JP2001144291A - Horizontal-type field effect transistor - Google Patents
Horizontal-type field effect transistorInfo
- Publication number
- JP2001144291A JP2001144291A JP2000318837A JP2000318837A JP2001144291A JP 2001144291 A JP2001144291 A JP 2001144291A JP 2000318837 A JP2000318837 A JP 2000318837A JP 2000318837 A JP2000318837 A JP 2000318837A JP 2001144291 A JP2001144291 A JP 2001144291A
- Authority
- JP
- Japan
- Prior art keywords
- hole
- wiring
- region
- drain region
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば小型モータ駆動
用LSIなどに利用される横型電界効果トランジスタに
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral field effect transistor used for, for example, a small motor driving LSI.
【0002】[0002]
【従来の技術】格子点上にソース領域およびドレイン領
域を配置し、それらを囲んで網目状にゲート電極を設け
た横型電界効果トランジスタ (以下FETと記す) は、
例えばIEEE 1922 CUSTOM IC CONFERENCE、25.7.1〜25.
7.4にSAKAMOTOらによって発表されているように低オン
抵抗のパワー用MOSFETとして知られている。図2
(a) 、(b) はnMOSFETを示し、同図(a) のB−B
線断面図である同図(b) に示すように、N形基板1の表
面層に形成されたPベース領域21とN- ドレイン領域22
にそれぞれN+ ソース領域23およびN+ ドレイン領域24
が形成されている。ゲート電極3は、各N+ ソース領域
23とN- ドレイン領域24との間の表面上に、ゲート酸化
膜41を介して網目状の平面形状に形成されている。ゲー
ト電極3を覆う絶縁膜42に開けられた接触孔61で下層Al
配線51がN+ ソース領域23に接触し、接触孔62では下層
Al配線52がN+ ドレイン領域24に接触している。ソース
側配線51は絶縁膜42の上に延び、透視平面図である図2
(a) に示すように、ドレイン側配線52と間隙7を除く全
面に広がっている。この下層Al配線51を覆う層間絶縁膜
43に接触孔62の直上で開けられた貫通孔63で上層Al配線
53が下層Al配線52と接触している。図2(a) に示すよう
に、ソースおよびドレインは格子点上に交互に入れ替わ
って形成されている。図3は図2のX部を拡大して示し
たもので、表面はパッシベーション膜44で覆われてい
る。2. Description of the Related Art A lateral field effect transistor (hereinafter referred to as FET) in which a source region and a drain region are arranged on lattice points and a gate electrode is provided so as to surround the source region and the drain region,
For example, IEEE 1922 CUSTOM IC CONFERENCE, 25.7.1-25.
It is known as a low on-resistance power MOSFET as announced by SAKAMOTO et al. In 7.4. FIG.
(a) and (b) show an nMOSFET, and BB of FIG.
As shown in FIG. 2B, which is a sectional view taken along the line, a P base region 21 and an N − drain region 22 formed in the surface layer of the N-type substrate 1 are formed.
N + source region 23 and N + drain region 24
Are formed. The gate electrode 3 is connected to each N + source region.
On a surface between 23 and the N − drain region 24, a net-like planar shape is formed via a gate oxide film 41. The lower layer Al is formed by a contact hole 61 formed in the insulating film 42 covering the gate electrode 3.
The wiring 51 contacts the N + source region 23, and the lower
Al wiring 52 is in contact with N + drain region 24. The source side wiring 51 extends over the insulating film 42 and is a perspective plan view of FIG.
As shown in (a), the wiring extends over the entire surface except for the drain-side wiring 52 and the gap 7. An interlayer insulating film covering the lower Al wiring 51
The upper layer Al wiring is formed in the through hole 63 formed just above the contact hole 62 in 43.
53 is in contact with the lower layer Al wiring 52. As shown in FIG. 2A, the source and the drain are alternately formed on the lattice points. FIG. 3 is an enlarged view of the portion X in FIG. 2, and the surface is covered with a passivation film 44.
【0003】図4(a) 、(b) に示すpMOSFET構造
では、n形基板1の表面にN+ ソース領域25が直接、P
+ ドレイン領域26がP- ドレイン領域27を介して形成さ
れている。この場合、ドレイン側上層Al配線53のための
貫通孔63は、接触孔62の横上方向に形成されている。In the pMOSFET structure shown in FIGS. 4A and 4B, an N + source region 25 is directly
+ Drain region 26 is formed via P - drain region 27. In this case, the through hole 63 for the drain-side upper layer Al wiring 53 is formed in a laterally upper direction of the contact hole 62.
【0004】[0004]
【発明が解決しようとする課題】図2、図3に示す構造
では、接触孔62の直上の貫通孔63で上層配線53が下層配
線52と接触しているため、下層金属配線51の幅やその面
積が無駄なくとれ、下層金属配線51の抵抗を低減できる
という利点があるが、接触孔62形成時、接触孔62に入り
込む下層金属配線52の形状は図3のように歪んでいるた
め、その後形成する絶縁膜が、貫通孔63形成時エッチン
グされず残存し、貫通孔抵抗を大幅に増加させる危険性
がある。また、例えエッチングされたとしても、通常よ
り貫通孔63の深さは深くなり、上層金属配線53が入りこ
みにくくなり、貫通孔抵抗は大幅に増加し、最悪の場合
はドレイン側の上層金属配線53と下層金属配線52が全く
接触せず、デバイスが形成されない可能性がある。In the structure shown in FIGS. 2 and 3, since the upper wiring 53 is in contact with the lower wiring 52 in the through hole 63 immediately above the contact hole 62, the width of the lower metal wiring 51 is reduced. There is an advantage that the area can be taken without waste and the resistance of the lower metal wiring 51 can be reduced. However, when the contact hole 62 is formed, the shape of the lower metal wiring 52 entering the contact hole 62 is distorted as shown in FIG. The insulating film formed thereafter remains without being etched when the through-hole 63 is formed, and there is a risk that the through-hole resistance is greatly increased. Also, even if etched, the depth of the through-hole 63 becomes deeper than usual, making it difficult for the upper-layer metal wiring 53 to penetrate, greatly increasing the through-hole resistance, and in the worst case, the upper-layer metal wiring 53 on the drain side. And the lower metal wiring 52 do not contact at all, and there is a possibility that a device is not formed.
【0005】また、図4に示す構造では、貫通孔63は接
触孔62の横上に形成されるが、ソース・ドレイン方向に
形成されるため、その方向に直交する、ソース・ドレイ
ン間の上部における下層配線51の幅dが狭くなる。これ
により、下層配線抵抗が増加する。また大電流を流す
際、同じデバイスサイズで比較すると電流密度が大きく
なり、マイグレーションを引き起こし易くなる。この対
策として電流方向に対するデバイス横幅を大きくしなけ
ればならず、デバイスレイアウトの自由度が減少する。
また、半導体基板内でのデバイス周期、すなわちソース
・ドレイン間距離の微細化を進めようとしても、貫通孔
63がソース・ドレイン方向にあるため、下層金属配線、
接触孔、貫通孔のデザインルールにより、デバイス周期
は決定される。また、上記下層配線51のパターンのう
ち、幅に関して最も影響を受けるのは幅dであるが他の
方向でも狭くなることはいうまでもない。In the structure shown in FIG. 4, the through hole 63 is formed on the side of the contact hole 62, but is formed in the source / drain direction. In this case, the width d of the lower wiring 51 becomes smaller. Thereby, the lower layer wiring resistance increases. Further, when a large current is applied, the current density is increased when compared with the same device size, and migration is easily caused. As a countermeasure, the device width in the current direction must be increased, and the degree of freedom in device layout is reduced.
Also, even if the device cycle in the semiconductor substrate, that is, the miniaturization of the distance between the source and the drain is advanced, the through hole
Since 63 is in the source / drain direction, the lower metal wiring,
The device cycle is determined by the design rule of the contact hole and the through hole. Further, among the patterns of the lower layer wiring 51, the width d is most affected with respect to the width, but it goes without saying that the width d is reduced in other directions.
【0006】本発明の目的は、上述の問題を解決し、半
導体基板の表面層に交互に形成されたソース領域とドレ
イン領域のうちのソース領域に接続される、下層配線の
幅および面積を確保することにより下層配線抵抗を低減
し、デバイスレイアウトの自由度を向上してデバイス周
期の微細化を可能にする低オン抵抗横型FETを提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to secure the width and area of a lower-layer wiring connected to a source region of a source region and a drain region alternately formed on a surface layer of a semiconductor substrate. Accordingly, it is an object of the present invention to provide a low-on-resistance lateral FET capable of reducing the lower-layer wiring resistance, improving the degree of freedom in device layout, and making the device cycle finer.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、半導体基板に形成された横型電界効果
トランジスタの長手方向が互いに平行な帯状で交互に形
成された複数のソース領域と複数のドレイン領域とを、
前記ソース領域および前記ドレイン領域を覆う絶縁膜に
開けられた接続孔を介して接続される下層配線によって
それぞれ接続し、該各下層配線上の層間絶縁膜に開けら
れた貫通孔を介し前記下層配線のうちいずれか一方と上
層配線とをを接続する横型電界効果トランジスタにおい
て、前記貫通孔と該貫通孔が接続される下層配線の接続
孔とを、前記ソース領域と前記ドレイン領域が互いに平
行で交互に並ぶ方向に対して角度をなし、前記ソース領
域またはドレイン領域の長手方向の一直線上に並べて形
成することが有効である。In order to achieve the above object, the present invention is directed to a lateral field effect transistor formed on a semiconductor substrate, wherein a plurality of source regions are formed alternately in a strip shape in which the longitudinal direction is parallel to each other. And the plurality of drain regions,
The lower wirings are connected to each other by lower wirings connected through connection holes formed in an insulating film covering the source region and the drain region, and the lower wirings are formed through through holes formed in an interlayer insulating film on the lower wirings. In the lateral field-effect transistor connecting any one of the above and the upper layer wiring, the source region and the drain region are alternately arranged in parallel with each other so that the through hole and the connection hole of the lower layer wiring to which the through hole is connected are parallel to each other. It is effective to form an angle with respect to the direction in which the source region or the drain region is arranged on a straight line in the longitudinal direction of the source region or the drain region.
【0008】また、前記貫通孔を接続しない側の下層配
線は、前記貫通孔が接続される下層配線とこれを所定の
間隔で取り囲む領域を除いた部分を覆うように形成する
ことも有効である。It is also effective that the lower wiring not connected to the through hole is formed so as to cover the lower wiring to which the through hole is connected and a portion excluding a region surrounding the lower wiring at a predetermined interval. .
【0009】[0009]
【作用】ドレイン領域への接続のための層間絶縁膜貫通
孔と接続孔とを結ぶ方向を、ソースドレイン両領域への
接触孔間を結ぶ方向と一致させないことによりソース領
域に接続される下層配線のドレイン領域側への広がりの
制約が減少し、下層配線の抵抗を高めることなくデバイ
ス周期の微細化が可能となる。これにより、デバイス面
積が縮小され、集積デバイス数の増加あるいは下層配線
抵抗の減少より低オン抵抗にできる。また、エレクトロ
マイグレーションの危険性低減によりデバイスレイアウ
トの自由度が向上する。The lower wiring connected to the source region by not making the direction connecting the through hole of the interlayer insulating film for connection to the drain region and the connection hole coincide with the direction connecting the contact holes to both the source and drain regions. In the drain region side is reduced, and the device period can be miniaturized without increasing the resistance of the lower wiring. As a result, the device area can be reduced, and the on-resistance can be made lower than the increase in the number of integrated devices or the decrease in the lower layer wiring resistance. Further, the degree of freedom in device layout is improved by reducing the risk of electromigration.
【0010】[0010]
【実施例】以下、図2〜4と共通の部分に同一の符号を
付した図を引用して本発明の実施例について述べる。図
1(a) 、(b) に本発明の一実施例の横型DMOS構造を
示し、図(a) のA−A線断面図である同図(b) に示すよ
うに、P基板11上にN埋込み層12を介して抵抗率3Ω・
cm程度で厚さ約4μmのN形エピタキシャル層1が形成
されている。N層1の表面からのイオン注入により、表
面濃度1017/cm3 程度のPベース領域21、その領域内に
N+ ソース領域23、また表面濃度1017/cm3 程度のNド
レイン領域22、その領域内にN+ ドレイン領域24が形成
されている。ソース領域23とNドレイン領域22の間の表
面は、数百Åの厚さのゲート酸化膜41で被覆され、その
上からフィールド酸化膜45の上にかけて数千Åの厚さの
多結晶シリコン層を堆積し、パターニングしてなるゲー
ト電極3が設けられている。ゲート電極3を覆う絶縁膜
42に開けられた接触孔61内でN+ ソース領域23とPベー
ス領域21を短絡するソース側下層Al配線51と、同様の接
触孔62内でN+ ドレイン領域24に接触するドレイン側下
層Al配線52が形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which parts common to those in FIGS. 1A and 1B show a lateral DMOS structure according to an embodiment of the present invention. As shown in FIG. 1B, which is a cross-sectional view taken along line AA of FIG. 3 N through the N buried layer 12
An N-type epitaxial layer 1 having a thickness of about 4 cm and a thickness of about 4 cm is formed. By ion implantation from the surface of the N layer 1, a P base region 21 having a surface concentration of about 10 17 / cm 3 , an N + source region 23 therein, an N drain region 22 having a surface concentration of about 10 17 / cm 3 , An N + drain region 24 is formed in that region. The surface between the source region 23 and the N drain region 22 is covered with a gate oxide film 41 having a thickness of several hundreds of 、, and a polycrystalline silicon layer having a thickness of several thousand か け て over the field oxide film 45. Is provided and a gate electrode 3 is formed by patterning. Insulating film covering gate electrode 3
A source-side lower Al wiring 51 that short-circuits the N + source region 23 and the P base region 21 in a contact hole 61 opened in 42, and a drain-side lower Al contacting the N + drain region 24 in a similar contact hole 62. The wiring 52 is formed.
【0011】ソース領域23およびドレイン領域24は平行
な帯状に形成され、接触孔61には、特開平2−154469号
公報で公知のようにNソース領域23をPベース領域に短
絡するためのP+ コンタクト領域25が露出している。ド
レイン領域24の上では、接触孔62と層間絶縁膜貫通孔63
が一線状に形成されているが、ソース領域23への接触孔
61に対しては90°の方向にある。The source region 23 and the drain region 24 are formed in a parallel band shape, and a contact hole 61 is provided with a P for short-circuiting the N source region 23 to the P base region as known in Japanese Patent Application Laid-Open No. 2-154469. + Contact region 25 is exposed. Above the drain region 24, the contact hole 62 and the interlayer insulating film through hole 63
Are formed linearly, but the contact hole to the source region 23 is formed.
It is at 90 ° to 61.
【0012】このLSIにおけるデバイス周期は7.9μ
mで、ソース、ドレイン接触孔61、62、貫通孔63、下層
Al配線51、52のみ透視的平面図である図1(a) に示すよ
うに、ソースおよびドレインは交互に形成されている。
ドレイン接触孔62の面積は、デザインルール最小値の1.
2μm×1.2μmであり、ドレイン接触孔62に、ソース−
ドレインが並ぶ方向から90°の角度をなして1.2μmの
間隔で同様にデザインルール最小値の1.2μm×1.2μm
の面積の層間絶縁膜43の貫通孔63が開けられている。The device cycle of this LSI is 7.9 μm.
m, source and drain contact holes 61, 62, through hole 63, lower layer
As shown in FIG. 1A which is a perspective plan view of only the Al wirings 51 and 52, the source and the drain are alternately formed.
The area of the drain contact hole 62 is 1.
2 μm × 1.2 μm, and the source contact
Similarly, at the interval of 1.2μm at an angle of 90 ° from the direction in which the drains are lined up, the minimum design rule value of 1.2μm × 1.2μm
The through hole 63 of the interlayer insulating film 43 having the area of?
【0013】これにより、下層Al配線51の幅を2倍に広
くすることができた。その結果、下層配線51の抵抗が50
%減少し、低オン抵抗化が促進された。また、マイグレ
ーション対策上必要なデバイス横幅も50%減少するた
め、デバイスレイアウトの自由度が増す。以上の説明お
よび図面におけるドレイン領域とソース領域を入れ換え
ても同様に本願発明の効果を得ることは明らかである。As a result, the width of the lower Al wiring 51 can be doubled. As a result, the resistance of the lower wiring 51 becomes 50
%, And a reduction in on-resistance was promoted. Also, since the device width required for migration measures is reduced by 50%, the degree of freedom in device layout is increased. It is apparent that the effects of the present invention can be similarly obtained even if the drain region and the source region in the above description and drawings are exchanged.
【0014】[0014]
【発明の効果】本発明によれば、下層配線のドレイン領
域との接続のため接触孔の直上をはずして形成する層間
絶縁膜貫通孔を、その接触孔に対してソース領域に接触
する接触孔とを結ぶ方向と異なる方向に形成することに
より、ソース領域に接続される下層配線のソース、ドレ
イン間に広がりの制約が少なくなり、その下層配線の幅
あるいは面積を大きくできる。これによりデバイス面積
の縮小あるいはソース領域接続下層配線の幅の増大がで
きるためオン抵抗のより一層の低減が可能になる。また
デバイスレイアウトの自由度が向上し、微細化に対し有
利となる。According to the present invention, a through hole formed between an interlayer insulating film formed by removing a contact hole just above a contact hole for connection with a drain region of a lower wiring, and a contact hole contacting a source region with respect to the contact hole. Are formed in a direction different from the direction connecting the source and drain, the restriction of the spread between the source and the drain of the lower wiring connected to the source region is reduced, and the width or area of the lower wiring can be increased. As a result, the device area can be reduced or the width of the lower wiring connected to the source region can be increased, so that the on-resistance can be further reduced. Further, the degree of freedom in device layout is improved, which is advantageous for miniaturization.
【図1】本発明の一実施例の横型FETを示し、(a) は
上部構造を除いての平面図、(b) は(a) のA−A線断面
図FIGS. 1A and 1B show a lateral FET according to an embodiment of the present invention, wherein FIG. 1A is a plan view excluding an upper structure, and FIG. 1B is a cross-sectional view taken along line AA of FIG.
【図2】従来の横型FETの一例を示し、(a) は上部構
造を除いての平面図、(b) は(a) のB−B線断面図2A and 2B show an example of a conventional lateral FET, wherein FIG. 2A is a plan view excluding an upper structure, and FIG. 2B is a sectional view taken along line BB of FIG.
【図3】図2のX部拡大図FIG. 3 is an enlarged view of a part X in FIG. 2;
【図4】従来の横型FETの別の例を示し、(a) は上部
構造を除いての平面図、(b) は(a) のC−C線断面図4A and 4B show another example of a conventional lateral FET, wherein FIG. 4A is a plan view excluding an upper structure, and FIG. 4B is a cross-sectional view taken along line CC of FIG.
1 N層 21 Pベース領域 22 Nドレイン領域 23 N+ ソース領域 24 N+ ドレイン領域 3 ゲート電極 41 ゲート酸化膜 42 絶縁膜 43 層間絶縁膜 51 ソース側下層配線 52 ドレイン側下層配線 53 上層配線 61、62 接触孔 63 貫通孔 7 間隙DESCRIPTION OF SYMBOLS 1 N layer 21 P base region 22 N drain region 23 N + source region 24 N + drain region 3 Gate electrode 41 Gate oxide film 42 Insulating film 43 Interlayer insulating film 51 Source side lower layer wiring 52 Drain side lower layer wiring 53 Upper layer wiring 61, 62 Contact hole 63 Through hole 7 Gap
Claims (2)
ンジスタの長手方向が互いに平行な帯状で交互に形成さ
れた複数のソース領域と複数のドレイン領域とを、前記
ソース領域および前記ドレイン領域を覆う絶縁膜に開け
られた接続孔を介して接続される下層配線によってそれ
ぞれ接続し、該各下層配線上の層間絶縁膜に開けられた
貫通孔を介し前記下層配線のうちいずれか一方と上層配
線とをを接続する横型電界効果トランジスタにおいて、 前記貫通孔と該貫通孔が接続される下層配線の接続孔と
を、前記ソース領域と前記ドレイン領域が互いに平行で
交互に並ぶ方向に対して角度をなし、前記ソース領域ま
たはドレイン領域の長手方向の一直線上に並べて形成す
ることを特徴とする横型電界効果トランジスタ。1. A lateral field effect transistor formed on a semiconductor substrate covers a plurality of source regions and a plurality of drain regions alternately formed in a band shape in which the longitudinal direction is parallel to each other, and covers the source region and the drain region. Each of the lower wirings is connected to each other by a lower wiring connected through a connection hole formed in the insulating film, and one of the lower wirings and the upper wiring are connected through a through hole formed in the interlayer insulating film on each lower wiring. Wherein the through-hole and the connection hole of the lower wiring to which the through-hole is connected are formed at an angle with respect to a direction in which the source region and the drain region are arranged in parallel and alternately with each other. A lateral field-effect transistor formed so as to be aligned on a straight line in a longitudinal direction of the source region or the drain region.
タにおいて、前記貫通孔を接続しない側の下層配線は、
前記貫通孔が接続される下層配線とこれを所定の間隔で
取り囲む領域を除いた部分を覆うように形成することを
特徴とする横型電界効果トランジスタ。2. The lateral field-effect transistor according to claim 1, wherein the lower wiring on the side not connected to the through-hole is:
A lateral field effect transistor formed so as to cover a lower layer wiring to which the through hole is connected and a portion excluding a region surrounding the lower layer wiring at a predetermined interval.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000318837A JP2001144291A (en) | 1993-09-29 | 2000-10-19 | Horizontal-type field effect transistor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-242267 | 1993-09-29 | ||
JP24226793 | 1993-09-29 | ||
JP2000318837A JP2001144291A (en) | 1993-09-29 | 2000-10-19 | Horizontal-type field effect transistor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06022930A Division JP3141672B2 (en) | 1993-09-29 | 1994-02-22 | Horizontal field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001144291A true JP2001144291A (en) | 2001-05-25 |
Family
ID=26535690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000318837A Pending JP2001144291A (en) | 1993-09-29 | 2000-10-19 | Horizontal-type field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001144291A (en) |
-
2000
- 2000-10-19 JP JP2000318837A patent/JP2001144291A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3410829B2 (en) | MOS gate type semiconductor device | |
JP4945055B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4797265B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP4860102B2 (en) | Semiconductor device | |
US7692240B2 (en) | Insulated gate semiconductor device | |
US7897461B2 (en) | Semiconductor device and method for fabricating the same | |
US7187041B2 (en) | Vertical gate semiconductor device and method for fabricating the same | |
US9543217B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
KR20070026017A (en) | Lateral double-diffused field effect transistor and integrated circuit having same | |
US6767779B2 (en) | Asymmetrical MOSFET layout for high currents and high speed operation | |
JP4764975B2 (en) | Semiconductor device | |
KR20020033491A (en) | Semiconductor device and method of manufacturing the same | |
JP3141672B2 (en) | Horizontal field-effect transistor | |
US20220005804A1 (en) | Semiconductor device and method of manufacturing the same | |
KR101950003B1 (en) | Semiconductor device and method for forming the same | |
JP2001144291A (en) | Horizontal-type field effect transistor | |
JPS63262873A (en) | Semiconductor device | |
US20230178646A1 (en) | Semiconductor device | |
JP5848619B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
TWI854618B (en) | Semiconductor device and fabrication method thereof | |
JP3394872B2 (en) | High voltage semiconductor device | |
JP2004349384A (en) | Semiconductor device | |
KR100259726B1 (en) | Semiconductor device | |
JP3074064B2 (en) | Lateral MOS field effect transistor | |
JPH06291321A (en) | Field-effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040827 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040928 |