JP2001151884A - Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer - Google Patents

Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer

Info

Publication number
JP2001151884A
JP2001151884A JP33276599A JP33276599A JP2001151884A JP 2001151884 A JP2001151884 A JP 2001151884A JP 33276599 A JP33276599 A JP 33276599A JP 33276599 A JP33276599 A JP 33276599A JP 2001151884 A JP2001151884 A JP 2001151884A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
polyether resin
thermosetting
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33276599A
Other languages
Japanese (ja)
Inventor
Sadanobu Iwase
定信 岩瀬
Yuji Yoshida
祐司 吉田
Hyonchoru Che
ヒョンチョル チェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33276599A priority Critical patent/JP2001151884A/en
Priority to TW089118168A priority patent/TW561167B/en
Priority to KR1020000053072A priority patent/KR20010050377A/en
Priority to US09/657,062 priority patent/US6388044B1/en
Publication of JP2001151884A publication Critical patent/JP2001151884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyethers (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyether resin that can be used as a layer insulation material having excellent chemical resistance and high layer strength, a method of manufacturing the same and a paint for forming insulating layer. SOLUTION: [I] A thermosetting polyether resin that is obtained by effecting polycondensation reaction between a dihalide and a bisphenol and introducing a functional group causing the crosslinking reaction with heat into the resultant polyether having the weight-average molecular weight of 1,000-50,000 calculated as polystyrene according to the resultant GPC; [II] A method of manufacturing a thermosetting polyether resin described in [I] wherein a dihalide and a bisphenol are polycondensed, metalating the resultant polyether resin, followed by effecting the substitution reaction with a halide bearing a functional group that can cause crosslinking reaction in the molecule; [III] A coating liquid for forming insulation layers including the thermosetting polyether resin described in [I].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種の電子デバイ
ス中の絶縁・被覆に用いられる熱硬化性ポリエーテル樹
脂とその製造方法およびこれを含む塗布液に関する。さ
らに詳しくは、本発明は、低誘電率性、高耐熱性、耐薬
品性および高い膜強度を有する熱硬化性ポリエーテル樹
脂とその製造方法、および該熱硬化性ポリエーテル樹脂
を含む絶縁膜形成塗布液に関する。
The present invention relates to a thermosetting polyether resin used for insulation and coating in various electronic devices, a method for producing the same, and a coating liquid containing the same. More specifically, the present invention relates to a thermosetting polyether resin having low dielectric constant, high heat resistance, chemical resistance and high film strength, a method for producing the same, and formation of an insulating film containing the thermosetting polyether resin. Related to coating liquid.

【0002】[0002]

【従来の技術】LSIの高速化は、それを構成するトラ
ンジスタの微細化によって達成される。近年、この微細
化により配線間隔が縮小し、伝達信号の遅延(配線遅
延)や隣接配線間のクロストークが顕著となっており。
これらがLSI自体の高性能化を妨げる重大な問題とな
っている。この問題の解決方法として、配線間をうめる
絶縁膜の比誘電率を低下させることが検討されている。
従来から、絶縁膜として使用されているSOG(Spi
non Glass)膜は塗布・焼成により、容易にデ
バイス基板上に絶縁膜を形成できるため、有効な材料で
あったが、その比誘電率は3.0〜3.9であり、十分
に低い誘電率とはいえない。配線間距離が0.25μm
以下では、比誘電率が好ましくは3.0未満の絶縁膜が
求められている。
2. Description of the Related Art An increase in the speed of an LSI is achieved by miniaturization of transistors constituting the LSI. In recent years, due to the miniaturization, wiring intervals have been reduced, and delay of transmission signals (wiring delay) and crosstalk between adjacent wirings have become remarkable.
These are serious problems that hinder high performance of the LSI itself. As a solution to this problem, it has been studied to lower the relative permittivity of the insulating film filling the space between the wirings.
SOG (Spi) conventionally used as an insulating film
A non-glass film is an effective material because an insulating film can be easily formed on a device substrate by coating and baking, but its relative dielectric constant is 3.0 to 3.9, and the dielectric constant is sufficiently low. Not a rate. 0.25μm between wires
In the following, an insulating film having a relative permittivity of preferably less than 3.0 is required.

【0003】LSIの高速化には配線間をうめる低誘電
率の絶縁膜が必須となるが、一方、その製造プロセスに
おいて絶縁膜の耐薬品性および機械的強度が非常に重要
になる。特に、ウェハー上に絶縁膜を塗布・焼成した
後、リソグラフィーによってパターニングを行う際に、
現像液(アルカリ水溶液、有機溶剤)と接触する工程
や、レジスト剥離を行う際に有機アミンを含む剥離剤と
接触させる工程があることから、絶縁膜はこれらの薬剤
に耐えうることが必須となる。また、化学的機械研磨な
どの物理的な操作があることから絶縁膜に機械的強度が
求められ、絶縁膜を形成させる被覆物に対し、強固な密
着性が要求される。しかし、現在までに知られている絶
縁膜形成用のポリエーテル系の樹脂、例えばウルマン反
応で得られるポリエーテルポリマーを用いた場合、耐薬
品性あるいは膜強度が不十分であることが問題となって
おり、その改良が求められていた。
[0003] In order to increase the speed of an LSI, an insulating film having a low dielectric constant filling between wirings is indispensable. On the other hand, chemical resistance and mechanical strength of the insulating film are very important in the manufacturing process. In particular, when patterning by lithography after applying and baking an insulating film on the wafer,
Since there is a step of contacting with a developing solution (alkali aqueous solution, organic solvent) and a step of contacting with a stripping agent containing an organic amine when stripping the resist, it is essential that the insulating film can withstand these agents. . In addition, since there is a physical operation such as chemical mechanical polishing, the insulating film is required to have mechanical strength, and strong adhesion is required to the coating on which the insulating film is formed. However, when a known polyether resin for forming an insulating film, for example, a polyether polymer obtained by the Ullmann reaction is used, the problem is that the chemical resistance or the film strength is insufficient. And its improvement was required.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、低い
比誘電率を維持して、耐薬品性と膜強度に優れた層間絶
縁膜材料として用いることができるポリエーテル樹脂、
その製造方法、および低い比誘電率を維持して、耐薬品
性と膜強度に優れた絶縁膜を形成する塗布液を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polyether resin which can be used as an interlayer insulating film material having excellent chemical resistance and film strength while maintaining a low dielectric constant.
An object of the present invention is to provide a coating method for forming an insulating film having excellent chemical resistance and film strength while maintaining a low dielectric constant.

【0005】[0005]

【課題を解決するための手段】本発明者らは、種々の樹
脂について検討を行った結果、特定のポリエーテル樹脂
に加熱により架橋反応を生じる官能基を導入することに
より耐薬品性に優れ、膜強度が大きくなることを見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have studied various resins, and as a result, by introducing a functional group which causes a cross-linking reaction by heating to a specific polyether resin, it has excellent chemical resistance, The inventors have found that the film strength is increased, and have completed the present invention.

【0006】すなわち、本発明は、〔1〕ジハロゲン化
化合物とビスフェノール化合物を重縮合させ、得られた
GPCによるポリスチレン換算重量平均分子量が100
0以上50000以下のポリエーテルに、加熱により架
橋反応を生じる官能基を導入することにより得られる熱
硬化性ポリエーテル樹脂に係るものである。ここで、加
熱とは一般に室温以上の温度を樹脂にかけることを指
し、架橋反応とは分子内および/または分子間で化学結
合を生じ、三次元構造を生成させる反応を示す。更に、
本発明は、〔2〕架橋反応を生じる官能基を導入する前
のポリエーテルが、下記式(1)で表される〔1〕記載
の熱硬化性ポリエーテル樹脂に係るものである。 (式中、Aは以下に示した基の中から一つまたは二つ以
上選ばれる。
That is, the present invention provides a polycondensation of [1] a dihalogenated compound and a bisphenol compound, and the resulting polystyrene-equivalent weight average molecular weight by GPC of 100
The present invention relates to a thermosetting polyether resin obtained by introducing a functional group which causes a cross-linking reaction by heating to a polyether of 0 to 50,000 or less. Here, heating generally refers to applying a temperature of room temperature or higher to the resin, and a cross-linking reaction refers to a reaction in which a chemical bond is generated within and / or between molecules to generate a three-dimensional structure. Furthermore,
The present invention relates to [2] the thermosetting polyether resin according to [1], wherein the polyether before introducing a functional group causing a crosslinking reaction is represented by the following formula (1). (In the formula, A is selected from one or more of the following groups.

【0007】Bは下記式(2)で示された構造を有す
る。 1〜Q12は、それぞれ独立に、水素原子、炭素数1〜
10のアルキル基、炭素数4〜10のシクロアルキル
基、置換されていてもよいアリーレン基を示す。Q
13は、炭素数1〜8のアルキル基、炭素数4〜8のシク
ロアルキル基、置換されていてもよいアリーレン基を示
す。Zは、水素原子、塩素原子、臭素原子、ヨウ素原
子、−OZ1基、−N(Z2)(Z3)基から選ばれる。
1〜Z3は、それぞれ独立に、水素原子、炭素数1〜1
0のアルキル基、炭素数2〜10のアルケニル基、炭素
数2〜10のアルキニル基、炭素数1〜10のエーテル
基を有する基から選ばれる。R1〜R8は、それぞれ独立
に、水素原子、炭素数1〜10のアルキル基、炭素数4
〜10のシクロアルキル基、置換されていてもよいアリ
ーレン基、メトキシ基、エトキシ基から選ばれる。X
は、単結合、炭素数1〜20の炭化水素基、エーテル
基、ケトン基およびスルホン基からなる群から選ばれ
る。ただし、Q1〜Q12、R1〜R8の中で少なくとも一
つは水素原子である。) さらに、本発明は、〔III〕ジハロゲン化化合物とビ
スフェノール化合物を重縮合させ、得られたポリエーテ
ル樹脂をメタル化し、続いて架橋反応を生じる官能基を
分子内に有するハロゲン化化合物を用いて置換反応する
工程を含む〔I〕または〔II〕に記載の熱硬化性ポリ
エーテル樹脂の製造方法に係るものである。また、本発
明は、〔IV〕前記〔I〕または〔II〕に記載の熱硬
化性ポリエーテル樹脂を含有する絶縁膜形成用塗布液に
係るものである。
B has a structure represented by the following formula (2). Q 1 to Q 12 each independently represent a hydrogen atom,
It represents an alkyl group of 10, a cycloalkyl group having 4 to 10 carbon atoms, and an arylene group which may be substituted. Q
13 represents an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or an arylene group which may be substituted. Z is selected from a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a —OZ 1 group, and a —N (Z 2 ) (Z 3 ) group.
Z 1 to Z 3 each independently represent a hydrogen atom, a carbon number of 1 to 1;
It is selected from an alkyl group having 0, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and a group having an ether group having 1 to 10 carbon atoms. R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms,
10 to 10 cycloalkyl groups, optionally substituted arylene groups, methoxy groups, and ethoxy groups. X
Is selected from the group consisting of a single bond, a hydrocarbon group having 1 to 20 carbon atoms, an ether group, a ketone group and a sulfone group. However, at least one of Q 1 to Q 12 and R 1 to R 8 is a hydrogen atom. Further, the present invention provides a method for polycondensation of [III] a dihalogenated compound and a bisphenol compound, metallizing the obtained polyether resin, and subsequently using a halogenated compound having a functional group which causes a crosslinking reaction in the molecule. The present invention relates to the method for producing a thermosetting polyether resin according to [I] or [II], comprising a step of performing a substitution reaction. Further, the present invention relates to [IV] a coating liquid for forming an insulating film containing the thermosetting polyether resin described in the above [I] or [II].

【0008】[0008]

【発明の実施の形態】上記式(2)のR1〜R8として、
それぞれ独立に選ばれる炭素数1〜10のアルキル基と
して、メチル基、エチル基、n―プロピル基、iso―
プロピル基、ブチル基、ペンチル基、ヘキシル基(それ
ぞれいずれも各種異性体を含む)等が挙げられる。ま
た、炭素数4〜10のシクロアルキル基としては、シク
ロペンチル基、シクロヘキシル基、ビシクロブタン基、
スピロペンタン基、ビシクロ[3.1.0]ヘキサン
基、キュバン基、ノルボルネン基などが挙げられる。こ
れらの中で、入手のしやすさなどから、t―ブチル基、
iso―ブチル基、シクロペンチル基、シクロヘキシル
基が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As R 1 to R 8 in the above formula (2),
As the independently selected alkyl group having 1 to 10 carbon atoms, methyl group, ethyl group, n-propyl group, iso-
Examples thereof include a propyl group, a butyl group, a pentyl group, and a hexyl group (each including various isomers). Examples of the cycloalkyl group having 4 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a bicyclobutane group,
Examples include a spiropentane group, a bicyclo [3.1.0] hexane group, a cubane group, and a norbornene group. Among them, t-butyl group,
Iso-butyl, cyclopentyl and cyclohexyl are preferred.

【0009】上記式(2)中のXとして選ばれる炭素数
1〜20の炭化水素の基としては、―CH2―、―CH
(CH3)―、―C(CH32−、―C(CH32―C6
6―C(CH32―(各種の異性体を含む)、―CH
=CH―、 などが例示されるが、これらに限られるものではない。
The hydrocarbon group having 1 to 20 carbon atoms selected as X in the above formula (2) includes —CH 2 —, —CH
(CH 3 ) —, —C (CH 3 ) 2 —, —C (CH 3 ) 2 —C 6
H 6 —C (CH 3 ) 2 — (including various isomers), —CH
= CH-, And the like, but are not limited to these.

【0010】上記式(1)中に導入される加熱により架
橋反応を生じる官能基として、アリル基、プロペニル
基、プロパギル基、ブテニル基等の不飽和炭化水素基を
含む官能基、トリメトキシシリル基、トリエトキシシリ
ル基等のアルコキシシリル基、シアネート基、エポキシ
基などが例示される。特に、不飽和炭化水素基、不飽和
基炭化水素基を有するシリル基が硬化後の電子分極性が
小さいため、架橋反応を生じた後の電気特性が悪化しな
いので好ましい。
The functional group which causes a crosslinking reaction upon heating introduced into the above formula (1) includes a functional group containing an unsaturated hydrocarbon group such as an allyl group, a propenyl group, a propargyl group, a butenyl group, and a trimethoxysilyl group. And alkoxysilyl groups such as triethoxysilyl group, cyanate group, epoxy group and the like. In particular, an unsaturated hydrocarbon group and a silyl group having an unsaturated group hydrocarbon group are preferable because the electron polarizability after curing is small and the electrical characteristics after the cross-linking reaction does not deteriorate.

【0011】これらの中で、前記架橋反応を生じる官能
基としては、アリル基、プロパギル基、(3)式で示さ
れる官能基が電気特性の悪化を抑制する目的でより好ま
しい。 (式中、T1は炭素数2〜10のアルケニル基、炭素数
2〜10のアルキニル基から選ばれる。T2は炭素数1
〜10のアルキル基、置換されていてもよいアリーレン
基から選ばれる。nは1以上3以下の整数である。T1
が複数のときは、互いに同一でも異なってもよく、T2
が複数のときも、互いに同一でも異なってもよい。)
Among them, as the functional group that causes the crosslinking reaction, an allyl group, a propargyl group, and a functional group represented by the formula (3) are more preferable for the purpose of suppressing the deterioration of the electric characteristics. (Wherein, T 1 is .T 2 is 1 carbon atoms selected from an alkenyl group, an alkynyl group having 2 to 10 carbon atoms having 2 to 10 carbon atoms
Selected from an alkyl group of 10 to 10 and an arylene group which may be substituted. n is an integer of 1 or more and 3 or less. T 1
May be the same or different from each other when T 2
May be the same or different. )

【0012】本発明の熱硬化性ポリエーテル樹脂は、ジ
ハロゲン化化合物とビスフェノール化合物を重縮合さ
せ、得られたGPCによるポリスチレン換算重量平均分
子量が1000以上50000以下、好ましくは100
0以上30000以下のポリエーテルに、加熱により架
橋反応を生じる官能基を導入することにより得られるこ
とを特徴とする。該ポリスチレン換算重量平均分子量が
1000未満であると、耐熱性が悪化し、50000を
超えると、前記有機溶剤に溶解させた場合に粘度が著し
く高くなるため、基材に塗布する場合において、操作性
が悪化する場合がある。また、本発明の熱硬化性ポリエ
ーテル樹脂は、GPCによるポリスチレン換算重量平均
分子量が好ましくは1000以上60000以下、さら
に好ましくは1000以上40000以下である。好ま
しい態様として、式(1)に示される繰り返し単位のポ
リエーテルは、(4)式で表されるジハロゲン化化合物
と式(5)で表されるビスフェノールをアルカリ条件下
で重合させることで得られたポリエーテルに前記架橋反
応を生じる官能基を導入することで得られる。 M―A―M (4) (ただし、Mは、フッ素原子、塩素原子、臭素原子、ヨ
ウ素原子のいずれかである。Aは、前記の定義と同じで
ある。) (式中、R1〜R8およびXは、それぞれ式(2)におけ
る定義と同じである。)
The thermosetting polyether resin of the present invention is obtained by polycondensing a dihalogenated compound and a bisphenol compound, and has a weight average molecular weight in terms of polystyrene of not less than 1,000 and not more than 50,000, preferably not more than 100,000 by GPC.
It is characterized by being obtained by introducing a functional group which causes a cross-linking reaction by heating to a polyether of 0 to 30,000. When the weight average molecular weight in terms of polystyrene is less than 1,000, heat resistance deteriorates, and when it exceeds 50,000, the viscosity becomes extremely high when dissolved in the organic solvent. May worsen. The thermosetting polyether resin of the present invention has a weight average molecular weight in terms of polystyrene by GPC of preferably 1,000 or more and 60,000 or less, more preferably 1,000 or more and 40,000 or less. In a preferred embodiment, the polyether of the repeating unit represented by the formula (1) is obtained by polymerizing a dihalogenated compound represented by the formula (4) and a bisphenol represented by the formula (5) under alkaline conditions. It is obtained by introducing a functional group which causes the above-mentioned cross-linking reaction into the polyether. MAM (4) (where M is any one of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. A is the same as defined above.) (In the formula, R 1 to R 8 and X are the same as defined in the formula (2), respectively.)

【0013】ジハロゲン化化合物とビスフェノール化合
物との重縮合反応で得られたポリエーテル樹脂に加熱に
より架橋反応を生じる官能基を導入するには、ポリエー
テル樹脂をメタル化、すなわちポリエーテル樹脂内の芳
香族環に結合している水素原子をメタルと置換反応さ
せ、続いて架橋反応を生じる官能基を含むハロゲン化化
合物を用いて置換反応する方法が挙げられる。メタル化
反応で用いられる溶媒は特に限定されないがポリエーテ
ル樹脂の溶解性、反応性などからエーテル、テトラヒド
ロフランなどが好適である。
In order to introduce a functional group capable of causing a crosslinking reaction by heating into a polyether resin obtained by a polycondensation reaction between a dihalogenated compound and a bisphenol compound, the polyether resin is metallized, that is, the fragrance in the polyether resin is changed. A method in which a hydrogen atom bonded to an aromatic ring is subjected to a substitution reaction with a metal, followed by a substitution reaction using a halogenated compound containing a functional group that causes a crosslinking reaction. The solvent used in the metalation reaction is not particularly limited, but ether, tetrahydrofuran and the like are preferred from the viewpoint of solubility and reactivity of the polyether resin.

【0014】メタル化反応で用いられる反応剤は、特に
限定されるものではないが、例えば、金属リチウム、金
属ナトリウム、n―ブチルリチウム、sec―ブチルリ
チウム、tert―ブチルリチウム等が挙げることがで
き、またフェニルリチウム、ナフタレンナトリウムやア
ルキルナトリウムも用いることができる。これらの中
で、作業性の面から、n−ヘキサン溶液として入手可能
なn―ブチルリチウムが好ましい。
The reactant used in the metallization reaction is not particularly limited, and examples thereof include metallic lithium, metallic sodium, n-butyllithium, sec-butyllithium, tert-butyllithium and the like. Also, phenyllithium, sodium naphthalene and alkyl sodium can be used. Among them, n-butyllithium which is available as an n-hexane solution is preferable from the viewpoint of workability.

【0015】架橋反応を生じる官能基の導入反応で用い
られる反応剤は、前記官能基に対応したハロゲン化化合
物を用いて達成される。例えば、アリル基導入の場合で
はアリルクロリド、アリルブロミド、アリルヨード、プ
ロパギル基導入の場合ではプロパギルクロリド、プロパ
ギルブロミド、(4)式で示される官能基の場合は
(5)式で示される化合物が工業的に入手可能な原料と
して用いられる。 (T1、T2およびnは、(3)式における定義と同じ
である。Mは、(4)式における定義と同じである。)
The reactant used in the reaction for introducing a functional group that causes a crosslinking reaction is achieved by using a halogenated compound corresponding to the functional group. For example, in the case of introducing an allyl group, allyl chloride, allyl bromide, allyl iodo, in the case of introducing a propagyl group, propargyl chloride, propagyl bromide, and in the case of a functional group represented by the formula (4), a compound represented by the formula (5) Is used as an industrially available raw material. (T1, T2, and n are the same as the definitions in the expression (3). M is the same as the definition in the expression (4).)

【0016】加熱により架橋反応を生じる官能基を導入
されたポリエーテルは、ろ過、あるいは非水溶性溶媒に
溶解させた溶液において水洗などの処理により、金属、
塩物質などの無機物質を除き、有機溶媒に溶解した絶縁
膜形成塗布液として提供される。このときの有機溶媒
は、前記、メタル化反応に用いた溶媒でもその他の溶媒
でもよい。溶媒としては例えば、メタノール、エタノー
ル、イソプロピルアルコール、2−メトキシエタノール
等のアルコール類、酢酸エチル、酢酸n-ブチル、酢酸イ
ソブチル、プロピレングリコールモノメチルエーテルア
セテート等のエステル類、2−ペンタノン、2―ヘプタ
ノン、アセチルアセトン等のケトン類、ジエチルエーテ
ル、ジブチルエーテル等のエーテル類、アニソール、フ
ェネトール等のフェノールエーテル類などが挙げられ
る。
The polyether into which a functional group capable of causing a crosslinking reaction by heating is subjected to filtration, or washing of a solution dissolved in a water-insoluble solvent with water or the like to remove metal,
It is provided as a coating liquid for forming an insulating film dissolved in an organic solvent except for an inorganic substance such as a salt substance. The organic solvent at this time may be the solvent used for the metallization reaction or another solvent. Examples of the solvent include methanol, ethanol, isopropyl alcohol, alcohols such as 2-methoxyethanol, ethyl acetate, n-butyl acetate, isobutyl acetate, esters such as propylene glycol monomethyl ether acetate, 2-pentanone, 2-heptanone, Examples thereof include ketones such as acetylacetone, ethers such as diethyl ether and dibutyl ether, and phenol ethers such as anisole and phenetole.

【0017】ポリエーテル溶解時の濃度は、通常5〜4
0重量%、さらに好ましくは10〜20重量%に調整さ
れる。この濃度範囲よりも低濃度ではスピンコート時の
膜厚が薄くなりすぎ、所望の膜厚を得るために、数回の
塗布が必要となる。高濃度では粘度が増加するため、コ
ーティング時の送液等が煩雑となる。
The concentration at the time of dissolving the polyether is usually 5 to 4
It is adjusted to 0% by weight, more preferably 10 to 20% by weight. If the concentration is lower than this concentration range, the film thickness at the time of spin coating becomes too thin, and several coatings are required to obtain a desired film thickness. When the concentration is high, the viscosity increases, so that the liquid supply during coating becomes complicated.

【0018】本発明の絶縁膜形成塗布液は、熱硬化性ポ
リエーテル樹脂を含有することを特徴とし、耐薬品性、
膜強度を損なわない範囲で界面活性剤、酸化防止剤等の
添加剤を使用することもできる。また、不飽和基を有す
る熱硬化基の硬化温度を低下させるために過酸化物ある
いはアゾ化化合物等の触媒を添加することも可能であ
る。
The coating liquid for forming an insulating film according to the present invention is characterized by containing a thermosetting polyether resin, and has chemical resistance,
Additives such as a surfactant and an antioxidant can be used as long as the film strength is not impaired. It is also possible to add a catalyst such as a peroxide or an azo compound to lower the curing temperature of the thermosetting group having an unsaturated group.

【0019】本発明の絶縁膜形成塗布液は、スピンコー
ト法または浸漬法によって、半導体デバイスを基板上に
塗布し、必要に応じて熱処理、光照射等の方法によって
硬化させ、低誘電率絶縁膜を形成することができる。
The coating liquid for forming an insulating film of the present invention is applied to a semiconductor device on a substrate by spin coating or immersion, and is cured by heat treatment, light irradiation or the like as necessary to obtain a low dielectric constant insulating film. Can be formed.

【0020】[0020]

【実施例】本発明を実施例によりさらに詳細に説明する
が、本発明はこれらに限定されるものではない。 合成例1 500mlの四つ口フラスコに1、1―ビス(4―ヒド
ロキシ―シクロヘキシルフェニル)シクロヘキシリデン
21.6g(0.05mol)、苛性ソーダ4.0g、
ベンゾフェノン70.0gおよびトルエン50.0gを
仕込み、還流脱水を行った。脱水が完了した後、ジブロ
モビフェニル15.6g(0.05mol)を添加し
た。更に塩化第1銅0.05gをピリジン5gに溶解さ
せた溶液を添加し、内温185℃で6時間反応させた。
室温まで冷却させた後、メタノール600gに酢酸10
gを混合した溶液に反応溶液を加え、生成物を析出させ
た。析出した結晶をろ過し、大量のメタノールで洗浄
し、ポリエーテルを得た。該ポリエーテルのポリスチレ
ン換算重量平均分子量は3000であった。次いで、得
られたポリエーテル樹脂をアニソールで固形分15重量
%になるように調整した。これを樹脂溶液Aとする。
EXAMPLES The present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Synthesis Example 1 In a 500-ml four-necked flask, 21.6 g (0.05 mol) of 1,1-bis (4-hydroxy-cyclohexylphenyl) cyclohexylidene, 4.0 g of caustic soda,
70.0 g of benzophenone and 50.0 g of toluene were charged and subjected to reflux dehydration. After the dehydration was completed, 15.6 g (0.05 mol) of dibromobiphenyl was added. Further, a solution in which 0.05 g of cuprous chloride was dissolved in 5 g of pyridine was added, and the mixture was reacted at an internal temperature of 185 ° C. for 6 hours.
After cooling to room temperature, acetic acid 10
The reaction solution was added to the mixed solution of g, and the product was precipitated. The precipitated crystals were filtered and washed with a large amount of methanol to obtain polyether. The polyether had a weight average molecular weight in terms of polystyrene of 3000. Next, the obtained polyether resin was adjusted to a solid content of 15% by weight with anisole. This is designated as a resin solution A.

【0021】合成例2 窒素置換した300mlの四つ口フラスコに原料となる
合成例1で得られたポリエーテル樹脂4g、溶媒として
THFを100ml加え、該ポリエーテル樹脂を溶解さ
せた。n−ブチルリチウム(1.6Mn−ヘキサン溶
液)を21.5ml加え、窒素気流下1時間攪拌し、そ
の後アリルブロミドを4.0g加えさらに攪拌を約1時
間続けた。反応終了後、メタノール650g、酢酸20
gの混合溶媒中に反応溶液をチャージし、高分子量物を
析出させ、濾過した後メタノール洗浄および水洗を行
い、白色粉末状の生成物を得た。GPCによるポリスチ
レン換算重量平均分子量は4000であった。1H−N
MR、IR測定によりアリル基導入の確認を行った。次
いで、該高分子をアニソールで固形分15重量%となる
ように調整した。これを樹脂溶液Bとする。
Synthesis Example 2 In a 300 ml four-necked flask purged with nitrogen, 4 g of the polyether resin obtained in Synthesis Example 1 as a raw material and 100 ml of THF as a solvent were added to dissolve the polyether resin. 21.5 ml of n-butyllithium (1.6 Mn-hexane solution) was added, and the mixture was stirred for 1 hour under a nitrogen stream. Then, 4.0 g of allyl bromide was added, and the stirring was further continued for about 1 hour. After completion of the reaction, 650 g of methanol and 20
g of the reaction solution was charged into the mixed solvent to precipitate a high molecular weight substance, which was filtered, washed with methanol and washed with water to obtain a white powdery product. The weight average molecular weight in terms of polystyrene by GPC was 4,000. 1 H-N
The introduction of the allyl group was confirmed by MR and IR measurements. Next, the polymer was adjusted to a solid content of 15% by weight with anisole. This is designated as a resin solution B.

【0022】実施例1、比較例1 合成例で得られた樹脂溶液を0.2μmフィルターでろ
過した。これを4インチシリコンウェハーに回転数20
00rpmでスピンコートし、150℃で1分間ベーク
した後、窒素雰囲気下、350℃で30分間熱処理を行
った。膜厚は、光学式膜厚計(ナノメトリック社製、ナ
ノスペック210)で観察し、比誘電率は、水銀プロー
ブ法で、動作周波数1MHzのC―V測定(エス・エス
・エム社製、SSM495型)を行い、求めた。絶縁膜
の機械強度は、シリコンウェハーとの密着性をスタッド
プル試験(QuadGroup社製セバスチャンV型)
で測定した。耐薬品性としては、レジスト現像液とし
て、トルエン(ネガ型レジスト用現像液)、2.5%水
酸化テトラメチルアンモニウム(ポジ型レジスト現像
液)、アニソール(樹脂溶液溶媒)に室温下10分間浸
漬の前後、レジスト剥離液としてはALEG310(マ
リン・クロット・ベーカー製)に70℃10分間浸漬し
た前後の外観を光学式顕微鏡25倍観察で調べた。結果
を表1に示す。
Example 1, Comparative Example 1 The resin solution obtained in the synthesis example was filtered through a 0.2 μm filter. This is transferred to a 4-inch silicon wafer at a rotation speed of 20.
After spin coating at 00 rpm and baking at 150 ° C. for 1 minute, heat treatment was performed at 350 ° C. for 30 minutes in a nitrogen atmosphere. The film thickness was observed with an optical film thickness meter (Nanometric 210, manufactured by Nanometrics Co., Ltd.), and the relative dielectric constant was measured by a mercury probe method at a CV measurement at an operating frequency of 1 MHz (manufactured by SSM, (SSM495 type). The mechanical strength of the insulating film is measured by a stud-pull test for adhesion to the silicon wafer (Sebastian V type manufactured by QuadGroup).
Was measured. As the chemical resistance, the resist developer is immersed in toluene (negative resist developer), 2.5% tetramethylammonium hydroxide (positive resist developer), and anisole (resin solution solvent) for 10 minutes at room temperature. Before and after the immersion in ALEG310 (manufactured by Marine Clot Baker) as a resist stripping solution at 70 ° C. for 10 minutes, the appearance was examined with a 25 × optical microscope. Table 1 shows the results.

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明のポリエーテル樹脂は、低い比誘
電率を維持して、耐薬品性と膜強度に優れており、絶縁
膜材料として好適に用いることができ、該ポリエーテル
樹脂を含む絶縁膜形成用塗布液を用いて、好適な絶縁膜
を形成することができ、有用な半導体装置を得ることが
できる。
The polyether resin of the present invention maintains a low dielectric constant, is excellent in chemical resistance and film strength, can be suitably used as an insulating film material, and contains the polyether resin. A suitable insulating film can be formed using the coating liquid for forming an insulating film, and a useful semiconductor device can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 チェ ヒョンチョル 茨城県つくば市北原6 住友化学工業株式 会社内 Fターム(参考) 4F070 AA52 AB01 AB07 AB22 GA01 GB01 GC09 4J005 AA24 BB01 BD00 BD08 4J038 DF051 MA14 NA21  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Choi Hyun-chul 6 Kitahara, Tsukuba City, Ibaraki Prefecture Sumitomo Chemical Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ジハロゲン化化合物とビスフェノール化合
物を重縮合させ、得られたGPCによるポリスチレン換
算重量平均分子量が1000以上50000以下のポリ
エーテルに、加熱により架橋反応を生じる官能基を導入
することにより得られることを特徴とする熱硬化性ポリ
エーテル樹脂。
1. A dihalogenated compound and a bisphenol compound are polycondensed, and a polyether having a weight average molecular weight in terms of polystyrene of 1,000 to 50,000 obtained by GPC is introduced with a functional group which causes a crosslinking reaction by heating. A thermosetting polyether resin.
【請求項2】架橋反応を生じる官能基を導入する前のポ
リエーテルが、下記式(1)で表されることを特徴とす
る請求項1記載の熱硬化性ポリエーテル樹脂。 (式中、Aは以下に示した基の中から一つまたは二つ以
上選ばれる。 Bは下記式(2)で示された構造を有する。 1〜Q12は、それぞれ独立に、水素原子、炭素数1〜
10のアルキル基、炭素数4〜10のシクロアルキル
基、置換されていてもよいアリーレン基を示す。Q
13は、炭素数1〜8のアルキル基、炭素数4〜8のシク
ロアルキル基、置換されていてもよいアリーレン基を示
す。Zは、水素原子、塩素原子、臭素原子、ヨウ素原
子、−OZ1基、−N(Z2)(Z3)基から選ばれる。
1〜Z3は、それぞれ独立に、水素原子、炭素数1〜1
0のアルキル基、炭素数2〜10のアルケニル基、炭素
数2〜10のアルキニル基、炭素数1〜10のエーテル
基を有する基から選ばれる。R1〜R8は、それぞれ独立
に、水素原子、炭素数1〜10のアルキル基、炭素数4
〜10のシクロアルキル基、置換されていてもよいアリ
ーレン基、メトキシ基、エトキシ基から選ばれる。X
は、単結合、炭素数1〜20の炭化水素基、エーテル
基、ケトン基およびスルホン基からなる群から選ばれ
る。ただし、Q1〜Q12、R1〜R8の中で少なくとも一
つは水素原子である。)
2. The thermosetting polyether resin according to claim 1, wherein the polyether before introducing a functional group which causes a crosslinking reaction is represented by the following formula (1). (In the formula, A is selected from one or more of the following groups. B has a structure represented by the following formula (2). Q 1 to Q 12 each independently represent a hydrogen atom,
It represents an alkyl group of 10, a cycloalkyl group having 4 to 10 carbon atoms, and an arylene group which may be substituted. Q
13 represents an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or an arylene group which may be substituted. Z is selected from a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, a —OZ 1 group, and a —N (Z 2 ) (Z 3 ) group.
Z 1 to Z 3 each independently represent a hydrogen atom, a carbon number of 1 to 1;
It is selected from an alkyl group having 0, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and a group having an ether group having 1 to 10 carbon atoms. R 1 to R 8 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms,
10 to 10 cycloalkyl groups, optionally substituted arylene groups, methoxy groups, and ethoxy groups. X
Is selected from the group consisting of a single bond, a hydrocarbon group having 1 to 20 carbon atoms, an ether group, a ketone group and a sulfone group. However, at least one of Q 1 to Q 12 and R 1 to R 8 is a hydrogen atom. )
【請求項3】R1〜R8の中で少なくとも一つは、炭素数
4〜10のアルキル基または炭素数4〜10のシクロア
ルキル基であることを特徴とする請求項2記載の熱硬化
性ポリエーテル樹脂。
3. The thermosetting composition according to claim 2, wherein at least one of R 1 to R 8 is an alkyl group having 4 to 10 carbon atoms or a cycloalkyl group having 4 to 10 carbon atoms. Polyether resin.
【請求項4】架橋反応を生じる官能基が不飽和炭化水素
基を含む官能基であることを特徴とする請求項1、2ま
たは3記載の熱硬化性ポリエーテル樹脂。
4. The thermosetting polyether resin according to claim 1, wherein the functional group causing the crosslinking reaction is a functional group containing an unsaturated hydrocarbon group.
【請求項5】架橋反応を生じる官能基がアリル基、プロ
パギル基または(3)式で示される官能基から選ばれる
ことを特徴とする請求項1〜4のいずれかに記載の熱硬
化性ポリエーテル樹脂。 (式中、T1は、炭素数2〜10のアルケニル基、炭素
数2〜10のアルキニル基から選ばれる。T2は、炭素
数1〜10のアルキル基、置換されていてもよいアリー
レン基から選ばれる。nは1以上3以下の整数である。
1が複数のときは、互いに同一でも異なってもよく、
2が複数のときも、互いに同一でも異なってもよ
い。)
5. The thermosetting polymer according to claim 1, wherein the functional group causing the crosslinking reaction is selected from an allyl group, a propargyl group and a functional group represented by the formula (3). Ether resin. (In the formula, T 1 is selected from an alkenyl group having 2 to 10 carbon atoms and an alkynyl group having 2 to 10 carbon atoms. T 2 is an alkyl group having 1 to 10 carbon atoms and an optionally substituted arylene group. And n is an integer of 1 or more and 3 or less.
When T 1 is plural, they may be the same or different from each other;
When there are a plurality of T 2 s , they may be the same or different. )
【請求項6】熱硬化性ポリエーテル樹脂がGPCによる
ポリスチレン換算重量平均分子量が1000以上600
00以下である請求項1〜5のいずれかに記載の熱硬化
性ポリエーテル樹脂。
6. The thermosetting polyether resin has a weight average molecular weight in terms of polystyrene by GPC of 1,000 or more and 600 or more.
The thermosetting polyether resin according to any one of claims 1 to 5, which is not more than 00.
【請求項7】ジハロゲン化化合物とビスフェノール化合
物を重縮合させ、得られたポリエーテル樹脂をメタル化
し、続いて架橋反応を生じる官能基を分子内に有するハ
ロゲン化化合物を用いて置換反応する工程を含むことを
特徴とする請求項1〜6のいずれかに記載の熱硬化性ポ
リエーテル樹脂の製造方法。
7. A step of polycondensing a dihalogenated compound and a bisphenol compound, metallizing the resulting polyether resin, and subsequently performing a substitution reaction using a halogenated compound having a functional group capable of causing a crosslinking reaction in the molecule. The method for producing a thermosetting polyether resin according to any one of claims 1 to 6, wherein the method comprises:
【請求項8】請求項1〜6のいずれかに記載の熱硬化性
ポリエーテル樹脂を含有することを特徴とする絶縁膜形
成用塗布液。
8. A coating liquid for forming an insulating film, comprising the thermosetting polyether resin according to claim 1.
JP33276599A 1999-09-09 1999-11-24 Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer Pending JP2001151884A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33276599A JP2001151884A (en) 1999-11-24 1999-11-24 Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer
TW089118168A TW561167B (en) 1999-09-09 2000-09-05 Polyether resin and coating solution for forming insulation film
KR1020000053072A KR20010050377A (en) 1999-09-09 2000-09-07 Polyether resin and coating solution for forming insulation film
US09/657,062 US6388044B1 (en) 1999-09-09 2000-09-07 Polyether resin and coating solution for forming insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33276599A JP2001151884A (en) 1999-11-24 1999-11-24 Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer

Publications (1)

Publication Number Publication Date
JP2001151884A true JP2001151884A (en) 2001-06-05

Family

ID=18258598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33276599A Pending JP2001151884A (en) 1999-09-09 1999-11-24 Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer

Country Status (1)

Country Link
JP (1) JP2001151884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088149A (en) * 2000-09-13 2002-03-27 Sumitomo Chem Co Ltd Polyether resin, method for producing the same and insulating material
JP2003041184A (en) * 2001-07-31 2003-02-13 Sumitomo Chem Co Ltd Heat-resistant polyether, thermosetting polyether and coating liquid for forming polyether film
JP2004067727A (en) * 2002-08-01 2004-03-04 Mitsubishi Gas Chem Co Inc Vinyl compound and its cured product
WO2013118871A1 (en) * 2012-02-09 2013-08-15 日産化学工業株式会社 Composition for forming passivation film, including resin having carbon-carbon multiple bond

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088149A (en) * 2000-09-13 2002-03-27 Sumitomo Chem Co Ltd Polyether resin, method for producing the same and insulating material
JP2003041184A (en) * 2001-07-31 2003-02-13 Sumitomo Chem Co Ltd Heat-resistant polyether, thermosetting polyether and coating liquid for forming polyether film
US6914119B2 (en) 2001-07-31 2005-07-05 Sumitomo Chemical Company, Limited Heat-resistant polyether, curable polyether, and coating liquid for forming a polyether film
JP2004067727A (en) * 2002-08-01 2004-03-04 Mitsubishi Gas Chem Co Inc Vinyl compound and its cured product
WO2013118871A1 (en) * 2012-02-09 2013-08-15 日産化学工業株式会社 Composition for forming passivation film, including resin having carbon-carbon multiple bond
KR20140128948A (en) * 2012-02-09 2014-11-06 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming passivation film, including resin having carbon-carbon multiple bond
JPWO2013118871A1 (en) * 2012-02-09 2015-05-11 日産化学工業株式会社 Composition for forming a passivation film comprising a resin having a carbon-carbon multiple bond
US10174168B2 (en) 2012-02-09 2019-01-08 Nissan Chemical Industries, Ltd. Composition for forming passivation film, including resin having carbon-carbon multiple bond
KR102088868B1 (en) * 2012-02-09 2020-03-13 닛산 가가쿠 가부시키가이샤 Composition for forming passivation film, including resin having carbon-carbon multiple bond

Similar Documents

Publication Publication Date Title
CN103903962B (en) Hardmask Composition And Method Of Forming Patterns And Semiconductor Integrated Circuit Device Including The Patterns
EP2177545A1 (en) Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having insulating film
JP2004204010A (en) Adamantane resin, and coating liquid using the same for insulating film formation
JP2003292878A (en) Coating liquid for forming insulating film
JP2003041184A (en) Heat-resistant polyether, thermosetting polyether and coating liquid for forming polyether film
JP2001151884A (en) Thermosetting polyether resin and production method, thereof and coating solution for forming insulation film layer
JP2003183362A (en) Method for synthesizing polynaphthylene, photosensitive resin composition, method for manufacturing pattern, and electronic part
JP4843870B2 (en) Novel polyarylene ether, process for producing the same and use thereof
EP2457932A1 (en) Composition for film formation, insulating film, and semiconductor device
JP2004204008A (en) Insulating film-forming coating liquid
US6388044B1 (en) Polyether resin and coating solution for forming insulation film
KR20040010341A (en) Adamantane compounds and insulating film forming coating solutions
US20030143332A1 (en) Coating solution for forming insulating film
JP2006253573A (en) Insulating film and its production method, and electronic device employing it
JP4934893B2 (en) Polyether resin, method for producing the same, and coating liquid for forming insulating film
JP2004059444A (en) Adamantane compound and coating liquid for forming insulating film using the same
US6706850B2 (en) Polyether copolymer
JP2000133648A (en) Coating liquid for insulating film formation
JP2002020482A (en) Linear aromatic polymer, its manufacturing method and coating fluid for forming insulating film
US6815523B2 (en) Polyether and its production method
JP2004263021A (en) Polyether resin and coating liquid for forming insulated film
JP2004217677A (en) Low dielectric constant polymer
JP5011600B2 (en) Polyether resin, method for producing the same, and insulating material
JP2005036209A (en) Porous organic film-forming composition, method for producing porous organic film, and the organic porous film
JP2000256550A (en) Coating liquid for forming insulation film