JP2001151510A - Method of producing titanium oxide fine particle - Google Patents

Method of producing titanium oxide fine particle

Info

Publication number
JP2001151510A
JP2001151510A JP32953299A JP32953299A JP2001151510A JP 2001151510 A JP2001151510 A JP 2001151510A JP 32953299 A JP32953299 A JP 32953299A JP 32953299 A JP32953299 A JP 32953299A JP 2001151510 A JP2001151510 A JP 2001151510A
Authority
JP
Japan
Prior art keywords
titanium oxide
gas
oxide fine
fine particles
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32953299A
Other languages
Japanese (ja)
Other versions
JP3787254B2 (en
Inventor
Wataru Kagohashi
亘 籠橋
Michiharu Kono
通晴 河野
Takashi Fujii
隆 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP32953299A priority Critical patent/JP3787254B2/en
Publication of JP2001151510A publication Critical patent/JP2001151510A/en
Application granted granted Critical
Publication of JP3787254B2 publication Critical patent/JP3787254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a spherical high purity titanium oxide fine particle having excellent dispersibility and usable generally for an electronic material, an ultraviolet shielding material or a photocatalyst. SOLUTION: The manufacturing method of the titanium oxide fine particle is performed by reacting with each other in the ratio of titanium tetrachloride gas of 11, oxygen of 1-301 and hydrogen of 0.1-101 on the assumption of being in the normal state in the vapor phase reaction of titanium tetrachloride and controlling to be <=20 vol.% in the concentration of titanium tetrachloride gas in a reaction part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた分散性を有
し、電子材料、紫外線遮蔽材料あるいは光触媒等汎用的
に利用しうる球状でかつ高純度の酸化チタン微粒子の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical and high-purity titanium oxide fine particles having excellent dispersibility and which can be widely used for electronic materials, ultraviolet shielding materials or photocatalysts. .

【0002】[0002]

【従来の技術】酸化チタン微粒子は、白色顔料として古
くから利用されており、近年はコンデンサ、サーミスタ
の構成材料またチタン酸バリウムの原料等電子材料に用
いられる焼結材料に広く利用されている。また、酸化チ
タンは可視光付近の波長領域において大きな屈折率を示
すため、可視光領域では殆ど光吸収は起こらない。この
ことから、最近化粧料、医薬あるいは塗料等の紫外線遮
蔽が要求されるような材料にも広く使用されている。さ
らに、酸化チタンにそのバンドギャップ以上のエネルギ
ーを持つ光を照射することによって酸化チタンが励起さ
れて、伝導帯に電子また価電帯に正孔が生じるが、この
電子による還元力また正孔による酸化力を利用した光触
媒反応の用途開発が盛んに行われている。この酸化チタ
ン光触媒の用途は非常に多岐に渡っており、水の分解に
よる水素の発生、排ガス処理、空気清浄、防臭、殺菌、
抗菌、水処理、照明機器等の汚れ防止等、数多くの用途
開発が行われている。
2. Description of the Related Art Titanium oxide fine particles have long been used as white pigments, and in recent years have been widely used as constituent materials for capacitors and thermistors and as sintering materials used for electronic materials such as barium titanate raw materials. Further, since titanium oxide has a large refractive index in a wavelength region near visible light, light absorption hardly occurs in the visible light region. For this reason, recently, it has been widely used for materials such as cosmetics, medicines, and paints which require ultraviolet shielding. Furthermore, by irradiating the titanium oxide with light having energy equal to or greater than its band gap, the titanium oxide is excited, and electrons are generated in the conduction band and holes are generated in the valence band. Applications for photocatalytic reactions utilizing oxidizing power are being actively developed. The applications of this titanium oxide photocatalyst are very diverse, including generation of hydrogen by decomposition of water, exhaust gas treatment, air purification, deodorization, sterilization,
Numerous applications have been developed, such as antibacterial, water treatment, and contamination prevention for lighting equipment.

【0003】このように酸化チタンの用途は多岐に渡る
が、顔料、塗料あるいは焼結材料などに酸化チタン微粒
子を利用する場合、水あるいは有機溶剤等に懸濁し分散
させて使用する場合が多く、その場合酸化チタン微粒子
の溶媒への分散性が問題となる。
As described above, titanium oxides are used in a wide variety of applications. When titanium oxide fine particles are used in pigments, paints, sintered materials, and the like, they are often used by suspending and dispersing them in water or an organic solvent. In that case, the dispersibility of the titanium oxide fine particles in the solvent becomes a problem.

【0004】特に電子材料用酸化チタンにおいて、例え
ば誘電体物質であるチタン酸バリウムは、酸化チタンと
炭酸バリウム等のバリウム化合物を原料として調製され
るが、この際、酸化チタンは溶媒中に懸濁し分散し、バ
リウム化合物と混合した後、焼結する。調製されるチタ
ン酸バリウムの粒度は、原料である酸化チタンの粒度に
主に依存するため、より微粒子のものを調製するために
は、より微粒子の原料である酸化チタンを用いなければ
ならず、近年の電子材料の超小型化に対応するため、1
μm 以下の超微粒子の酸化チタンが要求されている。し
かしながら、酸化チタンを微粒化するにともない、溶媒
への分散性が悪くなり、溶媒に懸濁した際、微粒子同士
の凝集が起こり、上記のようにチタン酸バリウムを調製
した際、微粒子の酸化チタンを用いたにも拘らず、逆に
粒径が大きくなってしまったり、さらに焼結した際、均
一に反応せず、生成物を分子レベルで見たときにチタン
とバリウムの分散が不均一であり、結果として電子材料
としての特性に悪影響を与えてしまう。
In particular, in titanium oxide for electronic materials, for example, barium titanate as a dielectric substance is prepared using titanium oxide and a barium compound such as barium carbonate as raw materials. At this time, the titanium oxide is suspended in a solvent. After being dispersed and mixed with a barium compound, it is sintered. Since the particle size of the prepared barium titanate mainly depends on the particle size of the raw material titanium oxide, in order to prepare finer particles, it is necessary to use the finer particle raw material titanium oxide, In order to respond to recent miniaturization of electronic materials, 1
Ultrafine titanium oxide particles of less than μm are required. However, as the titanium oxide becomes finer, the dispersibility in the solvent becomes worse, and when the titanium oxide is suspended in the solvent, agglomeration of the fine particles occurs. When barium titanate is prepared as described above, the fine titanium oxide Despite the use, the particle size increased conversely, and when sintered further, it did not react uniformly, and when the product was viewed at the molecular level, the dispersion of titanium and barium was uneven. As a result, the characteristics of the electronic material are adversely affected.

【0005】また、紫外線遮蔽材においては、酸化チタ
ン粒子の凝集により紫外線の遮蔽特性が悪くなるという
問題が生じる。
[0005] Further, in the ultraviolet shielding material, there is a problem that the agglutination of titanium oxide particles deteriorates the ultraviolet shielding characteristics.

【0006】従来酸化チタンの製法のうち気相酸化法と
呼ばれる方法として、四塩化チタンを気相中で酸素と接
触させ酸化させる方法、あるいは燃焼して水を生成する
水素ガス等の可燃性ガスと酸素を燃焼バーナーに供給し
火炎を形成し、この中に四塩化チタンを導入する所謂火
炎加水分解法などがある。例えば、ルチル化率が高く、
一次粒子の粒径が0.1μm 以下の酸化チタン微粒子を
製造しうる方法として、特開平6−340423号公報
には、四塩化チタン、水素及び酸素の混合ガスを気相に
おいて燃焼させて四塩化チタンの加水分解により酸化チ
タンを製造する火炎加水分解方法において、該混合ガス
中の四塩化チタン、水素及び酸素を特定のモル比で反応
させる方法が開示されている。
[0006] Among the conventional methods for producing titanium oxide, a method referred to as a gas phase oxidation method is a method in which titanium tetrachloride is oxidized by contacting it with oxygen in a gas phase, or a combustible gas such as hydrogen gas which generates water by burning. There is a so-called flame hydrolysis method in which oxygen and oxygen are supplied to a combustion burner to form a flame, into which titanium tetrachloride is introduced. For example, the rutile ratio is high,
As a method for producing titanium oxide fine particles having a primary particle diameter of 0.1 μm or less, JP-A-6-340423 discloses a method in which a mixed gas of titanium tetrachloride, hydrogen and oxygen is burned in a gaseous phase. In a flame hydrolysis method for producing titanium oxide by hydrolysis of titanium, a method of reacting titanium tetrachloride, hydrogen and oxygen in the mixed gas at a specific molar ratio is disclosed.

【0007】また、特開平8−217654号公報に
は、チタン化合物を火炎加水分解法において、水素含有
ガス中にチタン化合物を、二酸化チタン換算で50〜3
00g/m3供給し、300〜1500℃の温度で火炎加水
分解した平均粒径0.04〜0.15μm の結晶質の紫
外線遮蔽化粧料用酸化チタン微粒子が開示されている。
Japanese Patent Application Laid-Open No. Hei 8-217654 discloses that a titanium compound is incorporated into a hydrogen-containing gas by a flame hydrolysis method, wherein the titanium compound is contained in a hydrogen-containing gas in an amount of 50 to 3 in terms of titanium dioxide.
Disclosed are crystalline titanium oxide fine particles for UV shielding cosmetics having an average particle size of 0.04 to 0.15 µm, supplied at a rate of 300 g / m 3 and flame-hydrolyzed at a temperature of 300 to 1500 ° C.

【0008】一方、球状の形状を有する酸化チタンの製
法としては、一般的には、例えばチタンテトラアルコキ
シド等の有機チタン化合物を加水分解する方法、硫酸チ
タニル水溶液を加水分解させ、得られた含水酸化チタン
を焼成する方法などがある。例えば特開平5−1630
22号公報には、硫酸チタニルを170℃以上の温度
下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解
して含水二酸化チタンを得、次いで、該含水二酸化チタ
ンを400〜900℃の温度で焼成し球状アナタース型
二酸化チタンの製造方法が開示されている。さらに、特
開平8−333117号公報には、TiO2に換算して
5.0〜100 g/lの硫酸チタニルとチタンに対するモ
ル比1.0〜3.0の過剰硫酸とを含む硫酸チタニル水
溶液に、この水溶液中の全硫酸根に対し等モル以上の尿
素を加えて、85℃以上、沸点以下に加熱し、析出した
メタチタン酸粒子を回収して650〜850℃で焼成す
ることを特徴とする、粒度が均一で比表面積の大きい多
孔質球状アナターゼ型酸化チタン粒子の製造方法が開示
されている。
On the other hand, as a method for producing titanium oxide having a spherical shape, generally, for example, a method of hydrolyzing an organic titanium compound such as titanium tetraalkoxide or a method of hydrolyzing an aqueous solution of titanyl sulfate to obtain an obtained hydrous titanium oxide There is a method of firing titanium. For example, JP-A-5-1630
No. 22 discloses that titanyl sulfate is hydrolyzed at a temperature of 170 ° C. or higher and at a pressure higher than the saturated vapor pressure at the temperature to obtain hydrous titanium dioxide, and then the hydrous titanium dioxide is heated to 400 to 900 ° C. And a method of producing spherical anatase-type titanium dioxide by firing at a temperature of 0.1 g / m. Further, JP-A-8-333117 discloses an aqueous solution of titanyl sulfate containing 5.0 to 100 g / l of titanyl sulfate in terms of TiO 2 and excess sulfuric acid in a molar ratio to titanium of 1.0 to 3.0. In addition, an equimolar or more urea is added to all the sulfate groups in the aqueous solution, heated to 85 ° C. or higher and the boiling point or lower, and the precipitated metatitanic acid particles are collected and fired at 650 to 850 ° C. A method for producing porous spherical anatase-type titanium oxide particles having a uniform particle size and a large specific surface area is disclosed.

【0009】さらに、分散性の問題を解決するために、
シリカ、アルミナのような元来分散性の高い疎水性物質
を、酸化チタンの粒子表面にコーティングすることが試
みられており、例えば特開平5−281726号公報で
は、アルミニウム塩基性塩水溶液を酸でpHを10.5
〜12.0に調節し、これに二酸化チタンスラリーを混
合し、次いでこれを酸にて中和し二酸化チタン粒子表面
に酸化アルミニウム水和物を均一に析出させる方法が開
示されている。
Further, in order to solve the problem of dispersibility,
Attempts have been made to coat a hydrophobic substance which is inherently highly dispersible, such as silica or alumina, on the surface of titanium oxide particles. For example, Japanese Patent Application Laid-Open No. 5-281726 discloses that an aqueous solution of an aluminum basic salt is acidified with an acid. pH 10.5
A method is disclosed in which the mixture is adjusted to 2.012.0, a titanium dioxide slurry is mixed with the mixture, and the mixture is neutralized with an acid to uniformly precipitate aluminum oxide hydrate on the surface of the titanium dioxide particles.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の気相酸化法あるいは火炎加水分解法で得ら
れる酸化チタン粒子の形状は不定形であり、粒子径に対
して比表面積が大きいものであった。そのため、チタン
酸バリウムのような電子材料を調製するため溶媒に懸濁
させた際、分散性が非常に悪く、微粒子の酸化チタンを
使用しても、逆に凝集してしまうという問題があった。
However, the shape of the titanium oxide particles obtained by the conventional gas phase oxidation method or flame hydrolysis method as described above is irregular and has a large specific surface area with respect to the particle diameter. Met. Therefore, when suspended in a solvent for preparing an electronic material such as barium titanate, the dispersibility is very poor, and even when fine titanium oxide particles are used, there is a problem that the particles are aggregated. .

【0011】また、球状の形状を有する酸化チタンの製
法として、チタンテトラアルコキシド等の有機チタン化
合物を加水分解する方法では、原料としてのチタンテト
ラアルコキシドが四塩化チタンから製造されるもので非
常に高価であり、結果として得られる酸化チタンのコス
トも高くなるという問題があった。硫酸チタニルを加水
分解して含水二酸化チタンを得、次いで焼成して酸化チ
タンを製造する方法は、液相で得られる含水二酸化チタ
ンを分離、乾燥してさらに焼成が必要で工程が非常に煩
雑であり、同様にコストアップになる。さらに硫酸チタ
ニルを原料に用いた場合、最終的に得られる酸化チタン
粒子中に硫酸根が残留し、焼結材料、紫外線遮蔽材料あ
るいは光触媒など特に電子材料に使用する場合、その特
性に悪影響を及ぼす。
In the method of producing titanium oxide having a spherical shape, a method of hydrolyzing an organic titanium compound such as titanium tetraalkoxide is very expensive since titanium tetraalkoxide as a raw material is produced from titanium tetrachloride. However, there is a problem that the cost of the resulting titanium oxide is also increased. The method of producing titanium oxide by hydrolyzing titanyl sulfate to obtain hydrous titanium dioxide and then calcining it is necessary to separate and dry the hydrous titanium dioxide obtained in the liquid phase, and to further bake it, which requires a very complicated process. Yes, it also increases costs. Furthermore, when titanyl sulfate is used as a raw material, a sulfate group remains in the titanium oxide particles finally obtained, which adversely affects the properties of the sintered material, ultraviolet shielding material or photocatalyst, especially when used for electronic materials. .

【0012】さらに酸化チタン粒子表面の異物質による
コーティングというような酸化チタン以外の成分を用い
るため、酸化チタン本来の特性が変化したり、特に電子
材料にはその特性に悪影響を及ぼすということで適用は
難しい。
Further, since components other than titanium oxide, such as coating of the surface of titanium oxide particles with a foreign substance, are used, the original characteristics of titanium oxide are changed, and in particular, the characteristics are adversely affected for electronic materials. Is difficult.

【0013】従って、本発明の目的は、四塩化チタンの
気相反応において、特定の条件で反応することにより分
散性の優れた、球状でかつ高純度の酸化チタン微粒子で
また低コストのものを製造する方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide spherical and high-purity titanium oxide fine particles having excellent dispersibility by reacting under specific conditions in the gas phase reaction of titanium tetrachloride and having low cost. It is to provide a manufacturing method.

【0014】[0014]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、四塩化チタンの気相反
応法という、低コストで酸化チタンの製造が可能な方法
について鋭意研究を重ねた結果、球状でかつ高純度の電
子材料のような焼結材料、紫外線遮蔽材料あるいは光触
媒などに好適な酸化チタン微粒子が製造し得ることを見
出し、本発明を完成するに至った。
Under these circumstances, the present inventors have conducted intensive studies and as a result, have conducted intensive studies on a gas phase reaction method of titanium tetrachloride, which is capable of producing titanium oxide at low cost. As a result, they have found that titanium oxide fine particles suitable for a sintered material such as a spherical and high-purity electronic material, an ultraviolet shielding material, a photocatalyst, and the like can be produced, and the present invention has been completed.

【0015】すなわち、本発明は、四塩化チタンの気相
反応において、標準状態であると仮定したとき、四塩化
チタンガス1l に対し、酸素1〜30l 及び水素0.1
〜10l の割合で反応させ、且つ、反応部における四塩
化チタンガス濃度が20容量%以下であることを特徴と
する酸化チタン微粒子の製造方法を提供するものであ
る。
That is, according to the present invention, in a gas phase reaction of titanium tetrachloride, 1 to 30 l of oxygen and 0.1 l of hydrogen are added to 1 l of titanium tetrachloride gas, assuming that the gas is in a standard state.
The present invention provides a method for producing titanium oxide fine particles, characterized in that the reaction is carried out at a rate of 10 to 10 l and that the titanium tetrachloride gas concentration in the reaction section is 20% by volume or less.

【0016】[0016]

【発明の実施の形態】以下、本発明をさらに詳しく説明
する。本発明の酸化チタン微粒子の製造方法は、原料と
して四塩化チタン、酸素及び水素の3成分を接触させ、
四塩化チタンを気相において酸化反応させ、酸化チタン
を生成させる。これらの原料の他、水蒸気あるいは燃焼
して水を生成するプロパン等の可燃性ガスも併用し得
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the method for producing titanium oxide fine particles of the present invention, three components of titanium tetrachloride, oxygen and hydrogen are brought into contact as raw materials,
Titanium tetrachloride is oxidized in the gas phase to produce titanium oxide. In addition to these raw materials, a combustible gas such as steam or propane which generates water by burning can be used in combination.

【0017】上記各成分を接触し反応させる際、上記各
成分の反応部への供給量比は、各供給ガスが標準状態で
あると仮定したとき、四塩化チタンガス1l に対し、酸
素が1〜30l 、好ましくは2〜20l 、特に好ましく
は4〜10l であり、水素が0.1〜10l 、好ましく
は0.2〜5l 、特に好ましくは0.3〜1.0l であ
る。さらに本発明では上記成分以外に必要に応じて水蒸
気を供給し酸化チタン微粒子を製造させることも可能で
あり、その際の水蒸気の供給量比は、標準状態であると
仮定したとき、四塩化チタンガス1l に対し、0.05
〜1.0l 、好ましくは0.1〜0.5l である。
When the above components are brought into contact with each other and reacted, the ratio of the supply amount of the above components to the reaction section is as follows, assuming that each supply gas is in a standard state, with respect to 1 liter of titanium tetrachloride gas and 1 liter of oxygen. From 30 to 30, preferably from 2 to 20 l, particularly preferably from 4 to 10 l, hydrogen from 0.1 to 10 l, preferably from 0.2 to 5 l, particularly preferably from 0.3 to 1.0 l. Further, in the present invention, it is also possible to produce titanium oxide fine particles by supplying steam as required in addition to the above-described components. 0.05 for 1 liter of gas
To 1.0 l, preferably 0.1 to 0.5 l.

【0018】上記各原料ガスの供給量は、反応スケール
あるいは各ガスを供給するノズル径等により異なるので
適宜設定するが、反応部での各ガス、特に四塩化チタン
ガスの供給速度は乱流域になるように設定することが望
ましい。
The supply amount of each raw material gas varies depending on the reaction scale or the diameter of a nozzle for supplying each gas, and is appropriately set. However, the supply rate of each gas, particularly titanium tetrachloride gas, in the reaction section is limited to a turbulent flow region. It is desirable to set so that

【0019】本発明は、上記の四塩化チタンガス、水素
及び酸素、また必要に応じて水蒸気を反応炉に供給し、
気相で接触させ反応させる。その供給方法としては、種
々の方法が採用し得るが、具体的には、以下の方法が好
ましい; 1)四塩化チタンガスと水素ガスの混合ガスと、酸素ガ
スの供給管をそれぞれ独立に設置し、かつ両者を隣接さ
せ独立に反応炉に供給する方法、 2)四塩化チタンガス、水素ガス及び酸素ガスの供給管
をそれぞれ独立に設置し、かつ両者を隣接させ独立に反
応炉に供給する方法、 3)四塩化チタンガス、酸素ガス及び水素と水蒸気の混
合ガス供給管をそれぞれ独立に設置し、かつ両者を隣接
させ独立に反応炉に供給する方法、 4)四塩化チタンガスと水素ガスの混合ガスと、酸素ガ
ス及び水蒸気の混合ガスの供給管をそれぞれ独立に設置
し、かつ両者を隣接させ独立に反応炉に供給する方法。
According to the present invention, the above-mentioned titanium tetrachloride gas, hydrogen and oxygen, and if necessary, steam are supplied to a reactor,
The gas phase is contacted and reacted. Various methods can be adopted as the supply method. Specifically, the following methods are preferable: 1) A mixed gas of titanium tetrachloride gas and hydrogen gas, and a supply pipe of oxygen gas are independently provided. And supplying them to the reactor independently by making them adjacent to each other, and 2) installing supply pipes for titanium tetrachloride gas, hydrogen gas and oxygen gas independently of each other, and making them adjacent to each other and supplying them independently to the reactor. 3) A method in which titanium tetrachloride gas, oxygen gas, and mixed gas supply pipes of hydrogen and steam are independently provided, and both are adjacently supplied to the reactor independently. 4) Titanium tetrachloride gas and hydrogen gas And the supply pipes for the mixed gas of (1) and the mixed gas of oxygen gas and water vapor are installed independently, and both are adjacent to each other and supplied independently to the reaction furnace.

【0020】また、前記四塩化チタンの気相酸化反応に
おいて、反応部で生成する酸化チタン微粒子の濃度が高
いと、粒子同士の衝突により粒子が成長し凝集してしま
い、また形状も不定形となってしまう。従って、反応部
で生成する酸化チタン微粒子の反応部の容積に対する濃
度はできるだけ低くし、従来の気相反応法における反応
条件に比べより稀薄状態で反応することが好ましい。そ
のために供給する上記の各成分をアルゴンや窒素のごと
き不活性ガスで希釈し反応部に供給し反応させる。特に
反応部、具体的には四塩化チタンと酸素が反応し酸化チ
タンが生成する火炎、における四塩化チタンガス濃度や
反応部における各成分の分圧は重要であり、これらの成
分が稀薄になるように供給する。このときの四塩化チタ
ンガスの濃度は、反応部に供給される全ガス量のうち通
常20容量%以下であることが望ましく、特に望ましく
は3〜16容量%である。また、反応部に供給される全
ガス量のうち、酸素は、80容量%以下、好ましくは4
0〜70容量%であり、水素は、20容量%以下、好ま
しくは3〜10容量%である。さらに、これらのガス成
分を希釈する窒素ガス等の不活性ガス成分の反応部に供
給される全ガス量における濃度(分圧)は、通常0〜5
0容量%、好ましくは10〜30容量%である。
In the gas phase oxidation reaction of titanium tetrachloride, if the concentration of titanium oxide fine particles generated in the reaction part is high, the particles grow and aggregate due to collision of the particles, and the shape becomes irregular. turn into. Therefore, it is preferable that the concentration of the titanium oxide fine particles generated in the reaction section relative to the volume of the reaction section is as low as possible, and the reaction is performed in a more dilute state than the reaction conditions in the conventional gas phase reaction method. For this purpose, each of the above components to be supplied is diluted with an inert gas such as argon or nitrogen, supplied to a reaction section, and reacted. In particular, the titanium tetrachloride gas concentration and the partial pressure of each component in the reaction section are important in the reaction section, specifically in a flame in which titanium tetrachloride reacts with oxygen to generate titanium oxide, and these components are diluted. Supply as follows. At this time, the concentration of the titanium tetrachloride gas is usually preferably 20% by volume or less, more preferably 3 to 16% by volume, of the total gas amount supplied to the reaction section. In the total gas amount supplied to the reaction section, oxygen is 80% by volume or less, preferably 4% by volume.
0 to 70% by volume, and hydrogen is 20% by volume or less, preferably 3 to 10% by volume. Further, the concentration (partial pressure) of the inert gas component such as nitrogen gas for diluting these gas components in the total gas amount supplied to the reaction section is usually 0 to 5%.
It is 0% by volume, preferably 10 to 30% by volume.

【0021】上記各成分のうち特に四塩化チタンガスお
よび酸素は窒素等の不活性ガスで希釈し反応部に供給す
ることが望ましく、その希釈率は、四塩化チタンは、標
準状態であると仮定したとき四塩化チタンガス1l に対
し、不活性ガス0.1〜10l 、好ましくは0.3〜1
l である。また酸素の希釈率は、標準状態であると仮定
したとき酸素ガス1l に対し、不活性ガス0.1〜10
l 、好ましくは0.3〜1l である。
It is desirable that titanium tetrachloride gas and oxygen among the above components are diluted with an inert gas such as nitrogen and supplied to the reaction section. The dilution ratio is based on the assumption that titanium tetrachloride is in a standard state. Then, 0.1 to 10 liters of inert gas, preferably 0.3 to 1 liters per 1 liter of titanium tetrachloride gas is used.
l. Further, the dilution ratio of oxygen is as follows.
l, preferably from 0.3 to 1 l.

【0022】上記のように、各成分あるいは混合ガスの
供給管をそれぞれ独立に設置し、かつ両者を隣接させる
手段としては、種々の方法が採用し得るが、その供給管
を内管と外管とが同軸的に配された多重管とすることが
好ましい。
As described above, various methods can be adopted as means for independently installing the supply pipes for each component or mixed gas, and for adjoining them, but the supply pipes may be made of an inner pipe and an outer pipe. Are preferably coaxially arranged.

【0023】この多重管の供給管によって、上記の各成
分あるいは混合ガスを供給するが、特に、最も内側の管
から四塩化チタンガス、その外側の管から酸素ガスを供
給させることにより、反応が均一となり、球状で粒子性
状の良好な酸化チタン微粒子が生成される。
The above components or mixed gas are supplied by the multi-tube supply pipe. In particular, the reaction is carried out by supplying titanium tetrachloride gas from the innermost pipe and oxygen gas from the outer pipe. Titanium oxide fine particles which are uniform and have good spherical particle properties are generated.

【0024】さらに本発明の酸化チタン微粒子の製造方
法において用いられる反応炉としては、各成分の供給
管、例えば上述したような多重管が上部に設けられた、
縦型反応炉が好ましく用いられる。
Further, as a reaction furnace used in the method for producing titanium oxide fine particles of the present invention, a supply tube for each component, for example, a multi-tube as described above is provided at the upper part.
A vertical reactor is preferably used.

【0025】また、反応炉内に供給される各成分あるい
は混合ガスは、反応炉内に供給する前に予め余熱し供給
することが好ましい。この余熱は後述する反応炉内での
反応反応の温度範囲で行うことが望ましい。
It is preferable that each component or mixed gas supplied into the reaction furnace is preheated and supplied before being supplied into the reaction furnace. This residual heat is desirably performed in a temperature range of a reaction in a reaction furnace described later.

【0026】上記のように各成分を反応させ酸化チタン
微粒子を生成させるが、反応部において生成した酸化チ
タン微粒子は、反応温度による粒子同士の凝集を防ぐた
め、冷却することが望ましい。通常、反応部の後工程に
冷却工程を設けることにより、生成酸化チタン微粒子を
冷却する。具体的には反応部のあとに冷却ジャケットを
具備した冷却部を設ける。また、この冷却部では不十分
な場合、空気または窒素等の不活性ガスを冷却ガスとし
て、反応部(火炎)のあとに挿入し、生成した酸化チタ
ン微粒子を急冷することが望ましい。このとき挿入する
空気あるいは窒素等の冷却ガスは、標準状態であると仮
定したとき、供給する四塩化チタンガス1l に対して、
1l 以上、好ましくは3l 以上、特に好ましくは5l 以
上である。
As described above, titanium oxide fine particles are produced by reacting the respective components, and the titanium oxide fine particles produced in the reaction section are preferably cooled in order to prevent aggregation of the particles due to the reaction temperature. Usually, the produced titanium oxide fine particles are cooled by providing a cooling step after the reaction section. Specifically, a cooling section having a cooling jacket is provided after the reaction section. If the cooling section is not sufficient, it is desirable to insert the air or an inert gas such as nitrogen as a cooling gas after the reaction section (flame) to rapidly cool the generated titanium oxide fine particles. The cooling gas such as air or nitrogen inserted at this time is assumed to be in a standard state.
It is at least 1 l, preferably at least 3 l, particularly preferably at least 5 l.

【0027】以下本発明の酸化チタン微粒子の具体的な
製法プロセスの一例を示す。先ず、液状の四塩化チタン
を予め加熱し、気化させ、必要に応じて窒素ガスで希釈
し反応炉に導入する。このとき水素ガスを四塩化チタン
と予め混合するかあるいは四塩化チタンとは別に水素ガ
スを同時に反応炉に導入する。四塩化チタンの導入と同
時に、酸素ガス及び/又は水蒸気を必要に応じて窒素ガ
スで希釈して反応炉に導入し、酸化反応を行うが反応温
度は通常500〜1200℃、好ましくは800〜11
00℃である。本発明の球状酸化チタン微粒子を得るた
めにはこのように比較的高温で酸化反応を行うことが望
ましい。
The following is an example of a specific process for producing the titanium oxide fine particles of the present invention. First, liquid titanium tetrachloride is heated in advance, vaporized, diluted with nitrogen gas as required, and introduced into a reaction furnace. At this time, hydrogen gas is preliminarily mixed with titanium tetrachloride, or hydrogen gas is simultaneously introduced into the reactor separately from titanium tetrachloride. Simultaneously with the introduction of titanium tetrachloride, oxygen gas and / or steam is diluted with nitrogen gas, if necessary, and introduced into a reaction furnace to perform an oxidation reaction. The reaction temperature is usually 500 to 1200 ° C., preferably 800 to 11 ° C.
00 ° C. In order to obtain the spherical titanium oxide fine particles of the present invention, it is desirable to carry out the oxidation reaction at such a relatively high temperature.

【0028】上記の酸化反応により酸化チタン微粒子を
生成させ、その後該酸化チタン微粒子を冷却する。通常
冷却ジャケットを具備した冷却槽等が用いられ、同時に
空気あるいは窒素ガス等の不活性ガスを生成酸化チタン
微粒子と接触させ急冷する。
The titanium oxide fine particles are produced by the above oxidation reaction, and then the titanium oxide fine particles are cooled. Usually, a cooling tank equipped with a cooling jacket or the like is used, and at the same time, an inert gas such as air or nitrogen gas is brought into contact with the generated titanium oxide fine particles and rapidly cooled.

【0029】その後生成した酸化チタン微粒子を捕集
し、酸化チタン微粒子中に残留する塩素ガスを、真空加
熱、空気あるいは窒素ガス雰囲気中での加熱あるいはス
チーム処理等の加熱処理あるいはアルコールとの接触処
理により除去し、本発明の球状酸化チタン微粒子を得る
ことができる。
Thereafter, the generated titanium oxide fine particles are collected, and the chlorine gas remaining in the titanium oxide fine particles is heated in a vacuum, heated in an air or nitrogen gas atmosphere, or subjected to a heat treatment such as a steam treatment, or a contact treatment with alcohol. And the spherical titanium oxide fine particles of the present invention can be obtained.

【0030】以上のようにして得られた酸化チタン微粒
子は表面が平滑で略球状であり、SEM写真より測定し
た平均粒径をD1 、BET比表面積より求めた平均粒径
をD 2 としたときのD1 /D2 が、通常1.0〜1.2
5、好ましくは1.0〜1.23、さらに好ましくは
1.0〜1.20である。
The titanium oxide fine particles obtained as described above
The element has a smooth surface and a substantially spherical shape.
D1, Average particle size determined from BET specific surface area
To D TwoD when1/ DTwoBut usually 1.0 to 1.2
5, preferably 1.0 to 1.23, more preferably
1.0 to 1.20.

【0031】上記の式においてBET比表面積より求め
た平均粒径D2 は、粒子を真球と仮定した場合の平均粒
径であり、D1 /D2 の値が1に近いほど粒子の形状が
真球状であることを表しており、さらに、粒子表面が平
滑で、粒子内部の細孔容積が小さいことを意味するもの
である。従って、本発明の方法で得られた酸化チタン微
粒子は、従来の気相法で得られたものよりも球状であ
り、表面が平滑でさらに細孔容積が小さい。これによっ
て、同じ粒径でも比表面積が小さいので、粒子同士の凝
集力が小さく、溶媒に懸濁させた際の分散性に優れてい
る。さらに、細孔容積が小さいため、焼結した際、収縮
が小さく焼結特性にすぐれている。
The average particle diameter D 2 obtained from the BET specific surface area in the above equation is an average particle diameter assuming that the particles are true spheres. As the value of D 1 / D 2 approaches 1, the shape of the particles becomes larger. Indicates that the particle is a true sphere, and that the particle surface is smooth and the pore volume inside the particle is small. Therefore, the titanium oxide fine particles obtained by the method of the present invention are more spherical than those obtained by the conventional gas phase method, have a smooth surface, and have a smaller pore volume. Thereby, since the specific surface area is small even with the same particle size, the cohesive force between the particles is small, and the dispersibility when suspended in a solvent is excellent. Furthermore, since the pore volume is small, shrinkage upon sintering is small and the sintering characteristics are excellent.

【0032】なお、一般的に、気相法において反応後の
酸化チタン粒子表面あるいは粒子内部には、塩素及び塩
化水素の塩素分が付着あるいは吸着している。この酸化
チタン中の塩素分は、特に電子材料に使用する場合、そ
の特性に悪影響を与えるので、できる限り除去する必要
があり、通常酸化チタン微粒子が生成した後、スチーム
処理や加熱処理あるいはアルコール処理などによって、
この塩素分を除去している。従来の気相法による酸化チ
タンは、より微粒化すればするほど、粒子の比表面積が
大きくなり、その結果粒子に吸着する塩素分も多くな
り、許容しうるレベルまで塩素分を除去することは困難
であった。これに対し、本発明の球状酸化チタン微粒子
は、粒子表面が比較的平滑でかつ細孔容積が小さいた
め、従来の酸化チタン粒子に比べ、従来と同じ方法によ
っても容易に塩素分を除去することができ、結果として
より塩素分の少ない高純度の酸化チタン微粒子の製造が
可能となった。
In general, chlorine and the chlorine content of hydrogen chloride are adhered or adsorbed on the surface or inside of the titanium oxide particles after the reaction in the gas phase method. The chlorine content in the titanium oxide, particularly when used in electronic materials, has an adverse effect on its properties, so it is necessary to remove it as much as possible. Usually, after titanium oxide fine particles are formed, steam treatment, heat treatment or alcohol treatment is performed. Depending on
This chlorine is removed. In the case of titanium oxide produced by the conventional gas phase method, the finer the particles, the larger the specific surface area of the particles, and as a result, the greater the amount of chlorine adsorbed on the particles, and it is not possible to remove chlorine to an acceptable level. It was difficult. On the other hand, the spherical titanium oxide fine particles of the present invention have a relatively smooth particle surface and a small pore volume, so that chlorine can be easily removed by the same method as the conventional one, as compared with the conventional titanium oxide particles. As a result, high-purity titanium oxide fine particles with less chlorine content can be produced.

【0033】また本発明の方法で得られた球状酸化チタ
ン微粒子は必ずしも真球状である必要はなく、略球状で
あり、楕円あるいは粒子表面に凹凸があってもよく、そ
の円形度係数が0.7〜1.0である。該円形度係数
は、SEM写真の画像解析により下記式(1)から求め
られるものである。 円形度係数=4πL1 /(L2 2 (1) (式中、L1 は粒子の投影面積、L2 は粒子の投影の輪
郭長を示す。)
The spherical titanium oxide fine particles obtained by the method of the present invention need not necessarily be perfectly spherical, but may be substantially spherical, may be elliptical or have irregularities on the particle surface, and have a circularity coefficient of 0.1. 7 to 1.0. The circularity coefficient is determined from the following equation (1) by image analysis of a SEM photograph. Circularity coefficient = 4πL 1 / (L 2 ) 2 (1) (where L 1 represents the projected area of the particle, and L 2 represents the contour length of the projected particle).

【0034】本発明の方法で得られた球状酸化チタン微
粒子の粒径、比表面積などの粒子性状については、D1
/D2 及び円形度係数が上記特定範囲内にあればよく、
その用途により異なり一概には特定できないが、平均粒
径D1 は、好ましくは0.01〜5μm 、より好ましく
は0.05〜2μm 、さらに好ましくは0.1〜1μm
であり、比表面積は、好ましくは0.5〜100m2/g、
より好ましくは1〜50m2/g、さらに好ましくは2〜3
0m2/gである。また、結晶型についても一概に特定はで
きず、その用途により調整すればよいが、例えば焼結材
料、顔料あるいは紫外線遮蔽材料用ではルチル型のほう
が好ましく、通常ルチル化率は10〜100%であり、
一方光触媒用としてはアナターゼ型のほうが好ましい。
Regarding the particle properties such as the particle diameter and the specific surface area of the spherical titanium oxide fine particles obtained by the method of the present invention, D 1
/ D 2 and the circularity coefficient may be within the above specific ranges,
The average particle size D 1 is preferably 0.01 to 5 μm, more preferably 0.05 to 2 μm, and still more preferably 0.1 to 1 μm, although it depends on the application and cannot be specified unconditionally.
And the specific surface area is preferably 0.5 to 100 m 2 / g,
More preferably 1 to 50 m 2 / g, even more preferably 2-3
0 m 2 / g. In addition, the crystal type cannot be specified unconditionally, and may be adjusted according to the application. For example, a rutile type is preferable for a sintered material, a pigment or an ultraviolet shielding material, and the rutile ratio is usually 10 to 100%. Yes,
On the other hand, an anatase type is preferred for photocatalysts.

【0035】さらに、本発明の方法で得られた酸化チタ
ン微粒子は、不純物として酸化チタン微粒子中に含まれ
るFe、Al 、SiおよびNaがそれぞれ20ppm 未満
であり、かつCl が200ppm 未満である。望ましくは
酸化チタン微粒子に含まれるFe、Al 、SiおよびN
aがそれぞれ10ppm 未満であり、Cl が100ppm未
満、さらに望ましくは50ppm 未満である。このように
本発明の方法で得られる酸化チタン微粒子は、気相法に
よって製造されるので、液相法で得られる酸化チタンの
ような不純物元素が混入また残留することがなく、従来
技術に見られるようなシリカあるいはアルミナのごとき
疎水性物質を表面コーティングするなどの他成分による
処理を施しておらず、酸化チタン以外の他成分を殆ど含
有していない高純度の酸化チタン微粒子であるので、電
子材料、紫外線遮蔽材料あるいは光触媒に利用した際、
酸化チタン本来の特性が変化せず優れた効果を得ること
ができる。
Further, in the titanium oxide fine particles obtained by the method of the present invention, Fe, Al, Si and Na contained in the titanium oxide fine particles as impurities are each less than 20 ppm, and Cl is less than 200 ppm. Desirably, Fe, Al, Si and N contained in titanium oxide fine particles
a is less than 10 ppm each, and Cl is less than 100 ppm, more preferably less than 50 ppm. As described above, since the titanium oxide fine particles obtained by the method of the present invention are produced by the gas phase method, impurity elements such as titanium oxide obtained by the liquid phase method do not mix or remain, and are not seen in the prior art. It is a high-purity titanium oxide fine particle that has not been treated with other components such as surface coating of a hydrophobic substance such as silica or alumina and contains almost no other components other than titanium oxide. When used for materials, UV shielding materials or photocatalysts,
Excellent effects can be obtained without changing the original properties of titanium oxide.

【0036】従って、本発明の方法により製造される酸
化チタン微粒子は、焼結材料、顔料、紫外線遮蔽材料あ
るいは光触媒など 溶媒に分散して使用するあらゆる用
途に利用可能であり、特にコンデンサなどの電子材料用
として有効である。
Accordingly, the titanium oxide fine particles produced by the method of the present invention can be used for all applications in which the titanium oxide fine particles are dispersed in a solvent such as a sintering material, a pigment, an ultraviolet shielding material or a photocatalyst. It is effective for materials.

【0037】[0037]

【実施例】以下、本発明を実施例および比較例によりさ
らに具体的に説明する。なお、これは単に例示であっ
て、本発明を制限するものではない。
The present invention will be more specifically described below with reference to examples and comparative examples. Note that this is merely an example and does not limit the present invention.

【0038】本明細書において、酸化チタン微粒子の平
均粒径(SEM径)、円形度係数、比表面積および不純
物は以下の方法により測定した。 1)平均粒径D1 :電子顕微鏡(SEM)により微粒子
を観察し、そのSEM画像を画像解析装置(東洋紡
(株)製 画像解析システム Image Analyzer V10)に
取り込み、画像を円と仮定し面積より換算した円相当径
を測定した(解析粒子数:約200個。) 2)円形度係数:上記SEM画像より東洋紡績(株)製
画像解析装置 V10型により測定した。 3)BET比表面積:BET法により測定した。 4)平均粒径D2 :BET比表面積及び酸化チタンの真
比重から平均粒径を算出した。 5)不純物の定量:酸化チタン中のFe,Al ,Siお
よびNa成分:原子吸光法により測定した。酸化チタン
中のCl 成分:吸光光度法により測定した。
In the present specification, the average particle size (SEM diameter), circularity coefficient, specific surface area and impurities of titanium oxide fine particles were measured by the following methods. 1) Average particle diameter D 1 : Fine particles are observed by an electron microscope (SEM), the SEM image is taken into an image analyzer (Image Analyzer V10, manufactured by Toyobo Co., Ltd.), and the image is assumed to be a circle. The converted circle equivalent diameter was measured (number of analyzed particles: about 200). 2) Circularity coefficient: Measured from the above SEM image using an image analyzer V10 manufactured by Toyobo Co., Ltd. 3) BET specific surface area: measured by the BET method. 4) Average particle size D 2 : The average particle size was calculated from the BET specific surface area and the true specific gravity of titanium oxide. 5) Quantification of impurities: Fe, Al, Si and Na components in titanium oxide: Measured by atomic absorption method. Cl component in titanium oxide: measured by an absorption spectrophotometry.

【0039】実施例1 四塩化チタンを気相中で酸素及び水素と接触させ酸化さ
せる気相法により酸化チタン微粒子を調製した。まず、
内径400mmの多重管バーナーを上部に具備した気相反
応管において、多重管バーナーに、約800℃に予熱し
気化させた四塩化チタン及び水素ガスの混合ガスを供給
し、一方別の供給ノズルより800℃に予熱した酸素ガ
スを供給し、気相反応管内で約1000℃にて酸化反応
させ、酸化チタン微粒子を生成させた。このとき四塩化
チタンは60l/分、水素ガスは40l/分、酸素ガスは3
80l/分でそれぞれ供給した。その後、気相反応管の底
部から空気を400l/分で挿入し、生成した酸化チタン
微粒子を冷却した。その後、得られた酸化チタン微粒子
窒素雰囲気中で350℃〜400℃で2時間加熱処理し
た。このようにして得られた球状酸化チタン微粒子の平
均粒径D1 、円形度係数、比表面積、平均粒径D2 、D
1 /D2 及び不純物の含量を表1に示す。
Example 1 Titanium oxide fine particles were prepared by a gas phase method in which titanium tetrachloride was brought into contact with oxygen and hydrogen in a gas phase and oxidized. First,
In a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm, a mixed gas of titanium tetrachloride and hydrogen gas preheated and vaporized to about 800 ° C. is supplied to the multi-tube burner, and from another supply nozzle Oxygen gas preheated to 800 ° C. was supplied and oxidized at about 1000 ° C. in a gas phase reaction tube to generate titanium oxide fine particles. At this time, titanium tetrachloride was 60 l / min, hydrogen gas was 40 l / min, and oxygen gas was 3 l / min.
Each was fed at 80 l / min. Thereafter, air was inserted at a rate of 400 l / min from the bottom of the gas phase reaction tube to cool the generated titanium oxide fine particles. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. The average particle size D 1 , circularity coefficient, specific surface area, average particle size D 2 , D
Table 1 shows 1 / D 2 and the content of impurities.

【0040】実施例2 まず、内径400mmの多重管バーナーを上部に具備した
気相反応管において、多重管バーナーに、約800℃に
予熱し気化させた四塩化チタン、水素ガス及び窒素ガス
の混合ガスを供給し、一方別の供給ノズルより800℃
に予熱した酸素ガス及び窒素ガスの混合ガスを供給し、
気相反応管内で約1000℃にて酸化反応させ、酸化チ
タン微粒子を生成させた。このとき四塩化チタン混合ガ
スは、四塩化チタン60l/分、水素ガス40l/分、窒素
ガス20l/分、酸素380l/分と窒素ガス120l/分と
からなる酸素混合ガス500l/分をそれぞれ供給した。
その後、気相反応管の底部から冷却ガスとして空気を4
00l/分で挿入し、生成した酸化チタン微粒子を冷却し
た。その後、得られた酸化チタン微粒子窒素雰囲気中で
350℃〜400℃で2時間加熱処理した。このように
して得られた球状酸化チタン微粒子の平均粒径D1 、円
形度係数、比表面積、平均粒径D2 、D1 /D2 及び不
純物の含量を表1に示す。
Example 2 First, in a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm at the top, a mixture of titanium tetrachloride, hydrogen gas, and nitrogen gas preheated and vaporized to about 800 ° C. Supply gas, while 800 ° C from another supply nozzle
Supply a pre-heated mixed gas of oxygen gas and nitrogen gas to
An oxidation reaction was performed at about 1000 ° C. in a gas-phase reaction tube to generate titanium oxide fine particles. At this time, the titanium tetrachloride mixed gas is supplied at a rate of 60 l / min of titanium tetrachloride, 40 l / min of hydrogen gas, 20 l / min of nitrogen gas, 500 l / min of an oxygen mixed gas composed of 380 l / min of oxygen and 120 l / min of nitrogen gas, respectively. did.
After that, air was supplied as cooling gas from the bottom of the gas-phase reaction tube.
At a rate of 00 l / min, the generated titanium oxide fine particles were cooled. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. Table 1 shows the average particle diameter D 1 , the circularity coefficient, the specific surface area, the average particle diameters D 2 , D 1 / D 2, and the content of impurities of the spherical titanium oxide fine particles thus obtained.

【0041】実施例3 冷却ガスとして空気を500l/分で挿入した以外は、実
施例2と同様にして酸化チタン微粒子を調製した。得ら
れた球状酸化チタン微粒子の平均粒径D1 、円形度係
数、比表面積、平均粒径D2 、D1 /D2 及び不純物の
含量を表1に示す。また、得られた球状酸化チタン微粒
子のSEM写真を図1に示す。
Example 3 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that air was inserted at 500 l / min as a cooling gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles. FIG. 1 shows an SEM photograph of the obtained spherical titanium oxide fine particles.

【0042】実施例4 冷却ガスとして空気を800l/分で挿入した以外は、実
施例2と同様にして酸化チタン微粒子を調製した。得ら
れた球状酸化チタン微粒子の平均粒径D1 、円形度係
数、比表面積、平均粒径D2 、D1 /D2 及び不純物の
含量を表1に示す。
Example 4 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that air was introduced at 800 l / min as a cooling gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles.

【0043】実施例5 酸素混合ガス500l/分に代えて、酸素ガス240l/分
と窒素ガス120l/分とからなる酸素混合ガス360l/
分を用いた以外は、実施例4と同様にして酸化チタン微
粒子を調製した。得られた球状酸化チタン微粒子の平均
粒径D1 、円形度係数、比表面積、平均粒径D2 、D1
/D2 及び不純物の含量を表1に示す。
Embodiment 5 Instead of 500 l / min of oxygen mixed gas, 360 l / oxygen mixed gas consisting of 240 l / min of oxygen gas and 120 l / min of nitrogen gas was used.
The titanium oxide fine particles were prepared in the same manner as in Example 4 except that the amount of titanium oxide was used. The average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameters D 2 , D 1 of the obtained spherical titanium oxide fine particles
Table 1 shows / D 2 and the content of impurities.

【0044】実施例6 四塩化チタンの供給量を100l/分とし四塩化チタンを
窒素ガスで希釈しなかった以外は実施例4と同様にして
酸化チタン微粒子を調製した。得られた球状酸化チタン
微粒子の平均粒径D1 、円形度係数、比表面積、平均粒
径D2 、D1 /D2 及び不純物の含量を表1に示す。
Example 6 Titanium oxide fine particles were prepared in the same manner as in Example 4 except that the supply amount of titanium tetrachloride was 100 l / min and the titanium tetrachloride was not diluted with nitrogen gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles.

【0045】比較例1 水素ガスを使用しなかった以外は実施例2と同様にして
酸化チタン微粒子を調製した。得られた酸化チタン微粒
子の平均粒径D1 、円形度係数、比表面積、平均粒径D
2 、D1 /D2 及び不純物の含量を表1に示す。また、
得られた酸化チタン微粒子のSEM写真を図2に示す。
Comparative Example 1 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that no hydrogen gas was used. Average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D of the obtained titanium oxide fine particles
Table 1 shows the contents of D 2 , D 1 / D 2 and impurities. Also,
FIG. 2 shows an SEM photograph of the obtained titanium oxide fine particles.

【0046】比較例2 まず、内径400mmの多重管バーナーを上部に具備した
気相反応管において、多重管バーナーに、約800℃に
予熱し気化させた四塩化チタンガスを供給し、一方別の
供給ノズルより800℃に予熱した酸素ガス及び水蒸気
を供給し、気相反応管内で約1000℃にて酸化反応さ
せ、酸化チタン微粒子を生成させた。このとき四塩化チ
タンは200l/分、酸素ガスは380l/分、水蒸気は1
70l/分でそれぞれ供給した。その後、気相反応管の底
部から空気を100l/分で挿入し、生成した酸化チタン
微粒子を冷却した。その後、得られた酸化チタン微粒子
窒素雰囲気中で350℃〜400℃で2時間加熱処理し
た。このようにして得られた酸化チタン微粒子の平均粒
径D1 、円形度係数、比表面積、平均粒径D2 、D1
2 及び不純物の含量を表1に示す。
Comparative Example 2 First, in a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm at the upper part, titanium tetrachloride gas preheated to about 800 ° C. and vaporized was supplied to the multi-tube burner. Oxygen gas and water vapor preheated to 800 ° C. were supplied from a supply nozzle, and an oxidation reaction was performed at about 1000 ° C. in a gas phase reaction tube to generate titanium oxide fine particles. At this time, titanium tetrachloride was 200 l / min, oxygen gas was 380 l / min, and water vapor was 1 l / min.
Each was fed at 70 l / min. Thereafter, air was inserted at a rate of 100 l / min from the bottom of the gas phase reaction tube to cool the generated titanium oxide fine particles. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. The average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D of the titanium oxide fine particles thus obtained are described.
The content of D 2 and impurities shown in Table 1.

【0047】[0047]

【表1】 ※表中「10>」は含量が10ppm 未満であることを示す。[Table 1] * "10>" in the table indicates that the content is less than 10 ppm.

【0048】[0048]

【発明の効果】以上説明したように、本発明の製造方法
によって得られた酸化チタン微粒子は、従来の気相法に
よる酸化チタンとは異なり、形状が球状で、溶媒に懸濁
した際に優れた分散性を示す。
As described above, the titanium oxide fine particles obtained by the production method of the present invention have a spherical shape and are excellent when suspended in a solvent, unlike titanium oxide obtained by a conventional gas phase method. Shows good dispersibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3で調製された酸化チタン微粒子のSE
M写真である。
FIG. 1 shows SE of titanium oxide fine particles prepared in Example 3.
It is an M photograph.

【図2】比較例1で調製された酸化チタン微粒子のSE
M写真である。
FIG. 2 shows SE of titanium oxide fine particles prepared in Comparative Example 1.
It is an M photograph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 隆 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 Fターム(参考) 4G047 CA02 CB04 CC03 CD03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Takashi Fujii 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. F-term (reference) 4G047 CA02 CB04 CC03 CD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 四塩化チタンの気相反応において、標準
状態であると仮定したとき、四塩化チタンガス1l に対
し、酸素1〜30l 及び水素0.1〜10lの割合で反
応させ、且つ、反応部における四塩化チタンガス濃度が
20容量%以下であることを特徴とする酸化チタン微粒
子の製造方法。
1. In a gas phase reaction of titanium tetrachloride, assuming that it is in a standard state, 1 l of titanium tetrachloride gas is reacted with 1 to 30 l of oxygen and 0.1 to 10 l of hydrogen, and A method for producing titanium oxide fine particles, wherein a titanium tetrachloride gas concentration in a reaction section is 20% by volume or less.
【請求項2】 標準状態であると仮定したとき、前記四
塩化チタンガス1lが、四塩化チタンガス1l と不活性
ガス0.1〜10l とからなる希釈化四塩化チタンガス
であることを特徴とする請求項1記載の酸化チタン微粒
子の製造方法。
2. Assuming that the gas is in a standard state, the titanium tetrachloride gas 1 liter is a diluted titanium tetrachloride gas composed of titanium tetrachloride gas 1 l and an inert gas 0.1 to 10 l. The method for producing fine titanium oxide particles according to claim 1.
【請求項3】 標準状態であると仮定したとき、前記酸
素1l が、酸素1lに対し不活性ガスを0.1〜10l
含む希釈化酸素であることを特徴とする請求項1又は2
記載の酸化チタン微粒子の製造方法。
3. Assuming a standard condition, 1 liter of oxygen contains 0.1 to 10 liters of inert gas per liter of oxygen.
3. Diluted oxygen containing oxygen.
A method for producing the titanium oxide fine particles according to the above.
【請求項4】 生成した酸化チタン微粒子に空気又は不
活性ガスからなる冷却ガスを接触させ冷却することを特
徴とする請求項1〜3のいずれか1項記載の酸化チタン
微粒子の製造方法。
4. The method for producing fine titanium oxide particles according to claim 1, wherein the generated fine titanium oxide particles are contacted with a cooling gas comprising air or an inert gas for cooling.
【請求項5】 前記冷却ガスの接触量が、標準状態であ
ると仮定したとき、四塩化チタンガス1l に対し1l 以
上であることを特徴とする請求項4に記載の酸化チタン
微粒子の製造方法。
5. The method for producing titanium oxide fine particles according to claim 4, wherein the contact amount of the cooling gas is 1 l or more per 1 l of titanium tetrachloride gas, assuming that the contact amount is in a standard state. .
JP32953299A 1999-11-19 1999-11-19 Method for producing titanium oxide fine particles Expired - Lifetime JP3787254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32953299A JP3787254B2 (en) 1999-11-19 1999-11-19 Method for producing titanium oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32953299A JP3787254B2 (en) 1999-11-19 1999-11-19 Method for producing titanium oxide fine particles

Publications (2)

Publication Number Publication Date
JP2001151510A true JP2001151510A (en) 2001-06-05
JP3787254B2 JP3787254B2 (en) 2006-06-21

Family

ID=18222430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32953299A Expired - Lifetime JP3787254B2 (en) 1999-11-19 1999-11-19 Method for producing titanium oxide fine particles

Country Status (1)

Country Link
JP (1) JP3787254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
WO2005092797A1 (en) * 2004-03-26 2005-10-06 Toho Titanium Co., Ltd. Anatase-type titanium oxide powder and method for producing same
JP2007112689A (en) * 2005-10-24 2007-05-10 Tdk Corp Method of manufacturing dielectronic powder, composite electronic component, and method of manufacturing the same
JP2009196889A (en) * 2009-06-08 2009-09-03 Fujikura Ltd Titanium oxide particle
US7686881B2 (en) 2003-12-03 2010-03-30 Degussa Ag Flame-hydrolytically produced titanium dioxide powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
US7686881B2 (en) 2003-12-03 2010-03-30 Degussa Ag Flame-hydrolytically produced titanium dioxide powder
WO2005092797A1 (en) * 2004-03-26 2005-10-06 Toho Titanium Co., Ltd. Anatase-type titanium oxide powder and method for producing same
KR100800935B1 (en) 2004-03-26 2008-02-04 도호 티타늄 가부시키가이샤 Anatase-type titanium oxide powder and method for producing same
US7585488B2 (en) 2004-03-26 2009-09-08 Toho Titanium Co., Ltd. Anatase-type titanium oxide powder and method for producing same
JP4739187B2 (en) * 2004-03-26 2011-08-03 東邦チタニウム株式会社 Anatase type titanium oxide powder and method for producing the same
JP2007112689A (en) * 2005-10-24 2007-05-10 Tdk Corp Method of manufacturing dielectronic powder, composite electronic component, and method of manufacturing the same
JP2009196889A (en) * 2009-06-08 2009-09-03 Fujikura Ltd Titanium oxide particle

Also Published As

Publication number Publication date
JP3787254B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
Chan et al. Effects of calcination on the microstructures and photocatalytic properties of nanosized titanium dioxide powders prepared by vapor hydrolysis
JP2005289798A (en) Manufacturing process for titanium dioxide nanopowder
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
JP4739187B2 (en) Anatase type titanium oxide powder and method for producing the same
CA2385695C (en) Particulate titanium oxide and production process therefor
JP5553601B2 (en) Method for producing titanium oxide powder
JP4445972B2 (en) Titanium dioxide powder produced by flame hydrolysis
JP4234298B2 (en) Method for producing titanium oxide fine particles
JP3787254B2 (en) Method for producing titanium oxide fine particles
US7413726B2 (en) Synthesis of ultrafine rutile phase titanium dioxide particles
JP4177920B2 (en) Method for producing high-purity titanium oxide powder
JP4530238B2 (en) Method for producing titanium oxide powder containing anatase-type titanium oxide single crystal
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
JP2001287996A (en) Anatase-type titanium oxide single crystal
JP4084463B2 (en) Titanium oxide powder for photocatalyst
JP2001220141A (en) Titanium oxide dispersion
JP4313535B2 (en) Fine particle titanium oxide composite, method for producing the composite, and composite composition
Maskrot et al. Blue TiO/SiO2 nanoparticles by laser pyrolysis
JPS61201604A (en) Preparation of spherical superfine particle of metal oxide
US7449166B2 (en) Particulate titanium oxide and production process therefor
JP4625942B2 (en) Visible light responsive titanium oxide powder photocatalyst and process for producing the same
JP4812213B2 (en) Fine particulate titanium oxide and method for producing the same
JP5231195B2 (en) Method for producing low halogen titanium oxide powder
TW200900142A (en) Highly photosensitive titanium dioxide and process for forming the same
JP2004049969A (en) Method for producing titanium oxide having visible light photo-catalytic activity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Ref document number: 3787254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term