JP2001151761A - Method for producing uracil of thymine - Google Patents

Method for producing uracil of thymine

Info

Publication number
JP2001151761A
JP2001151761A JP33569699A JP33569699A JP2001151761A JP 2001151761 A JP2001151761 A JP 2001151761A JP 33569699 A JP33569699 A JP 33569699A JP 33569699 A JP33569699 A JP 33569699A JP 2001151761 A JP2001151761 A JP 2001151761A
Authority
JP
Japan
Prior art keywords
thymine
solution
reaction
catalyst
methylcyanoacetylurea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33569699A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Enomoto
堅 榎本
Shinichiro Ichikawa
真一郎 市川
Mitsuaki Senda
光昭 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP33569699A priority Critical patent/JP2001151761A/en
Publication of JP2001151761A publication Critical patent/JP2001151761A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for inexpensively producing high-purity uracil and thymine in a high yield. SOLUTION: This method for producing uracil or thymine is characterized in that cyanoacetylurea or methylcyanoacetylurea is catalytically reduced in the presence of a palladium carbon catalyst in an aqueous solution of an organic acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウラシルまたはチ
ミンの製造方法に関する。ウラシルおよびチミンはとも
に抗エイズ薬等の医薬原料として重要な中間体であり、
特に、チミンは核酸の重要な構成成分でもある。
TECHNICAL FIELD The present invention relates to a method for producing uracil or thymine. Both uracil and thymine are important intermediates as pharmaceutical ingredients such as anti-AIDS drugs,
In particular, thymine is also an important component of nucleic acids.

【0002】[0002]

【従来の技術】従来、シアノアセチルウレア類を接触還
元し、ピリミジン類を製造する方法としては、水中で
酸化白金触媒(Adams触媒)の存在下にメチルシア
ノアセチルウレアを接触還元し、チミンを製造する方法
(Bull.Inst.Nucl.Sci.,12,1
21(1961)、J.Am.Chem.Soc.,5
5,1733,1933)、酢酸水溶液中でニッケル
触媒の存在下にシアノアセチルウレアを接触還元し、ウ
ラシルを製造する方法(C.A.70巻1969年87
733h)、硫酸や塩酸のような強酸の水溶液中でパ
ラジウムカーボン触媒の存在下にシアノアセチルウレア
を接触還元し、20〜70℃にてウラシルを製造する方
法(特開昭56−86172号公報)等が知られてい
る。
2. Description of the Related Art Conventionally, as a method for producing pyrimidines by catalytic reduction of cyanoacetylureas, methylcyanoacetylurea is catalytically reduced in water in the presence of a platinum oxide catalyst (Adams catalyst) to produce thymine. (Bull. Inst. Nucl. Sci., 12, 1)
21 (1961); Am. Chem. Soc. , 5
5,1733, 1933), a method of producing uracil by catalytic reduction of cyanoacetylurea in an aqueous acetic acid solution in the presence of a nickel catalyst (CA 70: 1969, 87)
733h) A method of producing uracil at 20 to 70 ° C. by catalytically reducing cyanoacetylurea in an aqueous solution of a strong acid such as sulfuric acid or hydrochloric acid in the presence of a palladium carbon catalyst (JP-A-56-86172). Etc. are known.

【0003】しかしながら、これら従来に知られる方法
は、目的のピリミジン類、特にチミンを、安価にかつ収
率良く製造するといった工業的な製法として確立されて
いるものではない。
[0003] However, these conventionally known methods have not been established as industrial methods for producing the desired pyrimidines, particularly thymine, at low cost and with good yield.

【0004】すなわち、上記は非常に高価な白金系触
媒を多量に必要とする方法であって実用性に乏しく、し
かもチミンの収率においても21〜24%程度と極めて
低いものでしかない。また、はニッケル触媒を原料シ
アノアセチルウレアに対し、1.5〜2質量倍という多
量に用いる方法であって、かつウラシルの収率において
も41%程度と低収率である。
That is, the above method requires a large amount of a very expensive platinum-based catalyst and is not practical, and the yield of thymine is only as low as about 21 to 24%. Further, is a method in which a nickel catalyst is used in a large amount of 1.5 to 2 times the mass of the starting cyanoacetylurea, and the yield of uracil is as low as about 41%.

【0005】または、接触還元の際に、強酸性条件下
(pH:0.1以下)であるため、反応液中で原料の分
解が起こるという欠点がある。特に、この方法にて原料
をメチルシアノアセチルウレアに代え、反応温度70℃
以上にて接触還元しチミンを製造する場合は、該メチル
シアノアセチルウレアが分解し、収率良く目的物を得る
ことが困難である。
[0005] Alternatively, the raw material is decomposed in the reaction solution due to strong acidic conditions (pH: 0.1 or less) during the catalytic reduction. In particular, the raw material is changed to methylcyanoacetylurea by this method, and the reaction temperature is 70 ° C.
When thymine is produced by catalytic reduction as described above, the methylcyanoacetylurea is decomposed, and it is difficult to obtain the desired product in good yield.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来に
知られるウラシルやチミンの製法は、いずれも収率良く
目的物を得ることが困難であり、あるいはこれに加えて
高価な触媒が多量に用いられたりする方法でもあり、経
済的でない。
As described above, it is difficult to obtain the desired product in a high yield in any of the conventional methods for producing uracil and thymine, and in addition, a large amount of expensive catalyst is required. It is also not economical because it is used for

【0007】本発明は、以上の従来に知られるウラシル
やチミンの製法上の欠点を解消し、ウラシルやチミンが
収率良く、かつ安価に得られる方法を提供することを目
的とするものである。
An object of the present invention is to solve the above-mentioned drawbacks in the production of uracil and thymine, and to provide a method for obtaining uracil and thymine in good yield and at low cost. .

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の目的
を達成するために鋭意検討した結果、触媒としてパラジ
ウムカーボンを用い、かつ反応溶媒として特に有機酸の
水溶液を用いてシアノアセチルウレアまたはメチルシア
ノアセチルウレアを接触還元する場合は、比較的安価な
触媒を少量使用することにおいても、目的物のウラシル
またはチミンの収率が飛躍的に向上し、しかも、これら
の高純度の結晶が極めて高収率で得られることを見出
し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that cyanoacetylurea or palladium carbon can be obtained by using palladium carbon as a catalyst and an aqueous solution of an organic acid as a reaction solvent. In the case of catalytic reduction of methylcyanoacetylurea, the yield of the target product, uracil or thymine, is drastically improved even when a relatively inexpensive catalyst is used in a small amount. They have found that they can be obtained in high yield, and have completed the present invention.

【0009】すなわち、本発明は、 パラジウムカーボン触媒の存在下、有機酸の水溶液中
で、シアノアセチルウレアを接触還元することを特徴と
するウラシルの製造方法であり、また、 パラジウムカーボン触媒の存在下、有機酸の水溶液中
で、メチルシアノアセチルウレアを接触還元することを
特徴とするチミンの製造方法であり、また、 有機酸が酢酸である上記またはに記載の製造方法
であり、また、 接触還元を行わせる際の反応液のpHが0.1〜6で
ある上記〜のいずれかに記載の製造方法であり、ま
た、 接触還元を70〜100℃の温度で行う上記〜の
いずれかに記載の製造方法である。
That is, the present invention relates to a method for producing uracil, comprising catalytically reducing cyanoacetylurea in an aqueous solution of an organic acid in the presence of a palladium carbon catalyst. A method for producing thymine, which comprises catalytically reducing methylcyanoacetylurea in an aqueous solution of an organic acid; and a method for producing thymine, wherein the organic acid is acetic acid. The method according to any one of the above, wherein the pH of the reaction solution is 0.1 to 6 when the reaction is carried out, and the method according to any one of the above, wherein the catalytic reduction is performed at a temperature of 70 to 100 ° C. It is a manufacturing method of.

【0010】[0010]

【発明の実施の形態】本発明において、反応原料であ
る、シアノアセチルウレアまたはメチルシアノアセチル
ウレアは公知の製法により得ることができる物質であ
り、たとえば、シアノ酢酸もしくはα−シアノプロピオ
ン酸を、尿素および無水酢酸と反応させることにより合
成される物質である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the reaction raw material, cyanoacetylurea or methylcyanoacetylurea, is a substance which can be obtained by a known production method. For example, cyanoacetic acid or α-cyanopropionic acid is converted to urea. And a substance synthesized by reacting with acetic anhydride.

【0011】本発明において、接触還元反応に使用する
パラジウムカーボン触媒については特に制限がなく、た
とえばパラジウム含有率の5質量%や10質量%のもの
等が挙げられ、これらは湿潤していても、あるいは乾燥
品であっても構わない。また、これら触媒は、たとえ
ば、5%Pd/C(50%湿潤品)のNXタイプ、Kタ
イプ、およびEタイプ(いずれもエヌ・イー・ケムキャ
ット製、商品名)等として市販されており、いずれも本
発明に有用である。
In the present invention, the palladium carbon catalyst used in the catalytic reduction reaction is not particularly limited, and examples thereof include those having a palladium content of 5% by mass or 10% by mass. Alternatively, it may be a dry product. These catalysts are commercially available as, for example, 5% Pd / C (50% wet product) NX type, K type, and E type (all are manufactured by NE Chemcat, trade name). Are also useful in the present invention.

【0012】本発明で使用する上記触媒の量は、あまり
少なければ原料の水素による還元速度が遅く、またあま
り多く使用しても高コスト化に繋がることから、原料で
あるシアノアセチルウレアまたはメチルシアノアセチル
ウレアの量に対して、通常1〜10質量%(触媒のdr
y分での換算)の範囲で用いることが好ましい。また、
本発明では反応に使用したパラジウムカーボン触媒を、
次回の反応にて繰り返し使用することが十分に可能であ
る。
If the amount of the catalyst used in the present invention is too small, the rate of reduction of the raw material with hydrogen is slow, and if too much is used, it leads to an increase in cost. Therefore, the raw material cyanoacetylurea or methyl cyano is used. Usually 1 to 10% by mass based on the amount of acetylurea (d
(converted in terms of y minutes). Also,
In the present invention, the palladium carbon catalyst used for the reaction,
It is fully possible to use it repeatedly in the next reaction.

【0013】本発明における接触還元反応は水素ガスの
雰囲気下に有機酸の水溶液中で行われ、水素ガスは反応
液中に吹き込まれる形態でも、あるいは反応液上相の気
相部に送り込まれる形態でも、いずれであっても構わな
い。
In the present invention, the catalytic reduction reaction is carried out in an aqueous solution of an organic acid under an atmosphere of hydrogen gas, and the hydrogen gas is blown into the reaction solution or fed into the gas phase of the upper phase of the reaction solution. However, it does not matter which one.

【0014】還元反応時の水素圧力は加圧下に行わせる
ことも可能ではあるが、副反応が起こるのを防止し、か
つ目的物を収率良く得る上からは、常圧下で反応を行わ
せることが好ましい。
The hydrogen pressure during the reduction reaction can be increased under pressure. However, in order to prevent side reactions from occurring and to obtain the desired product in good yield, the reaction is performed at normal pressure. Is preferred.

【0015】また有機酸としては、酢酸、プロピオン
酸、コハク酸及び乳酸等が挙げられる。これらのうちで
も本発明では酢酸の水溶液中で接触還元を行わせること
が好ましく、この条件下に、シアノアセチルウレアまた
はメチルシアノアセチルウレアを接触還元する場合は、
極めて高純度の結晶を非常に収率よく得ることが可能で
ある。
The organic acids include acetic acid, propionic acid, succinic acid, lactic acid and the like. Among them, in the present invention, it is preferable to carry out catalytic reduction in an aqueous solution of acetic acid, and under these conditions, when catalytically reducing cyanoacetylurea or methylcyanoacetylurea,
Extremely high purity crystals can be obtained with very high yield.

【0016】また、反応溶媒である有機酸水溶液は、通
常、水溶液中の有機酸濃度が、0.01〜80質量%濃
度の範囲のものを用いることが好ましく、この際の反応
液のpHがあまりにも低い場合は原料の分解が加速さ
れ、また、あまりにもpHが高い場合は原料の分解と副
生物の生成により、チミン収率が極端に低下することか
ら、接触還元時における反応液のpHは0.1〜6にあ
ることが好ましく、さらには0.3〜5であることがよ
り好ましい。
The aqueous solution of an organic acid as a reaction solvent preferably has an organic acid concentration of 0.01 to 80% by mass in the aqueous solution. If the pH is too low, the decomposition of the raw material is accelerated.If the pH is too high, the thymine yield is extremely reduced due to the decomposition of the raw material and the generation of by-products. Is preferably from 0.1 to 6, and more preferably from 0.3 to 5.

【0017】なお、本発明における接触還元反応におい
ては、反応溶媒として当初より有機酸水溶液を用意せず
とも、水溶媒を用い、これに適宜有機酸を添加し、上記
pH範囲となるよう調製しながら反応を進行させること
も可能である。
In the catalytic reduction reaction according to the present invention, an organic acid aqueous solution is not prepared as a reaction solvent from the beginning, but an aqueous solvent is used and an organic acid is appropriately added thereto to adjust the pH to the above range. It is also possible to make the reaction proceed.

【0018】本発明において、上記有機酸水溶液は、高
収率と短時間での反応および良好な攪拌効率を達成する
ために、原料であるシアノアセチルウレアまたはメチル
シアノアセチルウレアの濃度が該水溶液中に0.1〜3
0質量%となるように、より好ましくは1〜10質量%
となる量を使用する。
In the present invention, the concentration of the starting material cyanoacetylurea or methylcyanoacetylurea in the aqueous solution of the organic acid is adjusted to achieve a high yield, a short reaction time and good stirring efficiency. 0.1 to 3
0 mass%, more preferably 1 to 10 mass%
Use the amount

【0019】反応液は、有機酸水溶液中の有機酸量と原
料濃度によって、触媒以外が均一となる場合とスラリー
状となる場合がある。均一の場合には、熱時濾過にて触
媒を分離し、スラリー状の場合は均一になるまで水酸化
ナトリウム水溶液等のアルカリ水を加え、その後、触媒
を濾過する方法とする。
Depending on the amount of the organic acid in the organic acid aqueous solution and the raw material concentration, the reaction solution may be uniform except for the catalyst or may be in a slurry state. In the case of uniformity, the catalyst is separated by hot filtration, and in the case of a slurry, alkali water such as aqueous sodium hydroxide solution is added until the catalyst becomes uniform, and then the catalyst is filtered.

【0020】本発明の接触還元における反応温度は、反
応溶媒の沸点で行っても特に製品品質や収率に問題は見
られないが、70℃未満では反応の進行が緩慢となり、
目的物の収率も悪化することから、70〜反応溶媒の沸
点の範囲で行うことが好ましく、さらには75〜100
℃の範囲で行うことがより好ましい。
The reaction temperature in the catalytic reduction of the present invention is not particularly problematic in terms of product quality and yield even when the reaction is carried out at the boiling point of the reaction solvent, but if the reaction temperature is lower than 70 ° C., the reaction proceeds slowly.
Since the yield of the target compound is also deteriorated, it is preferable to perform the reaction in the range of 70 to the boiling point of the reaction solvent, and more preferably 75 to 100.
It is more preferable to carry out in the range of ° C.

【0021】また、接触還元に要する時間は、反応温度
や反応液中の原料濃度等に左右されて一定しないが、通
常は3〜30時間の範囲である。
The time required for the catalytic reduction is not fixed depending on the reaction temperature, the raw material concentration in the reaction solution, etc., but is usually in the range of 3 to 30 hours.

【0022】[0022]

【実施例】以下、本発明におけるウラシルまたはチミン
の製造方法を実施例を挙げ、さらに詳細に説明する。以
下において、%は特記している以外は全て質量基準であ
り、また反応液中の成分分析はHPLCによる定量分析
結果から得たものである。
EXAMPLES The method for producing uracil or thymine in the present invention will be described in more detail with reference to examples. In the following, all percentages are by mass except where otherwise specified, and the component analysis in the reaction solution was obtained from the results of quantitative analysis by HPLC.

【0023】実施例1 内容積1リットルの反応器に、純度94.2%のメチル
シアノアセチルウレア15.0g(0.10モル)、酢
酸40.0g、および純水508.1gを入れ、攪拌し
た。この際の溶液のpHは2.2であった。ここにパラ
ジウム含有率5%のパラジウムカーボン触媒(5%Pd
/CのNXタイプ(50%湿潤品);エヌ・イー・ケム
キャット製、商品名)1.41gを添加し、気相部を窒
素置換した後、更に水素にて置換した。反応液の温度を
80℃に昇温し、常圧下で5時間攪拌を続けた。次い
で、気相部を窒素置換した後、液温約70℃において触
媒を濾別し、得られた濾液を分析した結果、チミンが原
料メチルシアノアセチルウレアに対して、90モル%の
収率で生成していることが確認された。
Example 1 15.0 g (0.10 mol) of methylcyanoacetylurea having a purity of 94.2%, 40.0 g of acetic acid, and 508.1 g of pure water were placed in a reactor having an internal volume of 1 liter and stirred. did. The pH of the solution at this time was 2.2. Here, a palladium carbon catalyst having a palladium content of 5% (5% Pd
A / C NX type (50% wet product) (manufactured by NE Chemcat, trade name) (1.41 g) was added, and the gas phase was replaced with nitrogen and further replaced with hydrogen. The temperature of the reaction solution was raised to 80 ° C., and stirring was continued at normal pressure for 5 hours. Next, after replacing the gas phase with nitrogen, the catalyst was separated by filtration at a liquid temperature of about 70 ° C., and the obtained filtrate was analyzed. As a result, thymine was produced at a yield of 90 mol% with respect to the raw material methylcyanoacetylurea. It was confirmed that it was generated.

【0024】次に、上記濾液に49%硫酸水溶液9.0
gを添加した後、減圧下に70℃に昇温して酢酸水溶液
約490gを留去し、得られた液に5%水酸化ナトリウ
ム水溶液を加えてpH7とした。溶液の温度を10℃と
して結晶を析出させ、濾別し水洗浄してチミン含水結晶
15.4gを得た。次いでこれを乾燥し、純度99.1
%のチミン白色結晶10.8g(0.085モル)を得
た。結晶の取り出し収率は、原料メチルシアノアセチル
ウレアに対して、85モル%であった。
Next, 9.0% of a 49% aqueous sulfuric acid solution was added to the above filtrate.
After adding g, the temperature was raised to 70 ° C. under reduced pressure, about 490 g of an aqueous acetic acid solution was distilled off, and the obtained solution was adjusted to pH 7 by adding a 5% aqueous sodium hydroxide solution. Crystals were precipitated at a solution temperature of 10 ° C., filtered and washed with water to obtain 15.4 g of thymine-containing crystals. It is then dried and has a purity of 99.1.
% Thymine white crystals, 10.8 g (0.085 mol). The yield of taking out the crystals was 85 mol% based on the starting material methylcyanoacetylurea.

【0025】実施例2 実施例1と同じ反応器に、純度94.2%のメチルシア
ノアセチルウレア12.5g(0.0886モル)、酢
酸15.9g、および純水455.1gを入れ、攪拌し
た。この際の溶液のpHは2.3であった。ここにパラ
ジウム含有率5%のパラジウムカーボン触媒(5%Pd
/CのNXタイプ(51%湿潤品);エヌ・イー・ケム
キャット製、商品名)1.29gを添加し、気相部を窒
素置換した後、更に水素にて置換した。反応液の温度を
80℃に昇温し、常圧下で7時間攪拌を続けた。次い
で、気相部を窒素置換した後、液温約60℃において触
媒を濾別し、得られた濾液を分析した結果、チミンが原
料メチルシアノアセチルウレアに対して、90モル%の
収率で生成していることが確認された。
Example 2 12.5 g (0.0886 mol) of methylcyanoacetylurea having a purity of 94.2%, 15.9 g of acetic acid, and 455.1 g of pure water were placed in the same reactor as in Example 1, and stirred. did. The pH of the solution at this time was 2.3. Here, a palladium carbon catalyst having a palladium content of 5% (5% Pd
/ C NX type (51% wet product), manufactured by NE Chemcat, trade name) 1.29 g was added, and the gas phase was replaced with nitrogen and then further replaced with hydrogen. The temperature of the reaction solution was raised to 80 ° C., and stirring was continued at normal pressure for 7 hours. Then, after the gas phase was replaced with nitrogen, the catalyst was separated by filtration at a liquid temperature of about 60 ° C., and the obtained filtrate was analyzed. It was confirmed that it was generated.

【0026】次に、上記濾液に49%硫酸水溶液7.8
gを添加した後、減圧下に70℃に昇温して酢酸水溶液
約435gを留去し、得られた液に5%水酸化ナトリウ
ム水溶液を加えてpH7とした。溶液の温度を10℃と
して結晶を析出させ、濾別し水洗浄してチミン含水結晶
13.1gを得た。次いでこれを乾燥し、純度99.6
%のチミン白色結晶9.54g(0.0753モル)を
得た。結晶の取り出し収率は、原料メチルシアノアセチ
ルウレアに対して、85モル%であった。
Next, 7.8% of a 49% aqueous sulfuric acid solution was added to the filtrate.
After adding g, the temperature was raised to 70 ° C. under reduced pressure to distill off about 435 g of an aqueous acetic acid solution, and the obtained liquid was adjusted to pH 7 by adding a 5% aqueous sodium hydroxide solution. Crystals were precipitated at a solution temperature of 10 ° C., filtered and washed with water to obtain 13.1 g of thymine-containing crystals. It is then dried and has a purity of 99.6.
9.54 g (0.0753 mol) of thymine white crystals were obtained. The yield of taking out the crystals was 85 mol% based on the starting material methylcyanoacetylurea.

【0027】実施例3 内容積0.5リットルの反応器に、純度93.5%のメ
チルシアノアセチルウレア15.0g(0.107モ
ル)、酢酸17.3g、および純水69.5gを入れ、
攪拌した。この際の溶液のpHは1.9であった。ここ
にパラジウム含有率5%のパラジウムカーボン触媒(5
%Pd/CのNXタイプ(51%湿潤品);エヌ・イー
・ケムキャット製、商品名)1.50gを添加し、気相
部を窒素置換した後、更に水素にて置換した。反応液の
温度を80℃に昇温し、常圧下で15時間攪拌を続け
た。得られたこの反応液に70℃において22%水酸化
ナトリウム水溶液91gを加え触媒以外を均一にした。
反応液を分析した結果、チミンが原料メチルシアノアセ
チルウレアに対して、88モル%の収率で生成している
ことが確認された。
Example 3 A reactor having an internal volume of 0.5 liter was charged with 15.0 g (0.107 mol) of methylcyanoacetylurea having a purity of 93.5%, 17.3 g of acetic acid, and 69.5 g of pure water. ,
Stirred. The pH of the solution at this time was 1.9. Here, a palladium carbon catalyst (5% palladium content)
% Pd / C NX type (51% wet product), manufactured by NE Chemcat, trade name) (1.50 g) was added, and the gas phase was replaced with nitrogen and further replaced with hydrogen. The temperature of the reaction solution was raised to 80 ° C., and stirring was continued at normal pressure for 15 hours. At 70 ° C., 91 g of a 22% aqueous sodium hydroxide solution was added to the obtained reaction solution to homogenize the components other than the catalyst.
As a result of analyzing the reaction solution, it was confirmed that thymine was produced in a yield of 88 mol% with respect to the starting material methylcyanoacetylurea.

【0028】次に、上記反応液を70℃において触媒を
濾別した後、41%硫酸水溶液33gを添加し、次いで
10℃に冷却、析出した結晶を濾別、さらに水洗浄を行
い、チミン含水結晶16.5gを得た。次いでこれを乾
燥し、純度99.5%のチミン白色結晶11.3g
(0.0888モル)を得た。結晶の取り出し収率は、
原料メチルシアノアセチルウレアに対して、83モル%
であった。
Next, the reaction solution was filtered at 70 ° C. to remove the catalyst, 33 g of a 41% aqueous sulfuric acid solution was added, and the mixture was cooled to 10 ° C., and the precipitated crystals were separated by filtration. 16.5 g of crystals were obtained. This was then dried, and 11.3 g of 99.5% pure thymine white crystals.
(0.0888 mol). Crystal take-out yield is
83 mol% based on the raw material methylcyanoacetylurea
Met.

【0029】実施例4 内容積1リットルの反応器に、純度95.0%のシアノ
アセチルウレア13.4g(0.10モル)、酢酸4
0.0g、および純水508.1gを入れ、攪拌した。
この際の溶液のpHは2.2であった。ここにパラジウ
ム含有率5%のパラジウムカーボン触媒(5%Pd/C
のNXタイプ(50%湿潤品);エヌ・イー・ケムキャ
ット製、商品名)1.41gを添加し、気相部を窒素置
換した後、更に水素にて置換した。反応液の温度を80
℃に昇温し、常圧下で5時間攪拌を続けた。次いで、気
相部を窒素置換した後、液温約70℃において触媒を濾
別し、得られた濾液を分析した結果、ウラシルが原料シ
アノアセチルウレアに対して、91モル%の収率で生成
していることが確認された。
Example 4 13.4 g (0.10 mol) of cyanoacetylurea having a purity of 95.0% and acetic acid 4 in a reactor having an internal volume of 1 liter.
0.0 g and 508.1 g of pure water were added and stirred.
The pH of the solution at this time was 2.2. Here, a palladium carbon catalyst having a palladium content of 5% (5% Pd / C
NX type (50% wet product), manufactured by NE Chemcat, Inc. (1.41 g) was added, and the gas phase was replaced with nitrogen and further replaced with hydrogen. When the temperature of the reaction solution is 80
C. and the stirring was continued for 5 hours under normal pressure. Then, after replacing the gas phase with nitrogen, the catalyst was filtered off at a liquid temperature of about 70 ° C., and the obtained filtrate was analyzed. As a result, uracil was produced in a yield of 91 mol% based on the starting material cyanoacetylurea. It was confirmed that.

【0030】次に、上記濾液に49%硫酸水溶液9.0
gを添加した後、減圧下に70℃に昇温して酢酸水溶液
約490gを留去し、得られた液に5%水酸化ナトリウ
ム水溶液を加えてpH7とした。溶液の温度を10℃と
して結晶を析出させ、濾別し水洗浄してウラシル含水結
晶13.7gを得た。次いでこれを乾燥し、純度99.
2%のウラシル白色結晶9.7g(0.086モル)を
得た。結晶の取り出し収率は、原料シアノアセチルウレ
アに対して、85モル%であった。
Next, 9.0% of a 49% aqueous sulfuric acid solution was added to the above filtrate.
After adding g, the temperature was raised to 70 ° C. under reduced pressure, about 490 g of an aqueous acetic acid solution was distilled off, and the obtained solution was adjusted to pH 7 by adding a 5% aqueous sodium hydroxide solution. Crystals were precipitated at a solution temperature of 10 ° C., separated by filtration and washed with water to obtain 13.7 g of uracil hydrated crystals. It is then dried and has a purity of 99.
9.7 g (0.086 mol) of 2% uracil white crystals were obtained. The yield of taking out the crystals was 85 mol% based on the starting material cyanoacetylurea.

【0031】比較例1 実施例1と同じ反応器に、純度94.2%のメチルシア
ノアセチルウレア12.5g(0.0886モル)、お
よび純水487.0gを入れ、攪拌した。この際の溶液
のpHは7であった。ここにパラジウム含有率5%のパ
ラジウムカーボン触媒(5%Pd/CのNXタイプ(5
1%湿潤品);エヌ・イー・ケムキャット製、商品名)
1.29gを添加し、気相部を窒素置換した後、更に水
素にて置換した。反応液の温度を80℃に昇温し、常圧
下で7時間攪拌を続けた。次いで、気相部を窒素置換し
た後、液温約60℃において触媒を濾別し、得られた濾
液を分析した結果、チミンの生成は、原料メチルシアノ
アセチルウレアに対して37モル%であった。
Comparative Example 1 Into the same reactor as in Example 1, 12.5 g (0.0886 mol) of methylcyanoacetylurea having a purity of 94.2% and 487.0 g of pure water were charged and stirred. The pH of the solution at this time was 7. Here, a palladium carbon catalyst having a palladium content of 5% (5% Pd / C NX type (5
1% wet product); made by NE Chemcat, trade name)
1.29 g was added, the gas phase was replaced with nitrogen, and further replaced with hydrogen. The temperature of the reaction solution was raised to 80 ° C., and stirring was continued at normal pressure for 7 hours. Next, after the gas phase was replaced with nitrogen, the catalyst was filtered off at a liquid temperature of about 60 ° C., and the obtained filtrate was analyzed. As a result, thymine was produced in an amount of 37 mol% based on the raw material methylcyanoacetylurea. Was.

【0032】比較例2 実施例1と同じ反応器に、純度94.2%のメチルシア
ノアセチルウレア12.5g(0.0886モル)、酢
酸28.7g、および純水455.1gを入れ、攪拌し
た。この際の溶液のpHは2.3であった。ここにラネ
ーニッケル触媒6.25gを添加し、気相部を窒素置換
した後、更に水素にて置換した。反応液の温度を80℃
に昇温し、常圧下で7時間攪拌を続けた。次いで、気相
部を窒素置換した後、液温約60℃において触媒を濾別
し、得られた濾液を分析した結果、チミンの生成は、原
料メチルシアノアセチルウレアに対して75モル%であ
った。
Comparative Example 2 12.5 g (0.0886 mol) of methylcyanoacetylurea having a purity of 94.2%, 28.7 g of acetic acid and 455.1 g of pure water were placed in the same reactor as in Example 1, and stirred. did. The pH of the solution at this time was 2.3. To this, 6.25 g of Raney nickel catalyst was added, the gas phase was replaced with nitrogen, and further replaced with hydrogen. The temperature of the reaction solution is 80 ° C
, And stirring was continued for 7 hours under normal pressure. Next, after replacing the gas phase with nitrogen, the catalyst was filtered off at a liquid temperature of about 60 ° C., and the obtained filtrate was analyzed. As a result, thymine was produced at 75 mol% with respect to the raw material methylcyanoacetylurea. Was.

【0033】比較例3 実施例1と同じ反応器に、純度94.2%のメチルシア
ノアセチルウレア12.5g(0.0886モル)、純
水303.3g、および1N硫酸水溶液101.7gを
入れ、攪拌した。この際の溶液のpHは0.1未満であ
った。ここにパラジウム含有率5%のパラジウムカーボ
ン触媒(5%Pd/CのNXタイプ(51%湿潤品);
エヌ・イー・ケムキャット製、商品名)1.29gを添
加し、気相部を窒素置換した後、更に水素にて置換し
た。反応液の温度を80℃に昇温し、常圧下で7時間攪
拌を続けた。次いで、気相部を窒素置換した後、液温約
60℃において触媒を濾別し、得られた濾液を分析した
結果、チミンの生成は、原料メチルシアノアセチルウレ
アに対して54モル%であった。
Comparative Example 3 Into the same reactor as in Example 1, 12.5 g (0.0886 mol) of methylcyanoacetylurea having a purity of 94.2%, 303.3 g of pure water, and 101.7 g of a 1N aqueous solution of sulfuric acid were placed. And stirred. At this time, the pH of the solution was less than 0.1. Here, a palladium carbon catalyst having a palladium content of 5% (5% Pd / C NX type (51% wet product);
1.29 g of a product of NE Chemcat (trade name) was added, and the gas phase was replaced with nitrogen, and further replaced with hydrogen. The temperature of the reaction solution was raised to 80 ° C., and stirring was continued at normal pressure for 7 hours. Next, after the gas phase was replaced with nitrogen, the catalyst was filtered off at a liquid temperature of about 60 ° C., and the obtained filtrate was analyzed. As a result, thymine was produced in an amount of 54 mol% with respect to the raw material methylcyanoacetylurea. Was.

【0034】[0034]

【発明の効果】以上のように本発明によれば、少量かつ
比較的安価な触媒の存在下にシアノアセチルウレアまた
はメチルシアノアセチルウレアを接触還元することで、
純度99%を優に超えるウラシルまたはチミンを、非常
に収率良くかつ安価に得ることが可能である。
As described above, according to the present invention, the catalytic reduction of cyanoacetylurea or methylcyanoacetylurea in the presence of a small amount of a relatively inexpensive catalyst provides
It is possible to obtain uracil or thymine with a purity of well over 99% in very good yield and at low cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 光昭 千葉県袖ヶ浦市長浦580番地32 三井化学 株式会社内 Fターム(参考) 4H039 CA42 CH20  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mitsuaki Senda 580-32 Nagaura, Sodegaura-shi, Chiba Mitsui Chemicals, Inc. F-term (reference) 4H039 CA42 CH20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 パラジウムカーボン触媒の存在下、有機
酸の水溶液中で、シアノアセチルウレアを接触還元する
ことを特徴とするウラシルの製造方法。
1. A method for producing uracil, comprising the step of catalytically reducing cyanoacetylurea in an aqueous solution of an organic acid in the presence of a palladium carbon catalyst.
【請求項2】 パラジウムカーボン触媒の存在下、有機
酸の水溶液中で、メチルシアノアセチルウレアを接触還
元することを特徴とするチミンの製造方法。
2. A method for producing thymine, comprising catalytically reducing methylcyanoacetylurea in an aqueous solution of an organic acid in the presence of a palladium carbon catalyst.
【請求項3】 有機酸が酢酸である請求項1または2に
記載の製造方法。
3. The method according to claim 1, wherein the organic acid is acetic acid.
【請求項4】 接触還元を行わせる際の反応液のpHが
0.1〜6である請求項1〜3のいずれかに記載の製造
方法。
4. The process according to claim 1, wherein the pH of the reaction solution at the time of performing the catalytic reduction is 0.1 to 6.
【請求項5】 接触還元を70〜100℃の温度で行う
請求項1〜4のいずれかに記載の製造方法。
5. The production method according to claim 1, wherein the catalytic reduction is performed at a temperature of 70 to 100 ° C.
JP33569699A 1999-11-26 1999-11-26 Method for producing uracil of thymine Withdrawn JP2001151761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33569699A JP2001151761A (en) 1999-11-26 1999-11-26 Method for producing uracil of thymine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33569699A JP2001151761A (en) 1999-11-26 1999-11-26 Method for producing uracil of thymine

Publications (1)

Publication Number Publication Date
JP2001151761A true JP2001151761A (en) 2001-06-05

Family

ID=18291475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33569699A Withdrawn JP2001151761A (en) 1999-11-26 1999-11-26 Method for producing uracil of thymine

Country Status (1)

Country Link
JP (1) JP2001151761A (en)

Similar Documents

Publication Publication Date Title
US7795438B2 (en) Processes for producing 1-benzyl-4-[(5,6-dimethoxy-1indanon)-2-yl]methylpiperidine and hydrochloride
CN111333543B (en) Synthesis method of rilpivirine intermediate
JP6028606B2 (en) Method for producing amine compound
JP2001151761A (en) Method for producing uracil of thymine
CN110963946B (en) Preparation method of sodium methyl taurate
WO1999054281A1 (en) Process for producing dimethylacetamide
JP2007510695A (en) Method for preparing gabapentin
RU2213728C2 (en) Method for preparing aminocyanoacetamide
JPH07330755A (en) Production of piperonal
JP4378488B2 (en) Process for producing 2-aminomethylpyrimidine and its salt
JPS6112906B2 (en)
JP2001206883A (en) Method for producing 3,4-methylenedioxymandelic acid
JPH0436250A (en) Production of aldehydes and alcohols
JP2952702B2 (en) Method for producing 3-amino-1-benzylpyrrolidine
CN101255161A (en) Method for synthesizing 3,9-diaza-2,4-dioxo-spiro[5.5] undecane template compounds
JP4032825B2 (en) Method for producing 3,4-dihydroxybenzonitrile
JP3487067B2 (en) Method for producing 3-amino-2-hydroxyacetophenone salt
JPH11310558A (en) Production of 2-amino-4,5,3',4'-tetramethoxybenzophenone
KR20230027520A (en) Method for producing high purity N-hydroxy succinimide using succinic anhydride
JPS6379879A (en) Production of hydantoins
JPH0717953A (en) Production of 5-isopropyluracil
JPS62114972A (en) Production of n-methylhomopiperazine
JPH0532620A (en) Production of optically active 3-hydroxypyrrolidine
JP2001151760A (en) Method for producing 1h-4(5)-aminoimidazole-5(4)- carboxamide
JP2000007629A (en) Production of dimethylacetamide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061110