JP2001151994A - Epoxy resin compositions and semiconductor device - Google Patents

Epoxy resin compositions and semiconductor device

Info

Publication number
JP2001151994A
JP2001151994A JP33568999A JP33568999A JP2001151994A JP 2001151994 A JP2001151994 A JP 2001151994A JP 33568999 A JP33568999 A JP 33568999A JP 33568999 A JP33568999 A JP 33568999A JP 2001151994 A JP2001151994 A JP 2001151994A
Authority
JP
Japan
Prior art keywords
epoxy resin
polyorganosiloxane
resin composition
weight ratio
siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33568999A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
祐輔 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33568999A priority Critical patent/JP2001151994A/en
Publication of JP2001151994A publication Critical patent/JP2001151994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high reliability semiconductor sealing epoxy resin compositions which excel in moldability with reduced voids on molding, deformation of gold wires, staining of the surface of a molded article and the like and, at the same time, excel in resistance to soldering properties. SOLUTION: The semiconductor sealing epoxy resin compositions comprise (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (F) a polyorganosiloxane as the essential components, and the polyorganosiloxane being a mixture of (a) a polyorganosiloxane having a weight ratio of the siloxane to the organic subsistent in the polyorganosiloxane molecule of 10/90 to 35/65 and (b) a polyorganosiloxane having a weight ratio of the siloxane to the organic substituent in the polyorganosiloxane molecule of 40/60 to 60/40 at a weight ratio of polyorganosiloxane (a) to polyorganosiloxane (b) of 100/0 to 20/80.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性、吸湿後の
耐半田特性や耐温度サイクル性等の信頼性に優れた半導
体封止用エポキシ樹脂組成物及びこれを用いた半導体装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent reliability such as moldability, soldering resistance after moisture absorption and temperature cycling resistance, and a semiconductor device using the same. is there.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体装置の表面実装化が促進される中で、半導
体の封止材料であるエポキシ樹脂組成物への要求は益々
厳しいものとなってきている。特に半導体装置の表面実
装化が一般的になってきている現状では、吸湿した半導
体装置が半田処理時に高温にさらされ、気化した水蒸気
の爆発的応力により半導体装置にクラックが発生した
り、或いは半導体素子やリードフレームとエポキシ樹脂
組成物の硬化物との界面に剥離が発生することにより、
電気的信頼性を大きく損なう不良が生じ、これらの不良
の防止、即ち耐半田特性の向上が大きな課題となってい
る。この耐半田特性の向上のために、エポキシ樹脂組成
物は無機質充填材を多量に配合することにより、半導体
装置の低吸湿化、低熱膨張化、高強度化を図ってきてい
る。このためエポキシ樹脂としては低粘度型のものや、
常温では結晶性であるが融点を越えると極めて低粘性を
示す結晶性エポキシ樹脂を使用して、無機質充填材の配
合量の増加に伴うエポキシ樹脂組成物の成形時の流動性
の低下を防止する手法が提案されている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic devices, semiconductor integration is progressing year by year, and surface mounting of semiconductor devices is promoted. Demands for epoxy resin compositions as stopping materials have become increasingly severe. In particular, in the current situation where surface mounting of semiconductor devices is becoming common, a semiconductor device that has absorbed moisture is exposed to a high temperature during soldering, and cracks occur in the semiconductor device due to the explosive stress of vaporized water vapor. Due to the occurrence of peeling at the interface between the element or lead frame and the cured product of the epoxy resin composition,
Defects occur that greatly impair electrical reliability, and prevention of these defects, that is, improvement of solder resistance, has become a major issue. In order to improve the solder resistance, the epoxy resin composition contains a large amount of an inorganic filler to reduce the moisture absorption, lower the thermal expansion, and increase the strength of the semiconductor device. For this reason, low viscosity type epoxy resin,
Using a crystalline epoxy resin that is crystalline at room temperature but exhibits extremely low viscosity above the melting point, to prevent a decrease in fluidity during molding of the epoxy resin composition due to an increase in the amount of the inorganic filler. An approach has been proposed.

【0003】ところが、各成分を加熱混練して製造され
るエポキシ樹脂組成物において無機質充填材を多量に配
合するエポキシ樹脂組成物では、加熱混練時に無機質充
填材の樹脂成分への分散不良により、樹脂組成物の製造
工程で均一な樹脂組成物が得られ難く、不均一なエポキ
シ樹脂組成物は無機質充填材とエポキシ樹脂やフェノー
ル樹脂との親和性に乏しく、樹脂組成物の各成分が成形
時に均一な流れを形成しないため空気の巻き込みが多く
なり、成形品中に多量の気泡(以後、ボイドと称する)
が残ってしまったり、又成形時の流動性が低下してしま
う等の問題点が発生する。成形品中にボイドが存在する
と、半導体装置内に外部からの水分が侵入し易く、かつ
水分が溜まり易いために半導体素子が腐食され易くなり
信頼性が低下する。又エポキシ樹脂組成物の成形時の流
動性が低下すると、半導体素子が押し上げられて半導体
装置表面に露出する、いわゆるチップシフトが発生した
り、半導体素子の回路とリードフレームとを結線してい
る金線が変形、又は切断されるいわゆる金線変形が発生
したり、更には樹脂組成物が金型内に充分充填されな
い、いわゆる未充填等の成形不良を起こす。
However, in an epoxy resin composition produced by heating and kneading each component, an epoxy resin composition containing a large amount of an inorganic filler is poorly dispersed in the resin component during the heating and kneading. It is difficult to obtain a uniform resin composition in the manufacturing process of the composition, and the uneven epoxy resin composition has poor affinity between the inorganic filler and the epoxy resin or phenol resin, and each component of the resin composition is uniform at the time of molding. Air does not form a large flow, entrainment of air increases, and a large amount of air bubbles in the molded product (hereinafter referred to as voids)
However, there are problems such as the remaining of the resin and the decrease in fluidity during molding. If voids are present in the molded product, external moisture easily enters the semiconductor device and moisture easily accumulates, so that the semiconductor element is easily corroded and reliability is reduced. Further, when the fluidity during molding of the epoxy resin composition is reduced, the semiconductor element is pushed up and exposed on the surface of the semiconductor device, so-called chip shift occurs, or the metal that connects the circuit of the semiconductor element and the lead frame is connected. A so-called gold wire deformation in which the wire is deformed or cut occurs, and further, a molding failure such as a so-called unfilled state in which the resin composition is not sufficiently filled in the mold.

【0004】無機質充填材と樹脂成分との均一性を向上
し、ボイド低減や流動性を向上させる手法として、ポリ
オルガノシロキサンを添加する手法が数多く提案されて
いる。しかし、ポリオルガノシロキサンの添加は、ボイ
ド低減に効果はあるものの、一方では、エポキシ樹脂組
成物の硬化物の曲げ強度等の機械的特性を低下させた
り、ポリオルガノシロキサンが成形時に滲み出して金型
や成形品表面を汚染したり、半導体装置内部に存在する
半導体素子やそれを搭載するリードフレームと封止樹脂
との界面にポリオルガノシロキサンが移行するため、こ
れら界面の接着性を著しく損ない、半導体装置を吸湿後
半田処理するとその界面で剥離が発生したり、その剥離
に起因する半導体装置のクラックが発生する等種々の不
良が起こることになる。このため、成形時のボイド、金
型汚れ、流動性等の成形性と耐半田特性との両立に優れ
るエポキシ樹脂組成物の開発が望まれていた。
[0004] As a method for improving the uniformity of the inorganic filler and the resin component, for reducing the voids and for improving the fluidity, many methods for adding a polyorganosiloxane have been proposed. However, although the addition of polyorganosiloxane is effective in reducing voids, on the other hand, it decreases the mechanical properties such as the bending strength of the cured product of the epoxy resin composition, or the polyorganosiloxane oozes out at the time of molding and gold. Since the surface of the mold or molded product is contaminated, the polyorganosiloxane is transferred to the interface between the semiconductor element present inside the semiconductor device and the lead frame on which the semiconductor element is mounted and the sealing resin, and the adhesion at these interfaces is significantly impaired. If the semiconductor device is soldered after absorbing moisture, various defects such as peeling at the interface and cracking of the semiconductor device due to the peeling will occur. For this reason, development of an epoxy resin composition which is excellent in compatibility between moldability such as voids during molding, mold contamination, fluidity, and the like and solder resistance has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、成形時の流
動性に優れ、ボイドが少なく、かつ成形品である半導体
装置の耐半田特性等の信頼性に優れた半導体封止用エポ
キシ樹脂組成物及びこれを用いた半導体装置を提供する
ものである。
SUMMARY OF THE INVENTION The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in fluidity during molding, has few voids, and is excellent in reliability such as soldering resistance of a molded semiconductor device. And a semiconductor device using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、(A)エポキ
シ樹脂、(B)フェノール樹脂、(C)硬化促進剤、
(D)無機質充填材、及び(E)ポリオルガノシロキサ
ンを必須成分とするエポキシ樹脂組成物において、ポリ
オルガノシロキサン分子中のシロキサン/有機置換基の
重量比率が10/90〜35/65のポリオルガノシロ
キサン(a)と、ポリオルガノシロキサン分子中のシロ
キサン/有機置換基の重量比率が40/60〜60/4
0のポリオルガノシロキサン(b)の重量割合(a)/
(b)が100/0〜20/80であることを特徴とす
る半導体封止用エポキシ樹脂組成物、及びこのエポキシ
樹脂組成物を用いて半導体素子を封止してなることを特
徴とする半導体装置である。
The present invention provides (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator,
An epoxy resin composition comprising (D) an inorganic filler and (E) a polyorganosiloxane as an essential component, wherein the weight ratio of siloxane / organic substituent in the polyorganosiloxane molecule is from 10/90 to 35/65. The weight ratio of siloxane (a) to siloxane / organic substituent in the polyorganosiloxane molecule is 40/60 to 60/4.
Weight ratio of polyorganosiloxane (b) of 0 (a) /
(B) 100/0 to 20/80, and an epoxy resin composition for semiconductor encapsulation, and a semiconductor obtained by encapsulating a semiconductor element using this epoxy resin composition. Device.

【0007】[0007]

【発明の実施の形態】本発明に用いられるエポキシ樹脂
は、1分子中に2個以上のエポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般を指し、例えば、ビスフ
ェノールA型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、オルソクレゾールノボラック型エポキシ樹
脂、ナフトールノボラック型エポキシ樹脂、トリフェノ
ールメタン型エポキシ樹脂、ジシクロペンタジエン変性
フェノール型エポキシ樹脂、フェノールアラルキル型エ
ポキシ樹脂、テルペン変性フェノール型エポキシ樹脂、
ビフェニル型エポキシ樹脂、ハイドロキノン型エポキシ
樹脂、スチルベン型エポキシ樹脂、ビスフェノールF型
エポキシ樹脂等が挙げられるが、これらに限定されるも
のではない。又、これらのエポキシ樹脂は単独でも混合
して用いてもよい。半導体装置の耐半田特性を向上する
ことを目的に樹脂組成物中の無機質充填材の配合量を増
大させ、得られた樹脂組成物の硬化物の低吸湿化、低熱
膨張化、高強度化を達成させる場合には、全エポキシ樹
脂中に、常温で結晶性を示し、融点を越えると極めて低
粘度の液状となる結晶性エポキシ樹脂を30重量%以上
用いることが特に好ましい。結晶性エポキシ樹脂として
は、融点70〜150℃の特性を有する樹脂が、取り扱
い作業性、混練時の作業性の点から好ましい。本発明で
の結晶性エポキシ樹脂の融点は、示差走査熱量計を用い
て、常温から5℃/分で昇温した結晶融解の吸熱ピーク
の頂点の温度を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, such as bisphenol A type epoxy resin and phenol novolak type epoxy resin. , Ortho-cresol novolak type epoxy resin, naphthol novolak type epoxy resin, triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, phenol aralkyl type epoxy resin, terpene modified phenol type epoxy resin,
Examples include, but are not limited to, biphenyl-type epoxy resins, hydroquinone-type epoxy resins, stilbene-type epoxy resins, and bisphenol-F-type epoxy resins. These epoxy resins may be used alone or as a mixture. In order to improve the solder resistance of the semiconductor device, the amount of the inorganic filler in the resin composition is increased to reduce the moisture absorption, lower the thermal expansion, and increase the strength of the cured product of the obtained resin composition. In order to achieve this, it is particularly preferable to use 30% by weight or more of a crystalline epoxy resin which exhibits crystallinity at room temperature and becomes a liquid having an extremely low viscosity when the melting point is exceeded. As the crystalline epoxy resin, a resin having a characteristic of a melting point of 70 to 150 ° C. is preferable in terms of handling workability and workability at the time of kneading. The melting point of the crystalline epoxy resin in the present invention indicates the temperature at the top of the endothermic peak of crystal melting at a temperature rising from room temperature at 5 ° C./min using a differential scanning calorimeter.

【0008】結晶性エポキシ樹脂としては、一般式
(1)、一般式(2)又は一般式(3)の構造の樹脂が
挙げられる。
The crystalline epoxy resin includes a resin having a structure represented by the general formula (1), the general formula (2) or the general formula (3).

【化4】 (式中のR1は炭素数1〜6のアルキル基を表し、それ
らは互いに同一であっても異なっていてもよい。mは0
〜4の整数。)
Embedded image (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other, and m is 0.
An integer from 4 to 4. )

【0009】[0009]

【化5】 (式中のR2は水素原子又は炭素数1〜6のアルキル基
を表し、それらは互いに同一であっても異なっていても
よい。R3は炭素数1〜のアルキル基を表し、それらは
互いに同一であっても異なっていてもよい。mは0〜4
の整数。)
Embedded image (Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. R 3 represents an alkyl group having 1 to 1 carbon atom, M may be the same or different, and m is 0 to 4
Integer. )

【0010】[0010]

【化6】 (式中のR4は水素原子又は炭素数1〜6のアルキル基
を表し、それらは互いに同一であっても異なっていても
よい。R5は炭素数1〜6のアルキル基を表し、それら
は互いに同一であっても異なっていてもよい。mは0〜
4の整数。)
Embedded image (Wherein R 4 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. R 5 represents an alkyl group having 1 to 6 carbon atoms, May be the same or different from each other.
An integer of 4. )

【0011】具体例としては、4,4’−ジヒドロキシ
ビフェニル、4,4’−ジヒドロキシ−3,3’,5,
5’−テトラメチルビフェニル、4,4’−メチレンビ
ス(2,6−ジメチルフェノール)、4,4’−(1−
メチルエチリデン)ビス(2,6−ジメチルフェノー
ル)、もしくは4,4’−ビス(2,3−ヒドロキシプ
ロピルオキシ)−2,2’−ジメチル−5,5’−ジタ
ーシャリブチルジフェニルスルフィドのグリシジルエー
テル化物、又は、3−ターシャリブチル−2,4’−ジ
ヒドロキシ−3’,5’,6−トリメチルスチルベン、
3−ターシャリブチル−4,4’−ジヒドロキシ−
3’,5’,6−トリメチルスチルベン、もしくは3−
ターシャリブチル−4,4’−ジヒドロキシ−3’,
5,5’−トリメチルスチルベンのグリシジルエーテル
化物の3種から選ばれる1種以上と4,4’−ジヒドロ
キシ−3,3’,5,5’−テトラメチルスチルベン、
4,4’−ジヒドロキシ−3,3’−ジターシャリブチ
ル−6,6’−ジメチルスチルベン、2,2’−ジヒド
ロキシ−3,3’−ジターシャリブチル−6,6’−ジ
メチルスチルベン、2,4’−ジヒドロキシ−3,3’
−ジターシャリブチル−6,6’−ジメチルスチルベ
ン、2,2’−ジヒドロキシ−3,3’,5,5’−テ
トラメチルスチルベン、もしくは4,4’−ジヒドロキ
シ−3,3’−ジターシャリブチル−5,5’−ジメチ
ルスチルベンのグリシジルエーテル化物の6種から選ば
れる1種以上との混合物である。
As specific examples, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3 ', 5,
5'-tetramethylbiphenyl, 4,4'-methylenebis (2,6-dimethylphenol), 4,4 '-(1-
Glycidyl ether of methylethylidene) bis (2,6-dimethylphenol) or 4,4′-bis (2,3-hydroxypropyloxy) -2,2′-dimethyl-5,5′-ditert-butyldiphenyl sulfide Or 3-tert-butyl-2,4′-dihydroxy-3 ′, 5 ′, 6-trimethylstilbene;
3-tert-butyl-4,4'-dihydroxy-
3 ', 5', 6-trimethylstilbene, or 3-
Tert-butyl-4,4'-dihydroxy-3 ',
One or more kinds selected from three kinds of glycidyl etherified products of 5,5′-trimethylstilbene, and 4,4′-dihydroxy-3,3 ′, 5,5′-tetramethylstilbene;
4,4′-dihydroxy-3,3′-ditert-butyl-6,6′-dimethylstilbene, 2,2′-dihydroxy-3,3′-di-tert-butyl-6,6′-dimethylstilbene, 2, 4'-dihydroxy-3,3 '
-Ditertiarybutyl-6,6'-dimethylstilbene, 2,2'-dihydroxy-3,3 ', 5,5'-tetramethylstilbene, or 4,4'-dihydroxy-3,3'-ditertiarybutyl It is a mixture with at least one selected from six glycidyl etherified products of -5,5'-dimethylstilbene.

【0012】本発明で用いられるフェノール樹脂として
は、1分子中に2個以上のフェノール性水酸基を有する
モノマー、オリゴマー、ポリマー全般を指し、例えば、
フェノールノボラック樹脂、クレゾールノボラック樹
脂、フェノールアラルキル樹脂、テルペン変性フェノー
ル樹脂、ジシクロペンタジエン変性フェノール樹脂、ナ
フトールアラルキル樹脂、トリフェノールメタン型樹
脂、ビスフェノール化合物等が挙げられるが、これらに
限定されるものではない。又、これらのフェノール樹脂
は単独でも混合して用いてもよい。
The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
Phenol novolak resin, cresol novolak resin, phenol aralkyl resin, terpene-modified phenol resin, dicyclopentadiene-modified phenol resin, naphthol aralkyl resin, triphenolmethane-type resin, bisphenol compound, and the like, but are not limited thereto. . Further, these phenol resins may be used alone or in combination.

【0013】本発明で用いられる硬化促進剤としては、
前記エポキシ樹脂とフェノール樹脂との架橋反応の触媒
となり得るものを指し、具体例としては、トリブチルア
ミン、1,8−ジアザビシクロ(5,4,0)ウンデセ
ン−7等のアミン系化合物、トリフェニルホスフィン、
テトラフェニルホスホニウム・テトラフェニルボレート
塩等の有機リン系化合物、2−メチルイミダゾール等の
イミダゾール化合物等が挙げられるが、これらに限定さ
れるものではない。又これらの硬化促進剤は単独でも混
合して用いてもよい。本発明で用いられる無機質充填材
としては、例えば、溶融シリカ、結晶シリカ、アルミ
ナ、窒化珪素、窒化アルミ等が挙げられる。無機質充填
材の配合量を多くする場合は、溶融シリカを用いるのが
一般的である。溶融シリカは、破砕状、球状のいずれで
も使用可能であるが、溶融シリカの配合量を高め、かつ
成形材料の溶融粘度の上昇を抑えるためには、球状のも
のを主に用いる方が好ましい。更に球状シリカの配合量
を多くするためには、球状シリカの粒度分布がより広く
なるように調整することが望ましい。
The curing accelerator used in the present invention includes:
A substance that can serve as a catalyst for a cross-linking reaction between the epoxy resin and the phenol resin. Specific examples include amine compounds such as tributylamine and 1,8-diazabicyclo (5,4,0) undecene-7, and triphenylphosphine. ,
Examples include organic phosphorus compounds such as tetraphenylphosphonium / tetraphenylborate salts, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture. Examples of the inorganic filler used in the present invention include fused silica, crystalline silica, alumina, silicon nitride, and aluminum nitride. When increasing the amount of the inorganic filler, fused silica is generally used. Fused silica can be used in either a crushed or spherical form. However, in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical form. In order to further increase the blending amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0014】本発明で用いられるポリオルガノシロキサ
ンは、ジメチルポリシロキサン、ジフェニルポリシロキ
サン、メチルフェニルポリシロキサンの骨格を有するポ
リシロキサンを指すが、一般的にエポキシ樹脂、フェノ
ール樹脂との親和性を付与するために、メチル基、フェ
ニル基の有機置換基の他に、C、O、N、S原子等を有
する有機置換基をその主鎖もしくは側鎖に有することが
ある。具体的にはビニル基、フェネチル基、ヒドロキシ
基、カルボキシ基、アクリル基、アルコキシ基、エポキ
シ基、ポリエーテル基、カプロラクトン基、アミノ基、
ウレイド基、イソシアネート基、メルカプト基等が挙げ
られるがこれらに限定されるものではない。本発明に用
いるポリオルガノシロキサンを単独使用する場合のポリ
オルガノシロキサン分子中のシロキサン/有機置換基の
重量比率としては、10/90〜35/65が好まし
く、より好ましくは15/85〜30/70である。本
発明ででのポリオルガノシロキサン分子中のシロキサン
/有機置換基の重量比率とは、分子中に存在するシロキ
サン結合に由来するSiとO原子の総和の重量と有機置
換基に由来する原子の総和の重量比率を言う。シロキサ
ンの重量比率が10重量%未満だと親水性が強くなりす
ぎ、エポキシ樹脂組成物の硬化物中に均一に溶け込んだ
可塑剤としての作用が強くなりすぎるため、硬化物のガ
ラス転移温度の低下、曲げ強度等の機械特性の低下が起
こる。又この親水性の強さによりエポキシ樹脂組成物の
硬化物の吸湿性が著しく大きくなり、吸湿後の半田リフ
ロー処理による基材界面の剥離や半導体装置のクラック
の発生が起こり易くなる。一方重量比率が35重量%を
越えると疎水性が強くなりすぎるため、エポキシ樹脂組
成物中の樹脂成分と親和性が低く、加熱混練工程を経た
エポキシ樹脂組成物中で凝集して分散しており、成形時
には加熱により樹脂組成物との相溶性が一段と低下し、
金型表面や成形品表面に滲み出し汚染する傾向が強く、
又半導体装置の内部に存在する半導体素子やリードフレ
ーム等の基材との界面に滲み出し、硬化後これら基材と
エポキシ樹脂組成物の硬化物との界面の接着性を低下さ
せ、更にはボイドの低減効果も低く、水分がボイドに溜
まり易くなり半田リフロー処理で剥離やクラックを発生
させる原因となるので好ましくない。
The polyorganosiloxane used in the present invention refers to a polysiloxane having a skeleton of dimethylpolysiloxane, diphenylpolysiloxane, or methylphenylpolysiloxane, and generally gives an affinity to an epoxy resin or a phenol resin. For this reason, an organic substituent having a C, O, N, S atom or the like in addition to the organic substituent of the methyl group or the phenyl group may be present in the main chain or the side chain. Specifically, vinyl group, phenethyl group, hydroxy group, carboxy group, acrylic group, alkoxy group, epoxy group, polyether group, caprolactone group, amino group,
Examples include, but are not limited to, ureido groups, isocyanate groups, and mercapto groups. When the polyorganosiloxane used in the present invention is used alone, the weight ratio of siloxane / organic substituent in the polyorganosiloxane molecule is preferably 10/90 to 35/65, more preferably 15/85 to 30/70. It is. In the present invention, the weight ratio of siloxane / organic substituent in the polyorganosiloxane molecule is defined as the total weight of Si and O atoms derived from the siloxane bond present in the molecule and the total weight of atoms derived from the organic substituent. Weight ratio. If the weight ratio of the siloxane is less than 10% by weight, the hydrophilicity becomes too strong, and the effect as a plasticizer uniformly dissolved in the cured product of the epoxy resin composition becomes too strong, so that the glass transition temperature of the cured product is lowered. In addition, mechanical characteristics such as bending strength are reduced. In addition, due to the strength of the hydrophilicity, the moisture absorption of the cured product of the epoxy resin composition is significantly increased, and peeling of the interface of the base material and cracking of the semiconductor device due to the solder reflow treatment after moisture absorption easily occur. On the other hand, if the weight ratio exceeds 35% by weight, the hydrophobicity becomes too strong, so that the affinity for the resin component in the epoxy resin composition is low, and the epoxy resin composition is agglomerated and dispersed in the epoxy resin composition after the heat kneading step. During the molding, the compatibility with the resin composition is further reduced by heating,
There is a strong tendency to seep and contaminate the mold surface and molded product surface,
In addition, it oozes out at the interface between the semiconductor element and the base material such as a lead frame existing inside the semiconductor device, and after curing, reduces the adhesiveness at the interface between the base material and the cured product of the epoxy resin composition. The effect of reducing soldering is also low, and water tends to accumulate in the voids, causing peeling and cracking in the solder reflow treatment, which is not preferable.

【0015】更に、前記の親水性のポオルガノシロキサ
ン分子中のシロキサン/有機置換基の重量比率が10/
90〜35/65のポリオルガノシロキサン(a)と、
シロキサン/有機置換基の重量比率が40/60〜60
/40の疎水性のポリオルガノシロキサン(b)との重
量割合(a)/(b)が100/0〜20/80の範囲
で併用したエポキシ樹脂組成物は、疎水性のポリオルガ
ノシロキサンを核とし、その周辺に親水性のポリオルガ
ノシロキサンが樹脂成分との相溶化剤として配位して安
定なミクロドメイン構造をとるため、親水性のポリオル
ガノシロキサンを単独で使用する場合よりも、ポリオル
ガノシロキサン成分が成形時に滲み出すことによる成形
性、界面接着性の低下が少なくなり、又樹脂成分の硬化
架橋構造にポリオルガノポリシロキサン成分が溶け込む
ことによるガラス転移温度の低下、機械特性低下を防止
することができる。疎水性のポリオルガノシロキサン
(b)の重量割合が80重量%を越えると、疎水性のポ
リオルガノシロキサンの特徴が強くなり、前記した欠点
を生じるおそれがあり好ましくない。
Further, the weight ratio of siloxane / organic substituent in the hydrophilic poorganosiloxane molecule is 10/10.
90-35 / 65 polyorganosiloxane (a);
Siloxane / organic substituent weight ratio of 40 / 60-60
The epoxy resin composition in which the weight ratio of (a) / (b) to the hydrophobic polyorganosiloxane (b) is in the range of 100/0 to 20/80 with the hydrophobic polyorganosiloxane (b) has a hydrophobic polyorganosiloxane core. Since a hydrophilic polyorganosiloxane is coordinated as a compatibilizing agent with the resin component to form a stable micro-domain structure around the periphery thereof, a polyorganosiloxane is used more easily than when a hydrophilic polyorganosiloxane is used alone. Reduces decrease in moldability and interfacial adhesion due to bleeding out of the siloxane component during molding, and prevents a decrease in glass transition temperature and a decrease in mechanical properties due to the dissolution of the polyorganopolysiloxane component into the cured crosslinked structure of the resin component. be able to. If the weight ratio of the hydrophobic polyorganosiloxane (b) exceeds 80% by weight, the characteristics of the hydrophobic polyorganosiloxane become strong, and the above-mentioned disadvantages may occur, which is not preferable.

【0016】本発明のエポキシ樹脂組成物は、(A)〜
(E)成分を必須成分とするが、これ以外にも必要に応
じて臭素化エポキシ樹脂、三酸化アンチモン等の難燃
剤、シランカップリング剤、カーボンブラック等の着色
剤、天然ワックス及び合成ワックス等の離型剤、シリコ
ーンゴム、合成ゴム等の低応力添加剤等を適宜配合して
もよい。本発明のエポキシ樹脂組成物は、(A)〜
(E)成分、及びその他の添加剤等を混合後、加熱ニー
ダや熱ロールを用いて加熱混練し、続いて冷却、粉砕し
て得られる。本発明の樹脂組成物を用いて、半導体素子
等の電子部品を封止し、半導体装置を製造するには、ト
ランスファーモールド、コンプレッションモールド、イ
ンジェクションモールド等の成形方法で硬化成形すれば
よい。
The epoxy resin composition of the present invention comprises (A)
The component (E) is an essential component, but if necessary, a brominated epoxy resin, a flame retardant such as antimony trioxide, a silane coupling agent, a coloring agent such as carbon black, a natural wax and a synthetic wax, etc. , A low-stress additive such as silicone rubber and synthetic rubber. The epoxy resin composition of the present invention comprises (A)
After mixing the component (E) and other additives, the mixture is heated and kneaded using a heating kneader or a hot roll, and then cooled and pulverized. In order to manufacture a semiconductor device by encapsulating an electronic component such as a semiconductor element using the resin composition of the present invention, it is sufficient to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.

【0017】[0017]

【実施例】以下、本発明を実施例で具体的に説明する。
配合量の単位は重量部とする。 実施例1 3,3’,5,5’−テトラメチルビフェノールジグリシジルエーテルを主成 分とするエポキシ樹脂(油化シェルエポキシ(株)・製、YX4000H、融点 105℃、エポキシ当量195。以下、ビフェニル型エポキシ樹脂という) 7.9重量部 フェノールアラルキル樹脂(三井化学(株)・製 XL225、軟化点75℃ 、水酸基当量175) 7.1重量部 球状溶融シリカ 84.0重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 0.2重量部 式(4)のポリオルガノシロキサン(シロキサン/有機置換基の重量比率=1 6重量%) 0.3重量部
The present invention will be specifically described below with reference to examples.
The unit of the compounding amount is part by weight. Example 1 Epoxy resin containing 3,3 ', 5,5'-tetramethylbiphenol diglycidyl ether as a main component (YX4000H, Yuka Shell Epoxy Co., Ltd., melting point 105 ° C, epoxy equivalent 195. 7.9 parts by weight Phenol aralkyl resin (XL225 manufactured by Mitsui Chemicals, Inc., softening point 75 ° C., hydroxyl equivalent 175) 7.1 parts by weight Spherical fused silica 84.0 parts by weight 1,8- 0.2 parts by weight of diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 0.3 parts by weight of polyorganosiloxane of formula (4) (weight ratio of siloxane / organic substituents = 16% by weight)

【化7】 カルナバワックス 0.2重量部 カーボンブラック 0.3重量部 をミキサーを用いて混合した後、表面温度が90℃と2
5℃の2軸ロールを用いて混練し、得られた混練物シー
トを冷却後粉砕して、エポキシ樹脂組成物とした。得ら
れたエポキシ樹脂組成物の特性を以下の方法で評価し
た。結果を表1に示す。
Embedded image After mixing 0.2 parts by weight of carnauba wax and 0.3 parts by weight of carbon black using a mixer, the surface temperature was 90 ° C. and 2 parts.
The mixture was kneaded using a biaxial roll at 5 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain an epoxy resin composition. The properties of the obtained epoxy resin composition were evaluated by the following methods. Table 1 shows the results.

【0018】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力70kgf/cm2、硬化時間2分で測定し
た。 熱時曲げ強度:240℃での曲げ強さをJIS K 6
911に準じて測定した。単位はkgf/mm2。 ガラス転移温度(Tg):175℃、硬化時間2分でト
ランスファー成形した試験片を更に175℃、8時間後
硬化し、熱機械分析装置(セイコー電子(株)・製TM
A−120、昇温速度5℃/分)で測定した。単位℃。 金線変形量:144pQFPパッケージ(パッケージサ
イズ20×20×1.4mm、チップサイズ9×9m
m、金線:25μm径、リードフレーム:銅)を金型温
度175℃、成形圧力75kgf/cm2、硬化時間2
分で成形した。得られたパッケージを軟X線透視装置で
観察し、金線の変形率を(流れ量)/(金線長)で表し
た(単位%)。 耐半田性:金線変形量を測定した144pQFPパッケ
ージを、175℃、8時間で後硬化させた。得られた半
導体パッケージを85℃、相対湿度85%の環境下で1
68時間放置し、吸湿前後の重量差を吸湿前の重量で除
して吸湿率を求め、%で表示した。その後この半導体パ
ッケージを240℃の半田槽に10秒間浸漬した。顕微
鏡で外部クラックを観察し、クラック数[(クラック発
生パッケージ数)/(全パッケージ数)×100]を%
で表示した。又このパッケージを超音波探傷装置を用い
て観察し、チップ(SiNコート品)とエポキシ樹脂組
成物の硬化物との界面に剥離が発生した剥離数[(剥離
発生パッケージ数)/(全パッケージ数)×100]を
%で表示した。 ボイド:耐半田性で剥離数を評価した144pQFPの
超音波探傷装置観察において、パッケージ中に観察され
た直径0.1mm以上のボイド個数を1パッケージ当た
りの平均で表示した。 離型性:金線変形量を測定した144pQFPのパッケ
ージを10回連続で成形した。この10回の成形で、離
型時に金型に付着したり、成形品に割れ・欠けが発生し
た回数が5回以上を×、1〜4回を△、発生なしを○で
表した。 成形品汚れ:離型性評価で連続成形10回目の成形品の
表面を目視で観察し、曇りが認められたものを×、光沢
度の良好なものを○とした。
Evaluation method Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, a mold temperature of 175 ° C.
It was measured at an injection pressure of 70 kgf / cm 2 and a curing time of 2 minutes. Bending strength under heat: JIS K6
It was measured according to 911. The unit is kgf / mm 2 . Glass transition temperature (Tg): A test piece formed by transfer molding at 175 ° C. and a curing time of 2 minutes was further cured at 175 ° C. for 8 hours, and then subjected to thermomechanical analyzer (TM, manufactured by Seiko Electronics Co., Ltd.)
(A-120, heating rate 5 ° C./min). Unit ℃. Gold wire deformation: 144pQFP package (package size 20 × 20 × 1.4mm, chip size 9 × 9m
m, gold wire: 25 μm diameter, lead frame: copper) at a mold temperature of 175 ° C., a molding pressure of 75 kgf / cm 2 , and a curing time of 2
Molded in minutes. The obtained package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) (unit%). Solder resistance: The 144pQFP package whose gold wire deformation was measured was post-cured at 175 ° C. for 8 hours. The obtained semiconductor package is placed in an environment at 85 ° C. and a relative humidity of 85% for 1 hour.
After standing for 68 hours, the difference in weight before and after moisture absorption was divided by the weight before moisture absorption to determine the moisture absorption rate, which was expressed as%. Thereafter, the semiconductor package was immersed in a solder bath at 240 ° C. for 10 seconds. Observe external cracks with a microscope and calculate the number of cracks [(number of packages where cracks occur) / (number of all packages) × 100] by%.
Displayed with. Also, this package was observed using an ultrasonic flaw detector, and the number of peelings at the interface between the chip (SiN-coated product) and the cured product of the epoxy resin composition [(number of packages where peeling occurred) / (number of total packages) ) × 100] in%. Void: The number of voids having a diameter of 0.1 mm or more observed in a package was observed as an average per package in an ultrasonic flaw detector observation of 144 pQFP evaluated for the number of peelings by soldering resistance. Releasability: A package of 144 pQFP whose gold wire deformation was measured was molded 10 times in a row. In these 10 moldings, the number of times of adhesion to the mold at the time of release from the mold and the occurrence of cracks / chips in the molded product was 5 or more times, Δ was 1 to 4 times, and 発 生 was not generated. Molded product stain: The surface of the molded product after 10th continuous molding was visually observed in the evaluation of releasability, and a cloudy one was evaluated as x and a glossy one was evaluated as good.

【0019】実施例2〜5、比較例1〜3 実施例1を基本配合とし、ポリオルガノシロキサンの種
類と添加量を変えて、実施例1と同一の配合割合で、実
施例1と同様にしてエポキシ樹脂組成物を得、実施例1
と同様にして評価した。実施例、比較例に用いた、他の
ポリオルガノシロキサンの構造式を以下に示す。配合処
方及び結果を表1に示す。表1中のシロキサンの重量%
は、シロキサン/有機置換基の重量比率を表す。
Examples 2 to 5 and Comparative Examples 1 to 3 The same procedures as in Example 1 were carried out except that the composition was the same as in Example 1 except that the type and addition amount of the polyorganosiloxane were changed. To obtain an epoxy resin composition.
The evaluation was performed in the same manner as described above. The structural formulas of other polyorganosiloxanes used in Examples and Comparative Examples are shown below. Table 1 shows the formulation and results. Weight% of siloxane in Table 1
Represents the weight ratio of siloxane / organic substituent.

【化8】 Embedded image

【0020】[0020]

【化9】 Embedded image

【0021】[0021]

【化10】 Embedded image

【0022】[0022]

【化11】 Embedded image

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明のエポキシ樹脂組成物は、均一流
動特性を有し、ボイド、金線変形、成形品表面汚れが極
めて少なく、これで封止された半導体装置は耐半田特性
に優れている。
Industrial Applicability The epoxy resin composition of the present invention has uniform flow characteristics, and has very few voids, gold wire deformation, and surface contamination of molded products, and a semiconductor device sealed with this has excellent solder resistance. I have.

フロントページの続き Fターム(参考) 4J002 CC03X CC05X CC07X CD04W CD05W CD06W CD11W CP033 CP093 CP103 DE147 DF017 DJ007 DJ017 EN026 EU116 EW016 EW176 EY016 FD017 FD020 FD090 FD130 FD160 GQ00 4M109 AA01 BA01 CA21 EA02 EA03 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB18 EB19 EC03 EC05 EC20 Continued on the front page F term (reference) 4J002 CC03X CC05X CC07X CD04W CD05W CD06W CD11W CP033 CP093 CP103 DE147 DF017 DJ007 DJ017 EN026 EU116 EW016 EW176 EY016 FD017 FD020 FD090 FD130 FD160 GQ00 4M109 AA01 EB03 EB02 EB02 EB02 EB02 EB02 EB02 EB02 EB02 EB02 EC03 EC05 EC20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)無機質充填材、及び
(E)ポリオルガノシロキサンを必須成分とするエポキ
シ樹脂組成物において、ポリオルガノシロキサン分子中
のシロキサン/有機置換基の重量比率が10/90〜3
5/65のポリオルガノシロキサン(a)と、ポリオル
ガノシロキサン分子中のシロキサン/有機置換基の重量
比率が40/60〜60/40のポリオルガノシロキサ
ン(b)の重量割合(a)/(b)が100/0〜20
/80であることを特徴とする半導体封止用エポキシ樹
脂組成物。
1. An epoxy resin composition comprising (A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (E) a polyorganosiloxane as essential components. When the weight ratio of siloxane / organic substituent in the organosiloxane molecule is 10 / 90-3.
5/65 polyorganosiloxane (a) and polyorganosiloxane (b) having a weight ratio of siloxane / organic substituents in the polyorganosiloxane molecule of 40/60 to 60/40 by weight (a) / (b) ) Is 100 / 0-20
/ 80, which is an epoxy resin composition for semiconductor encapsulation.
【請求項2】 (A)エポキシ樹脂が、融点70〜15
0℃の結晶性エポキシ樹脂を30重量%以上含む請求項
1記載の半導体封止用エポキシ樹脂組成物。
2. An epoxy resin having a melting point of 70 to 15 (A).
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, which contains a crystalline epoxy resin at 0 ° C. in an amount of 30% by weight or more.
【請求項3】 結晶性エポキシ樹脂が、一般式(1)、
一般式(2)又は一般式(3)から選ばれる一種以上で
ある請求項1又は2記載の半導体封止用エポキシ樹脂組
成物。 【化1】 (式中のR1は炭素数1〜6のアルキル基を表し、それ
らは互いに同一であっても異なっていてもよい。mは0
〜4の整数。) 【化2】 (式中のR2は水素原子又は炭素数1〜6のアルキル基
を表し、それらは互いに同一であっても異なっていても
よい。R3は炭素数1〜6のアルキル基を表し、それら
は互いに同一であっても異なっていてもよい。mは0〜
4の整数。) 【化3】 (式中のR4は水素原子又は炭素数1〜6のアルキル基
を表し、それらは互いに同一であっても異なっていても
よい。R5は炭素数1〜6のアルキル基を表し、それら
は互いに同一であっても異なっていてもよい。mは0〜
4の整数。)
3. A crystalline epoxy resin represented by the general formula (1):
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the epoxy resin composition is at least one selected from general formulas (2) and (3). Embedded image (In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other, and m is 0.
An integer from 4 to 4. ) (Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. R 3 represents an alkyl group having 1 to 6 carbon atoms, May be the same or different from each other.
An integer of 4. ) (Wherein R 4 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, which may be the same or different from each other. R 5 represents an alkyl group having 1 to 6 carbon atoms, May be the same or different from each other.
An integer of 4. )
【請求項4】 請求項1、2、又は3記載のいずれかの
半導体封止用エポキシ樹脂組成物を用いて半導体素子を
封止してなることを特徴とする半導体装置。
4. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1, 2 or 3.
JP33568999A 1999-11-26 1999-11-26 Epoxy resin compositions and semiconductor device Pending JP2001151994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33568999A JP2001151994A (en) 1999-11-26 1999-11-26 Epoxy resin compositions and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33568999A JP2001151994A (en) 1999-11-26 1999-11-26 Epoxy resin compositions and semiconductor device

Publications (1)

Publication Number Publication Date
JP2001151994A true JP2001151994A (en) 2001-06-05

Family

ID=18291406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33568999A Pending JP2001151994A (en) 1999-11-26 1999-11-26 Epoxy resin compositions and semiconductor device

Country Status (1)

Country Link
JP (1) JP2001151994A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246828A (en) * 2002-02-27 2003-09-05 Fujitsu Ltd Thermosetting polyurethane composition, mounted board, its manufacturing process and electronic circuit board
KR100671136B1 (en) 2004-12-30 2007-01-17 제일모직주식회사 Reworkable liquid epoxy resin composition for underfill application and a semiconductor element thereof
KR100823073B1 (en) * 2006-12-31 2008-04-18 제일모직주식회사 Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
WO2009067113A1 (en) * 2007-11-20 2009-05-28 Henkel Ag & Co. Kgaa Low-voiding die attach film, semiconductor package, and processes for making and using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246828A (en) * 2002-02-27 2003-09-05 Fujitsu Ltd Thermosetting polyurethane composition, mounted board, its manufacturing process and electronic circuit board
KR100671136B1 (en) 2004-12-30 2007-01-17 제일모직주식회사 Reworkable liquid epoxy resin composition for underfill application and a semiconductor element thereof
KR100823073B1 (en) * 2006-12-31 2008-04-18 제일모직주식회사 Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
WO2009067113A1 (en) * 2007-11-20 2009-05-28 Henkel Ag & Co. Kgaa Low-voiding die attach film, semiconductor package, and processes for making and using same

Similar Documents

Publication Publication Date Title
WO2006049156A1 (en) Epoxy resin composition and semiconductor device
JP2591392B2 (en) Thermosetting resin composition and semiconductor device
JP2701695B2 (en) Epoxy resin composition and semiconductor device
JPH0597970A (en) Thermosetting resin composition and semiconductor device
JP2768088B2 (en) Thermosetting resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3562565B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2001002755A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2000273277A (en) Epoxy resin composition and semiconductor device
JP2001151994A (en) Epoxy resin compositions and semiconductor device
JP4411760B2 (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP2643706B2 (en) Thermosetting resin composition and semiconductor device
JP4238431B2 (en) Epoxy resin composition and semiconductor device
JP2000327883A (en) Epoxy resin composition and semiconductor device
JP4835851B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JP2003041096A (en) Method for manufacturing epoxy resin molding material and semiconductor device
JPH1045872A (en) Epoxy resin composition
JP2000273147A (en) Epoxy resin composition and semiconductor device
JP2001226563A (en) Epoxy resin composition and semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP2000273154A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929