱して槽他端部の戻し口から槽内に戻す蓄熱運転により槽内に冷熱又は温熱を蓄熱する蓄熱槽を設け、
潜熱蓄熱材を収容した多数の蓄熱容器を、槽内熱媒液に浸漬させる状態で前記蓄熱槽の槽内に設置する構成において、
蓄熱運転時における槽内熱媒液の流動方向において前記端部取出口よりも上流側でかつ前記蓄熱容器の設置域よりも下流側の箇所、又は、前記蓄熱容器の設置域における途中箇所に、前記蓄熱運転において前記端部取出口からの取り出し熱媒液と合流させて前記熱源装置に送る熱媒液を蓄熱槽内から取り出す中間取出口を設け、
前記熱源装置により熱媒液を冷却する冷熱蓄熱の蓄熱運転において、前記中間取出口からの取り出し熱媒液の温度が前記潜熱蓄熱材の相変化温度よりも低温の設定停止温度まで低下したとき、
又は、前記熱源装置により熱媒液を加熱する温熱蓄熱の蓄熱運転において、前記中間取出口からの取り出し熱媒液の温度が前記潜熱蓄熱材の相変化温度よりも高温の設定停止温度まで上昇したとき、
その中間取出口からの槽内熱媒液の取り出しを停止する制御手段を設けてある点にある。
【0009】
つまり、この構成によれば、蓄熱槽内からの取り出し熱媒液を熱源装置で冷却して蓄熱槽内に戻す冷熱蓄熱の蓄熱運転の場合(図1,図3参照)、中間取出口Xmからの取り出し熱媒液の温度tmが潜熱蓄熱材Z(冷熱蓄熱用の潜熱蓄熱材)の相変化温度tkよりも低温の設定停止温度tbに低下するまで、その中間取出口Xmを通じて蓄熱槽1内の熱媒液Wが取り出されるから、先述の中間温度層を形成する中間温度の熱媒液(すなわち、上記の設定停止温度tbよりも高温の熱媒液)は、端部取出口Xsの側への中間温度層の進行において中間温度層が中間取出口Xmの配設位置を通過する際に、その一部が中間取出口Xmから槽外へ取り出され、これにより、中間温度層の成長及び端部取出口Xsの側への進行が効果的に抑止される。
【0010】
そして、蓄熱運転時における槽内熱媒液Wの流動方向で中間温度層に続き戻し口Xrの側から端部取出口Xsの側へ次第に拡がる低温領域(すなわち、上記の設定停止温度tbよりも低温の熱媒液領域)が中間取出口Xmの配設位置に至って、戻し口Xrからその中間取出口Xmの配設位置に至るまでの間が低温領域になると、中間取出口Xmからの取り出し熱媒液の温度tmが設定停止温度tbまで低下することで、その中間取出口Xmからの槽内熱媒液Wの取り出しが停止され、これにより、先行する中間温度層の成長及び端部取出口Xsの側への進行が上記の如く効果的に抑止された状態下において、端部取出口Xsの側への低温領域の拡がりが継続される。
【0011】
すなわち、上記の如く中間温度層の成長及び端部取出口Xsの側への進行を抑止できることにより、先述の図9に示した如き端部取出口Xsからの取り出し熱媒液の温度tsの早期低下を防止することができて、図3に示す如く端部取出口Xsからの取り出し熱媒液Wの温度tsを蓄熱運転の開始後、長時間にわたり高温に維持することができ、そして、このように端部取出口Xsからの取り出し熱媒液Wの温度tsを長時間にわたり高温に維持できることにより、中間取出口Xmからの槽内熱媒液Wの取り出しを行っている状況下では、中間取出口Xmから取り出される設定停止温度tb以上の熱媒液Wと端部取出口Xsから取り出される高温の熱媒液Wとを合流させて熱源装置2に送ることで、また、中間取出口Xmからの槽内熱媒液Wの取り出しが停止された状況下では、上記の如く長時間にわたり高温に維持される端部取出口Xsからの取り出し熱媒液Wのみを熱源装置2に送ることで、熱源装置2に送る熱媒液Wの温度ti(熱源装置の入口温度)も蓄熱運転の開始後、長時間にわたり一定以上の温度に安定的に保つことができて、熱源装置2が蓄熱運転開始後の早い時期に部分負荷運転の状態になることを効果的に防止することができ、これにより、先述の従来システムに比べ蓄熱に要する時間を効果的に短縮することができる。
【0012】
また、熱源装置2に送る熱媒液Wの温度tiが熱源装置2の下限入口温度teに低下するまでに、上記の如く中間温度層の成長を効果的に抑止して戻し口Xrから中間取出口Xmの配設位置に至るまでの間を低温領域にしておく(略言すれば、中間温度層の成長抑止分だけ低温領域を拡大しておく)ことができるから、戻し口Xrから中間取出口Xmの配設位置に至るまでの間にある潜熱蓄熱材Zについては低温熱媒液により効率良く相変化を進行させてほぼ完全に相変化を完了させた状態で蓄熱運転の終了に至らせることができ、この点、大きな領域を占める中間温度層の層中に相変化が未だ完了しない潜熱蓄熱材が多く残る状況下で蓄熱運転の終了に至ってしまう従来システムに比べ、蓄熱量も効果的に増大させることができる。
【0013】
一方、蓄熱槽内からの取り出し熱媒液を熱源装置で加熱して蓄熱槽内に戻す温熱蓄熱の蓄熱運転の場合(図6参照)についても、冷熱蓄熱の蓄熱運転の場合と同様、上記構成によれば、中間取出口Xmからの取り出し熱媒液Wの温度tmが潜熱蓄熱材Z′(温熱蓄熱用の潜熱蓄熱材)の相変化温度tk′よりも高温の設定停止温度tb′に上昇するまで、その中間取出口Xmを通じて蓄熱槽内の熱媒液Wが取り出されるから、中間温度層を形成する中間温度の熱媒液(すなわち、上記の設定停止温度tb′よりも低温の熱媒液)は、端部取出口Xsの側への中間温度層の進行において中間温度層が中間取出口Xmの配設位置を通過する際に、その一部が中間取出口Xmから槽外へ取り出され、これにより、中間温度層の成長及び端部取出口Xsの側への進行が効果的に抑止される。
【0014】
そして、蓄熱運転時における槽内熱媒液Wの流動方向で中間温度層に続き戻し口Xrの側から端部取出口Xsの側へ次第に拡がる高温領域(すなわち、上記の設定停止温度tb′よりも高温の熱媒液領域)が中間取出口Xmの配設位置に至って、戻し口Xrからその中間取出口Xmの配設位置に至るまでの間が高温領域になると、中間取出口Xmからの取り出し熱媒液Wの温度tmが設定停止温度tb′まで上昇することで、その中間取出口Xmからの槽内熱媒液Wの取り出しが停止され、これにより、先行する中間温度層の成長及び端部取出口Xsの側への進行が上記の如く効果的に抑止された状態下において、端部取出口Xsの側への高温領域の拡がりが継続される。
【0015】
すなわち、上記の如く中間温度層の成長及び端部取出口Xsの側への進行を抑止できることにより、端部取出口Xsからの取り出し熱媒液Wの温度tsの早期上昇を防止することができて、端部取出口Xsからの取り出し熱媒液Wの温度tsを蓄熱運転の開始後、長時間にわたり低温に維持することができ、そして、このように端部取出口Xsからの取り出し熱媒液Wの温度tsを長時間にわたり低温に維持できることにより、中間取出口Xmからの槽内熱媒液Wの取り出しを行っている状況下では、中間取出口Xmから取り出される設定停止温度tb′以下の熱媒液Wと端部取出口Xsから取り出される低温の熱媒液Wとを合流させて熱源装置2に送ることで、また、中間取出口Xmからの槽内熱媒液Wの取り出しが停止された状況下では、上記の如く長時間にわたり低温に維持される端部取出口Xsからの取り出し熱媒液Wのみを熱源装置2に送ることで、熱源装置2に送る熱媒液Wの温度ti(熱源装置の入口温度)も蓄熱運転の開始後、長時間にわたり一定以下の温度に安定的に保つことができて、熱源装置2が蓄熱運転開始後の早い時期に部分負荷運転の状態になることを効果的に防止することができ、これにより、冷熱蓄熱の蓄熱運転の場合と同様、温熱蓄熱の蓄熱運転の場合についても先述の従来システムに比べ蓄熱に要する時間を効果的に短縮することができる。
【0016】
また、熱源装置2に送る熱媒液Wの温度tiが熱源装置2の上限入口温度te′に上昇するまでに、上記の如く中間温度層の成長を効果的に抑止して戻し口Xrから中間取出口Xmの配設位置に至るまでの間を高温領域にしておく(略言すれば、中間温度層の成長抑止分だけ高温領域を拡大しておく)ことができるから、戻し口Xrから中間取出口Xmの配設位置に至るまでの間にある潜熱蓄熱材Z′については高温熱媒液により効率良く相変化を進行させてほぼ完全に相変化を完了させた上で蓄熱運転の終了に至らせることができ、この点、やはり冷熱蓄熱の蓄熱運転の場合と同様、温熱蓄熱の蓄熱運転の場合についても、大きな領域を占める中間温度層の層中に相変化が未だ完了しない潜熱蓄熱材が多く残る状況下で蓄熱運転の終了に至ってしまう従来システムに比べ、蓄熱量を効果的に増大させることができる。
【0017】
なお、請求項1に係る発明の実施においては、冷熱蓄熱の蓄熱運転の場合、中間取出口Xmからの槽内熱媒液Wの取り出しを蓄熱運転の開始当初から実施して、その取り出し熱媒液Wの温度tmが設定停止温度tbまで低下したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを停止する形態、あるいは、中間取出口Xmの配設箇所における槽内熱媒液Wの温度tmが蓄熱運転の開始後、設定開始温度taまで低下したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを開始して、その取り出し熱媒液Wの温度tmがさらに設定停止温度tbまで低下したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを停止する形態のいずれを採用してもよい。
【0018】
同様に、温熱蓄熱の蓄熱運転の場合についても、中間取出口Xmからの槽内熱媒液Wの取り出しを蓄熱運転の開始当初から実施して、その取り出し熱媒液Wの温度tmが設定停止温度tb′まで上昇したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを停止する形態、あるいは、中間取出口Xmの配設箇所における槽内熱媒液Wの温度tmが蓄熱運転の開始後、設定開始温度ta′まで上昇したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを開始して、その取り出し熱媒液Wの温度tmがさらに設定停止温度tb′まで上昇したときに、その中間取出口Xmからの槽内熱媒液Wの取り出しを停止する形態のいずれを採用してもよい。
【0019】
また、中間取出口Xmからの槽内熱媒液Wの取り出しの発停は、熱媒液温度の検出に基づいて制御手段に実行させる形態に限らず、蓄熱運転開始時点からの経過時間に基づいてタイマー制御的に制御手段に実行させる形態を採ってもよい。
【0020】
請求項1に係る発明の実施においては、中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向において一箇所にのみ配設する形態、あるいは、複数の中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向に分散させて配置して、それら複数の中間取出口Xmの各々について取り出し熱媒液Wの温度に応じた前記の取り出し停止を個別に実行する形態のいずれを採用してもよい。
【0021】
さらにまた、中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向において端部取出口Xsよりも上流側でかつ蓄熱容器9の設置域よりも下流側の箇所に配設する形態、あるいは、中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向において蓄熱容器9の設置域における途中箇所(蓄熱容器設置域における熱媒液流動方向の下流端箇所を含む)に配設する形態、あるいはまた、中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向において端部取出口Xsよりも上流側でかつ蓄熱容器9の設置域よりも下流側の箇所と蓄熱容器9の設置域における途中箇所との両方に配設する形態のいずれを採用してもよい。
【0022】
〔2〕請求項2に係る発明は、請求項1に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
複数の前記中間取出口を蓄熱運転時における槽内熱媒液の流動方向に分散させて前記蓄熱容器の設置域に配置し、
前記制御手段を、取り出し熱媒液の温度に応じた前記の取り出し停止を複数の前記中間取出口の各々について個別に実行する構成にしてある点にある。
【0023】
つまり、この構成によれば、冷熱蓄熱の蓄熱運転の場合(図4,図5参照)、先ず、槽内熱媒液Wの流動方向において戻し口Xrの側から1番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、戻し口Xrと1番目の中間取出口Xmとの間の領域を低温領域にし、それに続き、槽内熱媒液Wの流動方向において戻し口Xrの側から2番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、1番目の中間取出口Xmと2番目の中間取出口Xmとの間の領域を低温領域にするといった形態で、蓄熱運転開始後の早い時期からの中間温度層の実質的な成長抑止を伴いながら低温領域を端部取出口Xsの側へ拡大していくから、中間温度層の大きな成長領域が一時的にせよ槽内に形成されるのを防止することができて、そのことにより、潜熱蓄熱材Zを効率的に相変化させ得る良好な低温領域の拡大域を一層確実かつ効率良く槽内に形成することができる。
【0024】
また、温熱蓄熱の蓄熱運転の場合についても同様に、中間温度層の大きな成長領域が一時的にせよ槽内に形成されるのを防止した状態で、潜熱蓄熱材を効率的に相変化させ得る良好な高温領域の拡大域を一層確実かつ効率良く槽内に形成することができ、これらのことにより、冷熱蓄熱の蓄熱運転の場合及び温熱蓄熱の蓄熱運転の場合のいずれにおいても、蓄熱に要する時間を一層確実かつ効果的に短縮し得るとともに、蓄熱量も一層確実かつ効果的に増大させることができる。
【0025】
〔3〕請求項3に係る発明は、請求項1又は2に係る発明の実施に好適な実施形態を特定するものであり、その特徴は、
前記制御手段を、前記端部取出口からの取り出し熱媒液と前記中間取出口からの取り出し熱媒液とを合流させて前記熱源装置に送る際、前記端部取出口からの熱媒液取出流量と前記中間取出口からの熱媒液取出流量との比を調整して、前記熱源装置に送る合流熱媒液の温度を設定送り温度に調整する構成にしてある点にある。
【0026】
つまり、この構成によれば(図1ないし図4参照)、端部取出口Xsからの取り出し熱媒液Wの温度変化や中間取出口Xmからの取り出し熱媒液Wの温度変化にかかわらず、熱源装置2に送る合流熱媒液Wの温度ti(熱源装置の入口温度)を設定送り温度tiiに安定的に維持できることから、その設定送り温度tiiとして適当な温度を設定しておけば、所定流量の合流熱媒液Wを熱源装置2に送り、かつ、熱源装置2から設定戻し温度trrの熱媒液Wを蓄熱槽1に戻す蓄熱運転において、端部取出口Xsからの取り出し熱媒液Wの温度変化や中間取出口Xmからの取り出し熱媒液Wの温度変化にかかわらず、熱源装置2を最大出力状態ないしそれに近い出力状態に保って継続運転することができ、これにより、冷熱蓄熱の蓄熱運転の場合及び温熱蓄熱の蓄熱運転の場合のいずれにおいても、単位時間当たりの蓄熱量を一層安定的に大きく確保した状態で蓄熱運転を進めることができて、蓄熱に要する時間を一層効果的に短縮することができる。
【0027】
【発明の実施の形態】
【0028】
〔第1実施形態〕
図1は冷熱用の潜熱蓄熱システムを示し、1は蓄熱槽、2は熱源装置としての冷凍機、3は負荷装置(例えば空調機やファンコイルユニット)であり、このシステムでは、蓄熱運転において熱源側循環路4を通じ蓄熱槽1と冷凍機2との間で熱媒液W(例えば水)を循環させることにより、冷凍機1の発生冷熱を蓄熱槽1に蓄熱し、一方、放熱運転において負荷側循環路5を通じ蓄熱槽1と負荷装置3との間で熱媒液Wを循環させることにより、先の蓄熱運転において蓄熱槽1に蓄熱した冷熱を負荷装置3で消費する。
【0029】
P1は蓄熱運転において蓄熱槽1と冷凍機2との間で熱媒液Wを循環させる熱源側循環ポンプ、P2は放熱運転において蓄熱槽1と負荷装置3との間で熱媒液Wを循環させる負荷側循環ポンプである。
【0030】
蓄熱槽1は複数の液槽1a〜1eを直列に接続した連結型蓄熱槽であり、蓄熱運転では、図中実線の矢印で示す如く、液槽1a〜1eの直列接続列における列方向一端の液槽1a(すなわち、蓄熱槽1の槽一端部)から蓄熱運転用の端部取出口Xsを通じて槽内の熱媒液Wを取り出し、この取り出し熱媒液Wを冷凍機2で冷却して蓄熱運転用の戻し口Xrから上記直列接続列における列方向他端の液槽1e(すなわち、蓄熱槽1の槽他端部)へ戻すことにより、列方向両端の取出用及び戻し用の液槽1a,1eを除いた液槽1b〜1dの夫々において液槽内の熱媒液Wを液槽内のほぼ全域にわたり安定的な状態で上向きに槽内流動させながら、直列接続列の列方向他端(低温端)の側に位置する液槽から順次にその槽内に冷熱を蓄熱していく。
【0031】
また、放熱運転では逆に、図中破線の矢印で示す如く、液槽1a〜1eの直列接続列における列方向他端の液槽1eから放熱運転用の端部取出口Ysを通じて槽内の熱媒液Wを取り出し、この取り出し熱媒液Wを負荷装置3で冷熱放熱させた後、放熱運転用の戻し口Yrから上記直列接続列における列方向一端の液槽1aへ戻すことにより、列方向両端の取出用及び戻し用の液槽1a,1eを除いた液槽1b〜1dの夫々において液槽内の熱媒液Wを液槽内のほぼ全域にわたり安定的な状態で下向きに槽内流動させるようにして、負荷装置3からの戻り熱媒液Wによる槽内熱媒液Wの高温化を直列接続列の列方向一端(高温端)の側に位置する液槽から順次に進めていく形態で、先の蓄熱運転において蓄熱槽1の槽内に蓄熱した冷熱を消費していく。
【0032】
そして、本第1実施形態では上記の連結型蓄熱槽1として、具体的には、上記列方向他端の側に位置して上端部に横向きの上部水路6aを形成する堰6と、上記列方向一端の側に位置して下端部に横向きの下部水路7aを形成する逆堰7とにより、それら堰6,7の間に垂直水路8を形成して、隣合う液槽1a〜1dどうしを横向きの上部水路6aと垂直水路8と横向きの下部水路7aとからなる一連の連通水路を通じて連通させた構造のモグリ堰方式(ないし、改良モグリ堰方式)の蓄熱槽を採用している。
【0033】
また、この蓄熱槽1は水蓄熱槽として使用していた既設の蓄熱槽をシステム更新の際に潜熱蓄熱用の蓄熱槽に改造したものであり、その改造として、液槽1a〜1eのうち、それら液槽の直列接続列における列方向他端(低温端)から2番目及び3番目の液槽1d,1cの槽内には、図1,図2に示す如く潜熱蓄熱用の多数の蓄熱容器9を設置してある。
【0034】
蓄熱容器9はビニル袋状のもので、その容器内には、負荷装置3で必要とする低温熱媒液Wの温度ないしその付近の温度(例えば5.5〜7℃)を固相と液相との間の相変化温度tkとする冷熱蓄熱用の潜熱蓄熱材Zを収容してあり、システム更新において、この蓄熱容器9を液槽1c,1dの槽内に設置する改造を施すことで、潜熱蓄熱を可能にして蓄熱槽全体としての蓄熱能力を必要分だけ増大させる。
【0035】
システム更新において蓄熱容器9を液槽1c,1dの槽内に設置するにあたっては、同図1,図2に示す如く、先ず、液槽1c,1dの槽底に架台10を設置して槽底と架台上面部10aとの間に隙間Sを形成し、その後、槽外で多数の蓄熱容器9を予め収容したカゴ状の収容容器11を順次、液槽1c,1dに搬入して、それら収容容器11を架台10における多孔状の上面部10aに積層状態で載置することで、多数の蓄熱容器9を液槽1c,1dの槽内に設置しており、これにより、蓄熱運転では、架台10上における収容容器11の積層域に対し槽内熱媒液Wを通過させるのに、槽底と架台上面部10aとの間の隙間Sを収容容器11の積層域に対して熱媒液Wを上向きに送り出す液送出室にした状態で、架台10上における収容容器11の積層域(すなわち、多数の蓄熱容器9の設置域)に対し、槽内熱媒液Wを極力均等な状態で上向きに安定的に通過させ得るように、また、放熱運転では、その隙間Sを収容容器11の積層域から熱媒液Wを下向きに集合させる液集合室にした状態で、架台10上における収容容器11の積層域に対し、槽内熱媒液Wを極力均等な状態で下向きに安定的に通過させ得るようにしてある。
【0036】
また、システム更新の際、蓄熱容器9の槽内設置に加え、液槽の直列接続列における列方向他端(低温端)から3番目の液槽1cの槽内上部、すなわち、蓄熱運転時における槽内熱媒液Wの流動方向において2つの液槽1d,1cにわたる蓄熱容器設置域の下流端近傍箇所に中間取出口Xmを設けるとともに、この中間取出口Xmから取り出した槽内熱媒液Wを蓄熱運転用の端部取出口Xsからの取り出し熱媒液Wと合流させて冷凍機2に送るための合流路4a及び合流三方弁Vを設けてある。
【0037】
12aは中間取出口Xmの配設位置における槽内熱媒液Wの温度tm(換言すれば、中間取出口Xmからの取り出し熱媒液Wの温度)を検出する取出温度センサ、12bは冷凍機2に送る合流熱媒液Wの温度ti(冷凍機の入口温度)を検出する送り温度センサ、13はシステムの運転制御を司る制御器であり、この制御器13は蓄熱運転において各温度センサ12a,12bによる検出温度tm,tiに基づき次の(イ)〜(ハ)の制御を実行する。
【0038】
(イ)蓄熱運転の開始指令が与えられると、合流三方弁Vを、中間取出口Xmからの熱媒液取り出しは停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、この状態で熱源側循環ポンプP1及び冷凍機2を起動して蓄熱運転を開始する。
【0039】
なお、冷凍機2に対しては循環ポンプP1の一定出力運転により蓄熱運転の全期間を通じて一定流量の熱媒液Wを供給する。
【0040】
(ロ)蓄熱運転の開始後、取出温度センサ12aによる検出温度tmが設定開始温度taまで低下すると(図3参照)、合流三方弁Vを端部取出口Xsと中間取出口Xmとの両方から槽内熱媒液Wを取り出す状態にし、そして、送り温度センサ12bによる検出温度tiに基づき、冷凍機2に送る合流熱媒液Wの温度tiを設定送り温度tiiに保つように、合流三方弁Vの操作により端部取出口Xsからの熱媒液取出流量と中間取出口Xmからの熱媒液取出流量との比を調整する。
【0041】
なお、本第1実施形態では、設定開始温度taを潜熱蓄熱材Zの相変化温度tkが有するバラツキ範囲の上限値近くの温度(例えば7℃)に設定してあり、また、設定送り温度tiiは、冷凍機2に対して一定流量の熱媒液Wを供給し、かつ、冷凍機2から設定戻し温度trr(例えば5℃)の低温熱媒液Wを蓄熱槽1に戻す蓄熱運転において冷凍機2を最大出力状態で運転できる熱媒液温度(例えば10℃)に設定してある。
【0042】
(ハ)その後、取出温度センサ12aによる検出温度tmが潜熱蓄熱材Zの相変化温度tkよりも低温の設定停止温度tb(例えば5.3℃)まで低下すると、合流三方弁Vを再び中間取出口Xmからの熱媒液取り出しは停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、さらにその後、送り温度センサ12bによる検出温度ti(中間取出口Xmからの熱媒液取り出しが停止された状況では端部取出口Xsからの取り出し熱媒液Wの温度tsに等しい)が冷凍機2の下限入口温度te(例えば5.7℃)まで低下すると、冷凍機2及び熱源側循環ポンプP1を停止して蓄熱運転を終了する。
【0043】
つまり、このように中間取出口Xmからの取り出し熱媒液Wの温度tmが潜熱蓄熱材Zの相変化温度tkよりも低温の設定停止温度tbに低下するまで、その中間取出口Xmを通じて蓄熱槽1内の熱媒液Wを取り出すことにより、蓄熱運転の進行に伴い戻し口Xrの側から端部取出口Xsの側へ拡がっていく低温領域(潜熱蓄熱材Zを効率的に相変化させる得る低温熱媒液の領域)の先端側に形成される中間温度層が中間取出口Xmの配設位置を通過する際に、その中間温度層を形成する中間温度の熱媒液の一部を中間取出口Xmから槽外へ取り出すようにし、これにより、蓄熱に要する時間の長時間化、及び、蓄熱量の減少の原因となる中間温度層の成長及び端部取出口Xsの側への進行を抑止するようにしてある。
【0044】
〔第2実施形態〕
図4は同じく冷熱用の潜熱蓄熱システムを示すが、この潜熱蓄熱システムでは、蓄熱運転において図中実線の矢印に示す如く熱媒液Wを槽内流動させ、かつ、放熱運転において図中破線の矢印に示す如く熱媒液Wを槽内流動させるモグリ堰方式(ないし改良モグリ堰方式)の連結型蓄熱槽1において、直列接続の液槽1a〜1fのうち、それら液槽の直列接続列における列方向両端の取出用及び戻し用の液槽1a,1fを除いた4つの液槽1b〜1e夫々の槽内に、冷熱蓄熱用の潜熱蓄熱材Zを収容した多数の蓄熱容器9を積層状態で設置してある。
【0045】
また、蓄熱運転用の戻し口Xrの側(低温端側)から3番目,4番目,5番目の液槽1d〜1b夫々の槽内下部、すなわち、それら3つの液槽1d〜1b夫々の蓄熱運転時における熱媒液流入部に中間取出口Xmを設けて、4つの液槽1b〜1eにわたる蓄熱容器9の設置域に対し、3つの中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向に分散させて域内設置した形態にし、そして、端部取出口Xs及び3つの中間取出口Xmの各々からの槽内熱媒液Wの取り出しの断続及び取り出し流量の調整を行う流量調整弁MVを各取出口Xs,Xmに対して設けてある。
【0046】
12aは3つの中間取出口Xm夫々の配設位置における槽内熱媒液Wの温度tm1〜tm3(換言すれば、各中間取出口Xmからの取り出し熱媒液Wの温度)を検出する取出温度センサ、12bは端部取出口Xsからの取り出し熱媒液Wと合流路4aにより導かれる各中間取出口Xmからの取り出し熱媒液Wとを合流させて冷凍機2に送ることにおいてその合流熱媒液Wの温度ti(冷凍機の入口温度)を検出する送り温度センサ、13はシステムの運転制御を司る制御器であり、この制御器13は蓄熱運転において3つの取出温度センサ12a及び送り温度センサ12bによる検出温度tm1〜tm3,tiに基づき次の(イ)〜(ハ)の制御を実行する。
【0047】
(イ)蓄熱運転の開始指令が与えられると、各取出口Xs, Xmに対する流量調整弁MVを、全ての中間取出口Xmからの熱媒液取り出しを停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、この状態で熱源側循環ポンプP1及び冷凍機2を起動して蓄熱運転を開始する。
【0048】
なお、本第2実施形態においても、冷凍機2に対しては循環ポンプP1の一定出力運転により蓄熱運転の全期間を通じて一定流量の熱媒液Wを供給する。
【0049】
(ロ)蓄熱運転の開始後、3つの取出温度センサ12aの各々について、その検出温度tm1〜tm3が設定開始温度taまで低下すると(図5参照)、その取出温度センサ12aに対応する中間取出口Xmの流量調整弁MVを開いて、その中間取出口Xmからの熱媒液取り出しを開始する。
【0050】
また、3つの取出温度センサ12aの各々について、その検出温度tm1〜tm3が潜熱蓄熱材Zの相変化温度tkよりも低温の設定停止温度tbまで低下すると、その取出温度センサ12aに対応する中間取出口Xmの流量調整弁MVを閉じて、その中間取出口Xmからの熱媒液取り出しを再び停止する。
【0051】
そして、いずれかの中間取出口Xmから槽内熱媒液Wを取り出して、その中間取出口Xmからの取り出し熱媒液Wと蓄熱運転用の端部取出口Xsからの取り出し熱媒液Wとを合流させて冷凍機2に供給している状況では、送り温度センサ12bによる検出温度tiに基づき、冷凍機2に送る合流熱媒液Wの温度tiを設定送り温度tiiに保つように、各取出口Xs,Xmに対する流量調整弁MVの操作により端部取出口Xsからの熱媒液取出流量と中間取出口Xmからの熱媒液取出流量との比を調整する。
【0052】
なお、本第2実施形態においても、設定開始温度taは潜熱蓄熱材Zの相変化温度tkが有するバラツキ範囲の上限値近くの温度に設定し、設定送り温度tiiは、冷凍機2に対して一定流量の熱媒液Wを供給し、かつ、冷凍機2から設定戻し温度trrの低温熱媒液Wを蓄熱槽1に戻す蓄熱運転において冷凍機2を最大出力状態で運転できる熱媒液温度に設定してあり、具体的な温度例として第1実施形態と同様、潜熱蓄熱材Zの相変化温度tk=5.5〜7℃、設定戻し温度trr=5℃、冷凍機2の下限入口温度te=5.7℃、設定開始温度ta=7℃、設定停止温度tb=5.3℃を挙げることができる。
【0053】
(ハ)その後、送り温度センサ12bによる検出温度ti(全ての中間取出口Xmからの熱媒液取り出しが停止された状況では端部取出口Xsからの取り出し熱媒液Wの温度tsに等しい)が冷凍機2の下限入口温度teまで低下すると、冷凍機2及び熱源側循環ポンプP1を停止して蓄熱運転を終了する。
【0054】
つまり、第1実施形態と同様、中間取出口Xmからの取り出し熱媒液Wの温度tmが潜熱蓄熱材Zの相変化温度tkよりも低温の設定停止温度tbに低下するまで、その中間取出口Xmを通じて蓄熱槽1内の熱媒液Wを取り出すことにより、蓄熱運転の進行に伴い戻し口Xrの側から端部取出口Xsの側へ拡がっていく低温領域の先端側に形成される中間温度層の成長及び端部取出口Xsの側への進行を抑止するが、本第2実施形態の潜熱蓄熱システムでは、先ず、戻し口Xrの側から1番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、戻し口Xrと1番目の中間取出口Xmとの間の領域を低温領域にし、それに続き、戻し口Xrの側から2番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、1番目の中間取出口Xmと2番目の中間取出口Xmとの間の領域を低温領域にするといった形態で、蓄熱運転開始後の早い時期からの中間温度層の実質的な成長抑止を伴いながら低温領域を端部取出口Xsの側へ拡大させていくようにしてある。
【0055】
〔第3実施形態〕
図6は温熱用の潜熱蓄熱システムを示し、1は蓄熱槽、2は熱源装置としてのヒートポンプ、3は負荷装置(空調機やファンコイルユニットなど)であり、このシステムでは、蓄熱運転において熱源側循環路4を通じ蓄熱槽1とヒートポンプ2との間で熱媒液W(例えば水)を循環させることにより、ヒートポンプ2の発生温熱を蓄熱槽1に蓄熱し、一方、放熱運転において負荷側循環路5を通じ蓄熱槽1と負荷装置3との間で熱媒液Wを循環させることにより、先の蓄熱運転において蓄熱槽1に蓄熱した温熱を負荷装置3で消費する。
【0056】
P1は蓄熱運転において蓄熱槽1とヒートポンプ2との間で熱媒液Wを循環させる熱源側循環ポンプ、P2は放熱運転において蓄熱槽1と負荷装置3との間で熱媒液Wを循環させる負荷側循環ポンプである。
【0057】
蓄熱槽1は複数の液槽1a〜1eを直列に接続した連結型蓄熱槽であり、蓄熱運転では、図中実線の矢印で示す如く、液槽1a〜1eの直列接続列における列方向一端の液槽1a(蓄熱槽1の槽一端部)から蓄熱運転用の端部取出口Xsを通じて槽内の熱媒液Wを取り出し、この取り出し熱媒液Wをヒートポンプ2で加熱して蓄熱運転用の戻し口Xrから上記直列接続列における列方向他端の液槽1e(蓄熱槽1の槽他端部)へ戻すことにより、列方向両端の取出用及び戻し用の液槽1a,1eを除いた液槽1b〜1dの夫々において液槽内の熱媒液Wを液槽内のほぼ全域にわたり安定的な状態で下向きに槽内流動させながら、直列接続列の列方向他端(高温端)の側に位置する液槽から順次にその槽内に温熱を蓄熱していく。
【0058】
また、放熱運転では逆に、図中破線の矢印で示す如く、液槽1a〜1eの直列接続列における列方向他端の液槽1eから放熱運転用の端部取出口Ysを通じて槽内の熱媒液Wを取り出し、この取り出し熱媒液Wを負荷装置3で温熱放熱させた後、放熱運転用の戻し口Yrから上記直列接続列における列方向一端の液槽1aへ戻すことにより、列方向両端の取出用及び戻し用の液槽1a,1eを除いた液槽1b〜1dの夫々において液槽内の熱媒液Wを液槽内のほぼ全域にわたり安定的な状態で上向きに槽内流動させるようにして、負荷装置3からの戻り熱媒液Wによる槽内熱媒液Wの低温化を直列接続列の列方向一端(低温端)の側に位置する液槽から順次に進めていく形態で、先の蓄熱運転において蓄熱槽1の槽内に蓄熱した温熱を消費していく。
【0059】
そして、本第3実施形態では上記の連結型蓄熱槽1として、具体的には、上記列方向他端の側に位置して下端部に横向きの下部水路6aを形成する逆堰6と、上記列方向一端の側に位置して上端部に横向きの上部水路7aを形成する堰7とにより、それら堰6,7の間に垂直水路8を形成して、隣合う液槽1b〜1eどうしを横向きの下部水路6aと垂直水路8と横向きの上部水路7aとからなる一連の連通水路を通じて連通させた構造のモグリ堰方式(ないし、改良モグリ堰方式)の蓄熱槽を採用している。
【0060】
第1実施形態と同様、液槽1a〜1eのうち、それら液槽の直列接続列における列方向他端(高温端)から2番目及び3番目の液槽1d,1cの槽内には、潜熱蓄熱用の多数の蓄熱容器9を設置してあり、その蓄熱容器9の容器内には、負荷装置3で必要とする高温熱媒液Wの温度ないしその付近の温度を固相と液相との間の相変化温度tk′とする温熱蓄熱用の潜熱蓄熱材Z′を収容してあり、これにより、潜熱蓄熱による温熱蓄熱を可能にしてある。
【0061】
また、液槽の直列接続列における列方向他端(高温端)から3番目の液槽1cの槽内下部、すなわち、蓄熱運転時における槽内熱媒液Wの流動方向において2つの液槽1d,1cにわたる蓄熱容器設置域の下流端近傍箇所に中間取出口Xmを設けるとともに、この中間取出口Xmから取り出した槽内熱媒液Wを蓄熱運転用の端部取出口Xsからの取り出し熱媒液Wと合流させてヒートポンプ2に送るための合流路4a及び合流三方弁Vを設けてある。
【0062】
12aは中間取出口Xmの配設位置における槽内熱媒液Wの温度tm(換言すれば、中間取出口Xmからの取り出し熱媒液Wの温度)を検出する取出温度センサ、12bはヒートポンプ2に送る合流熱媒液Wの温度ti(ヒートポンプの入口温度)を検出する送り温度センサ、13はシステムの運転制御を司る制御器であり、この制御器13は蓄熱運転において各温度センサ12a,12bによる検出温度tm,tiに基づき次の(イ′)〜(ハ′)の制御を実行する。
【0063】
(イ′)蓄熱運転の開始指令が与えられると、合流三方弁Vを、中間取出口Xmからの熱媒液取り出しは停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、この状態で熱源側循環ポンプP1及びヒートポンプ2を起動して蓄熱運転を開始する。
【0064】
なお、ヒートポンプ2に対しては循環ポンプP1の一定出力運転により蓄熱運転の全期間を通じて一定流量の熱媒液Wを供給する。
【0065】
(ロ′)蓄熱運転の開始後、取出温度センサ12aによる検出温度tmが設定開始温度ta′まで上昇すると、合流三方弁Vを端部取出口Xsと中間取出口Xmとの両方から槽内熱媒液Wを取り出す状態にし、そして、送り温度センサ12bによる検出温度tiに基づき、ヒートポンプ2に送る合流熱媒液Wの温度tiを設定送り温度tii′に保つように、合流三方弁Vの操作により端部取出口Xsからの熱媒液取出流量と中間取出口Xmからの熱媒液取出流量との比を調整する。
【0066】
なお、本第3実施形態では、設定開始温度ta′を潜熱蓄熱材Z′の相変化温度tk′が有するバラツキ範囲の下限値近くの温度に設定してあり、また、設定送り温度tii′は、ヒートポンプ2に対して一定流量の熱媒液Wを供給し、かつ、ヒートポンプ2から設定戻し温度trr′の高温熱媒液Wを蓄熱槽1に戻す蓄熱運転においてヒートポンプ2を最大出力状態で運転できる熱媒液温度に設定してある。
【0067】
(ハ′)その後、取出温度センサ12aによる検出温度tmが潜熱蓄熱材Z′の相変化温度tk′よりも高温の設定停止温度tb′まで上昇すると、合流三方弁Vを再び中間取出口Xmからの熱媒液取り出しは停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、さらにその後、送り温度センサ12bによる検出温度ti(中間取出口Xmからの熱媒液取り出しが停止された状況では端部取出口Xsからの取り出し熱媒液Wの温度tsに等しい)がヒートポンプ2の上限入口温度te′まで上昇すると、ヒートポンプ2及び熱源側循環ポンプP1を停止して蓄熱運転を終了する。
【0068】
つまり、第1実施形態と同様、このように中間取出口Xmからの取り出し熱媒液Wの温度tmが潜熱蓄熱材Z′の相変化温度tk′よりも高温の設定停止温度tb′に上昇するまで、その中間取出口Xmを通じて蓄熱槽1内の熱媒液Wを取り出すことにより、蓄熱運転の進行に伴い戻し口Xrの側から端部取出口Xsの側へ拡がっていく高温領域(潜熱蓄熱材Z′を効率的に相変化させる得る高温熱媒液の領域)の先端側に形成される中間温度層が中間取出口Xmの配設位置を通過する際に、その中間温度層を形成する中間温度の熱媒液の一部を中間取出口Xmから槽外へ取り出すようにし、これにより、蓄熱に要する時間の長時間化、及び、蓄熱量の減少の原因となる中間温度層の成長及び端部取出口Xsの側への進行を抑止するようにしてある。
【0069】
〔第4実施形態〕
図7は同じく温熱用の潜熱蓄熱システムを示すが、この潜熱蓄熱システムでは、蓄熱運転において図中実線の矢印に示す如く熱媒液Wを槽内流動させ、かつ、放熱運転において図中破線の矢印に示す如く熱媒液Wを槽内流動させるモグリ堰方式(ないし改良モグリ堰方式)の連結型蓄熱槽1において、第2実施形態と同様、直列接続の液槽1a〜1fのうち、それら液槽の直列接続列における列方向両端の取出用及び戻し用の液槽1a,1fを除いた4つの液槽1b〜1e夫々の槽内に、温熱蓄熱用の潜熱蓄熱材Z′を収容した多数の蓄熱容器9を積層状態で設置してある。
【0070】
また、蓄熱運転用の戻し口Xrの側(高温端側)から3番目,4番目,5番目の液槽1d〜1b夫々の槽内上部、すなわち、それら3つの液槽1d〜1b夫々の蓄熱運転時における熱媒液流入部に中間取出口Xmを設けて、4つの液槽1b〜1eにわたる蓄熱容器9の設置域に対し、3つの中間取出口Xmを蓄熱運転時における槽内熱媒液Wの流動方向に分散させて域内設置した形態にし、そして、端部取出口Xs及び3つの中間取出口Xmの各々からの槽内熱媒液Wの取り出しの断続及び取り出し流量の調整を行う流量調整弁MVを各取出口Xs,Xmに対して設けてある。
【0071】
12aは3つの中間取出口Xm夫々の配設位置における槽内熱媒液Wの温度tm1〜tm3(換言すれば、各中間取出口Xmからの取り出し熱媒液Wの温度)を検出する取出温度センサ、12bは端部取出口Zsからの取り出し熱媒液Wと合流路4aにより導かれる各中間取出口Xmからの取り出し熱媒液Wとを合流させてヒートポンプ2に送ることにおいてその合流熱媒液Wの温度ti(ヒートポンプの入口温度)を検出する送り温度センサ、13はシステムの運転制御を司る制御器であり、この制御器13は蓄熱運転において3つの取出温度センサ12a及び送り温度センサ12bによる検出温度tm1〜tm3,tiに基づき次の(イ′)〜(ハ′)の制御を実行する。
【0072】
(イ′)蓄熱運転の開始指令が与えられると、各取出口Xs, Xmに対する流量調整弁MVを、全ての中間取出口Xmからの熱媒液取り出しを停止して蓄熱運転用の端部取出口Xsからのみ槽内熱媒液Wを取り出す状態にし、この状態で熱源側循環ポンプP1及びヒートポンプ2を起動して蓄熱運転を開始する。
【0073】
なお、本第4実施形態においても、ヒートポンプ2に対しては循環ポンプP1の一定出力運転により蓄熱運転の全期間を通じて一定流量の熱媒液Wを供給する。
【0074】
(ロ′)蓄熱運転の開始後、3つの取出温度センサ12aの各々について、その検出温度tm1〜tm3が設定開始温度ta′まで上昇すると、その取出温度センサ12aに対応する中間取出口Xmの流量調整弁MVを開いて、その中間取出口Xmからの熱媒液取り出しを開始する。
【0075】
また、3つの取出温度センサ12aの各々について、その検出温度tm1〜tm3が潜熱蓄熱材Z′の相変化温度tk′よりも高温の設定停止温度tb′まで上昇すると、その取出温度センサ12aに対応する中間取出口Xmの流量調整弁MVを閉じて、その中間取出口Xmからの熱媒液取り出しを再び停止する。
【0076】
そして、いずれかの中間取出口Xmから槽内熱媒液Wを取り出して、その中間取出口Xmからの取り出し熱媒液Wと蓄熱運転用の端部取出口Xsからの取り出し熱媒液Wとを合流させてヒートポンプ2に供給している状況では、送り温度センサ12bによる検出温度tiに基づき、ヒートポンプ2に送る合流熱媒液Wの温度tiを設定送り温度tii′に保つように、各取出口Xs,Xmに対する流量調整弁MVの操作により端部取出口Xsからの熱媒液取出流量と中間取出口Xmからの熱媒液取出流量との比を調整する。
【0077】
なお、本第4実施形態においても、設定開始温度ta′は潜熱蓄熱材Z′の相変化温度tk′が有するバラツキ範囲の下限値近くの温度に設定し、設定送り温度tii′は、ヒートポンプ2に対して一定流量の熱媒液Wを供給し、かつ、ヒートポンプ2から設定戻し温度trr′の高温熱媒液Wを蓄熱槽1に戻す蓄熱運転においてヒートポンプ2を最大出力状態で運転できる熱媒液温度に設定してある。
【0078】
(ハ′)その後、送り温度センサ12bによる検出温度ti(全ての中間取出口Xmからの熱媒液取り出しが停止された状況では端部取出口Xsからの取り出し熱媒液Wの温度tsに等しい)がヒートポンプ2の上限入口温度te′まで上昇すると、ヒートポンプ2及び熱源側循環ポンプP1を停止して蓄熱運転を終了する。
【0079】
つまり、第3実施形態と同様、中間取出口Xmからの取り出し熱媒液Wの温度tmが潜熱蓄熱材Z′の相変化温度tk′よりも高温の設定停止温度tb′に上昇するまで、その中間取出口Xmを通じて蓄熱槽1内の熱媒液Wを取り出すことにより、蓄熱運転の進行に伴い戻し口Xrの側から端部取出口Xsの側へ拡がっていく高温領域の先端側に形成される中間温度層の成長及び端部取出口Xsの側への進行を抑止するが、本第4実施形態の潜熱蓄熱システムでは、第2実施形態と同様に、先ず、戻し口Xrの側から1番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、戻し口Xrと1番目の中間取出口Xmとの間の領域を高温領域にし、それに続き、戻し口Xrの側から2番目に位置する中間取出口Xmからの槽内熱媒液Wの取り出しにより中間温度層の成長を抑止しながら、1番目の中間取出口Xmと2番目の中間取出口Xmとの間の領域を高温領域にするといった形態で、蓄熱運転開始後の早い時期からの中間温度層の実質的な成長抑止を伴いながら高温領域を端部取出口Xsの側へ拡大させていくようにしてある。
【0080】
〔別の実施形態〕
次に別実施形態を列記する。
【0081】
前述の第1〜第2実施形態では、複数の液槽を直列に接続した連結型の蓄熱槽を使用する例を示したが、使用する蓄熱槽は単槽型のものであってもよく、また、蓄熱槽内における熱媒液の流動方式(蓄熱方式)も温度成層式あるいは混合式のいずれであってもよく、モグリ堰方式や改良モグリ堰方式のものに限られるものではない。
【0082】
熱媒液には水や水溶液など種々の液体を使用でき、また、潜熱蓄熱材には冷熱蓄熱用の潜熱蓄熱材及び温熱蓄熱用の潜熱蓄熱材のいずれについても、パラフィン系の潜熱蓄熱材を初め、各種の材質のものを使用できる。
【0083】
蓄熱した冷熱や温熱の用途は空調に限られるものではなく、物品の冷却や加熱など、どのようなものであってもよい。
【図面の簡単な説明】
【図1】第1実施形態を示すシステムの全体構成図
【図2】第1実施形態を示す槽内の斜視図
【図3】第1実施形態における槽内熱媒液の温度変化を示すグラフ
【図4】第2実施形態を示すシステムの全体構成図
【図5】第2実施形態における槽内熱媒液の温度変化を示すグラフ
【図6】第3実施形態を示すシステムの全体構成図
【図7】第4実施形態を示すシステムの全体構成図
【図8】従来のシステム構成を示す図
【図9】従来システムにおける槽内熱媒液の温度変化を示すグラフ
【符号の説明】
Xs 端部取出口
W 熱媒液
2 熱源装置
Xr 戻し口
1 蓄熱槽
Z、Z′ 潜熱蓄熱材
9 蓄熱容器
Xm 中間取出口
tm 中間取出口からの取り出し熱媒液の温度
tk、tk′ 潜熱蓄熱材の相変化温度
tb,tb′ 設定停止温度
13 制御手段
ti 熱源装置に送る熱媒液の温度
tii,tii′ 設定送り温度
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a latent heat storage system, and more specifically, heat storage that cools or heats a heat transfer liquid in a tank taken out from an end outlet at one end of the tank and returns the liquid into the tank from a return port at the other end of the tank. Latent heat that is provided in the tank of the heat storage tank in a state where a heat storage tank for storing cold or warm heat is provided in the tank, and a large number of heat storage containers containing the latent heat storage material are immersed in the heat medium liquid in the tank. It relates to a heat storage system.
[0002]
[Prior art]
Conventionally, in this type of latent heat storage system, as shown in FIG. 8, in order to take out the heat medium liquid W to be sent to the heat source device 2 in the heat storage operation from the heat storage tank, the extraction is performed at the end of one end of the tank in the heat storage tank 1. We went only from take-out Xs.
[0003]
[Problems to be solved by the invention]
However, in this type of latent heat storage system (see FIG. 8), the heat medium liquid W taken out from the end outlet Xs at one end of the heat storage tank 1 is cooled by the heat source device 2 (refrigerator). In the case of the heat storage operation of the cold heat storage returning from the return port Xr at the other end of the tank to the heat storage tank, the region of the low-temperature heat transfer liquid (hereinafter abbreviated as the cold temperature region) that can efficiently change the phase of the latent heat storage material Z in the tank. However, as the heat storage operation proceeds, it gradually expands from the return port Xr side to the end outlet Xs side in the heat storage tank. In the conventional system, this intermediate temperature is formed by the heat medium liquid that is heated to the intermediate temperature by mixing with the high-temperature heat medium liquid in the tank and the heat medium liquid existing in the tank. The layer gradually grows as the heat storage operation progresses, and becomes a layer that occupies a large area in the tank. .
[0004]
Then, the intermediate temperature layer that progresses toward the end outlet Xs while growing in this way reaches the end outlet Xs early after the start of the heat storage operation, so that it is taken out from the end outlet Xs and is used as a heat source. As shown in FIG. 9, the temperature ts of the heat transfer fluid W sent to the apparatus 2 starts to decrease at a relatively early time after the start of the heat storage operation and gradually decreases. In the system, the heat source device 2 enters a partial load operation state early after the start of the heat storage operation, and the cooling amount per unit time in the heat source device 2 (in other words, the cold heat storage amount per unit time) stores heat. There was a problem that it took a long time for heat storage because it was limited to a small one from the early stage after the start of operation.
[0005]
Further, since the intermediate temperature layer in which the temperature of the heat transfer medium Z is high and the phase change of the latent heat storage material Z in the layer is difficult to proceed occupies a large area and is formed in the heat storage tank, in the conventional system, it is sent to the heat source device 2 When the temperature ts of the heat transfer fluid W decreases to the lower limit inlet temperature te of the heat source device 2 and the heat storage operation is terminated by stopping the heat source device 2, the phase change is still completed in the intermediate temperature layer. There is also a problem that a large amount of the latent heat storage material Z that remains is likely to remain, which limits the amount of heat storage.
[0006]
In addition, in the conventional system, the heat transfer operation of the thermal heat storage operation in which the heat transfer liquid in the heat storage tank taken out from the end outlet at one end of the tank is heated by the heat source device and returned from the return port at the other end of the tank to the heat storage tank. Even in the case, for the same reason as described above, there is a problem that it takes a long time to store heat and the amount of stored heat is limited to a small amount.
[0007]
In view of this situation, the main problem of the present invention is to effectively solve the above problem by adopting a rational heat storage form.
[0008]
[Means for Solving the Problems]
[1] The invention according to claim 1 relates to a latent heat storage system, the feature of which is
The heat transfer liquid in the tank taken out from the end outlet at one end of the tank is cooled or heated by a heat source device, and the cold energy or the heat is stored in the tank by a heat storage operation for returning to the tank from the return port at the other end of the tank. A heat storage tank,
In the configuration in which a large number of heat storage containers containing the latent heat storage material are installed in the tank of the heat storage tank in a state of being immersed in the heat medium liquid in the tank,
In the flow direction of the heat transfer liquid in the tank during the heat storage operation, the upstream side of the end outlet and the downstream side of the installation area of the heat storage container, or the intermediate position in the installation area of the heat storage container, In the heat storage operation, an intermediate outlet is provided to take out the heat medium liquid to be combined with the heat medium liquid taken out from the end outlet and sent to the heat source device from the heat storage tank,
In the heat storage operation of the cold heat storage that cools the heat medium liquid by the heat source device, when the temperature of the heat medium liquid taken out from the intermediate outlet decreases to a set stop temperature lower than the phase change temperature of the latent heat storage material,
Or, in the heat storage operation of thermal heat storage in which the heat medium liquid is heated by the heat source device, the temperature of the heat medium liquid taken out from the intermediate outlet has increased to a set stop temperature higher than the phase change temperature of the latent heat storage material When
There is a control means for stopping the extraction of the heat transfer medium liquid from the intermediate outlet.
[0009]
That is, according to this structure, in the case of the heat storage operation of the cold heat storage in which the heat transfer medium liquid taken out from the heat storage tank is cooled by the heat source device and returned to the heat storage tank (see FIGS. 1 and 3), from the intermediate outlet Xm In the heat storage tank 1 through the intermediate outlet Xm until the temperature tm of the extracted heat transfer fluid drops to the set stop temperature tb lower than the phase change temperature tk of the latent heat storage material Z (latent heat storage material for cold heat storage). Therefore, the intermediate temperature heat medium liquid forming the intermediate temperature layer (that is, the heat medium liquid higher than the set stop temperature tb) is on the end outlet Xs side. When the intermediate temperature layer passes through the position where the intermediate outlet Xm is disposed in the progress of the intermediate temperature layer, a part of the intermediate temperature layer is taken out of the tank from the intermediate outlet Xm. Progress toward the end outlet Xs is effectively suppressed.
[0010]
And in the flow direction of the heat transfer fluid W in the tank during the heat storage operation, a low temperature region (that is, more than the set stop temperature tb described above) that gradually extends from the return port Xr side to the end outlet Xs side following the intermediate temperature layer. When the low temperature heat medium liquid region) reaches the arrangement position of the intermediate outlet Xm and reaches the arrangement position of the intermediate outlet Xm from the return port Xr, it is taken out from the intermediate outlet Xm. When the temperature tm of the heat transfer liquid decreases to the set stop temperature tb, the take-out of the heat transfer liquid W in the tank from the intermediate take-out port Xm is stopped. In the state where the progress toward the exit Xs is effectively suppressed as described above, the expansion of the low temperature region toward the end portion outlet Xs is continued.
[0011]
That is, as described above, the growth of the intermediate temperature layer and the progression toward the end portion outlet Xs can be suppressed, so that the temperature ts of the heat transfer medium liquid taken out from the end portion outlet Xs as shown in FIG. As shown in FIG. 3, the temperature ts of the heat transfer fluid W taken out from the end outlet Xs can be maintained at a high temperature for a long time after the start of the heat storage operation. As described above, the temperature ts of the heat transfer medium liquid W taken out from the end outlet Xs can be maintained at a high temperature for a long time. The intermediate medium outlet Xm can be obtained by joining the heating medium liquid W having a set stop temperature tb or higher extracted from the outlet Xm and the high-temperature thermal medium liquid W extracted from the end outlet Xs to the heat source device 2 and sending them to the heat source device 2. Heat medium liquid W from the tank Under the situation where the removal is stopped, the heat transfer fluid sent to the heat source device 2 is sent to the heat source device 2 by sending only the heat transfer fluid W taken out from the end outlet Xs maintained at a high temperature for a long time as described above. The temperature ti of W (the inlet temperature of the heat source device) can also be stably maintained at a temperature above a certain level for a long time after the start of the heat storage operation, and the partial load operation is performed at an early time after the heat source device 2 starts the heat storage operation. Thus, the time required for heat storage can be effectively shortened as compared with the above-described conventional system.
[0012]
In addition, until the temperature ti of the heat medium liquid W sent to the heat source device 2 decreases to the lower limit inlet temperature te of the heat source device 2, the intermediate temperature layer is effectively prevented from growing as described above and the intermediate port is taken from the return port Xr. Since it is possible to keep the low temperature region until it reaches the position where the outlet Xm is disposed (in short, the low temperature region can be expanded by the amount of growth inhibition of the intermediate temperature layer), the intermediate intake can be made from the return port Xr. With respect to the latent heat storage material Z up to the position where the outlet Xm is disposed, the phase change is efficiently advanced by the low-temperature heat transfer liquid, and the phase change is completed almost completely, thereby completing the heat storage operation. In this respect, the amount of heat storage is also effective compared to conventional systems that end the heat storage operation in a situation where there are many latent heat storage materials that have not yet completed phase change in the middle temperature layer that occupies a large area. Can be increased.
[0013]
On the other hand, in the case of the heat storage operation of the thermal storage that heats the heat transfer medium taken out from the heat storage tank and returns it to the heat storage tank by the heat source device (see FIG. 6), the above configuration is the same as in the case of the heat storage operation of the cold storage According to the above, the temperature tm of the heat transfer medium liquid W taken out from the intermediate outlet Xm rises to a set stop temperature tb ′ that is higher than the phase change temperature tk ′ of the latent heat storage material Z ′ (latent heat storage material for thermal storage). Until then, the heat transfer fluid W in the heat storage tank is taken out through the intermediate outlet Xm, so that the intermediate temperature heat transfer medium forming the intermediate temperature layer (that is, the heat transfer medium having a temperature lower than the set stop temperature tb ′ described above) When the intermediate temperature layer passes through the position where the intermediate outlet Xm is disposed in the progress of the intermediate temperature layer toward the end outlet Xs, part of the liquid is taken out of the tank from the intermediate outlet Xm. Thereby, the growth of the intermediate temperature layer and the end outlet X Progression to the side of the can be effectively suppressed.
[0014]
Then, in the flow direction of the heat transfer fluid W in the tank during the heat storage operation, a high temperature region (that is, the set stop temperature tb ′ described above) that gradually extends from the return port Xr side to the end outlet Xs side following the intermediate temperature layer. If the high temperature heat medium liquid region) reaches the position where the intermediate outlet Xm is disposed, and reaches the position where the intermediate outlet Xm is disposed from the return port Xr, the temperature from the intermediate outlet Xm When the temperature tm of the extracted heat transfer fluid W rises to the set stop temperature tb ′, the removal of the in-vessel heat transfer fluid W from the intermediate take-out port Xm is stopped. In the state where the progress toward the end portion outlet Xs is effectively suppressed as described above, the expansion of the high temperature region toward the end portion outlet Xs is continued.
[0015]
That is, by suppressing the growth of the intermediate temperature layer and the progress toward the end outlet Xs as described above, it is possible to prevent the temperature ts of the heat transfer medium W taken out from the end outlet Xs from rising early. Thus, the temperature ts of the heat transfer medium liquid W taken out from the end outlet Xs can be maintained at a low temperature for a long time after the start of the heat storage operation, and the heat medium taken out from the end outlet Xs in this way. Since the temperature ts of the liquid W can be maintained at a low temperature for a long time, the temperature of the heat transfer liquid W in the tank is taken out from the intermediate outlet Xm, and under the set stop temperature tb ′ taken out from the intermediate outlet Xm. The heat medium liquid W and the low temperature heat medium liquid W taken out from the end outlet Xs are merged and sent to the heat source device 2, and the tank heat medium liquid W can be taken out from the intermediate outlet Xm. In a stopped situation As described above, only the heat transfer medium liquid W taken out from the end outlet Xs maintained at a low temperature for a long time is sent to the heat source apparatus 2, so that the temperature ti of the heat transfer medium W sent to the heat source apparatus 2 (inlet of the heat source apparatus) Temperature) can also be stably maintained at a temperature below a certain level for a long time after the start of the heat storage operation, and it is effective that the heat source device 2 enters a partial load operation state at an early stage after the start of the heat storage operation. As a result, the time required for heat storage can be effectively shortened in the case of the heat storage operation of the thermal storage as compared with the above-described conventional system as in the case of the heat storage operation of the cold storage.
[0016]
In addition, the growth of the intermediate temperature layer is effectively suppressed as described above until the temperature ti of the heat medium liquid W sent to the heat source device 2 rises to the upper limit inlet temperature te ′ of the heat source device 2, and the intermediate from the return port Xr. Since it is possible to keep a high temperature region until it reaches the position where the take-out port Xm is arranged (in short, the high temperature region can be enlarged by an amount corresponding to the growth inhibition of the intermediate temperature layer), the intermediate from the return port Xr With regard to the latent heat storage material Z ′ that reaches the position where the take-out port Xm is arranged, the phase change is efficiently advanced by the high-temperature heat transfer liquid to complete the phase change almost completely, and then the heat storage operation is completed. In this respect, as in the case of the heat storage operation of the cold storage, the latent heat storage material in which the phase change is not yet completed in the intermediate temperature layer that occupies a large area in the case of the heat storage operation of the heat storage. The heat storage operation ended in a situation where there were many remaining Compared to it would conventional systems, it is possible to increase the heat storage capacity efficiently.
[0017]
In the implementation of the invention according to claim 1, in the case of the heat storage operation of the cold energy storage, the extraction of the in-tank heat transfer medium W from the intermediate outlet Xm is performed from the beginning of the heat storage operation, and the extracted heat medium When the temperature tm of the liquid W decreases to the set stop temperature tb, the mode in which the extraction of the heat transfer medium W from the intermediate outlet Xm is stopped, or the heat in the tank at the location where the intermediate outlet Xm is disposed When the temperature tm of the liquid medium W decreases to the set start temperature ta after the start of the heat storage operation, the extraction of the heat transfer medium W in the tank from the intermediate outlet Xm is started, When the temperature tm further decreases to the set stop temperature tb, any of the forms in which the extraction of the in-tank heat transfer fluid W from the intermediate outlet Xm is stopped may be employed.
[0018]
Similarly, also in the case of the heat storage operation of thermal storage, the extraction of the heat transfer medium W from the intermediate outlet Xm is performed from the beginning of the heat storage operation, and the temperature tm of the extracted heat transfer medium W is stopped. When the temperature tb ′ rises, the form in which the removal of the heat transfer medium W from the intermediate outlet Xm is stopped, or the temperature tm of the heat transfer liquid W in the tank at the location where the intermediate discharge Xm is provided is After the start of the heat storage operation, when the temperature rises to the set start temperature ta ′, the take-out of the heat transfer fluid W in the tank from the intermediate outlet Xm is started, and the temperature tm of the take-off heat transfer fluid W further stops setting. Any of the forms in which the removal of the heat transfer liquid W in the tank from the intermediate outlet Xm is stopped when the temperature rises to the temperature tb ′ may be adopted.
[0019]
In addition, the start / stop of taking out the heat medium liquid W in the tank from the intermediate outlet Xm is not limited to the form in which the control means is executed based on the detection of the heat medium liquid temperature, but based on the elapsed time from the start of the heat storage operation. Alternatively, the control unit may execute the control in a timer-controlled manner.
[0020]
In carrying out the invention according to claim 1, the intermediate outlet Xm is disposed only at one place in the flow direction of the heat transfer fluid W in the tank during the heat storage operation, or the plurality of intermediate outlets Xm are stored in the heat storage operation. In such a mode that the heating medium liquid W in the tank is dispersed in the flow direction at the time, and the above-described stopping of the extraction according to the temperature of the heating medium liquid W is individually performed for each of the plurality of intermediate outlets Xm. Either may be adopted.
[0021]
Furthermore, the intermediate outlet Xm is disposed at a location upstream of the end outlet Xs and downstream of the installation area of the heat storage container 9 in the flow direction of the heat transfer liquid W in the tank during the heat storage operation. Alternatively, the intermediate outlet Xm is provided at an intermediate position in the installation area of the heat storage container 9 in the flow direction of the heat transfer liquid W in the tank during the heat storage operation (including the downstream end position in the heat transfer medium flow direction in the heat storage container installation area). Arrangement form, or alternatively, the intermediate outlet Xm is located upstream of the end outlet Xs and downstream of the installation area of the heat storage container 9 in the flow direction of the heat transfer liquid W in the tank during the heat storage operation. Any of the forms arranged at both the intermediate location in the installation area of the heat storage container 9 may be adopted.
[0022]
[2] The invention according to claim 2 specifies a preferred embodiment for carrying out the invention according to claim 1, and its features are as follows:
Dispersing the plurality of intermediate outlets in the flow direction of the heat transfer fluid in the tank at the time of the heat storage operation, and arranging in the installation area of the heat storage container,
The control means is configured to individually execute the above-described stop of taking out according to the temperature of the taking-out heat medium liquid for each of the plurality of intermediate outlets.
[0023]
That is, according to this configuration, in the case of the heat storage operation of the cold heat storage (see FIGS. 4 and 5), first, the intermediate outlet located first from the return port Xr side in the flow direction of the heat transfer liquid W in the tank. The region between the return port Xr and the first intermediate outlet Xm is made a low temperature region while suppressing the growth of the intermediate temperature layer by taking out the heat medium liquid W in the vessel from Xm, and subsequently the heat medium in the vessel While suppressing the growth of the intermediate temperature layer by taking out the heat transfer medium W in the tank from the intermediate outlet Xm located second from the return port Xr side in the flow direction of the liquid W, the first intermediate outlet Xm In the form in which the region between the second intermediate outlet Xm is made a low temperature region, the low temperature region is changed to the end outlet Xs with substantial growth inhibition of the intermediate temperature layer from an early stage after the start of the heat storage operation. Will expand to the side of the It is possible to prevent the region from being formed in the tank temporarily or not, and thereby, an expanded region of a good low temperature region capable of efficiently changing the phase of the latent heat storage material Z can be more reliably and efficiently performed. It can be formed in a tank.
[0024]
Similarly, in the case of heat storage operation of thermal heat storage, the latent heat storage material can be efficiently phase-changed in a state where a large growth region of the intermediate temperature layer is prevented from being temporarily formed in the tank. An expanded region of a good high temperature region can be formed more reliably and efficiently in the tank, and by these, heat storage is required in both cases of heat storage operation of cold heat storage and heat storage operation of heat storage Time can be shortened more reliably and effectively, and the amount of heat storage can be increased more reliably and effectively.
[0025]
[3] The invention according to claim 3 specifies a preferred embodiment for carrying out the invention according to claim 1 or 2, and its features are as follows:
When the control means causes the heat medium liquid taken out from the end outlet and the heat medium liquid taken out from the intermediate outlet to join and send to the heat source device, the heat medium liquid is taken out from the end outlet. The ratio of the flow rate and the heat medium liquid extraction flow rate from the intermediate outlet is adjusted to adjust the temperature of the combined heat medium liquid to be sent to the heat source device to the set feed temperature.
[0026]
In other words, according to this configuration (see FIGS. 1 to 4), regardless of the temperature change of the heat transfer fluid W taken out from the end outlet Xs and the temperature change of the heat transfer fluid W taken out from the intermediate outlet Xm, Since the temperature ti (the inlet temperature of the heat source device) of the combined heat transfer medium W sent to the heat source device 2 can be stably maintained at the set feed temperature ti, if an appropriate temperature is set as the set feed temperature ti, a predetermined temperature is set. In the heat storage operation in which the combined heat medium liquid W having a flow rate is sent to the heat source apparatus 2 and the heat medium liquid W having the set return temperature trr is returned from the heat source apparatus 2 to the heat storage tank 1, the heat medium liquid taken out from the end outlet Xs. Regardless of the temperature change of W or the temperature change of the heat transfer fluid W taken out from the intermediate outlet Xm, the heat source device 2 can be continuously operated while maintaining the maximum output state or an output state close thereto. Of heat storage operation In both cases of thermal storage and thermal storage, the thermal storage operation can be carried out in a state in which the amount of heat storage per unit time is more stably secured and the time required for the thermal storage can be shortened more effectively. be able to.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
[0028]
[First Embodiment]
FIG. 1 shows a latent heat storage system for cold heat, 1 is a heat storage tank, 2 is a refrigerator as a heat source device, 3 is a load device (for example, an air conditioner or a fan coil unit), and in this system, the heat source is used in the heat storage operation. By circulating the heat medium liquid W (for example, water) between the heat storage tank 1 and the refrigerator 2 through the side circulation path 4, the generated cold heat of the refrigerator 1 is stored in the heat storage tank 1, and on the other hand, a load is applied in the heat radiation operation. By circulating the heat medium liquid W between the heat storage tank 1 and the load device 3 through the side circulation path 5, the cold energy stored in the heat storage tank 1 in the previous heat storage operation is consumed by the load device 3.
[0029]
P1 is a heat source side circulation pump that circulates the heat medium liquid W between the heat storage tank 1 and the refrigerator 2 in the heat storage operation, and P2 circulates the heat medium liquid W between the heat storage tank 1 and the load device 3 in the heat radiation operation. This is a load-side circulation pump.
[0030]
The heat storage tank 1 is a connected heat storage tank in which a plurality of liquid tanks 1a to 1e are connected in series. In the heat storage operation, as shown by solid line arrows in the figure, one end in the column direction in the series connection row of the liquid tanks 1a to 1e. The heat medium liquid W in the tank is taken out from the liquid tank 1a (that is, one end part of the heat storage tank 1) through the end outlet Xs for the heat storage operation, and the extracted heat medium liquid W is cooled by the refrigerator 2 to store heat. By returning from the return port Xr for operation to the liquid tank 1e at the other end in the row in the series connection row (that is, the other end of the heat storage tank 1), the liquid tank 1a for taking out and returning at both ends in the row direction In the liquid tanks 1b to 1d except 1e, the other end in the column direction of the series connection row is allowed to flow in the tank upward in a stable state over almost the entire area of the liquid tank. Cold water is stored in the tank sequentially from the liquid tank located on the (low temperature end) side.
[0031]
On the contrary, in the heat dissipation operation, as indicated by the broken arrows in the figure, the heat in the tank passes from the liquid tank 1e at the other end in the row in the series connection row of the liquid tanks 1a to 1e through the end outlet Ys for heat dissipation operation. The medium liquid W is taken out and the taken out heat medium liquid W is cooled and dissipated by the load device 3 and then returned from the return port Yr for heat radiation operation to the liquid tank 1a at one end in the row direction in the series connection row. In each of the liquid tanks 1b to 1d excluding the liquid tanks 1a and 1e for taking out and returning at both ends, the heat transfer medium W in the liquid tank flows downward in a stable state over almost the entire area of the liquid tank. As described above, the temperature increase of the heat medium liquid W in the tank by the return heat medium liquid W from the load device 3 is sequentially advanced from the liquid tank located on the column direction one end (high temperature end) side of the series connection row. In the form, the cold energy stored in the heat storage tank 1 in the previous heat storage operation is consumed. Go.
[0032]
And in this 1st Embodiment, as said connection type heat storage tank 1, specifically, the weir 6 which is located in the said row direction other end side and forms the horizontal upper water channel 6a in an upper end part, and the said row | line | column The vertical weir 8 is formed between the weirs 6 and 7 by the reverse weir 7 which is located on the one end side in the direction and forms the lower water channel 7a which is horizontally oriented at the lower end, and the adjacent liquid tanks 1a to 1d are connected to each other. A heat storage tank of a mogul weir system (or improved mogul weir system) having a structure in which it is communicated through a series of communicating water channels composed of a horizontal upper water channel 6a, a vertical water channel 8 and a horizontal lower water channel 7a is adopted.
[0033]
In addition, this heat storage tank 1 is a modification of an existing heat storage tank used as a water heat storage tank to a heat storage tank for latent heat storage at the time of system update, and as a modification, among the liquid tanks 1a to 1e, In the tanks of the second and third liquid tanks 1d and 1c from the other end (low temperature end) in the series connection row of the liquid tanks, a large number of heat storage containers for latent heat storage as shown in FIGS. 9 is installed.
[0034]
The heat storage container 9 is in the shape of a vinyl bag, and the temperature of the low-temperature heat transfer medium W required by the load device 3 or the temperature in the vicinity thereof (for example, 5.5 to 7 ° C.) is contained in the container. By storing the latent heat storage material Z for cold heat storage with the phase change temperature tk between the phases, and by remodeling the system to install the heat storage container 9 in the tanks of the liquid tanks 1c and 1d The latent heat storage is enabled to increase the heat storage capacity of the heat storage tank as much as necessary.
[0035]
In installing the heat storage container 9 in the tanks of the liquid tanks 1c and 1d in the system update, as shown in FIGS. 1 and 2, first, the frame 10 is installed on the tank bottom of the liquid tanks 1c and 1d. A gap S is formed between the container and the top surface portion 10a of the gantry, and then a cage-like storage container 11 in which a large number of heat storage containers 9 are previously stored outside the tank is sequentially carried into the liquid tanks 1c and 1d and stored therein. A large number of heat storage containers 9 are installed in the tanks of the liquid tanks 1c and 1d by placing the container 11 on the porous upper surface portion 10a of the mount 10 in a stacked state. In order to pass the in-tank heating medium liquid W through the stacking area of the storage container 11 on 10, the clearance S between the tank bottom and the gantry upper surface portion 10 a is set to the heating medium liquid W in the stacking area of the storage container 11. In the liquid delivery chamber for sending out upward, the storage capacity on the gantry 10 11 so that the heat transfer liquid W in the tank can be stably passed upward in a uniform state as much as possible with respect to the stacking area of 11 (that is, the installation area of a large number of heat storage containers 9). In a state where S is a liquid collecting chamber for collecting the heat transfer fluid W downward from the stacking area of the storage container 11, the heat transfer medium W in the tank is as uniform as possible with respect to the stacking area of the storage container 11 on the gantry 10. So that it can pass stably downward.
[0036]
When the system is updated, in addition to the installation of the heat storage container 9 in the tank, the upper part in the tank of the third liquid tank 1c from the other end in the row direction (low temperature end) in the series connection row of liquid tanks, that is, in the heat storage operation An intermediate outlet Xm is provided in the vicinity of the downstream end of the heat storage container installation region across the two liquid tanks 1d and 1c in the flow direction of the in-tank heat transfer liquid W, and the in-tank heat transfer liquid W taken out from the intermediate intake Xm Are combined with the heat transfer fluid W taken out from the end outlet Xs for heat storage operation and sent to the refrigerator 2 and a joining flow path 4a and a joining three-way valve V are provided.
[0037]
12a is a take-out temperature sensor for detecting the temperature tm of the heat transfer fluid W in the tank at the position where the intermediate take-out port Xm is arranged (in other words, the temperature of the heat transfer solution W taken out from the intermediate take-out port Xm), and 12b is a refrigerator. 2 is a feed temperature sensor for detecting the temperature ti (the inlet temperature of the refrigerator) of the combined heat transfer fluid W fed to 2, and 13 is a controller for controlling the operation of the system. This controller 13 is used for each temperature sensor 12a in the heat storage operation. , 12b, the following controls (a) to (c) are executed based on the detected temperatures tm, ti.
[0038]
(B) When a heat storage operation start command is given, the heat transfer liquid in the tank is stopped only from the end outlet Xs for the heat storage operation by stopping the extraction of the heat transfer liquid from the intermediate outlet Xm of the merged three-way valve V. In this state, the heat source side circulation pump P1 and the refrigerator 2 are activated to start the heat storage operation.
[0039]
Note that the heat medium liquid W at a constant flow rate is supplied to the refrigerator 2 through the constant output operation of the circulation pump P1 throughout the heat storage operation.
[0040]
(B) After the start of the heat storage operation, when the detected temperature tm detected by the take-out temperature sensor 12a decreases to the set start temperature ta (see FIG. 3), the merging three-way valve V is moved from both the end take-out port Xs and the intermediate take-out port Xm. The merging three-way valve is configured to take out the heat medium liquid W in the tank and keep the temperature ti of the merging heat medium liquid W sent to the refrigerator 2 at the set feed temperature tii based on the temperature ti detected by the feed temperature sensor 12b. The ratio of the heating medium liquid extraction flow rate from the end portion outlet Xs and the heating medium liquid extraction flow rate from the intermediate extraction port Xm is adjusted by the operation of V.
[0041]
In the first embodiment, the setting start temperature ta is set to a temperature (for example, 7 ° C.) near the upper limit value of the variation range of the phase change temperature tk of the latent heat storage material Z, and the set feed temperature tii. Is refrigerated in the heat storage operation in which the heat medium liquid W at a constant flow rate is supplied to the refrigerator 2 and the low temperature heat medium liquid W at the set return temperature trr (for example, 5 ° C.) is returned from the refrigerator 2 to the heat storage tank 1. The heat medium liquid temperature (for example, 10 ° C.) at which the machine 2 can be operated at the maximum output state is set.
[0042]
(C) Thereafter, when the detection temperature tm detected by the extraction temperature sensor 12a is lowered to the set stop temperature tb (for example, 5.3 ° C.) lower than the phase change temperature tk of the latent heat storage material Z, the intermediate three-way valve V is again removed The extraction of the heat transfer fluid from the outlet Xm is stopped and the tank heat transfer fluid W is taken out only from the end outlet Xs for heat storage operation, and then the temperature ti (intermediate outlet Xm) detected by the feed temperature sensor 12b. In the situation where the extraction of the heat transfer liquid from the stop is stopped, it is equal to the temperature ts of the transfer heat transfer liquid W taken from the end outlet Xs) to the lower limit inlet temperature te (for example, 5.7 ° C.) of the refrigerator 2, The refrigerator 2 and the heat source side circulation pump P1 are stopped to end the heat storage operation.
[0043]
That is, the heat storage tank through the intermediate outlet Xm until the temperature tm of the heat transfer fluid W taken out from the intermediate outlet Xm is lowered to the set stop temperature tb lower than the phase change temperature tk of the latent heat storage material Z in this way. By taking out the heat transfer fluid W in 1, a low-temperature region (latent heat storage material Z can be efficiently phase-changed from the return port Xr side to the end outlet Xs side as the heat storage operation proceeds. When the intermediate temperature layer formed on the tip side of the low-temperature heat transfer fluid region) passes through the position where the intermediate outlet Xm is disposed, a part of the intermediate temperature heat transfer fluid forming the intermediate temperature layer is intermediated It takes out from the outlet Xm to the outside of the tank, thereby making the time required for heat storage longer, and the growth of the intermediate temperature layer causing the reduction of the heat storage amount and the progress toward the end outlet Xs. I try to suppress it.
[0044]
[Second Embodiment]
FIG. 4 also shows a latent heat storage system for cold heat. In this latent heat storage system, the heat transfer fluid W flows in the tank as indicated by the solid line arrow in the heat storage operation, and the broken line in the figure indicates the heat release operation. In the connected heat storage tank 1 of the mogul weir system (or improved mogul weir system) that causes the heat transfer medium W to flow in the tank as indicated by the arrow, among the serially connected liquid tanks 1a to 1f, in the series connection row of these liquid tanks A large number of heat storage containers 9 containing the latent heat storage material Z for cold heat storage are stacked in each of the four liquid tanks 1b to 1e except for the extraction and return liquid tanks 1a and 1f at both ends in the row direction. It is installed in.
[0045]
In addition, the third, fourth, and fifth liquid tanks 1d to 1b from the return port Xr side (low temperature end side) for heat storage operation, the lower part in each tank, that is, the heat storage of each of the three liquid tanks 1d to 1b. An intermediate outlet Xm is provided at the heat medium liquid inflow portion during operation, and the three intermediate outlets Xm are disposed in the tank during the heat storage operation with respect to the installation area of the heat storage container 9 over the four liquid tanks 1b to 1e. Dispersed in the direction of flow of W and installed in the region, and the flow rate for intermittently removing the heat transfer fluid W in the tank from each of the end outlet Xs and the three intermediate outlets Xm and adjusting the extraction flow rate A regulating valve MV is provided for each outlet Xs, Xm.
[0046]
12a is an extraction temperature for detecting the temperature tm1 to tm3 (in other words, the temperature of the heat transfer medium liquid W taken out from each intermediate output port Xm) of the in-tank heat transfer liquid W at the position where each of the three intermediate output ports Xm is disposed. The sensor 12b joins the heat transfer medium W taken out from the end outlet Xs and the heat transfer medium W taken out from each intermediate outlet Xm guided by the combined flow path 4a and sends the combined heat to the refrigerator 2. A feed temperature sensor that detects the temperature ti (the inlet temperature of the refrigerator) of the liquid medium W, 13 is a controller that controls the operation of the system, and this controller 13 includes three extraction temperature sensors 12a and a feed temperature in the heat storage operation. The following controls (A) to (C) are executed based on the detected temperatures tm1 to tm3 and ti by the sensor 12b.
[0047]
(B) When a heat storage operation start command is given, the flow rate adjusting valve MV for each of the outlets Xs, Xm is stopped, and the heat medium liquid take-out from all the intermediate outlets Xm is stopped, and the end outlets for the heat storage operation The heat transfer liquid W in the tank is taken out only from Xs, and in this state, the heat source side circulation pump P1 and the refrigerator 2 are activated to start the heat storage operation.
[0048]
In the second embodiment as well, the heat medium liquid W having a constant flow rate is supplied to the refrigerator 2 through the constant output operation of the circulation pump P1 throughout the heat storage operation.
[0049]
(B) After the start of the heat storage operation, for each of the three extraction temperature sensors 12a, when the detected temperatures tm1 to tm3 are lowered to the set start temperature ta (see FIG. 5), the intermediate outlet corresponding to the extraction temperature sensor 12a The flow rate adjusting valve MV of Xm is opened, and the heat medium liquid extraction from the intermediate outlet Xm is started.
[0050]
Further, for each of the three extraction temperature sensors 12a, when the detected temperatures tm1 to tm3 are lowered to the set stop temperature tb that is lower than the phase change temperature tk of the latent heat storage material Z, the intermediate extraction corresponding to the extraction temperature sensor 12a is performed. The flow rate adjustment valve MV at the outlet Xm is closed, and the heat transfer fluid extraction from the intermediate outlet Xm is stopped again.
[0051]
Then, the tank heat transfer fluid W is taken out from any of the intermediate outlets Xm, and the heat transfer fluid W taken out from the intermediate outlet Xm and the heat transfer fluid W taken out from the end outlet Xs for heat storage operation, Are combined and supplied to the refrigerator 2, based on the temperature ti detected by the feed temperature sensor 12b, the temperature ti of the combined heat transfer medium W sent to the refrigerator 2 is maintained at the set feed temperature tii. The ratio of the heating medium liquid extraction flow rate from the end extraction port Xs and the heating medium liquid extraction flow rate from the intermediate extraction port Xm is adjusted by operating the flow rate adjustment valve MV with respect to the extraction ports Xs and Xm.
[0052]
Also in the second embodiment, the set start temperature ta is set to a temperature near the upper limit value of the variation range of the phase change temperature tk of the latent heat storage material Z, and the set feed temperature tii is set to the refrigerator 2. Heat transfer fluid temperature at which the refrigerator 2 can be operated in the maximum output state in the heat storage operation in which the heat transfer fluid W at a constant flow rate is supplied and the low temperature heat transfer fluid W at the set return temperature trr is returned from the refrigerator 2 to the heat storage tank 1. As a specific temperature example, as in the first embodiment, the phase change temperature tk = 5.5 to 7 ° C. of the latent heat storage material Z, the set return temperature trr = 5 ° C., the lower limit inlet of the refrigerator 2 A temperature te = 5.7 ° C., a set start temperature ta = 7 ° C., and a set stop temperature tb = 5.3 ° C. can be mentioned.
[0053]
(C) Thereafter, the detection temperature ti by the feed temperature sensor 12b (equal to the temperature ts of the heat transfer fluid W taken out from the end take-out port Xs in the situation where the heat transfer fluid extraction from all the intermediate output ports Xm is stopped) However, if it falls to the minimum inlet temperature te of the refrigerator 2, the refrigerator 2 and the heat source side circulation pump P1 will be stopped, and thermal storage operation will be complete | finished.
[0054]
That is, as in the first embodiment, until the temperature tm of the heat transfer medium liquid W taken out from the intermediate outlet Xm is lowered to the set stop temperature tb that is lower than the phase change temperature tk of the latent heat storage material Z, the intermediate outlet The intermediate temperature formed at the front end side of the low temperature region that spreads from the return port Xr side to the end outlet Xs side as the heat storage operation proceeds by taking out the heat transfer fluid W in the heat storage tank 1 through Xm In the latent heat storage system of the second embodiment, first, the tank from the intermediate outlet Xm located first from the return port Xr side is suppressed, although the growth of the layer and the progress toward the end outlet Xs are suppressed. While suppressing the growth of the intermediate temperature layer by taking out the internal heat transfer fluid W, the region between the return port Xr and the first intermediate output port Xm is made a low temperature region, followed by the second from the return port Xr side. Heat in the tank from the intermediate outlet Xm located at While suppressing the growth of the intermediate temperature layer by taking out the liquid W, the region between the first intermediate outlet Xm and the second intermediate outlet Xm is made a low temperature region, so that it is early after the start of the heat storage operation. The low temperature region is expanded to the end outlet Xs side while substantially suppressing the growth of the intermediate temperature layer from the time.
[0055]
[Third Embodiment]
FIG. 6 shows a latent heat storage system for heat, 1 is a heat storage tank, 2 is a heat pump as a heat source device, and 3 is a load device (air conditioner, fan coil unit, etc.). In this system, in the heat storage operation, the heat source side By circulating the heat transfer fluid W (for example, water) between the heat storage tank 1 and the heat pump 2 through the circulation path 4, the heat generated by the heat pump 2 is stored in the heat storage tank 1, while the load side circulation path in the heat radiation operation. By circulating the heat medium liquid W between the heat storage tank 1 and the load device 3 through 5, the load device 3 consumes the heat stored in the heat storage tank 1 in the previous heat storage operation.
[0056]
P1 is a heat source side circulation pump that circulates the heat medium liquid W between the heat storage tank 1 and the heat pump 2 in the heat storage operation, and P2 circulates the heat medium liquid W between the heat storage tank 1 and the load device 3 in the heat radiation operation. It is a load side circulation pump.
[0057]
The heat storage tank 1 is a connected heat storage tank in which a plurality of liquid tanks 1a to 1e are connected in series. In the heat storage operation, as shown by solid line arrows in the figure, one end in the column direction in the series connection row of the liquid tanks 1a to 1e. The heat medium liquid W in the tank is taken out from the liquid tank 1a (one end part of the heat storage tank 1) through the end outlet Xs for heat storage operation, and the heat transfer liquid W is taken out by the heat pump 2 and used for the heat storage operation. By returning from the return port Xr to the liquid tank 1e at the other end in the row direction in the series connection row (the other end portion of the heat storage tank 1), the liquid tanks 1a and 1e for taking out and returning at both ends in the row direction were removed. In each of the liquid tanks 1b to 1d, the heat transfer medium W in the liquid tank flows in the tank downward in a stable state over almost the entire area of the liquid tank, while the other end in the row direction (high temperature end) of the series connection row. Heat is stored in the tank sequentially from the liquid tank located on the side.
[0058]
On the contrary, in the heat dissipation operation, as indicated by the broken arrows in the figure, the heat in the tank passes from the liquid tank 1e at the other end in the row in the series connection row of the liquid tanks 1a to 1e through the end outlet Ys for heat dissipation operation. The medium liquid W is taken out, and the taken out heat medium liquid W is thermally radiated by the load device 3, and then returned from the return port Yr for heat radiation operation to the liquid tank 1 a at one end in the row direction in the series connection row. In each of the liquid tanks 1b to 1d excluding the liquid tanks 1a and 1e for taking out and returning at both ends, the heat transfer liquid W in the liquid tank flows upward in a stable state over almost the entire area of the liquid tank. As described above, the temperature reduction of the heat transfer medium W in the tank by the return heat transfer medium W from the load device 3 is sequentially advanced from the liquid tank located on the column direction one end (low temperature end) side of the series connection row. In the form, the heat stored in the tank of the heat storage tank 1 in the previous heat storage operation is consumed. Go.
[0059]
And in this 3rd Embodiment, as said connection type heat storage tank 1, specifically, the reverse weir 6 which is located in the said row direction other end side and forms the horizontal lower water channel 6a in a lower end part, and the above-mentioned A vertical water channel 8 is formed between the weirs 6 and 7 by a weir 7 which is located at one end in the row direction and forms a horizontal upper water channel 7a at the upper end, and the adjacent liquid tanks 1b to 1e are connected to each other. A heat storage tank of a mogul weir system (or improved mogul weir system) having a structure communicating through a series of communicating water channels composed of a lateral water channel 6a, a vertical water channel 8 and a lateral water channel 7a is employed.
[0060]
As in the first embodiment, among the liquid tanks 1a to 1e, latent heat is contained in the tanks of the second and third liquid tanks 1d and 1c from the other end in the column direction (high temperature end) in the series connection row of the liquid tanks. A large number of heat storage containers 9 for heat storage are installed, and in the container of the heat storage container 9, the temperature of the high-temperature heat transfer medium W required by the load device 3 or the temperature in the vicinity thereof is set to a solid phase and a liquid phase. A latent heat storage material Z ′ for heat storage having a phase change temperature tk ′ between the two is accommodated, thereby enabling heat storage by latent heat storage.
[0061]
Further, two liquid tanks 1d in the flow direction of the heat transfer liquid W in the tank in the tank lower part of the third liquid tank 1c from the other column direction other end (high temperature end) in the series connection row of the liquid tanks, that is, in the heat storage operation. , 1c, an intermediate outlet Xm is provided in the vicinity of the downstream end of the heat storage container installation area, and the heat transfer medium W taken out from the intermediate outlet Xm is extracted from the end outlet Xs for heat storage operation. A combined flow path 4 a and a combined three-way valve V are provided to be combined with the liquid W and sent to the heat pump 2.
[0062]
12a is a take-out temperature sensor for detecting the temperature tm of the heat transfer fluid W in the tank at the position where the intermediate take-out port Xm is arranged (in other words, the temperature of the heat transfer solution W taken out from the intermediate take-out port Xm), and 12b is the heat pump 2. , A feed temperature sensor for detecting the temperature ti (heat pump inlet temperature) of the combined heat transfer fluid W to be sent to, and 13 is a controller for controlling the operation of the system, and this controller 13 is the temperature sensor 12a, 12b in the heat storage operation. Based on the detected temperatures tm and ti, the following controls (a ′) to (c ′) are executed.
[0063]
(A ′) When a heat storage operation start command is given, the heat transfer liquid in the tank is stopped only from the end outlet Xs for the heat storage operation by stopping the extraction of the heat transfer liquid from the intermediate intake port Xm of the merging three-way valve V. In this state, the heat source side circulation pump P1 and the heat pump 2 are activated to start the heat storage operation.
[0064]
Note that the heat pump 2 is supplied with the heat medium liquid W at a constant flow rate throughout the heat storage operation by the constant output operation of the circulation pump P1.
[0065]
(B ′) After the start of the heat storage operation, when the detection temperature tm detected by the extraction temperature sensor 12a rises to the set start temperature ta ′, the combined three-way valve V is heated from both the end outlet Xs and the intermediate outlet Xm. The operation of the merging three-way valve V is performed so that the medium W is taken out and the temperature ti of the merging heat medium liquid W fed to the heat pump 2 is kept at the set feeding temperature ti ′ based on the temperature ti detected by the feeding temperature sensor 12b. To adjust the ratio of the heat medium liquid extraction flow rate from the end outlet Xs and the heat medium liquid extraction flow rate from the intermediate outlet Xm.
[0066]
In the third embodiment, the set start temperature ta ′ is set to a temperature close to the lower limit value of the variation range of the phase change temperature tk ′ of the latent heat storage material Z ′, and the set feed temperature ti ′ is The heat pump 2 is operated in the maximum output state in the heat storage operation in which the heat medium liquid W is supplied to the heat pump 2 at a constant flow rate and the high temperature heat medium liquid W at the set return temperature trr ′ is returned from the heat pump 2 to the heat storage tank 1. The temperature of the heat transfer fluid that can be set is set.
[0067]
(C ') Thereafter, when the detected temperature tm detected by the take-out temperature sensor 12a rises to a set stop temperature tb' that is higher than the phase change temperature tk 'of the latent heat storage material Z', the merging three-way valve V is returned from the intermediate outlet Xm. The heating medium liquid is stopped from being taken out, and the heat medium liquid W in the tank is taken out only from the end outlet Xs for the heat storage operation, and then the temperature ti (heat from the intermediate outlet Xm) detected by the feed temperature sensor 12b is set. When the medium removal is stopped, the temperature of the heat medium liquid W taken out from the end outlet Xs is equal to the temperature ts' of the heat pump 2, and the heat pump 2 and the heat source side circulation pump P1 are stopped. Then, the heat storage operation is finished.
[0068]
That is, similarly to the first embodiment, the temperature tm of the heat transfer medium liquid W taken out from the intermediate outlet Xm rises to the set stop temperature tb ′ that is higher than the phase change temperature tk ′ of the latent heat storage material Z ′. Until then, the heat transfer fluid W in the heat storage tank 1 is taken out through the intermediate outlet Xm, so that the high temperature region (latent heat storage) that expands from the return port Xr side to the end outlet Xs side as the heat storage operation proceeds. The intermediate temperature layer is formed when the intermediate temperature layer formed on the leading end side of the high-temperature heat transfer fluid liquid region that can efficiently change the phase of the material Z ′ passes through the arrangement position of the intermediate outlet Xm. A part of the medium temperature heat transfer fluid is taken out from the intermediate outlet Xm, thereby increasing the time required for heat storage and the growth of the intermediate temperature layer that causes a decrease in the amount of heat storage. To prevent the end takeout Xs from proceeding A.
[0069]
[Fourth Embodiment]
FIG. 7 also shows a latent heat storage system for heat. In this latent heat storage system, the heat transfer fluid W is caused to flow in the tank as indicated by the solid line arrow in the heat storage operation, and the broken line in the figure indicates the heat release operation. In the connected heat storage tank 1 of the mogul weir system (or improved mogul weir system) that causes the heat transfer fluid W to flow in the tank as indicated by the arrows, as in the second embodiment, among the series-connected liquid tanks 1a to 1f, In each of the four liquid tanks 1b to 1e excluding the liquid tanks 1a and 1f for taking out and returning at both ends in the series connection row of the liquid tanks, the latent heat storage material Z ′ for storing heat is stored. A large number of heat storage containers 9 are installed in a stacked state.
[0070]
Further, the third, fourth, and fifth liquid tanks 1d to 1b from the return port Xr side (high temperature end side) for heat storage operation, the upper part in each tank, that is, the heat storage of each of the three liquid tanks 1d to 1b. An intermediate outlet Xm is provided at the heat medium liquid inflow portion during operation, and the three intermediate outlets Xm are disposed in the tank during the heat storage operation with respect to the installation area of the heat storage container 9 over the four liquid tanks 1b to 1e. Dispersed in the direction of flow of W and installed in the region, and the flow rate for intermittently removing the heat transfer fluid W in the tank from each of the end outlet Xs and the three intermediate outlets Xm and adjusting the extraction flow rate A regulating valve MV is provided for each outlet Xs, Xm.
[0071]
12a is an extraction temperature for detecting the temperature tm1 to tm3 (in other words, the temperature of the heat transfer medium liquid W taken out from each intermediate output port Xm) of the in-tank heat transfer liquid W at the position where each of the three intermediate output ports Xm is disposed. The sensor 12b joins the heat transfer medium W taken out from the end outlet Zs and the heat transfer medium W taken out from each intermediate outlet Xm guided by the combined flow path 4a and sends it to the heat pump 2 to join the heat transfer medium. A feed temperature sensor for detecting the temperature ti of the liquid W (inlet temperature of the heat pump), and 13 is a controller for controlling the operation of the system. The controller 13 includes three extraction temperature sensors 12a and a feed temperature sensor 12b in the heat storage operation. Based on the detected temperatures tm1 to tm3, ti, the following controls (a ′) to (c ′) are executed.
[0072]
(A ′) When a heat storage operation start command is given, the flow rate adjusting valve MV for each of the outlets Xs, Xm is stopped, and the heat transfer fluid extraction from all the intermediate outlets Xm is stopped, and the end portion for the heat storage operation is taken. The tank heat medium liquid W is taken out only from the outlet Xs, and in this state, the heat source side circulation pump P1 and the heat pump 2 are activated to start the heat storage operation.
[0073]
Also in the fourth embodiment, the heat pump 2 is supplied with the heat medium liquid W at a constant flow rate throughout the heat storage operation by the constant output operation of the circulation pump P1.
[0074]
(B ′) After the start of the heat storage operation, when the detected temperatures tm1 to tm3 rise to the set start temperature ta ′ for each of the three extraction temperature sensors 12a, the flow rate of the intermediate outlet Xm corresponding to the extraction temperature sensor 12a The regulating valve MV is opened, and the heat medium liquid is taken out from the intermediate outlet Xm.
[0075]
Further, for each of the three extraction temperature sensors 12a, when the detected temperatures tm1 to tm3 rise to a set stop temperature tb 'that is higher than the phase change temperature tk' of the latent heat storage material Z ', the corresponding temperature of the extraction temperature sensor 12a The flow rate adjustment valve MV of the intermediate outlet Xm to be closed is closed, and the heat medium liquid extraction from the intermediate outlet Xm is stopped again.
[0076]
Then, the tank heat transfer fluid W is taken out from any of the intermediate outlets Xm, and the heat transfer fluid W taken out from the intermediate outlet Xm and the heat transfer fluid W taken out from the end outlet Xs for heat storage operation, Are combined and supplied to the heat pump 2, based on the temperature ti detected by the feed temperature sensor 12b, each temperature is adjusted so as to keep the temperature ti of the combined heat transfer medium W sent to the heat pump 2 at the set feed temperature ti '. The ratio of the heating medium liquid extraction flow rate from the end outlet Xs and the heating medium liquid extraction flow rate from the intermediate extraction port Xm is adjusted by operating the flow rate adjustment valve MV with respect to the outlets Xs and Xm.
[0077]
Also in the fourth embodiment, the setting start temperature ta ′ is set to a temperature near the lower limit value of the variation range of the phase change temperature tk ′ of the latent heat storage material Z ′, and the setting feed temperature ti ′ is set to the heat pump 2 A heat medium capable of operating the heat pump 2 in the maximum output state in a heat storage operation in which the heat medium liquid W is supplied at a constant flow rate and the high temperature heat medium liquid W at the set return temperature trr ′ is returned from the heat pump 2 to the heat storage tank 1. The liquid temperature is set.
[0078]
(C ') Thereafter, the temperature ti detected by the feed temperature sensor 12b (equal to the temperature ts of the heat transfer fluid W taken out from the end take-out ports Xs in the situation where the heat transfer fluid extraction from all the intermediate output ports Xm is stopped) ) Rises to the upper limit inlet temperature te ′ of the heat pump 2, the heat pump 2 and the heat source side circulation pump P1 are stopped and the heat storage operation is finished.
[0079]
That is, as in the third embodiment, until the temperature tm of the heat transfer medium liquid W taken out from the intermediate outlet Xm rises to the set stop temperature tb ′ higher than the phase change temperature tk ′ of the latent heat storage material Z ′. By taking out the heat transfer fluid W in the heat storage tank 1 through the intermediate outlet Xm, it is formed at the front end side of the high temperature region that spreads from the return port Xr side to the end outlet Xs side as the heat storage operation proceeds. In the latent heat storage system of the fourth embodiment, first, as in the second embodiment, first, from the return port Xr side, the growth of the intermediate temperature layer and the progress toward the end outlet Xs are suppressed. The region between the return port Xr and the first intermediate outlet Xm is made a high temperature region while suppressing the growth of the intermediate temperature layer by taking out the heat transfer liquid W in the tank from the intermediate outlet Xm located at the second position, Following that, it is located second from the return port Xr side. The region between the first intermediate outlet Xm and the second intermediate outlet Xm is made a high temperature region while suppressing the growth of the intermediate temperature layer by taking out the heat transfer liquid W in the tank from the intermediate outlet Xm. In such a form, the high temperature region is expanded toward the end outlet Xs with substantial growth suppression of the intermediate temperature layer from an early stage after the start of the heat storage operation.
[0080]
[Another embodiment]
Next, another embodiment will be listed.
[0081]
In the first to second embodiments described above, an example of using a connected heat storage tank in which a plurality of liquid tanks are connected in series has been shown, but the heat storage tank to be used may be of a single tank type, Moreover, the flow system (heat storage system) of the heat transfer medium in the heat storage tank may be either a temperature stratification system or a mixing system, and is not limited to the mogul weir system or the improved mogul weir system.
[0082]
Various liquids such as water and aqueous solutions can be used for the heat transfer liquid, and the latent heat storage material is a paraffin-based latent heat storage material for both the latent heat storage material for cold storage and the latent heat storage material for thermal storage. Initially, various materials can be used.
[0083]
The use of the stored cold or warm heat is not limited to air conditioning, and may be anything such as cooling or heating of an article.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a system showing a first embodiment.
FIG. 2 is a perspective view inside the tank showing the first embodiment.
FIG. 3 is a graph showing a temperature change of the heat transfer liquid in the tank in the first embodiment.
FIG. 4 is an overall configuration diagram of a system showing a second embodiment.
FIG. 5 is a graph showing the temperature change of the heat transfer liquid in the tank in the second embodiment.
FIG. 6 is an overall configuration diagram of a system showing a third embodiment.
FIG. 7 is an overall configuration diagram of a system showing a fourth embodiment.
FIG. 8 is a diagram showing a conventional system configuration
FIG. 9 is a graph showing the temperature change of the heat transfer liquid in the tank in the conventional system.
[Explanation of symbols]
Xs end outlet
W Heat transfer fluid
2 Heat source device
Xr return port
1 heat storage tank
Z, Z 'Latent heat storage material
9 Heat storage container
Xm intermediate exit
tm Temperature of the heat transfer fluid removed from the intermediate outlet
tk, tk 'Phase change temperature of latent heat storage material
tb, tb 'Set stop temperature
13 Control means
ti Temperature of heat transfer fluid sent to heat source device
ti, ti 'Set feed temperature

Claims (3)

槽一端部の端部取出口から取り出した槽内の熱媒液を熱源装置で冷却又は加熱して槽他端部の戻し口から槽内に戻す蓄熱運転により槽内に冷熱又は温熱を蓄熱する蓄熱槽を設け、
潜熱蓄熱材を収容した多数の蓄熱容器を、槽内熱媒液に浸漬させる状態で前記蓄熱槽の槽内に設置してある潜熱蓄熱システムであって、
蓄熱運転時における槽内熱媒液の流動方向において前記端部取出口よりも上流側でかつ前記蓄熱容器の設置域よりも下流側の箇所、又は、前記蓄熱容器の設置域における途中箇所に、前記蓄熱運転において前記端部取出口からの取り出し熱媒液と合流させて前記熱源装置に送る熱媒液を蓄熱槽内から取り出す中間取出口を設け、
前記熱源装置により熱媒液を冷却する冷熱蓄熱の蓄熱運転において、前記中間取出口からの取り出し熱媒液の温度が前記潜熱蓄熱材の相変化温度よりも低温の設定停止温度まで低下したとき、
又は、前記熱源装置により熱媒液を加熱する温熱蓄熱の蓄熱運転において、前記中間取出口からの取り出し熱媒液の温度が前記潜熱蓄熱材の相変化温度よりも高温の設定停止温度まで上昇したとき、
その中間取出口からの槽内熱媒液の取り出しを停止する制御手段を設けてある潜熱蓄熱システム。
The heat transfer liquid in the tank taken out from the end outlet at one end of the tank is cooled or heated by a heat source device, and the cold energy or the heat is stored in the tank by a heat storage operation for returning to the tank from the return port at the other end of the tank. A heat storage tank,
A latent heat storage system in which a large number of heat storage containers containing latent heat storage materials are installed in the tank of the heat storage tank in a state of being immersed in the heat medium liquid in the tank,
In the flow direction of the heat transfer liquid in the tank during the heat storage operation, the upstream side of the end outlet and the downstream side of the installation area of the heat storage container, or the intermediate position in the installation area of the heat storage container, In the heat storage operation, an intermediate outlet is provided to take out the heat medium liquid to be combined with the heat medium liquid taken out from the end outlet and sent to the heat source device from the heat storage tank,
In the heat storage operation of the cold heat storage that cools the heat medium liquid by the heat source device, when the temperature of the heat medium liquid taken out from the intermediate outlet decreases to a set stop temperature lower than the phase change temperature of the latent heat storage material,
Or, in the heat storage operation of thermal heat storage in which the heat medium liquid is heated by the heat source device, the temperature of the heat medium liquid taken out from the intermediate outlet has increased to a set stop temperature higher than the phase change temperature of the latent heat storage material When
A latent heat storage system provided with a control means for stopping the extraction of the heat transfer fluid from the intermediate outlet.
複数の前記中間取出口を蓄熱運転時における槽内熱媒液の流動方向に分散させて前記蓄熱容器の設置域に配置し、
前記制御手段を、取り出し熱媒液の温度に応じた前記の取り出し停止を複数の前記中間取出口の各々について個別に実行する構成にしてある請求項1記載の潜熱蓄熱システム。
Dispersing the plurality of intermediate outlets in the flow direction of the heat transfer fluid in the tank at the time of the heat storage operation, and arranging in the installation area of the heat storage container,
2. The latent heat storage system according to claim 1, wherein the control unit is configured to individually execute the stop of the extraction in accordance with the temperature of the extracted heat transfer fluid for each of the plurality of intermediate outlets.
前記制御手段を、前記端部取出口からの取り出し熱媒液と前記中間取出口からの取り出し熱媒液とを合流させて前記熱源装置に送る際、前記端部取出口からの熱媒液取出流量と前記中間取出口からの熱媒液取出流量との比を調整して、前記熱源装置に送る合流熱媒液の温度を設定送り温度に調整する構成にしてある請求項1又は2記載の潜熱蓄熱システム。When the control means causes the heat medium liquid taken out from the end outlet and the heat medium liquid taken out from the intermediate outlet to merge and send to the heat source device, the heat medium liquid is taken out from the end outlet. The ratio of the flow rate and the heat medium liquid extraction flow rate from the intermediate outlet is adjusted to adjust the temperature of the combined heat medium liquid to be sent to the heat source device to a set feed temperature. Latent heat storage system.
JP2002194917A 2002-07-03 2002-07-03 Latent heat storage system Expired - Fee Related JP3907539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194917A JP3907539B2 (en) 2002-07-03 2002-07-03 Latent heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194917A JP3907539B2 (en) 2002-07-03 2002-07-03 Latent heat storage system

Publications (2)

Publication Number Publication Date
JP2004036996A JP2004036996A (en) 2004-02-05
JP3907539B2 true JP3907539B2 (en) 2007-04-18

Family

ID=31703489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194917A Expired - Fee Related JP3907539B2 (en) 2002-07-03 2002-07-03 Latent heat storage system

Country Status (1)

Country Link
JP (1) JP3907539B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414118B2 (en) * 2010-02-25 2014-02-12 株式会社大林組 Latent heat storage system
JP6028590B2 (en) * 2012-03-27 2016-11-16 Jfeエンジニアリング株式会社 Flow suppressing member and heat exchange efficiency increasing method
JP7259622B2 (en) * 2019-07-29 2023-04-18 パナソニックホールディングス株式会社 Cooling system and its operation method
JP7473469B2 (en) 2020-12-18 2024-04-23 パナソニックホールディングス株式会社 Heat storage device and heat exchange method

Also Published As

Publication number Publication date
JP2004036996A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
EP3121522B1 (en) Method for controlling a heat storage device and method for controlling a hot water generation device
EP2505940B1 (en) Auxiliary heater control device and heated fluid using system and auxiliary heater control method
JP5175138B2 (en) Water heater
KR20150035715A (en) Method for supplying temperature-regulated fluid to temperature control system, and storage medium
JP2002352835A (en) Anti-freezing device for fuel cell cooling system
KR101606893B1 (en) Device for adjusting temperature of molding die
JP2009299941A (en) Hot water supply system
JP2011220560A (en) Hot water supply device
JP5829492B2 (en) Hot water storage type hot water supply system and operation control method thereof
JP3907539B2 (en) Latent heat storage system
JP2007085629A (en) Operating method of ice thermal storage equipment and ice thermal storage equipment
JP2018070217A (en) Water server, water supply method of the same, and water supply processing program of the same
JP3977241B2 (en) Hot water storage water heater
JP4104592B2 (en) Hot water storage water heater
KR20190047050A (en) Fluid heating device
JP2006234273A (en) Heat pump water heater
JP4882438B2 (en) Heat pump water heater
JP2004060960A (en) Latent heat storage system
JP4408243B2 (en) Mold temperature controller
KR101079704B1 (en) Temperature Control Apparatus for controlling load heating having Two way valve
JP2019113277A (en) Storage water heater
JP2008107002A (en) Hot water supply system and draining method of hot water in hot water storage tank
JP4037781B2 (en) Hot water storage water heater
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
JP2011141050A (en) Storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070116

R150 Certificate of patent or registration of utility model

Ref document number: 3907539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees