JP2001144191A - Electrostatic protective element, electrostatic protective circuit, and semiconductor device - Google Patents

Electrostatic protective element, electrostatic protective circuit, and semiconductor device

Info

Publication number
JP2001144191A
JP2001144191A JP32345499A JP32345499A JP2001144191A JP 2001144191 A JP2001144191 A JP 2001144191A JP 32345499 A JP32345499 A JP 32345499A JP 32345499 A JP32345499 A JP 32345499A JP 2001144191 A JP2001144191 A JP 2001144191A
Authority
JP
Japan
Prior art keywords
electrostatic protection
voltage
protection circuit
bipolar transistor
parasitic bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32345499A
Other languages
Japanese (ja)
Other versions
JP3479012B2 (en
Inventor
Mototsugu Okujima
基嗣 奥島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32345499A priority Critical patent/JP3479012B2/en
Publication of JP2001144191A publication Critical patent/JP2001144191A/en
Application granted granted Critical
Publication of JP3479012B2 publication Critical patent/JP3479012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently reduce the triggering voltage of an electrostatic protective element using a simple configuration. SOLUTION: A MOS element is used mainly as a triggering element, and a charge generated by static electricity is injected to a base electrode B of a parasitic bipolar transistor 11 by at tunnel current Im of the MOS element as a support, thus rapidly increasing the base potential of the parasitic bipolar transistor 11. Also, to surely inject a tunnel current Im to the base electrode B of the parasitic bipolar transistor 11, a low-resistance layer is provided in a semiconductor substrate, and the alignment of the parasitic bipolar transistor 11 and the trigger element are devised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、静電気による破
壊を防止するために用いられる半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device used to prevent destruction due to static electricity.

【0002】[0002]

【従来の技術】一般に、半導体装置は、静電気による破
壊を受け易く、このために外部に接続される入出力パッ
ドと内部回路との間に、様々な保護素子や、これらの保
護素子を含む保護回路が組み込まれている。特にMOS素
子のゲート絶縁膜は静電気による破壊を受け易いため、
MOS回路において、入出力パッドの静電気放電によって
半導体装置の動作電圧を超える過剰な電荷が生じた場合
には、内部CMOS回路のゲート絶縁膜破壊電圧に達する前
に速やかに過剰な電荷をグランドへ排出する必要があ
る。CMOS回路の入出力パッドにマイナスの静電気放電が
印加された場合は、n+pダイオードの順方向特性によ
り、簡単に静電気を逃すことができるが、プラスの静電
気放電が印加された場合はn+pダイオードでは保護が難
しいため、従来、有効な静電保護素子として、寄生バイ
ポーラトランジスタや寄生サイリスタが利用されてい
る。
2. Description of the Related Art In general, semiconductor devices are easily damaged by static electricity. For this reason, various protection elements and protection devices including these protection elements are provided between input / output pads connected to the outside and internal circuits. The circuit is built in. In particular, the gate insulating film of MOS devices is easily damaged by static electricity.
In a MOS circuit, if excessive charge exceeding the operating voltage of the semiconductor device is generated due to electrostatic discharge of the input / output pad, the excess charge is immediately discharged to the ground before reaching the gate insulating film breakdown voltage of the internal CMOS circuit. There is a need to. When a negative electrostatic discharge is applied to the input / output pad of the CMOS circuit, the static electricity can be easily released due to the forward characteristics of the n + p diode.However, when a positive electrostatic discharge is applied, n + Since protection is difficult with a p-diode, a parasitic bipolar transistor or a parasitic thyristor has conventionally been used as an effective electrostatic protection element.

【0003】寄生バイポーラトランジスタを利用した従
来の静電保護回路は図1(a)に示すようなゲート電極
Gをグランドに落とした構造によって実現され、寄生サ
イリスタを利用した従来の静電保護回路は図2(a)に
示すような横方向サイリスタ2によって実現される。な
お、これらの保護回路は内部CMOS回路のnMOSFETの製造
工程が利用可能なため汎用性が高い。
A conventional electrostatic protection circuit using a parasitic bipolar transistor is realized by a structure in which a gate electrode G is grounded as shown in FIG. 1A, and a conventional electrostatic protection circuit using a parasitic thyristor is This is realized by a lateral thyristor 2 as shown in FIG. These protection circuits have high versatility because the manufacturing process of the nMOSFET of the internal CMOS circuit can be used.

【0004】図1(a)に示すMOS電界効果型トラン
ジスタを備える従来の静電保護回路は、npn型寄生バイ
ポーラトランジスタ11のベース電極Bにp型半導体基
板12の基板抵抗Rsubを接続した回路に等価される。
その等価回路の回路図を図7(a)に、その電流電圧特
性を図1(b)に示す。この寄生バイポーラトランジス
タ利用型の静電保護回路の静電保護原理を以下に開示す
る。
A conventional electrostatic protection circuit including a MOS field-effect transistor shown in FIG. 1A is a circuit in which a substrate resistance Rsub of a p-type semiconductor substrate 12 is connected to a base electrode B of an npn-type parasitic bipolar transistor 11. Are equivalent.
FIG. 7A shows a circuit diagram of the equivalent circuit, and FIG. 1B shows the current-voltage characteristics. The electrostatic protection principle of the electrostatic protection circuit using the parasitic bipolar transistor will be disclosed below.

【0005】入出力パッドに静電気放電による過剰なマ
イナスの電圧が印加された場合は、電極D側のn+層とp
型半導体基板12とよりなるn+p接合の順方向特性によ
り静電気をグランドに排出する。すなわち、図1(b)
に示すようにオフセット電圧Vosを超えることにより順
方向電流Ifを流し静電気をグランドに排出するものであ
る。
When an excessive negative voltage due to electrostatic discharge is applied to the input / output pad, the n + layer on the electrode D side and the p +
Static electricity is discharged to the ground by the forward characteristic of the n + p junction formed with the die semiconductor substrate 12. That is, FIG.
As shown in (2), when the voltage exceeds the offset voltage Vos, a forward current If flows to discharge the static electricity to the ground.

【0006】入出力パッドに静電気放電による過剰なプ
ラスの電圧が印加された場合は、逆方向電圧に対するス
ナップバック特性により静電気をグランドに排出する。
すなわち、図1(b)に示すように印加電圧が上昇する
につれて前記n+p接合の逆方向電流Irが徐々に増大し、
基板抵抗Rsubに逆方向電流Irが流れ込み、電圧降下に
よってベース電極Bの電位は上昇する(15)。npn型
寄生バイポーラトランジスタ11のn+p接合がおよそ降
伏する付近で第一のトリガ電位(Vt1,It1)に達する
と、ベース電極Bの電位の上昇によりnpn型寄生バイポ
ーラトランジスタ11はターンオンし、電極Dから電極
Sに大電流を流して静電気をグランドに排出する(1
6)ものである。なお、さらに印加電圧が上昇する場合
には電流も増大するものの(17)、npn型寄生バイポ
ーラトランジスタ11は再び降伏し(Vt2,It2)、電
圧の下降と電流の増大を辿り(18)、素子は高熱のた
めに不可逆的な変化を受けて破壊に至る(19)。
When an excessive positive voltage due to electrostatic discharge is applied to the input / output pad, the static electricity is discharged to the ground by a snapback characteristic with respect to a reverse voltage.
That is, as shown in FIG. 1B, as the applied voltage increases, the reverse current Ir of the n + p junction gradually increases,
The reverse current Ir flows into the substrate resistance Rsub, and the potential of the base electrode B rises due to the voltage drop (15). When the first trigger potential (Vt1, It1) is reached near the breakdown of the n + p junction of the npn-type parasitic bipolar transistor 11, the npn-type parasitic bipolar transistor 11 is turned on by an increase in the potential of the base electrode B, and the electrode is turned on. A large current flows from D to the electrode S to discharge static electricity to the ground (1
6) When the applied voltage further increases, the current also increases (17). However, the npn-type parasitic bipolar transistor 11 breaks down again (Vt2, It2), and follows the decrease in voltage and the increase in current (18). Irreversibly changes due to high heat, leading to destruction (19).

【0007】図2(a)に示す横方向サイリスタ2は、
横方向のpnp型寄生バイポーラトランジスタと縦方向のn
pn型寄生バイポーラトランジスタ21とn-well領域の抵
抗Rnwとp型半導体基板22の基板抵抗Rsubとを接続し
た回路に等価される。その等価回路の回路図を図7
(b)に、その電流電圧特性を図2(b)に示す。この
寄生サイリスタ利用型の静電保護回路の静電保護原理
は、概ね、上述の寄生バイポーラトランジスタ利用型の
静電保護回路の静電保護原理と同じである。
The lateral thyristor 2 shown in FIG.
Lateral pnp parasitic bipolar transistor and vertical n
This is equivalent to a circuit in which the pn-type parasitic bipolar transistor 21 and the resistance Rnw of the n-well region and the substrate resistance Rsub of the p-type semiconductor substrate 22 are connected. FIG. 7 is a circuit diagram of the equivalent circuit.
FIG. 2 (b) shows the current-voltage characteristics thereof. The principle of electrostatic protection of the electrostatic protection circuit using a parasitic thyristor is substantially the same as the principle of electrostatic protection of the electrostatic protection circuit using a parasitic bipolar transistor.

【0008】入出力パッドに静電気放電による過剰なマ
イナスの電圧が印加された場合は、電極C側のn+層とp
型半導体基板22とよりなるn+p接合の順方向特性によ
り静電気をグランドに排出する。すなわち、図2(b)
に示すようにオフセット電圧Vosを超えることにより順
方向電流を流し静電気をグランドに排出するものであ
る。
When an excessive negative voltage due to electrostatic discharge is applied to the input / output pad, the n + layer on the electrode C side and the p +
Static electricity is discharged to the ground by the forward characteristic of the n + p junction formed with the die semiconductor substrate 22. That is, FIG.
As shown in (2), when the voltage exceeds the offset voltage Vos, a forward current flows to discharge static electricity to the ground.

【0009】入出力パッドに静電気放電による過剰なプ
ラスの電圧が印加された場合は、逆方向電圧に対するス
ナップバック特性により静電気をグランドに排出する。
すなわち、図2(b)に示すように印加電圧が上昇する
につれて前記n+p接合の逆方向電流が徐々に増大し、基
板抵抗Rsubに逆方向電流が流れ込み、電圧降下によっ
てベース電極Bの電位は上昇する(15’)。縦方向の
npn型寄生バイポーラトランジスタ21のn+p接合がおよ
そ降伏する付近で第一のトリガ電位(Vt1,It1)に達す
ると、ベース電極Bの電位の上昇により縦方向のnpn型
寄生バイポーラトランジスタ21がターンオンするとと
もに、縦方向と横方向の2つのトランジスタの正帰還作
用により横方向サイリスタ2がターンオンし、電極Aか
ら電極Kに大電流を流して静電気をグランドに排出する
(16’)ものである。なお、さらに印加電圧が上昇す
る場合には電流も増大するものの(17’)、縦方向の
npn型寄生バイポーラトランジスタ21は再び降伏し(V
t2,It2)、電圧の下降と電流の増大を辿り(1
8’)、素子は高熱のために不可逆的な変化を受けて破
壊に至る(19’)。
When an excessive positive voltage due to electrostatic discharge is applied to the input / output pad, the static electricity is discharged to the ground by a snapback characteristic with respect to a reverse voltage.
That is, as shown in FIG. 2B, as the applied voltage increases, the reverse current of the n + p junction gradually increases, the reverse current flows into the substrate resistance Rsub, and the potential of the base electrode B is reduced by the voltage drop. Rises (15 '). Vertical
When the first trigger potential (Vt1, It1) is reached in the vicinity of the breakdown of the n + p junction of the npn-type parasitic bipolar transistor 21, the vertical npn-type parasitic bipolar transistor 21 is turned on by the rise in the potential of the base electrode B. At the same time, the horizontal thyristor 2 is turned on by the positive feedback action of the two transistors in the vertical and horizontal directions, and a large current flows from the electrode A to the electrode K to discharge static electricity to the ground (16 '). When the applied voltage further increases, the current also increases (17 ').
The npn-type parasitic bipolar transistor 21 breaks down again (V
t2, It2), following a drop in voltage and an increase in current (1
8 '), the device undergoes irreversible changes due to high heat and leads to destruction (19').

【0010】[0010]

【発明が解決しようとする課題】ところで、最近の技術
の進歩は、半導体装置の微細化のため、デバイスの小型
化をますます躍進させる反面、低い電圧で破壊する軟弱
なデバイスを生み出した。 近時、超微細化したCMOS装
置にあっては、MOS素子のゲート絶縁膜が4nm程度ま
でに薄膜化し、ゲート絶縁膜破壊電圧が7ボルト程度ま
で低電圧化するに至った。今後、半導体装置の微細化、
デバイスの小型化は進められることに疑いはない。した
がって、小型化したデバイスに従来の静電保護回路を使
用した場合には、静電保護回路が動作(トリガ)する前
にデバイスが静電気により破壊するという事故が起こり
得る。これに対処するため、小型化したデバイスの低い
破壊電圧に応じた動作電圧(トリガ電圧)の低い静電保
護素子乃至静電保護回路を開発生産しなければならな
い。しかし、その開発生産に成功したとしても、さらに
デバイスは小型化し、同様なことが将来、幾度も繰り返
されるだろう。
By the way, recent advances in technology have led to more and more miniaturization of devices due to the miniaturization of semiconductor devices, but have also produced soft devices that break down at low voltage. Recently, in ultra-miniaturized CMOS devices, the gate insulating film of a MOS element has been thinned to about 4 nm, and the gate insulating film breakdown voltage has been reduced to about 7 volts. In the future, miniaturization of semiconductor devices,
There is no doubt that device miniaturization will be advanced. Therefore, when a conventional electrostatic protection circuit is used for a miniaturized device, an accident may occur that the device is destroyed by static electricity before the electrostatic protection circuit operates (triggers). To cope with this, an electrostatic protection element or an electrostatic protection circuit having a low operating voltage (trigger voltage) corresponding to a low breakdown voltage of a miniaturized device must be developed and produced. However, even with successful development and production, the devices are becoming smaller and the same will be repeated many times in the future.

【0011】本発明は、以上の諸問題に有効に対処し得
る静電保護素子及び静電保護回路を提供することを目的
とする。すなわち、第一に、静電保護素子のトリガ電圧
の低電圧化を効率良く図ること、具体的には内部回路の
動作電圧を下回らない範囲であるが、内部回路の破壊電
圧以下の低電圧で動作する静電保護素子及び静電保護回
路を提供することを目的とする。第二に、既存の静電保
護素子製造方法又はその方法によって製造される静電保
護素子に変更を加えずそのままそれらを用いることがで
きる経済的な静電保護素子及び静電保護回路を提供する
ことを目的とする。第三に、印加電圧の上昇により自ら
が破損しない静電保護素子及び静電保護回路を提供する
ことを目的とする。
An object of the present invention is to provide an electrostatic protection element and an electrostatic protection circuit which can effectively deal with the above problems. That is, first, to efficiently lower the trigger voltage of the electrostatic protection element, specifically, within a range not lower than the operating voltage of the internal circuit, but at a low voltage equal to or lower than the breakdown voltage of the internal circuit. It is an object to provide an electrostatic protection element and an electrostatic protection circuit that operate. Secondly, there is provided an economical electrostatic protection element and an electrostatic protection circuit which can use the existing electrostatic protection element manufacturing method or the electrostatic protection element manufactured by the method without any change. The purpose is to: Third, it is an object of the present invention to provide an electrostatic protection element and an electrostatic protection circuit which are not damaged by the rise of the applied voltage.

【0012】[0012]

【課題を解決するための手段】前記課題を解決する本出
願第1の発明は、寄生バイポーラトランジスタと、静電
気によって生じた電荷を前記寄生バイポーラトランジス
タのベース領域に注入するトリガ素子とを隣接して備え
たことを特徴とする静電保護素子である。
According to a first aspect of the present invention, there is provided a parasitic bipolar transistor and a trigger element for injecting a charge generated by static electricity into a base region of the parasitic bipolar transistor. It is an electrostatic protection element characterized by comprising:

【0013】したがって本出願第1の発明の静電保護素
子によれば、静電気によって生じた電荷を前記寄生バイ
ポーラトランジスタのベース電極に注入するトリガ素子
を備えるので、寄生バイポーラトランジスタの動作電圧
(トリガ電圧)が低下するという利点がある。
Therefore, according to the electrostatic protection element of the first aspect of the present invention, since the trigger element for injecting the charge generated by static electricity into the base electrode of the parasitic bipolar transistor is provided, the operating voltage (trigger voltage) of the parasitic bipolar transistor is provided. ) Is reduced.

【0014】前記課題を解決する本出願第2の発明は、
本出願第1の発明の静電保護素子において、トリガ素子
は、絶縁膜を有し、静電気によって生じた電荷をトンネ
ル効果によってその絶縁膜を通過させ、前記寄生バイポ
ーラトランジスタのベース領域に注入することを特徴と
する。
[0014] The second invention of the present application for solving the above problems is as follows.
In the electrostatic protection element according to the first aspect of the present invention, the trigger element has an insulating film, and charges generated by static electricity pass through the insulating film by a tunnel effect and are injected into a base region of the parasitic bipolar transistor. It is characterized by.

【0015】したがって本出願第2の発明の静電保護素
子によれば、トリガ素子により電荷を低電圧時には絶縁
膜により遮断し、高電圧時にはトンネル効果により通過
させ寄生バイポーラトランジスタのベース電極に流すこ
とができるので、静電気放電が起こっていない通常の状
態においては無駄な電流をグランドに流さず、静電気放
電が起こっている危険な状態においてのみ静電気によっ
て生じた過剰な電荷グランドに流すという利点がある。
Therefore, according to the electrostatic protection element of the second invention of the present application, the charge is cut off by the insulating film at the time of low voltage by the trigger element, and is passed by the tunnel effect at the time of high voltage to flow to the base electrode of the parasitic bipolar transistor. Therefore, there is an advantage that in a normal state in which no electrostatic discharge occurs, no useless current is caused to flow to the ground, and only in a dangerous state in which the electrostatic discharge occurs, an excessive charge caused by static electricity is caused to flow to the ground.

【0016】前記課題を解決する本出願第3の発明は、
半導体基板上にゲート絶縁膜を介してゲート電極を設
け、このゲート電極の周辺部の前記半導体基板に素子分
離層を形成してなることを特徴とする容量素子である。
[0016] The third invention of the present application for solving the above problems is as follows.
A capacitive element characterized in that a gate electrode is provided on a semiconductor substrate via a gate insulating film, and an element isolation layer is formed on the semiconductor substrate around the gate electrode.

【0017】したがって本出願第3の発明の容量素子に
よれば、そのゲート絶縁膜が破壊する前にゲート絶縁膜
に加わる電圧Voxの上昇が抑止されるので、ゲート絶縁
膜の破壊を阻止することができるという利点がある。そ
の原理を図4(a)(b)を参照して説明する。素子分
離層としてのトレンチが設けられているので半導体基板
表面の反転層41に集まる少数キャリアが不足し、これ
を補うために空乏層42を伸ばす必要が生じる。ゆえ
に、空乏層を伸ばすために、ゲート電極に加わる電圧は
ある値からそれ以上増加してもその電圧の増加分は半導
体基板に加わる電圧Vs1からVs2への上昇分に当てら
れ、ゲート絶縁膜に加わる電圧Voxの上昇には使われな
いということになるからである。このとき、ゲート絶縁
膜に印加される電圧Voxが飽和し、電圧Voxに依存するゲ
ート絶縁膜を通過するトンネル電流も飽和する。反転層
41に集まる少数キャリアが不足する傾向を強めるに
は、素子分離層としてのトレンチにはSiO2等の絶縁物を
充填することが好ましい。トレンチの替わりに半導体基
板と反対極性の半導体領域を設けても良い。
Therefore, according to the capacitive element of the third invention of the present application, the rise of the voltage Vox applied to the gate insulating film before the gate insulating film is broken is suppressed, so that the gate insulating film is prevented from being broken. There is an advantage that can be. The principle will be described with reference to FIGS. Since the trench as the element isolation layer is provided, the minority carriers gathering in the inversion layer 41 on the surface of the semiconductor substrate become insufficient, and it is necessary to extend the depletion layer 42 to make up for this. Therefore, in order to extend the depletion layer, even if the voltage applied to the gate electrode increases beyond a certain value, the increase in the voltage is applied to the increase from the voltage Vs1 to Vs2 applied to the semiconductor substrate, and the voltage applied to the gate insulating film is increased. This is because it is not used for increasing the applied voltage Vox. At this time, the voltage Vox applied to the gate insulating film is saturated, and the tunnel current passing through the gate insulating film depending on the voltage Vox is also saturated. In order to increase the tendency that the minority carriers gathering in the inversion layer 41 become insufficient, it is preferable that the trench as the element isolation layer is filled with an insulator such as SiO2. A semiconductor region having the opposite polarity to the semiconductor substrate may be provided instead of the trench.

【0018】前記課題を解決する本出願第4の発明は、
本出願第3の発明の容量素子において、半導体基板中に
低抵抗層を形成してなることを特徴とする。
[0018] The fourth invention of the present application for solving the above-mentioned problems is as follows.
The capacitive element according to the third aspect of the present invention is characterized in that a low-resistance layer is formed in a semiconductor substrate.

【0019】したがって本出願第4の発明の容量素子に
よれば、そのゲート絶縁膜が破壊する前にゲート絶縁膜
に加わる電圧の上昇が抑止されるので、ゲート絶縁膜の
破壊を阻止することができるという利点と、ゲート絶縁
膜を通過したトンネル電流を低抵抗層に沿って誘導でき
るので、トンネル電流を一点に集中させたり、一定の領
域に拡散させたりなどの調整が可能となるという利点が
ある。
Therefore, according to the capacitive element of the fourth aspect of the present invention, the rise in the voltage applied to the gate insulating film before the gate insulating film is broken is suppressed, so that the gate insulating film can be prevented from being broken. The advantage is that the tunnel current that has passed through the gate insulating film can be induced along the low-resistance layer, making it possible to adjust the tunnel current, such as concentrating it at one point or diffusing it to a certain area. is there.

【0020】前記課題を解決する本出願第5の発明は、
本出願第3の発明又は本出願第4の発明の容量素子にお
いて、ゲート電極にダイオードを並列接続してなること
を特徴とする。
[0020] The fifth invention of the present application for solving the above problems is as follows.
The capacitive element according to the third invention or the fourth invention of the present application is characterized in that a diode is connected in parallel to the gate electrode.

【0021】したがって本出願第5の発明の容量素子に
よれば、ダイオードが並列接続されているので、ゲート
電極に印加させれる電圧の上昇が接続されたダイオード
の降伏電圧を境にそのダイオードの特性に応じて制限さ
れるとともに、そのダイオードが降伏した後はダイオー
ドの逆方向電流とトンネル電流とが加算し半導体基板に
流れるという利点がある。
Therefore, according to the capacitive element of the fifth aspect of the present invention, since the diodes are connected in parallel, the rise in the voltage applied to the gate electrode rises and falls with the breakdown voltage of the connected diode. In addition, there is an advantage that after the breakdown of the diode, the reverse current of the diode and the tunnel current are added and flow to the semiconductor substrate.

【0022】前記課題を解決する本出願第6の発明は、
本出願第1の発明又は本出願第2の発明の静電保護素
子において、本出願第3の発明、本出願第4の発明及び
本出願第5の発明の容量素子のうち一又は二以上の容量
素子をトリガ素子とすることを特徴とする。
[0022] The sixth invention of the present application for solving the above problems is as follows.
In the electrostatic protection device of the first invention or the second invention of the present application, one or more of the capacitive elements of the third invention of the present application, the fourth invention of the present application, and the fifth invention of the present application are provided. It is characterized in that a capacitive element is used as a trigger element.

【0023】したがって本出願第6の発明の静電保護素
子によれば、一又は二以上のトリガ素子のトリガ電流の
注入により、寄生バイポーラトランジスタがトリガされ
るので、その特定のトリガ素子の特性に応じた寄生バイ
ポーラトランジスタの動作電圧(トリガ電圧)の低下が
得られるという利点がある。前記課題を解決する本出願
第7の発明は、MIS電界効果型トランジスタと、本出
願第3の発明から本出願第5の発明の容量素子のうち一
又は二以上の容量素子と、前記容量素子の素子分離層の
外側位置に形成されるコンタクト層とを備え、一端がグ
ランドに配線接続された抵抗素子が他端において、前記
コンタクト層及び前記MIS電界効果型トランジスタの
ゲート電極に配線接続されてなることを特徴とする静電
保護回路である。したがって本出願第7の発明の静電保
護回路によれば、静電気放電によって生じた電荷が本出
願第3の発明から本出願第5の発明の容量素子のうち一
又は二以上の容量素子のゲート電極に印加され、トンネ
ル電流としてその絶縁膜を通過し半導体基板中に流れ込
む。さらに、半導体基板中に流れ込んだ電荷を前記コン
タクト層によって回収し、回収した電荷を前記抵抗素子
へと流し、かつ、前記抵抗素子の電圧降下により前記ゲ
ート電極に電圧を印加することができる。したがって、
静電気放電による電圧の上昇に伴い、MIS電界効果型
トランジスタのゲート電極の電位が上昇し、MIS電界
効果型トランジスタのしきい値電圧以上の電圧がゲート
電極に印加されたときにドレイン電流が寄生バイポーラ
トランジスタのベース領域に流れ込み、寄生バイポーラ
トランジスタを低電圧で動作させることができるという
利点がある。寄生バイポーラトランジスタを低電圧で動
作させることができる結果として、静電保護回路の動作
電圧の低電圧化が図られ、耐圧の低い内部回路を有効に
静電気から保護することができるという利点がある。ま
た、本出願第7の発明の静電保護回路によれば、トンネ
ル電流を配線で導出するので、寄生バイポーラトランジ
スタと前記容量素子とが近接していなくても良いという
利点がある。
Therefore, according to the electrostatic protection element of the sixth aspect of the present invention, the parasitic bipolar transistor is triggered by the injection of the trigger current of one or more trigger elements. There is an advantage that the operating voltage (trigger voltage) of the parasitic bipolar transistor can be correspondingly reduced. A seventh aspect of the present invention for solving the above-mentioned problems is a MIS field-effect transistor, one or more capacitive elements among the capacitive elements according to the third to fifth aspects of the present invention, and the capacitive element. A contact element formed at a position outside the element isolation layer, and a resistor element having one end connected to the ground is connected at the other end to the contact layer and the gate electrode of the MIS field effect transistor. An electrostatic protection circuit characterized in that: Therefore, according to the electrostatic protection circuit of the seventh aspect of the present invention, the electric charge generated by the electrostatic discharge causes the gate of one or more of the capacitive elements of the third to fifth aspects of the present invention. It is applied to the electrodes and flows as a tunnel current through the insulating film into the semiconductor substrate. Further, the charge flowing into the semiconductor substrate can be collected by the contact layer, the collected charge can flow to the resistance element, and a voltage can be applied to the gate electrode by a voltage drop of the resistance element. Therefore,
As the voltage rises due to electrostatic discharge, the potential of the gate electrode of the MIS field-effect transistor increases, and when a voltage equal to or higher than the threshold voltage of the MIS field-effect transistor is applied to the gate electrode, the drain current becomes a parasitic bipolar transistor. There is an advantage that the parasitic bipolar transistor flows into the base region of the transistor and can be operated at a low voltage. As a result that the parasitic bipolar transistor can be operated at a low voltage, there is an advantage that the operating voltage of the electrostatic protection circuit can be reduced and an internal circuit having a low withstand voltage can be effectively protected from static electricity. Further, according to the electrostatic protection circuit of the seventh aspect of the present invention, since the tunnel current is derived from the wiring, there is an advantage that the parasitic bipolar transistor and the capacitor need not be close to each other.

【0024】前記課題を解決する本出願第8の発明は、
本出願第7の発明の静電保護回路において、抵抗素子の
電圧降下によってゲート電極に印加される電圧を前記M
IS電界効果型トランジスタのゲート絶縁膜の耐圧以下
に保持するクランプ素子を備えることを特徴とする。し
たがって本出願第8の発明の静電保護回路によれば、抵
抗素子の電圧降下によってゲート電極に印加される電圧
をゲート絶縁膜の耐圧以下に保持するクランプ素子を備
えるので、過大な静電気により過大なトンネル電流が生
じても、ゲート絶縁膜を絶縁破壊から有効に保護できる
という利点がある。前記課題を解決する本出願第9の発
明は、 本出願第1の発明、本出願第2の発明及び本出
願第6の発明の静電保護素子のうち一又は二以上の静電
保護素子を適用してなる静電保護回路である。
[0024] The eighth invention of the present application for solving the above problems is as follows.
In the electrostatic protection circuit according to the seventh aspect of the present invention, the voltage applied to the gate electrode due to the voltage drop of the resistance element is equal to M
The IS field-effect transistor is characterized in that it has a clamp element for keeping the breakdown voltage of the gate insulating film below the withstand voltage. Therefore, according to the electrostatic protection circuit of the eighth aspect of the present invention, since the clamp element for maintaining the voltage applied to the gate electrode due to the voltage drop of the resistance element to be equal to or less than the withstand voltage of the gate insulating film is provided, excessive static electricity causes There is an advantage that even if a large tunnel current occurs, the gate insulating film can be effectively protected from dielectric breakdown. A ninth invention of the present application which solves the above-mentioned problem is the one of one or more of the electrostatic protection elements of the first invention of the present application, the second invention of the present application, and the sixth invention of the present application. This is an electrostatic protection circuit applied.

【0025】したがって本出願第9の発明の静電保護回
路は、本出願第1の発明、本出願第2の発明及び本出願
第6の発明の静電保護素子が備えられているので、静電
気を素早くグランドに排出するという利点がある。
Therefore, the electrostatic protection circuit according to the ninth invention of the present application is provided with the electrostatic protection elements of the first invention of the present application, the second invention of the present application, and the sixth invention of the present application. Is quickly discharged to the ground.

【0026】前記課題を解決する本出願第10の発明
は、本出願第9の発明の静電保護回路において、寄生バ
イポーラトランジスタとトリガ素子とが、それら相互の
隣接面積が増加するように配列されることを特徴とす
る。
According to a tenth invention of the present application which solves the above-mentioned problem, in the electrostatic protection circuit according to the ninth invention of the present application, the parasitic bipolar transistor and the trigger element are arranged so that their mutually adjacent areas increase. It is characterized by that.

【0027】寄生バイポーラトランジスタとトリガ素子
とが近接している方がトリガ電流を確実に寄生バイポー
ラトランジスタのベース電極に注入しやすい。したがっ
て本出願第10の発明の静電保護回路によれば、寄生バ
イポーラトランジスタとトリガ素子との隣接面積が増加
するように配列されるので、トリガ電流を確実に寄生バ
イポーラトランジスタのベース電極に注入し、無駄な電
流を流さないという利点がある。
The closer the parasitic bipolar transistor and the trigger element are, the easier it is to inject the trigger current into the base electrode of the parasitic bipolar transistor. Therefore, according to the electrostatic protection circuit of the tenth aspect of the present invention, since the adjacent area between the parasitic bipolar transistor and the trigger element is arranged to be increased, the trigger current is reliably injected into the base electrode of the parasitic bipolar transistor. There is an advantage that unnecessary current is not passed.

【0028】前記課題を解決する本出願第11の発明
は、本出願第7の発明から本出願第10の発明のうちい
ずれか一の発明の静電保護回路を組み込んだ半導体装置
である。
The eleventh invention of the present application which solves the above-mentioned problem is a semiconductor device incorporating the electrostatic protection circuit of any one of the seventh to tenth inventions of the present application.

【0029】したがって本出願第11の発明の半導体装
置は、本出願第7の発明から本出願第10の発明のうち
いずれか一の発明の静電保護回路により内部回路が保護
されるので、静電気に強いという利点がある。
Therefore, in the semiconductor device according to the eleventh aspect of the present invention, the internal circuit is protected by the electrostatic protection circuit according to any one of the seventh to tenth aspects of the present invention. Has the advantage of being strong.

【0030】[0030]

【発明の実施の形態】以下に本発明の実施の形態の静電
保護素子、静電保護回路及び半導体装置につき図面を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an electrostatic protection element, an electrostatic protection circuit and a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings.

【0031】実施の形態1 本発明の一実施の形態の容量素子(実施の形態1)を示
す断面図を図3(a)に、その逆方向電圧に対する電流
電圧特性を図3(b)に示す。実施の形態1の容量素子
は、図3(a)に示すようにp型半導体基板34上にシ
リコン酸化絶縁膜32、さらにその上にゲート電極31
を形成したMOS素子を含み、ゲート電極31の周辺部を
取り囲んでp型半導体基板34にトレンチ33を形成
し、トレンチ33にシリコン酸化絶縁物を充填した。さ
らに前記p型半導体基板34のゲート電極31に隣接す
る位置にn+層を埋設することにより寄生n+pダイオード
を形成し、このn+電極とゲート電極31とを導線で接続
したものである。
Embodiment 1 FIG. 3A is a cross-sectional view showing a capacitive element (Embodiment 1) according to an embodiment of the present invention, and FIG. 3B is a diagram showing a current-voltage characteristic with respect to a reverse voltage. Show. As shown in FIG. 3A, the capacitive element according to the first embodiment has a silicon oxide insulating film 32 on a p-type semiconductor substrate 34 and a gate electrode 31 thereon.
A trench 33 was formed in the p-type semiconductor substrate 34 around the periphery of the gate electrode 31 and the trench 33 was filled with a silicon oxide insulator. Furthermore, a parasitic n + p diode is formed by burying an n + layer at a position adjacent to the gate electrode 31 of the p-type semiconductor substrate 34, and the n + electrode and the gate electrode 31 are connected by a conductive wire.

【0032】このような構成を採る実施の形態1の容量
素子の逆方向電圧に対する電流電圧特性は図3(b)に
示す実線のグラフ3aにより表現される。印加電圧が4
ボルトになる付近までは絶縁膜とダイオードの作用によ
り電流をほとんど流さず、4ボルト付近からトンネル電
流Imにより電流値の上昇を見せる。その後、上述したト
レンチの作用によりトンネル電流Imは飽和するが、印加
電圧が10ボルトになる付近でダイオードが降伏し、逆
方向電流Irにより電流値は再び上昇を見せる。すなわ
ち、トンネル電流Imと逆方向電流Irとの加算量Im+Irが
p型半導体基板34の基板抵抗Rsubに流れる。
The current-voltage characteristic of the capacitive element according to the first embodiment having such a configuration with respect to the reverse voltage is represented by a solid line graph 3a shown in FIG. 3B. Applied voltage is 4
The current hardly flows due to the action of the insulating film and the diode until the voltage becomes about volts, and the current value rises due to the tunnel current Im from about 4 volts. Thereafter, the tunnel current Im is saturated by the action of the trench described above, but the diode breaks down near the applied voltage of 10 volts, and the current value increases again due to the reverse current Ir. That is, the added amount Im + Ir of the tunnel current Im and the reverse current Ir flows to the substrate resistance Rsub of the p-type semiconductor substrate 34.

【0033】実施の形態1の容量素子によらず、ゲート
電極に隣接して設けられた拡散層の電位が固定されてい
るときのように、拡散層から電荷がいつでも反転層に供
給できる場合は、図3(b)のグラフに示す破線3bの
ように電位が上昇し、ダイオードが降伏する前にMOS素
子は絶縁膜破壊を起こす(3c)。実施形態1の容量素
子はこれを素子分離層を設けることによって有効に防い
でいる。しかし、単に素子分離層を設けるのみでは破線
3fのように横軸に平行に推移し、電流が飽和したま
ま、p型半導体基板34に加わる電圧のみが上昇し続
け、高熱のために不可逆的な変化を受けて破壊に至る
(3g)。実施の形態1の容量素子はダイオードをMOS
素子と並列接続しているので、そのダイオードの降伏電
圧以上においては破線3dに示すダイオードの特性に応
じて電圧の上昇を制限するとともに逆方向電流Irをp
型半導体基板34の基板低抗Rsubに流すのである。す
なわち、実施の形態1の容量素子はMOS素子とダイオー
ドを並列接続しているので、その電流電圧特性を示す図
3(b)の実線のグラフ3aは、破線3f及び破線3d
を電流方向に加算したものとなり、MOS素子の絶縁膜破
壊3c、MOS素子の半導体基板34の破壊3g及びダイ
オードの破壊3eを防止する。
Regardless of the capacitance element of the first embodiment, in the case where charges can always be supplied from the diffusion layer to the inversion layer, such as when the potential of the diffusion layer provided adjacent to the gate electrode is fixed. As shown by a broken line 3b in the graph of FIG. 3B, the potential rises, and the MOS element causes insulation film breakdown before the diode breaks down (3c). The capacitance element of the first embodiment is effectively prevented by providing an element isolation layer. However, if only the element isolation layer is provided, the voltage changes parallel to the horizontal axis as indicated by a broken line 3f, and only the voltage applied to the p-type semiconductor substrate 34 continues to increase while the current is saturated, and the heat is irreversible due to high heat. Change leads to destruction (3 g). The capacitance element according to the first embodiment uses a diode as a MOS.
Since it is connected in parallel with the element, when the breakdown voltage is equal to or higher than the breakdown voltage of the diode, the rise of the voltage is limited according to the characteristic of the diode indicated by the broken line 3d, and the reverse current Ir is reduced by p.
It flows to the substrate low resistance Rsub of the type semiconductor substrate 34. That is, since the MOS element and the diode are connected in parallel in the capacitive element of the first embodiment, the solid line graph 3a of FIG. 3B showing the current-voltage characteristics is indicated by the broken lines 3f and 3d.
Is added in the current direction, thereby preventing the breakdown 3c of the insulating film of the MOS device, the breakdown 3g of the semiconductor substrate 34 of the MOS device, and the breakdown 3e of the diode.

【0034】実施の形態2 次に本発明の他の一実施の形態の静電保護素子及び静電
保護回路(実施の形態2)につき図5を参照して説明す
る。図5(a)にその構成図を、図5(b)にその逆方
向電圧に対する電流電圧特性を示した。実施の形態2の
静電保護素子及び静電保護回路は、従来の静電保護素子
たるnMOSFET1のp型半導体基板51上に実施の形態1
の容量素子3をnMOSFET1の隣接位置に形成した静電保
護素子であり、かかる静電保護素子を入出力パッド−内
部CMOS回路間とグランドに接続した静電保護回路であ
る。容量素子3の寄生n+pダイオードのn+電極はnMOSFET
1のn+層に形成された電極Dと共有とする。その回路図
は図7(c)に示した。
Embodiment 2 Next, an electrostatic protection element and an electrostatic protection circuit (Embodiment 2) according to another embodiment of the present invention will be described with reference to FIG. FIG. 5A shows the configuration, and FIG. 5B shows the current-voltage characteristics with respect to the reverse voltage. The electrostatic protection element and the electrostatic protection circuit according to the second embodiment are provided on a p-type semiconductor substrate 51 of an nMOSFET 1 which is a conventional electrostatic protection element.
Is formed at a position adjacent to the nMOSFET 1, and is connected between the input / output pad and the internal CMOS circuit and to the ground. The n + electrode of the parasitic n + p diode of the capacitive element 3 is an nMOSFET
This is shared with the electrode D formed on the n + 1 layer. The circuit diagram is shown in FIG.

【0035】nMOSFET1のみで構成した従来の静電保護
回路の場合は逆電流Irのみにより寄生バイポーラトラ
ンジスタ11をトリガしていたが、実施の形態2の静電
保護回路はトンネル電流Imをトリガ電流に利用している
ためトリガ電圧Vt1の低電圧化53が得られる。
In the case of the conventional electrostatic protection circuit composed only of the nMOSFET 1, the parasitic bipolar transistor 11 is triggered only by the reverse current Ir. However, the electrostatic protection circuit of the second embodiment uses the tunnel current Im as the trigger current. Since the trigger voltage Vt1 is used, the trigger voltage Vt1 can be reduced 53.

【0036】ここで、実施の形態2の静電保護素子及び
静電保護回路を有効な静電破壊保護手段として活用した
実施例を数値を上げて説明する。従来、内部CMOS回路の
通常の動作電圧が3.3V、ゲート絶縁膜の膜厚が8nmで
その破壊電圧が10V、寄生バイポーラトランジスタ11
がターンオンするために必要なベース電位、すなわち、
基板抵抗Rsub間の電位差が0.8Vであり、静電保護素子
たるnMOSFET1はトリガ電圧Vt1=9Vで寄生バイポーラ
トランジスタ11のベース電位を0.8Vにできるという
設定であった場合に、今般、ゲート絶縁膜の膜厚を4nm
に変更したとする。ゲート絶縁膜の膜厚が4nmになった
ことに伴いゲート絶縁膜破壊電圧が7Vに下がり、従来
のnMOSFET1では静電保護回路がトリガする前に今般の
ゲート絶縁膜は破壊してしまう。
Here, an example in which the electrostatic protection element and the electrostatic protection circuit of the second embodiment are utilized as effective electrostatic breakdown protection means will be described with numerical values. Conventionally, the normal operating voltage of the internal CMOS circuit is 3.3 V, the thickness of the gate insulating film is 8 nm, the breakdown voltage is 10 V, and the parasitic bipolar transistor 11
Is necessary to turn on the base potential, that is,
In the case where the potential difference between the substrate resistances Rsub is 0.8 V and the nMOSFET 1 serving as the electrostatic protection element is set so that the trigger potential Vt1 = 9 V and the base potential of the parasitic bipolar transistor 11 can be set to 0.8 V, the gate insulating film is now used. 4nm film thickness
And change it to As the thickness of the gate insulating film becomes 4 nm, the gate insulating film breakdown voltage drops to 7 V, and in the conventional nMOSFET 1, the conventional gate insulating film is broken before the electrostatic protection circuit is triggered.

【0037】そこで、実施の形態2の静電保護素子及び
静電保護回路を作製した。その際、nMOSFET1は内部CMO
S回路に使われるnMOSFETと同一の製造ラインを利用し、
容量素子3も従来の製造工程で作製することができた。
したがって、内部CMOS回路、nMOSFET1及び容量素子3
のゲート絶縁膜の膜厚はともに4nmとなった。実施の形
態2の静電保護素子及び静電保護回路を半導体装置に適
用した結果、印加電圧が静電気放電により内部CMOS回路
の通常の動作電圧の3.3Vを超え、4Vになったところ
で容量素子3はトンネル電流を寄生バイポーラトランジ
スタのベース電極Bに流しはじめたので、印加電圧が6
Vになったときに、基板抵抗Rsub間の電位差が0.8Vに
なり、寄生バイポーラトランジスタ11がターンオンし
静電気により生じた過剰な電荷を速やかにグランドに排
出し、内部CMOS回路のゲート絶縁膜破壊を防ぐことがで
きた。
Therefore, an electrostatic protection element and an electrostatic protection circuit according to the second embodiment were manufactured. At that time, nMOSFET1 is the internal CMO
Using the same production line as the nMOSFET used for the S circuit,
The capacitive element 3 could also be manufactured by the conventional manufacturing process.
Therefore, the internal CMOS circuit, nMOSFET 1 and capacitor 3
The thickness of each of the gate insulating films was 4 nm. As a result of applying the electrostatic protection element and the electrostatic protection circuit of the second embodiment to a semiconductor device, when the applied voltage exceeds the normal operating voltage of 3.3 V of the internal CMOS circuit due to electrostatic discharge and becomes 4 V, the capacitance element 3 Started flowing a tunnel current to the base electrode B of the parasitic bipolar transistor.
When the voltage reaches V, the potential difference between the substrate resistances Rsub becomes 0.8 V, the parasitic bipolar transistor 11 is turned on, and the excess charge generated by the static electricity is quickly discharged to the ground, and the gate insulating film of the internal CMOS circuit is damaged. Could be prevented.

【0038】実施の形態3 次に本発明の他の一実施の形態の静電保護素子及び静電
保護回路(実施の形態3)につき図6を参照して説明す
る。図6(a)にその構成図を、図6(b)にその逆方
向電圧に対する電流電圧特性を示した。実施の形態3の
静電保護素子及び静電保護回路は、従来の静電保護素子
たる横方向サイリスタ2のp型半導体基板61上に実施
の形態1の容量素子3を形成したものである。その回路
図は図7(d)に示した。
Third Embodiment Next, an electrostatic protection element and an electrostatic protection circuit (third embodiment) according to another embodiment of the present invention will be described with reference to FIG. FIG. 6A shows a configuration diagram thereof, and FIG. 6B shows a current-voltage characteristic with respect to the reverse voltage. In the electrostatic protection element and the electrostatic protection circuit according to the third embodiment, the capacitance element 3 according to the first embodiment is formed on the p-type semiconductor substrate 61 of the lateral thyristor 2 which is a conventional electrostatic protection element. The circuit diagram is shown in FIG.

【0039】横方向サイリスタ2のみで構成した従来の
静電保護回路の場合は逆電流Irのみにより寄生バイポ
ーラトランジスタ21をトリガしていたが、 実施の
形態3の静電保護回路はトンネル電流Imをトリガ電流に
利用しているためトリガ電圧Vt1の低電圧化63が得ら
れる。
In the case of the conventional electrostatic protection circuit composed only of the lateral thyristor 2, the parasitic bipolar transistor 21 is triggered only by the reverse current Ir. However, the electrostatic protection circuit of the third embodiment reduces the tunnel current Im. Since the trigger voltage is used for the trigger current, a lower voltage 63 of the trigger voltage Vt1 can be obtained.

【0040】実施の形態4 次に本発明の他の一実施の形態の静電保護素子及び静電
保護回路(実施の形態4)につき図8を参照して説明す
る。
Embodiment 4 Next, an electrostatic protection element and an electrostatic protection circuit (Embodiment 4) according to another embodiment of the present invention will be described with reference to FIG.

【0041】図8に示すように実施の形態4の静電保護
素子及び静電保護回路は、 実施の形態2の静電保護
素子及び静電保護回路に対し、基板抵抗Rsubを通らず
グランドへ流れてしまうトンネル電流52を減少させる
ため、p型半導体基板51中に高濃度の低抵抗層81を
形成したものである。低抵抗層81はトンネル電流Imが
寄生バイポーラトランジスタ11のベース電極Bに導か
れるような範囲に形成した。すなわち、シリコン酸化絶
縁膜32の下方であって印加時に空乏層が発生するトレ
ンチ33に囲まれた領域を外れたスポットから寄生バイ
ポーラトランジスタ11のベース電極Bに向けその直前
までの範囲に形成したものである。このとき 低抵抗層
81を印加時に空乏層が発生する領域に形成しないこと
が好ましい。また、低抵抗層81を基板抵抗Rsubの領
域に形成しないことが好ましい。基板抵抗Rsubの抵抗
値を低下させ、ベース電極Bの電圧が上昇しにくくな
り、静電保護回路のトリガ電圧Vt1が上がるからであ
る。
As shown in FIG. 8, the electrostatic protection element and the electrostatic protection circuit of the fourth embodiment are different from the electrostatic protection element and the electrostatic protection circuit of the second embodiment to the ground without passing through the substrate resistance Rsub. In order to reduce the tunnel current 52 that flows, a high-concentration low-resistance layer 81 is formed in a p-type semiconductor substrate 51. The low resistance layer 81 is formed in a range where the tunnel current Im is guided to the base electrode B of the parasitic bipolar transistor 11. In other words, it is formed below the silicon oxide insulating film 32 and in a range from a spot outside a region surrounded by the trench 33 where a depletion layer is generated at the time of application to the base electrode B of the parasitic bipolar transistor 11 and immediately before the spot. It is. At this time, it is preferable that the low resistance layer 81 is not formed in a region where a depletion layer is generated at the time of application. Further, it is preferable that the low resistance layer 81 is not formed in the region of the substrate resistance Rsub. This is because the resistance value of the substrate resistance Rsub decreases, the voltage of the base electrode B hardly increases, and the trigger voltage Vt1 of the electrostatic protection circuit increases.

【0042】実施の形態4の構成要素たる低抵抗層81
は実施の形態3の静電保護素子及び静電保護回路に対し
ても同様に適用でき、基板抵抗Rsubを通らずグランド
へ流れてしまうトンネル電流62を減少させる。
Low resistance layer 81 as a constituent element of the fourth embodiment
Is similarly applicable to the electrostatic protection element and the electrostatic protection circuit of the third embodiment, and reduces the tunnel current 62 flowing to the ground without passing through the substrate resistance Rsub.

【0043】実施の形態5 次に本発明の他の一実施の形態の静電保護素子及び静電
保護回路(実施の形態5)につき図9を参照して説明す
る。図9に示すように実施の形態5の静電保護回路は、
寄生バイポーラトランジスタとトリガ素子とが、それら
相互の隣接面積が増加するように配列されることを特徴
とする本出願第8の発明の静電保護回路の一実施形態で
あって、寄生バイポーラトランジスタとトリガ素子とを
格子状かつ交互に配列したものである。
Embodiment 5 Next, an electrostatic protection element and an electrostatic protection circuit (Embodiment 5) according to another embodiment of the present invention will be described with reference to FIG. As shown in FIG. 9, the electrostatic protection circuit according to the fifth embodiment includes:
An embodiment of the electrostatic protection circuit according to the eighth aspect of the present invention, wherein the parasitic bipolar transistor and the trigger element are arranged so that their adjacent areas increase. Trigger elements are arranged in a grid pattern and alternately.

【0044】実施の形態5の静電保護回路においては、
一のトリガ素子の四方に寄生バイポーラトランジスタが
配置されているので、寄生バイポーラトランジスタのベ
ース電極Bに流れ込まない無駄なトンネル電流が減少す
る。逆に、一の寄生バイポーラトランジスタの四方にト
リガ素子が配置されているので、寄生バイポーラトラン
ジスタのベース電極Bに流れ込み基板抵抗Rsubに流れ
るトリガ電流を増加させ静電保護回路のトリガ電圧Vt1
を効率良く低電圧化する。
In the electrostatic protection circuit according to the fifth embodiment,
Since the parasitic bipolar transistors are arranged on four sides of one trigger element, unnecessary tunnel current that does not flow into the base electrode B of the parasitic bipolar transistor is reduced. Conversely, since the trigger elements are arranged on four sides of one parasitic bipolar transistor, the trigger current flows into the base electrode B of the parasitic bipolar transistor, the trigger current flowing through the substrate resistance Rsub is increased, and the trigger voltage Vt1 of the electrostatic protection circuit is increased.
To reduce the voltage efficiently.

【0045】なお、低抵抗層81を設ける場合には、一
のトリガ素子に隣接する4つの寄生バイポーラトランジ
スタのベース電極Bに向かって分岐する抵抗層を形成す
る。
When the low resistance layer 81 is provided, a resistance layer branched toward the base electrodes B of four parasitic bipolar transistors adjacent to one trigger element is formed.

【0046】実施の形態6 次に本発明の他の一実施の形態の静電保護素子及び静電
保護回路(実施の形態6)につき図10を参照して説明
する。図10(a)にその構成図を、図10(b)にそ
の逆方向電圧に対する電流電圧特性を、図11(a)に
その回路図を示した。寄生バイポーラトランジスタ11
を低電圧で動作させるためには、そのベース電位を早く
上昇させる必要がある。そのために、nMOSFET11の電
極Dから基板に流れ込む電流Isubを増やすのが、1つの
手段となる。図10(a)に示すように、実施の形態6
の静電保護素子及び静電保護回路は、実施の形態2の静
電保護素子及び静電保護回路に対して、基板コンタクト
となるP+拡散層6をトレンチ33の外側近傍に形成した
静電保護素子であり、配線によりP+拡散層6をゲート電
極Gに接続し、続いて、抵抗Rを介してグランドに接続
した静電保護回路である。すなわち、静電気が印加され
たときに、容量素子3の絶縁膜2を流れるトンネル電流
Imが、基板コンタクトとなるP+拡散層6、そして、nMOS
FET1のゲート電極G、そして、抵抗Rを経由してグラ
ンドに流れる回路を形成する。なお、この場合にも、電
極Sは直接グランドへ落としておく。すなわち、抵抗R
は、図10(a)、図11に示すように電極Sとグラン
ドとの間には接続しないようにする。電極Sとグランド
との間に抵抗Rを接続してしまうと電極Dから電極Sに
大電流を流して静電気をグランドに排出す際の抵抗とな
り、静電気によって生じた電荷を速やかに排出できない
からである。
Embodiment 6 Next, an electrostatic protection element and an electrostatic protection circuit (Embodiment 6) according to another embodiment of the present invention will be described with reference to FIG. FIG. 10A is a configuration diagram, FIG. 10B is a current-voltage characteristic with respect to the reverse voltage, and FIG. 11A is a circuit diagram thereof. Parasitic bipolar transistor 11
In order to operate at a low voltage, it is necessary to raise its base potential quickly. For this purpose, one means is to increase the current Isub flowing into the substrate from the electrode D of the nMOSFET 11. Embodiment 6 As shown in FIG.
The electrostatic protection element and the electrostatic protection circuit according to the second embodiment are different from the electrostatic protection element and the electrostatic protection circuit according to the second embodiment in that a P + diffusion layer 6 serving as a substrate contact is formed near the outside of the trench 33. It is an element, and is an electrostatic protection circuit in which the P + diffusion layer 6 is connected to the gate electrode G by wiring, and then connected to the ground via the resistor R. That is, when static electricity is applied, a tunnel current flowing through the insulating film 2 of the capacitive element 3
Im is a P + diffusion layer 6 that becomes a substrate contact, and nMOS
A circuit is formed that flows to the ground via the gate electrode G of the FET 1 and the resistor R. Also in this case, the electrode S is directly dropped to the ground. That is, the resistance R
Is not connected between the electrode S and the ground as shown in FIGS. If a resistor R is connected between the electrode S and the ground, a large current flows from the electrode D to the electrode S, and the resistance becomes a resistance when discharging static electricity to the ground, and the charge generated by the static electricity cannot be discharged quickly. is there.

【0047】上記実施の形態2及び実施の形態3におい
ては、トンネル電流Imを基板抵抗Rsubに流すことによ
りベース電位を上昇させた。しかし、実施の形態6で
は、静電気が印加されたときに、絶縁膜を流れるトンネ
ル電流Imが、基板コンタクトとなるP+拡散層6から、寄
生バイポーラトランジスタ1のゲート電極G、さらに、
抵抗Rを経由してグランドに流れることによって、nMOS
FET1のゲート電極Gの電位を上昇させて、寄生バイポ
ーラトランジスタ11を低電圧でトリガーさせるもので
ある。
In the second and third embodiments, the base potential is increased by flowing the tunnel current Im to the substrate resistance Rsub. However, in the sixth embodiment, when static electricity is applied, the tunnel current Im flowing through the insulating film is transferred from the P + diffusion layer 6 serving as the substrate contact to the gate electrode G of the parasitic bipolar transistor 1, and
By flowing to the ground via the resistor R, the nMOS
This is to raise the potential of the gate electrode G of the FET 1 to trigger the parasitic bipolar transistor 11 at a low voltage.

【0048】図12にMOSFETのゲート電圧Vgと基板電流
Isubの電流電圧特性を示す。ゲート電極GにMOSFETのし
きい値電圧以上の電圧が印加されると、基板電流Isubが
急激に上昇することがわかる。したがって、nMOSFET1
のゲート電極Gの電位を上昇させて、ゲート電極GにnM
OSFET1のしきい値電圧以上の電圧が印加されると、基
板電流Isubが急激に上昇する。ゆえに、寄生バイポーラ
トランジスタ11のベース電位が上昇し、低電圧で寄生
バイポーラトランジスタ11がトリガーすることにな
る。かかる仕組みにより、図10(b)の矢印93に示
すように、静電保護素子のトリガ電圧Vt1の低電圧化が
得られるのである。
FIG. 12 shows the gate voltage Vg of the MOSFET and the substrate current.
The current-voltage characteristics of Isub are shown. It is understood that when a voltage equal to or higher than the threshold voltage of the MOSFET is applied to the gate electrode G, the substrate current Isub sharply increases. Therefore, nMOSFET1
The potential of the gate electrode G is increased, and nM is applied to the gate electrode G.
When a voltage higher than the threshold voltage of the OSFET 1 is applied, the substrate current Isub sharply increases. Therefore, the base potential of the parasitic bipolar transistor 11 rises, and the parasitic bipolar transistor 11 is triggered at a low voltage. With such a mechanism, as shown by an arrow 93 in FIG. 10B, a lowering of the trigger voltage Vt1 of the electrostatic protection element can be obtained.

【0049】実施の形態6の静電保護回路の場合、電圧
降下分の電圧Vg(=トンネル電流Im×抵抗R)
が、nMOSFET1のゲート電極Gに印加され、ゲート電圧V
gがnMOSFET1のしきい値電圧以上になると基板に流れる
基板電流Isubが急激に増え、寄生バイポーラトランジス
タ11のベース電極Bが電圧降下により上昇し、寄生バ
イポーラトランジスタ11がトリガする。仮に、nMOSF
ET1のしきい値電圧が、0.5Vの時には、ゲート電圧
Vg=Im×Rが1〜2V程度になるように、トンネ
ル電流Imおよび抵抗Rを最適化するのが好ましい。
In the case of the electrostatic protection circuit according to the sixth embodiment, the voltage Vg corresponding to the voltage drop (= tunnel current Im × resistance R)
Is applied to the gate electrode G of the nMOSFET 1 and the gate voltage V
When g becomes equal to or higher than the threshold voltage of the nMOSFET 1, the substrate current Isub flowing through the substrate rapidly increases, the base electrode B of the parasitic bipolar transistor 11 rises due to a voltage drop, and the parasitic bipolar transistor 11 is triggered. Suppose nMOSF
When the threshold voltage of ET1 is 0.5V, the gate voltage
It is preferable to optimize the tunnel current Im and the resistance R such that Vg = Im × R is about 1 to 2 V.

【0050】従来のnMOSFETのみで構成した静電保護回
路の場合は、逆方向電流のみのIrにより寄生バイポーラ
トランジスタ11をトリガしていた。しかし、実施の形
態6の静電保護回路によれば、図10(b)に示すよう
に、ゲート電極Gに電圧を印加することで、寄生バイポ
ーラトランジスタ11のベース電極Bに流れ込み基板抵
抗Rsubに流れる基板電流Isubを増加させ、静電保護回路
のトリガ電圧Vt1を低電圧化できる。
In the case of the conventional electrostatic protection circuit composed only of nMOSFETs, the parasitic bipolar transistor 11 is triggered by Ir of only the reverse current. However, according to the electrostatic protection circuit of the sixth embodiment, as shown in FIG. 10B, by applying a voltage to the gate electrode G, it flows into the base electrode B of the parasitic bipolar transistor 11, and the substrate resistance Rsub. The substrate current Isub flowing can be increased, and the trigger voltage Vt1 of the electrostatic protection circuit can be reduced.

【0051】実施の形態7 次に本発明の他の一実施の形態の静電保護回路(実施の
形態7)につき図13を参照して説明する。図13にそ
の構成図を、図11(b)にその回路図を示した。実施
の形態6の静電保護回路では、抵抗Rにおける電圧降下
分の電圧Vg(=トンネル電流Im×抵抗R)が、nM
OSFET1のゲート電極Gに印加される。しかし、このと
き、ESDの静電パルスが大きく、トンネル電流Imが流れ
すぎた場合、ゲート電圧Vgが大きくなり、nMOSFET1の
ゲート絶縁膜7の絶縁破壊を引き起こす可能性がある。
そこで、nMOSFET1のゲート電圧Vgがゲート絶縁膜の耐
圧以下にクランプする保護回路5を接続することが有効
である。図13に示すように、実施の形態7の静電保護
素子及び静電保護回路は、実施の形態6の静電保護素子
及び静電保護回路に対して、保護回路5をゲート電極G
とグランド間に接続した静電保護回路である。実施の形
態7の静電保護回路においても、実施の形態6の静電保
護回路と同様に、電圧降下分の電圧Vg(=トンネル電流
Im×抵抗R)が、nMOSFET1のゲート電極Gに印
加されるが、ゲート電圧Vgが必要以上に大きくなると、
保護回路5が動作し、ゲート電圧Vgをゲート絶縁膜7の
絶縁膜耐圧以下にクランプする。この保護回路5は、一
般的に用いられているクランプ素子でよい。ここでは、
nMOSFET1のゲート電極Gをグランドに接続したもので
例示している。一般に、入出力回路のMOSFETのゲート絶
縁膜は、内部回路のゲート絶縁膜の膜厚より厚いので、
ここで用いる保護回路5のクランプ電圧は、入出力回路
のMOSFETのゲート絶縁膜の耐圧より、小さければよい。
Seventh Embodiment Next, an electrostatic protection circuit (seventh embodiment) according to another embodiment of the present invention will be described with reference to FIG. FIG. 13 shows a configuration diagram thereof, and FIG. 11B shows a circuit diagram thereof. In the electrostatic protection circuit according to the sixth embodiment, the voltage Vg (= tunnel current Im × resistance R) corresponding to the voltage drop in the resistance R is nM
It is applied to the gate electrode G of OSFET1. However, at this time, if the ESD electrostatic pulse is large and the tunnel current Im flows too much, the gate voltage Vg increases, and there is a possibility that the gate insulating film 7 of the nMOSFET 1 may be broken down.
Therefore, it is effective to connect a protection circuit 5 that clamps the gate voltage Vg of the nMOSFET 1 to a level lower than the withstand voltage of the gate insulating film. As shown in FIG. 13, the electrostatic protection element and the electrostatic protection circuit according to the seventh embodiment are different from the electrostatic protection element and the electrostatic protection circuit according to the sixth embodiment in that the protection circuit 5 is connected to the gate electrode G.
And an electrostatic protection circuit connected between the ground and the ground. Also in the electrostatic protection circuit of the seventh embodiment, the voltage Vg (= tunnel current) corresponding to the voltage drop is similar to the electrostatic protection circuit of the sixth embodiment.
Im × resistance R) is applied to the gate electrode G of the nMOSFET 1, but when the gate voltage Vg becomes larger than necessary,
The protection circuit 5 operates, and clamps the gate voltage Vg to be equal to or lower than the withstand voltage of the gate insulating film 7. The protection circuit 5 may be a generally used clamp element. here,
The example is shown in which the gate electrode G of the nMOSFET 1 is connected to the ground. Generally, since the gate insulating film of the MOSFET in the input / output circuit is thicker than the gate insulating film in the internal circuit,
The clamp voltage of the protection circuit 5 used here may be smaller than the withstand voltage of the gate insulating film of the MOSFET of the input / output circuit.

【0052】以上のように、実施の形態7の静電保護回
路によれば、ESDの静電パルスが大きく、トンネル電流I
mが流れすぎた場合でも、nMOSFET1のゲート絶縁膜7の
絶縁破壊を防止できる。
As described above, according to the electrostatic protection circuit of the seventh embodiment, the ESD electrostatic pulse is large and the tunnel current I
Even when m flows excessively, dielectric breakdown of the gate insulating film 7 of the nMOSFET 1 can be prevented.

【0053】[0053]

【発明の効果】本発明の静電保護素子、静電保護回路及
び半導体装置によって、第一に、静電保護素子のトリガ
電圧を効率良く低電圧化することができた。第二に、既
存の静電保護素子製造方法又はその方法によって製造さ
れる静電保護素子に変更を加えずそのままそれらを用い
ることができる経済的な静電保護素子及び静電保護回路
を提供することができた。第三に、印加電圧の上昇によ
り自らが破損しない静電保護素子及び静電保護回路を提
供することができた。第四に、トンネル電流がトリガー
電流として寄生バイポーラトランジスタのベース電極乃
至基板抵抗に確実に流れ込むようにしたことによって、
さらに効率良くトリガ電圧を低電圧化した静電保護素子
及び静電保護回路を提供することができた。第五に、多
種多様な静電保護素子を提供したこと及びその配列を工
夫することを考案したことにより、静電保護回路の組み
方が無数に広がり、トリガ電圧の低電圧化の程度が無段
階に選択することを可能とした。
According to the electrostatic protection element, the electrostatic protection circuit and the semiconductor device of the present invention, first, the trigger voltage of the electrostatic protection element can be efficiently reduced. Secondly, there is provided an economical electrostatic protection element and an electrostatic protection circuit which can use the existing electrostatic protection element manufacturing method or the electrostatic protection element manufactured by the method without any change. I was able to. Third, it was possible to provide an electrostatic protection element and an electrostatic protection circuit which are not damaged by the rise of the applied voltage. Fourth, by ensuring that the tunnel current flows as a trigger current into the base electrode or substrate resistance of the parasitic bipolar transistor,
Further, it is possible to provide an electrostatic protection element and an electrostatic protection circuit in which the trigger voltage is efficiently reduced. Fifth, by providing a wide variety of electrostatic protection elements and devising arrangements thereof, the number of ways of assembling the electrostatic protection circuit has expanded and the level of trigger voltage reduction has been infinite. It was made possible to select.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の静電保護回路の構成図(a)及びその電
流電圧特性グラフである。
FIG. 1 is a configuration diagram (a) of a conventional electrostatic protection circuit and a current-voltage characteristic graph thereof.

【図2】従来の他の静電保護回路の構成図(a)及びそ
の電流電圧特性グラフである。
FIG. 2 is a configuration diagram (a) of another conventional electrostatic protection circuit and a current-voltage characteristic graph thereof.

【図3】本発明の実施の形態1の容量素子を示す構成図
(a)及びその電流電圧特性グラフ(b)である。
FIGS. 3A and 3B are a configuration diagram showing a capacitive element according to the first embodiment of the present invention and a current-voltage characteristic graph thereof; FIGS.

【図4】本発明の本出願第3の発明の容量素子の特性を
示すバンド図(a)、(b)である。
FIGS. 4A and 4B are band diagrams (a) and (b) showing characteristics of a capacitive element according to a third aspect of the present invention.

【図5】本発明の実施の形態2の静電保護素子及び静電
保護回路を示す構成図(a)及びその電流電圧特性グラ
フ(b)である。
5A is a configuration diagram showing an electrostatic protection element and an electrostatic protection circuit according to a second embodiment of the present invention, and FIG. 5B is a current-voltage characteristic graph thereof.

【図6】本発明の実施の形態3の静電保護素子及び静電
保護回路を示す構成図(a)及びその電流電圧特性グラ
フ(b)である。
6A is a configuration diagram showing an electrostatic protection element and an electrostatic protection circuit according to a third embodiment of the present invention, and FIG. 6B is a current-voltage characteristic graph thereof.

【図7】従来の静電保護回路の等価回路を示すの回路図
(a)、従来の他の静電保護回路の等価回路を示すの回
路図(b)、本発明の実施の形態2の静電保護回路の等
価回路を示すの回路図(c)及び本発明の実施の形態3
の静電保護回路の等価回路を示すの回路図(d)であ
る。71はMOS素子を示す。
7A is a circuit diagram showing an equivalent circuit of a conventional electrostatic protection circuit, FIG. 7B is a circuit diagram showing an equivalent circuit of another conventional electrostatic protection circuit, and FIG. Circuit diagram (c) showing an equivalent circuit of the electrostatic protection circuit and Embodiment 3 of the present invention
FIG. 3D is a circuit diagram illustrating an equivalent circuit of the electrostatic protection circuit of FIG. Reference numeral 71 denotes a MOS element.

【図8】本発明の実施の形態4の静電保護素子及び静電
保護回路を示す構成図である。
FIG. 8 is a configuration diagram illustrating an electrostatic protection element and an electrostatic protection circuit according to a fourth embodiment of the present invention.

【図9】本発明の実施の形態5の静電保護回路を示す素
子配列図である。
FIG. 9 is an element array diagram showing an electrostatic protection circuit according to a fifth embodiment of the present invention.

【図10】本発明の実施の形態6の静電保護素子及び静
電保護回路を示す構成図(a)及びその電流電圧特性グ
ラフ(b)である。
10A is a configuration diagram showing an electrostatic protection element and an electrostatic protection circuit according to a sixth embodiment of the present invention, and FIG. 10B is a current-voltage characteristic graph thereof.

【図11】本発明の実施の形態6の静電保護回路の等価
回路を示す回路図(a)及び実施の形態7の静電保護回
路の等価回路を示す回路図(b)である。
11A is a circuit diagram showing an equivalent circuit of the electrostatic protection circuit according to the sixth embodiment of the present invention, and FIG. 11B is a circuit diagram showing an equivalent circuit of the electrostatic protection circuit according to the seventh embodiment.

【図12】MOSFETのゲート電圧Vgと基板電流Isubの電流
電圧特性を示すグラフである。
FIG. 12 is a graph showing current-voltage characteristics of a MOSFET gate voltage Vg and a substrate current Isub.

【図13】実施の形態7の静電保護素子及び静電保護回
路を示す構成図である。
FIG. 13 is a configuration diagram illustrating an electrostatic protection element and an electrostatic protection circuit according to a seventh embodiment.

【符号の説明】[Explanation of symbols]

1 nMOSFET 2 横方向サイリスタ 11,21 npn型寄生バイポーラトランジスタ Rsub 基板抵抗 Rnw n-well領域の抵抗 12,22,34,51,61 p型半導体基板 3 本発明実施形態の容量素子 31 ゲート電極 32 シリコン酸化絶縁膜 33 トレンチIr n+p接合の逆方向電流 Im トンネル電流 If n+p接合の順方向電流 41 反転層 42 空乏層 5 クランプ素子等の保護回路 81 低抵抗層 REFERENCE SIGNS LIST 1 nMOSFET 2 lateral thyristor 11, 21 npn-type parasitic bipolar transistor Rsub substrate resistance Rnw Resistance in n-well region 12, 22, 34, 51, 61 p-type semiconductor substrate 3 capacitance element 31 of the present invention 31 gate electrode 32 silicon Oxide insulating film 33 Reverse current of trench Ir n + p junction Im tunnel current If forward current of n + p junction 41 Inversion layer 42 Depletion layer 5 Protection circuit such as clamp element 81 Low resistance layer

フロントページの続き Fターム(参考) 5F038 AC03 AC14 BH01 BH02 BH03 BH04 BH05 BH06 BH07 BH13 EZ04 EZ20 5F040 DA00 DA23 DA24 DB01 DB06 DB09 DB10 EB17 5F048 AA02 AB06 AB07 AC10 CC01 CC05 CC06 CC08 CC15 CC16Continued on front page F term (reference) 5F038 AC03 AC14 BH01 BH02 BH03 BH04 BH05 BH06 BH07 BH13 EZ04 EZ20 5F040 DA00 DA23 DA24 DB01 DB06 DB09 DB10 EB17 5F048 AA02 AB06 AB07 AC10 CC01 CC05 CC06 CC08 CC15 CC16

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 寄生バイポーラトランジスタと、静電気
によって生じた電荷を前記寄生バイポーラトランジスタ
のベース領域に注入するトリガ素子とを隣接して備えた
ことを特徴とする静電保護素子。
1. An electrostatic protection element comprising: a parasitic bipolar transistor; and a trigger element for injecting a charge generated by static electricity into a base region of the parasitic bipolar transistor.
【請求項2】 前記トリガ素子は、絶縁膜を有し、静電
気によって生じた電荷をトンネル効果によってその絶縁
膜を通過させ、前記寄生バイポーラトランジスタのベー
ス領域に注入することを特徴とする請求項1に記載の静
電保護素子。
2. The device according to claim 1, wherein the trigger element has an insulating film, and charges generated by static electricity pass through the insulating film by a tunnel effect and are injected into a base region of the parasitic bipolar transistor. 3. The electrostatic protection element according to claim 1.
【請求項3】 半導体基板上にゲート絶縁膜を介してゲ
ート電極を設け、このゲート電極の周辺部の前記半導体
基板に素子分離層を形成してなることを特徴とする容量
素子。
3. A capacitor comprising a gate electrode provided on a semiconductor substrate via a gate insulating film, and an element isolation layer formed on the semiconductor substrate around the gate electrode.
【請求項4】 前記半導体基板中に低抵抗層を形成して
なることを特徴とする請求項3に記載の容量素子。
4. The capacitive element according to claim 3, wherein a low resistance layer is formed in the semiconductor substrate.
【請求項5】 前記ゲート電極にダイオードを並列接続
してなることを特徴とする請求項3又は請求項4のうち
いずれか一に記載の容量素子。
5. The capacitive element according to claim 3, wherein a diode is connected to the gate electrode in parallel.
【請求項6】 請求項3から請求項5に記載の容量素子
のうち一又は二以上の容量素子を前記トリガ素子とする
ことを特徴とする請求項1又は請求項2に記載の静電保
護素子。
6. The electrostatic protection according to claim 1, wherein one or more of the capacitive elements according to claim 3 is used as the trigger element. element.
【請求項7】 MIS電界効果型トランジスタと、請求
項3から請求項5に記載の容量素子のうち一又は二以上
の容量素子と、前記容量素子の素子分離層の外側位置に
形成されるコンタクト層とを備え、一端がグランドに配
線接続された抵抗素子が他端において、前記コンタクト
層及び前記MIS電界効果型トランジスタのゲート電極
に配線接続されてなることを特徴とする静電保護回路。
7. A MIS field-effect transistor, one or more of the capacitive elements according to claim 3, and a contact formed at a position outside an element isolation layer of the capacitive element. A resistance element having one end connected to the ground by wiring, and the other end connected by wiring to the contact layer and the gate electrode of the MIS field-effect transistor.
【請求項8】 前記抵抗素子の電圧降下によって前記ゲ
ート電極に印加される電圧を前記MIS電界効果型トラ
ンジスタのゲート絶縁膜の耐圧以下に保持するクランプ
素子を備えることを特徴とする請求項7に記載の静電保
護回路。
8. The semiconductor device according to claim 7, further comprising a clamp element for holding a voltage applied to the gate electrode by a voltage drop of the resistance element to be equal to or less than a withstand voltage of a gate insulating film of the MIS field-effect transistor. An electrostatic protection circuit as described.
【請求項9】 請求項1、請求項2及び請求項6に記載
の静電保護素子のうち一又は二以上の静電保護素子を適
用してなる静電保護回路。
9. An electrostatic protection circuit to which one or two or more of the electrostatic protection elements according to claim 1, 2 and 6 are applied.
【請求項10】 前記寄生バイポーラトランジスタと前
記トリガ素子とが、それら相互の隣接面積が増加するよ
うに配列されることを特徴とする請求項9記載の静電保
護回路。
10. The electrostatic protection circuit according to claim 9, wherein the parasitic bipolar transistor and the trigger element are arranged so that their adjacent areas increase.
【請求項11】 請求項7から請求項10のうちいずれ
か一に記載の静電保護回路を組み込んだ半導体装置。
11. A semiconductor device incorporating the electrostatic protection circuit according to any one of claims 7 to 10.
JP32345499A 1999-11-12 1999-11-12 Electrostatic protection circuit and semiconductor device Expired - Fee Related JP3479012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32345499A JP3479012B2 (en) 1999-11-12 1999-11-12 Electrostatic protection circuit and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32345499A JP3479012B2 (en) 1999-11-12 1999-11-12 Electrostatic protection circuit and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001144191A true JP2001144191A (en) 2001-05-25
JP3479012B2 JP3479012B2 (en) 2003-12-15

Family

ID=18154863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32345499A Expired - Fee Related JP3479012B2 (en) 1999-11-12 1999-11-12 Electrostatic protection circuit and semiconductor device

Country Status (1)

Country Link
JP (1) JP3479012B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278911A (en) * 2005-03-30 2006-10-12 Oki Electric Ind Co Ltd Electrostatic protective circuit and semiconductor device including the same
JP2007067347A (en) * 2005-09-02 2007-03-15 Toshiba Corp Semiconductor device and manufacturing method thereof
US7456440B2 (en) 2004-04-23 2008-11-25 Nec Electronics Corporation Electrostatic protection device
CN100438018C (en) * 2003-03-26 2008-11-26 联华电子股份有限公司 Static discharge protective circuit and method for double carrier complementary metal oxide semiconductor
US7729096B2 (en) 2007-03-16 2010-06-01 Oki Semiconductor Co., Ltd. Semiconductor integrated circuit
US8631727B2 (en) 2009-11-02 2014-01-21 Murata Machinery, Ltd. Machine tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438018C (en) * 2003-03-26 2008-11-26 联华电子股份有限公司 Static discharge protective circuit and method for double carrier complementary metal oxide semiconductor
US7456440B2 (en) 2004-04-23 2008-11-25 Nec Electronics Corporation Electrostatic protection device
JP2006278911A (en) * 2005-03-30 2006-10-12 Oki Electric Ind Co Ltd Electrostatic protective circuit and semiconductor device including the same
JP2007067347A (en) * 2005-09-02 2007-03-15 Toshiba Corp Semiconductor device and manufacturing method thereof
JP4625738B2 (en) * 2005-09-02 2011-02-02 株式会社東芝 Semiconductor device and manufacturing method thereof
US7729096B2 (en) 2007-03-16 2010-06-01 Oki Semiconductor Co., Ltd. Semiconductor integrated circuit
US8631727B2 (en) 2009-11-02 2014-01-21 Murata Machinery, Ltd. Machine tool

Also Published As

Publication number Publication date
JP3479012B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
JP5242675B2 (en) ESD protection circuit with reduced trigger voltage
US7825473B2 (en) Initial-on SCR device for on-chip ESD protection
US6521952B1 (en) Method of forming a silicon controlled rectifier devices in SOI CMOS process for on-chip ESD protection
US6750515B2 (en) SCR devices in silicon-on-insulator CMOS process for on-chip ESD protection
JP3174636B2 (en) Electrostatic discharge protection for CMOS integrated circuits
US6566715B1 (en) Substrate-triggered technique for on-chip ESD protection circuit
KR0124758Y1 (en) Integrated circuit with mos capacitor for improved esd protection
US7986011B2 (en) Electrostatic discharge protection device
US6624487B1 (en) Drain-extended MOS ESD protection structure
JP3573674B2 (en) I / O protection device for semiconductor integrated circuit and its protection method
US7355252B2 (en) Electrostatic discharge protection device and method of fabricating the same
US20040027745A1 (en) Drain-extended MOS ESD protection structure
JP2013517617A (en) Bond pad with integrated transient overvoltage protection
US8129788B1 (en) Capacitor triggered silicon controlled rectifier
US20120181611A1 (en) Semiconductor device
US7196378B2 (en) Electrostatic-protection dummy transistor structure
JP3317345B2 (en) Semiconductor device
JP2001144191A (en) Electrostatic protective element, electrostatic protective circuit, and semiconductor device
US6288884B1 (en) MOS buffer immun to ESD damage
JP3314760B2 (en) Electrostatic protection element, electrostatic protection circuit, and semiconductor device
JPH07263633A (en) Static electricity-proof discharge protector of semiconductor device
KR20030051388A (en) Polysilicon bounded snapback device
KR20070058165A (en) Electrostatic discharge protection device of semiconductor device
KR100591125B1 (en) Gate Grounded NMOS Transistor for protection against the electrostatic discharge
JP3187773B2 (en) Semiconductor device with input protection element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees