JP2001141704A - Method for evaluating cleanliness of metallic material by ultrasonic flaw detection - Google Patents

Method for evaluating cleanliness of metallic material by ultrasonic flaw detection

Info

Publication number
JP2001141704A
JP2001141704A JP32324699A JP32324699A JP2001141704A JP 2001141704 A JP2001141704 A JP 2001141704A JP 32324699 A JP32324699 A JP 32324699A JP 32324699 A JP32324699 A JP 32324699A JP 2001141704 A JP2001141704 A JP 2001141704A
Authority
JP
Japan
Prior art keywords
ultrasonic
metal material
metallic
cleanliness
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32324699A
Other languages
Japanese (ja)
Other versions
JP3563313B2 (en
Inventor
Yoshiyuki Kato
恵之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP32324699A priority Critical patent/JP3563313B2/en
Priority to US09/470,993 priority patent/US6318178B1/en
Priority to SE0000152A priority patent/SE517971C2/en
Priority to DE2000102344 priority patent/DE10002344B4/en
Publication of JP2001141704A publication Critical patent/JP2001141704A/en
Application granted granted Critical
Publication of JP3563313B2 publication Critical patent/JP3563313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly evaluating the cleanliness of a metallic material with high precision and high reliability. SOLUTION: n-Pieces of detection parts are set in prescribed positions of a metallic material to be inspected, and a scanning for intra-metallic nonmetallic inclusion is performed by ultrasonic flaw detection for every inspection part to detect the maximum nonmetallic inclusion diameter aj (j=1, n), and the estimated maximum nonmetallic inclusion diameter amax in the metallic material to be inspected is calculated from the detected maximum nonmetallic inclusion diameter aj (j=1, n) every each inspection position by use of the equation 1 to evaluate the cleanliness of the metallic material to be inspected. Linear regression expression of maximum nonmetallic inclusion diameter aj (j=1, n) and a standardized variable yj (j=1, n) a=ty+u...1 wherein n = frequency of inspections, standardized variable yj=-ln[-ln j/(n+1)}] (j=1, n), t = regression coefficient, and u = constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料の清浄度
を評価する方法に関するものである。より詳しくは、超
音波探傷法により、検査対象の金属材料の所定の検査部
位を走査して、そこに含まれる非金属介在物(例えば、
酸化物、窒化物、硫化物など)のデータを取り、これら
のデータから所定の式により被検対象金属材料中の推定
最大非金属介在物径を算出して被検対象金属材料の清浄
度を評価する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the cleanliness of a metal material. More specifically, a predetermined inspection site of a metal material to be inspected is scanned by an ultrasonic flaw detection method, and nonmetallic inclusions contained therein (for example,
Oxide, nitride, sulfide, etc.), and from these data, calculate the estimated maximum non-metallic inclusion diameter in the test target metal material using a predetermined formula to determine the cleanliness of the test target metal material. It is about the method of evaluation.

【0002】[0002]

【従来の技術】最近の冶金技術の向上から、鋼などの金
属材料の清浄度が大幅に改善され、20ミクロンを越え
る中型〜大型の金属材料中非金属介在物は一段と少なく
なり、かつ、大きさも小さくなっている。このような中
で、偶発的に、あるいはきわめて低い確率で発生する大
型介在物の検出は、非常に困難になっている。
2. Description of the Related Art With the recent improvement in metallurgical technology, the cleanliness of metallic materials such as steel has been greatly improved, and non-metallic inclusions in medium to large metallic materials exceeding 20 microns have been further reduced and large. It is also getting smaller. Under such circumstances, it is very difficult to detect a large inclusion that occurs accidentally or with a very low probability.

【0003】しかして、このような状況の下、実際に金
属材料の清浄度を評価し、保証できる技術は開発されて
いない。
[0003] However, under such circumstances, no technology has been developed that can actually evaluate and guarantee the cleanliness of metal materials.

【0004】ところで、現在、金属材料の清浄度を見る
検査方法としては、光学顕微鏡による方法が標準であ
る。しかし、この方法では被検面積が約1000mm2
と小さく、上述のような高清浄度の金属材料の清浄度を
評価する方法としては、到底利用することはできない
(JIS G 0555, ASTM E45,ASTMA
295,DIN50602,ISO4967など)。
At present, as a standard inspection method for checking the cleanliness of a metal material, a method using an optical microscope is standard. However, in this method, the area to be inspected is about 1000 mm 2.
It cannot be used as a method for evaluating the cleanliness of a metal material having high cleanliness as described above (JIS G 0555, ASTM E45, ASTMA).
295, DIN 50602, ISO 4967, etc.).

【0005】また、金属材料から酸溶解により介在物を
抽出しその介在物の粒径を顕微鏡で評価する方法やEB
溶解法により金属材料を溶解し浮上した介在物を顕微鏡
により観察する方法が提案されているが(特開平9−1
25199号、特開平9−125200号)、介在物が
酸に溶解したり、介在物自身が融解,凝集したりして、
これらの方法も高清浄度の金属材料の清浄度の評価に利
用することはできなかった。
Further, a method of extracting inclusions from a metallic material by acid dissolution and evaluating the particle size of the inclusions with a microscope has been proposed.
A method has been proposed in which a metal material is melted by a melting method and inclusions that have floated are observed with a microscope (Japanese Patent Application Laid-Open No. 9-1 / 1991).
25199, JP-A-9-125200), inclusions are dissolved in an acid, or inclusions themselves are melted and aggregated,
Neither of these methods can be used to evaluate the cleanliness of highly clean metallic materials.

【0006】さらに、以上のような方法では、酸溶解に
時間がかかるなど、処理の迅速性に劣り、製品の量産工
程に対応することも困難であった。
Furthermore, the above-described methods are inferior in processing speed, for example, it takes a long time to dissolve the acid, and it is also difficult to cope with mass production of products.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、最
近の冶金技術の向上に対応し、鋼などの金属材料の清浄
度の大幅な改善に対応した、金属材料の清浄度の評価方
法を提供せんとするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for evaluating the cleanliness of a metal material in response to recent improvements in metallurgical technology and a drastic improvement in the cleanliness of metal materials such as steel. It will not be provided.

【0008】また、このような金属材料の量産工程にも
対応した、迅速な金属材料の清浄度の評価方法を提供し
ようとするものである。
Another object of the present invention is to provide a method for quickly evaluating the cleanliness of a metal material, which is compatible with such a mass-production process of the metal material.

【0009】ところで本発明者は、上記の第一の課題を
解決することを目的に、検鏡面積を基準検査面積S0
100mm2 とし、試料数n=30〜60個採取し、そ
れぞれの試料において現れた最大介在物径から極値統計
法の手順により、被検対象金属材料中の最大介在物径を
予測する方法を検討してきたが、それでも前記の大型介
在物の予測には信頼性が低かった。そのため、金属材料
の清浄度の評価に利用可能な技術にはなっていなかっ
た。
By the way, the present inventor aims to solve the above-mentioned first problem by changing the speculum area to the reference inspection area S 0 =
A method for estimating the maximum inclusion diameter in the test target metal material by the procedure of the extreme value statistical method from the maximum inclusion diameter appearing in each sample, taking the number of samples n = 30 to 60 as 100 mm 2 , Although it has been studied, the reliability of the prediction of the large inclusions is still low. For this reason, it has not become a technique usable for evaluating the cleanliness of metal materials.

【0010】[0010]

【課題を解決するための手段】本発明は上述の問題点を
解消した手段を提供するものであり、その要旨は特許請
求の範囲に記載の通りである。以下、詳述する。
SUMMARY OF THE INVENTION The present invention provides means for solving the above-mentioned problems, the gist of which is as set forth in the appended claims. The details will be described below.

【0011】[0011]

【発明の実施の形態】本願請求項1に記載の発明は、
「被検対象金属材料の所定部分にn個の検査部位を設定
し、各検査部位毎に超音波探傷法により金属中非金属介
在物を走査して最大非金属介在物径aj (j=1,n)
を検出し、次いで、該検出した各検査部位毎の最大非金
属介在物径aj (j=1,n)から下記式(1)、
(1’)、(イ)および(ロ)により被検対象金属材料
中の推定最大非金属介在物径amax を算出して被検対象
金属材料の清浄度を評価することを特徴とする金属材料
の清浄度評価方法。 [式1] 最大非金属介在物径aj (j=1,n)と基
準化変数yj (j=1,n)の一次回帰式 a=ty+u ・・・・・・・・・・・(1) ただし、n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式1’]被検対象金属中の推定最大非金属介在物径a
max の算出式 amax =t×ymax +u・・・・・・・・・・(1’) ただし、Vo =検査基準体積(mm3 ) V =予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax (基準化変数)=−ln[ −ln{(T−1)/ T]
] [式イ] 30≦V/V0≦10000・・・・・・・・・・(イ) [式ロ] 1≦V0≦400000・・・・・・・・・・(ロ)」 である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in claim 1 of the present application is
"N inspection sites are set at a predetermined portion of the metal material to be inspected, and the non-metallic inclusions in the metal are scanned by ultrasonic flaw detection for each inspection site, and the maximum non-metallic inclusion diameter a j (j = 1, n)
Then, from the detected maximum non-metallic inclusion diameter a j (j = 1, n) for each detected site, the following equation (1) is obtained.
A metal characterized in that the estimated maximum non-metallic inclusion diameter a max in the test target metal material is calculated by (1 ′), (a) and (b) to evaluate the cleanliness of the test target metal material. Material cleanliness evaluation method. [Equation 1] Linear regression equation of maximum non-metallic inclusion diameter a j (j = 1, n) and normalization variable y j (j = 1, n) a = ty + u (1) Here, n = number of inspections Normalized variable y j = −ln [−ln {j / (n + 1)]] (j = 1
n) t = regression coefficient u = constant [Equation 1 '] Estimated maximum non-metallic inclusion diameter a in the test object metal
Formula for calculating max a max = t × y max + u (1 ′) where V o = inspection reference volume (mm 3 ) V = volume to be predicted (mm 3 ) T ( recursive period) = (V + V o) / V o y max ( normalized variable) = - ln [-ln {( T-1) / T]
] [Formula A] 30 ≦ V / V 0 ≦ 10000 (1) [Formula 2] 1 ≦ V 0 ≦ 400000 (2) ” It is.

【0012】まず本発明者は、種々の研究の結果、20
ミクロンを越える金属材料中の非金属介在物が一段と少
なくなり、かつ、大きさも小さくなっている状況で、偶
発的に、あるいはきわめて低い確率で発生する大型介在
物を検出することは、顕微鏡観察による方法では到底困
難であるとの結論に至った。このような大型介在物は被
検面に現れるとは限らず、むしろ隠れて観察されない場
合が多いものと考えられた。
First, the present inventor found that as a result of various studies, 20
In a situation where non-metallic inclusions in a metal material exceeding a micron are further reduced and the size is reduced, large-sized inclusions that occur accidentally or with a very low probability are detected by microscopic observation. We concluded that the method was extremely difficult. It was considered that such large inclusions did not always appear on the test surface, but rather were often hidden and not observed.

【0013】このため、顕微鏡観察による方法を利用し
た金属材料の清浄度の評価・品質保証は、処理の迅速性
に劣り、製品の量産工程に対応することも実際上困難と
考えられた。
For this reason, it has been considered that the evaluation and the quality assurance of the cleanliness of the metal material using the method by microscopic observation are inferior in the speed of processing, and it is practically difficult to cope with the mass production process of the product.

【0014】そこで本発明者は種々検討の結果、まず超
音波探傷法とくに高周波焦点型装置を利用することに想
到したものである。超音波探傷法は基本的に非破壊検査
法であり、ラフな試料調整大体積検査,迅速検査といっ
た利点が期待できるものであった。
As a result of various studies, the inventor of the present invention has conceived of using an ultrasonic flaw detection method, particularly a high-frequency focus type apparatus. The ultrasonic flaw detection method is basically a non-destructive inspection method, and can be expected to have advantages such as rough sample preparation, large volume inspection, and rapid inspection.

【0015】この超音波探傷法を基本的に採用したこと
により、金属材料中に含まれる非金属介在物(例えば、
酸化物、窒化物、硫化物など)の最大径について、従来
の1000倍から数万倍の検査ができる効果を達成する
ことに成功したものである。
By basically adopting the ultrasonic flaw detection method, non-metallic inclusions (for example,
With respect to the maximum diameter of oxides, nitrides, sulfides, etc.), the present invention has succeeded in achieving the effect of enabling inspection of 1,000 to tens of thousands times as large as the conventional one.

【0016】次に、本発明の次の特徴は、被検対象金属
材料の所定部分に、超音波探傷するn個の検査部位を設
定する点にある。
Next, the next feature of the present invention resides in that n inspection sites to be subjected to ultrasonic flaw detection are set in a predetermined portion of a metal material to be inspected.

【0017】検査部位の設定は、例えば、図1に示すよ
うに被検対象の連続鋳造鋼片のトップ、ミドル、ボトム
に設定するなど、被検対象の性質に合わせて大型非金属
介在物の発生しやすい部位に設定する。設定した検査部
位からは同じ形状の試料片を複数個(例えば3個)採取
することが好ましい。これにより、全部位を効率的に検
査することができるのである。また、被検対象金属材料
のトップ、ミドル、ボトムの全部位に検査部位(検査試
料)を設定すれば、鋳造の初期、中期、末期に対応する
部位を検査することができる。
The inspection site is set, for example, at the top, middle, and bottom of a continuous cast steel piece to be inspected as shown in FIG. Set to a site that is likely to occur. It is preferable to collect a plurality (for example, three) of sample pieces having the same shape from the set inspection site. Thereby, all parts can be inspected efficiently. In addition, if the inspection part (inspection sample) is set at all the top, middle, and bottom parts of the metal material to be inspected, parts corresponding to the initial, middle, and end stages of casting can be inspected.

【0018】nの数としては、統計計算的には30〜6
0が好ましい。
The number n is 30 to 6 in statistical calculation.
0 is preferred.

【0019】検査部位(検査試料)毎の超音波探傷によ
り走査する面積は、例えば、最大面積700×700m
2 から最小面積1.0×1.0mm2 といった範囲が
可能である。また、探傷深さは、0.1mmから5mm
程度が通常である(平均深さ約1mm)。
The area scanned by ultrasonic flaw detection for each inspection site (inspection sample) is, for example, a maximum area of 700 × 700 m.
A range from m 2 to a minimum area of 1.0 × 1.0 mm 2 is possible. The flaw detection depth is 0.1mm to 5mm
The degree is normal (average depth about 1 mm).

【0020】よって、本発明法による常用走査面積を
(20〜100mm)×(20〜100mm)=400
〜10000mm2 /個とし、検査部位(検査試料)数
n=30〜60個とすると、チャージあたりの走査検査
面積は12000〜600000mm2 /チャージ、深
さを考慮して体積→面積換算(×100倍・層)を求め
ると、 1,200,000〜60,000,000mm2 /チャージとな
る。したがって、従来の光学顕微鏡では多くても検査面
積は1000mm2 /チャージであるが、これに比べて
千〜数万倍の検査を実施したことになるのである。
Therefore, the normal scanning area according to the method of the present invention is (20-100 mm) × (20-100 mm) = 400
~10000mm 2 / number and then, when the number n = 30 to 60 pieces test site (test sample), scanning inspection area per charge is 12000~600000mm 2 / charge, taking into account the depth volume → area converted (× 100 Doubled layer) is 1,200,000 to 60,000,000 mm 2 / charge. Therefore, the inspection area of the conventional optical microscope is at most 1000 mm 2 / charge, but the inspection has been performed 1,000 to tens of thousands times as large as this.

【0021】次に本発明では、上記各検査部位毎の最大
非金属介在物径aj (j=1,n)を検出する。最大非
金属介在物径aj の検出方法には、個々に異なった部位
からn個検査する方法、1ケの大きい試片を分割する方
法などがある。
Next, in the present invention, the maximum non-metallic inclusion diameter a j (j = 1, n) is detected for each of the inspection sites. As a method for detecting the maximum non-metallic inclusion diameter a j , there are a method of inspecting n pieces from different portions, a method of dividing one large specimen, and the like.

【0022】各検査部位又は検査試料における最大非金
属介在物径aj (j=1,n)を求める方法としては、
超音波波高データ同士を比較して超音波波高データの最
大値を求め、この超音波波高データの最大値から換算し
て最大非金属介在物径を求める方法と、超音波波高デー
タを換算して非金属介在物径データDi を算出し、非金
属介在物径データDi 中から最大非金属介在物径を求め
る方法の、いずれの方法でもよい。
A method for determining the maximum non-metallic inclusion diameter a j (j = 1, n) in each test site or test sample is as follows.
Compare the ultrasonic wave height data with each other to find the maximum value of the ultrasonic wave height data, convert the maximum value of the ultrasonic wave height data to obtain the maximum non-metallic inclusion diameter, and convert the ultrasonic wave height data calculating a nonmetallic inclusion diameter data D i, the method of determining the maximum non-metallic inclusion diameter from non-metallic inclusion size in data D i, may be any method.

【0023】次に、このようにして検出した各検査部位
毎の最大非金属介在物径aj (j=1,n)から上記式
(1)および(1’)により被検対象金属材料中の推定
最大非金属介在物径amax を算出する。
Next, the maximum non-metallic inclusion diameter a j (j = 1, n) for each inspection site detected in this way is calculated from the above-mentioned equations (1) and (1 ′) in the metal material to be inspected. Is calculated as the estimated maximum non-metallic inclusion diameter a max .

【0024】この式は鋼中の介在物を酸溶解で抽出し、
あるいは削り込んで顕微鏡で観察して寸法を求めたもの
であり、超音波波高と直径を対応させることによって、
被検対象金属材料の一部のデータから被検対象金属材料
全体中の最大非金属介在物径amax を極めて精度良く推
定することに成功したものである。
This formula extracts inclusions in steel by acid dissolution,
Or it was obtained by cutting and observing with a microscope to determine the dimensions, and by making the ultrasonic wave height and diameter correspond,
The maximum non-metallic inclusion diameter a max in the entire test target metal material has been successfully estimated with extremely high accuracy from partial data of the test target metal material.

【0025】ただし、V/V0およびV0 は下記式イ、
ロに示すような範囲とする。 [式イ] 30≦V/V0≦10000・・・・・・・・・・(イ) [式ロ] 1≦V0≦400000・・・・・・・・・・(ロ) (V、V0の単位は、「mm3」である。) すなわち、予測を行う金属材料の体積と検査基準体積と
の比(V/V0)を式イで示される範囲とし、かつ検査
基準体積V0の大きさを式ロで示される範囲とする。図
2に、式イおよびロで示される範囲を示す。
Here, V / V 0 and V 0 are represented by the following formulas (1) and (2).
The range is as shown in b. [Formula A] 30 ≦ V / V 0 ≦ 10000 ······· (A) [Formula B] 1 ≦ V 0 ≦ 400,000 ····· (B) (V) , V 0 are in units of “mm 3 ”. That is, the ratio (V / V 0 ) between the volume of the metal material to be predicted and the inspection reference volume is set in the range shown by the formula (a), and the inspection reference volume is set. Let the magnitude of V 0 be the range shown by equation (2). FIG. 2 shows the range indicated by the formulas A and B.

【0026】本発明の清浄度評価方法は、式イおよびロ
で示される範囲ABDEの領域内で行われるものである
が、V/V0の上限としてより好ましくはV/V0≦50
00であり、他方V/V0の下限としてより好ましくは
V/V0≧60である。また、V0の上限としてより好ま
しくはV0≦40000であり、他方V0の下限としてよ
り好ましくはV0≧10ある。式イおよびロで示される
範囲であるABDEの領域内、より好ましくは上記のよ
うなV/V0の上限・下限もしくはV0の上限・下限であ
れば、金属材料中の介在物の最大介在物径を精度よく予
測することができる。また、ABDEの領域、より好ま
しくは上記のような上限・下限の領域であれば超音波探
傷にかける試料片の大きさとしては取り扱いやすく、取
り扱いの容易な範囲の検査基準体積で大体積の金属材料
について精度のよい予測が可能となり、検査能率的にも
優れる。他方、V/V0<30(図2中、ABを通る直
線より下の領域)では、実績データの範囲内でありわざ
わざ予測する必要が低い範囲である。また、V0>40
0000(BDを通る直線より右側の領域)では、検査
基準体積が、予測しようとする体積に対して過大であ
り、測定が極めて困難である。また、V/V0>100
00(DEを通る直線より上の領域)では予測体積の精
度が低下する場合がある。また、V0<1(AEを通る
直線より左側の領域)では、超音波探傷に供試する試料
片の大きさとしては小さく、介在物の検出精度が低下す
る場合がある。
The cleanliness evaluation method of the present invention, Threshold and although intended to be done in the area of the range ABDE represented by B, V / V and more preferably V / V 0 ≦ 50 as an upper limit of 0
Is 00, more preferably V / V 0 ≧ 60 as the lower limit of the other V / V 0. Further, more preferably the upper limit of V 0 is V 0 ≦ 40000, and more preferably a lower limit of the other V 0 V is 0 ≧ 10. Threshold and ABDE in the area is a range indicated by B, if more preferably the upper limit and lower limit of the upper and lower limits or V 0 which V / V 0, as described above, the maximum intervention of inclusions in metallic materials The object diameter can be accurately predicted. Further, in the ABDE region, more preferably, in the upper and lower limits described above, the size of a sample piece to be subjected to ultrasonic flaw detection is easy to handle, and a large volume of metal is used in an inspection reference volume in a range that is easy to handle. Accurate prediction of the material is possible, and the inspection efficiency is excellent. On the other hand, when V / V 0 <30 (the area below the straight line passing through AB in FIG. 2), the area is within the range of the actual data and does not need to be specifically predicted. Also, V 0 > 40
In the case of 0000 (the area to the right of the straight line passing through the BD), the inspection reference volume is excessively large with respect to the volume to be predicted, and the measurement is extremely difficult. Also, V / V 0 > 100
At 00 (the area above the straight line passing through the DE), the accuracy of the predicted volume may decrease. Further, when V 0 <1 (region on the left side of the straight line passing through the AE), the size of the sample piece to be subjected to ultrasonic testing is small, and the detection accuracy of inclusions may decrease.

【0027】例えば、鉄鋼について式イおよびロで示さ
れる範囲を重量に換算すると、表1に示されるとおりと
なる。
For example, when the ranges indicated by the formulas (a) and (b) are converted into weights for steel, the results are as shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】本願請求項2に記載の発明は、「各検査部
位毎の最大非金属介在物径aj (j=1,n)の検出に
際し、各検査部位毎に上位複数個の非金属介在物径を求
め、このうちから異常値を除去した後、最大非金属介在
物径aj (j=1,n)を選出することを特徴とする請
求項1に記載の金属材料の清浄度評価方法。」である。
[0029] The invention according to claim 2 of the present application provides a method for detecting a maximum non-metallic inclusion diameter a j (j = 1, n) for each inspection site, wherein a plurality of upper non-metallic inclusions are included for each inspection site. 2. The cleanliness evaluation of a metal material according to claim 1, wherein the maximum non-metallic inclusion diameter a j (j = 1, n) is selected after obtaining an object diameter and removing an abnormal value from among them. The method. "

【0030】ここで言う異常値とは非金属介在物でない
空洞からの反射波、外からの飛び込み乱反射ノイズなど
であり、波形によって正常値と見分けることができる。
このような異常値は、通常程度の寒いときには相当多く
の数が発生するが、通常は、例えば、各検査部位毎に5
個の非金属介在物径データを求めておけば対処できる。
The abnormal value referred to here is a reflected wave from a cavity that is not a non-metallic inclusion, a diving diffuse reflection noise, and the like, and can be distinguished from a normal value by a waveform.
Such abnormal values are generated in a considerably large number when the temperature is about normal, but usually, for example, 5 points for each inspection site.
This can be dealt with by obtaining the non-metallic inclusion diameter data.

【0031】これにより、介在物でない欠陥からのデー
タを省くことができる利点がある。
Thus, there is an advantage that data from a defect that is not an inclusion can be omitted.

【0032】本願請求項3に記載の発明は、「非金属介
在物径を、非金属介在物からの超音波反射波高データか
ら換算して求めることを特徴とする請求項1又は2に記
載の金属材料の清浄度評価方法。」である。
According to a third aspect of the present invention, there is provided a method as set forth in the first or second aspect, wherein the diameter of the non-metallic inclusion is obtained by converting the ultrasonic reflected wave height data from the non-metallic inclusion. Method for evaluating cleanliness of metal materials. "

【0033】本発明者の研究によれば、非金属介在物径
n と超音波反射波高値Cとの間には下記の関係式が成
り立つことが分かった。これによってデータの一貫した
コンピュータ処理を可能とし、大容量のデータにも対応
可能とすると共に、金属材料の清浄度評価の高速化・高
精度化を達成したものである。
According to the present inventor's research, between the non-metallic inclusion diameter a n and the reflected ultrasonic wave height C was found that the following relational expression holds. As a result, consistent computer processing of data is enabled, large-volume data can be handled, and high-speed and high-precision evaluation of cleanliness of metal materials has been achieved.

【0034】 非金属介在物径an =p×超音波反射波高値C+q・・・・・(4) ただし 、pおよびq = 定数 本願請求項4に記載の発明は、「非金属介在物径を、超
音波反射波高・非金属介在物径対応の検量線を用いて換
算して求めることを特徴とする請求項3に記載の金属材
料の清浄度評価方法。」である。
Non-metallic inclusion diameter a n = p × ultrasonic reflected wave peak value C + q (4) where p and q = constant The invention described in claim 4 of the present application is based on “non-metallic inclusion diameter 4. The method for evaluating cleanliness of a metal material according to claim 3, wherein the value is calculated by using a calibration curve corresponding to an ultrasonic reflected wave height and a nonmetallic inclusion diameter.

【0035】検量線図とは、予め各探触子毎にもとめた
金属材料料中介在物の反射波高と、同金属材料料中介在
物を酸溶解などにより抽出し求めた介在物直径の関係を
示す関係式あるいは検量線図のことを言う。図3にその
一例を示す。
The calibration curve is a relation between the reflected wave height of the inclusions in the metal material previously determined for each probe and the diameter of the inclusions obtained by extracting the inclusions in the metal material by acid dissolution or the like. Means a relational expression or a calibration curve. FIG. 3 shows an example.

【0036】本発明者は、超音波反射波高から介在物径
を換算するための検量線作成を目指して種々研究の結
果、あらかじめ高周波探触子(20〜150MHZ)を
用いて金属材料料中の介在物の反射波高値を調査し安定
した条件で介在物からの反射波高値を得る条件を把握し
た。同試料について介在物の形態を損なわない酸溶解を
実施し、介在物を抽出して顕微鏡観察により介在物直径
を測定し、反射波高値と介在物径との関係を示す精度の
良い関係式(検量線)を作成することに成功したもので
ある(図3)。
The inventor of the present invention has conducted various studies with the aim of creating a calibration curve for converting the diameter of inclusions from the height of the reflected ultrasonic wave, and as a result, a high-frequency probe (20 to 150 MHZ) was used in advance to determine the amount of metal contained in the metal material. The reflected wave height of inclusions was investigated and the conditions for obtaining the reflected wave height from inclusions under stable conditions were grasped. The sample is subjected to acid dissolution without impairing the morphology of the inclusions, the inclusions are extracted, the diameter of the inclusions is measured by microscopic observation, and an accurate relational expression showing the relationship between the reflected wave peak value and the diameter of the inclusions ( Calibration curve) (Fig. 3).

【0037】 回帰式(例) y=0.34x+11.85(相関係数r=0.96) 本願請求項5に記載の発明は、「各検査部位毎の最大非
金属介在物径aj (j=1,n)の検出に際し、各検査
部位毎に超音波探傷法により金属中非金属介在物を走査
して各非金属介在物からの超音波反射波高データを得、
該超音波反射波高データ同士を比較して最大値を求め、
該超音波反射波高データ中の最大値から最大非金属介在
物径aj (j=1,n)を換算して求めることを特徴と
する請求項3又は4に記載の金属材料の清浄度評価方
法。」である。
Regression equation (example) y = 0.34x + 11.85 (correlation coefficient r = 0.96) The invention described in claim 5 of the present application is directed to “the maximum non-metallic inclusion diameter a j ( j = 1, n), the non-metallic inclusions in the metal are scanned by ultrasonic flaw detection for each inspection site to obtain ultrasonic reflected wave height data from each non-metallic inclusion,
Find the maximum value by comparing the ultrasonic reflected wave height data,
The cleanliness evaluation of a metal material according to claim 3 or 4, wherein the maximum nonmetallic inclusion diameter a j (j = 1, n) is calculated from the maximum value in the ultrasonic reflected wave height data. Method. ".

【0038】上記のように、非金属介在物径と非金属介
在物からの超音波反射波高データとの間には相関関係が
あるため、非金属介在物からの超音波反射波高データ同
士を比較して最大値を求めれば、この超音波反射波高デ
ータが最大径の非金属介在物からの超音波反射波高デー
タである。そこで、まず非金属介在物からの超音波反射
波高データ同士を比較して最大値を求め、この最大値か
ら最大非金属介在物径aj (j=1,n)を換算して求
める手順としても良いのである。
As described above, there is a correlation between the diameter of the non-metallic inclusion and the ultrasonic wave height data from the non-metallic inclusion, so that the ultrasonic wave height data from the non-metallic inclusion are compared. If the maximum value is obtained in this way, this ultrasonic reflected wave height data is the ultrasonic reflected wave height data from the non-metallic inclusion having the largest diameter. Therefore, first, a maximum value is obtained by comparing ultrasonic reflected wave height data from nonmetallic inclusions, and a maximum nonmetallic inclusion diameter a j (j = 1, n) is converted from the maximum value to obtain the maximum value. Is also good.

【0039】本願請求項6に記載の発明は、「被検対象
金属材料の所定部分にn個の検査部位を設定し、各検査
部位毎に超音波探傷法により金属中非金属介在物を走査
して各検査部位における最大非金属介在物からの超音波
反射波高データIj (j=1,n)を検出し、次いで、
該検出した各検査部位毎の最大非金属介在物からの超音
波反射波高データIj (j=1,n)から下記式(2)
および(2’)により被検対象金属材料中の推定最大非
金属介在物からの推定最大超音波反射波高データImax
を算出し、次いで、該推定最大超音波反射波高データI
max から推定最大非金属介在物径を算出して被検対象金
属材料の清浄度を評価することを特徴とする金属材料の
清浄度評価方法。 [式2]最大非金属介在物からの超音波反射波高データ
j (j=1,n)と基準化変数yj (j=1,n)の
一次回帰式 I=t×y+u ・・・・・・・・・・・・・・(2) ただし、n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式2’]被検対象金属中の推定最大非金属介在物から
の超音波反射波高データImax の算出式(回帰式) Imax =t×ymax +u・・・・・・・・・・(2’) ただし、Vo =検査基準体積(mm3 ) V =予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax (基準化変数)=−ln[ −ln{(T−1)/ T]
] [式イ] 30≦V/V0≦10000・・・・・・・・・・(イ) [式ロ] 1≦V0≦400000・・・・・・・・・・(ロ)」 である。
According to the invention described in claim 6 of the present application, "n inspection sites are set in a predetermined portion of a metal material to be inspected, and non-metallic inclusions in the metal are scanned by ultrasonic flaw detection for each inspection site. To detect ultrasonic reflected wave height data I j (j = 1, n) from the largest non-metallic inclusion at each inspection site,
From the detected ultrasonic reflected wave height data I j (j = 1, n) from the largest non-metallic inclusion for each inspection site, the following equation (2)
And (2 ′), the estimated maximum ultrasonic reflected wave height data I max from the estimated maximum non-metallic inclusion in the metal material to be inspected
, And then the estimated maximum ultrasonic reflected wave height data I
A method for evaluating the cleanliness of a metal material, comprising calculating an estimated maximum nonmetallic inclusion diameter from max and evaluating the cleanliness of the metal material to be inspected. [Equation 2] Linear regression equation of ultrasonic reflected wave height data I j (j = 1, n) from maximum non-metallic inclusion and standardized variable y j (j = 1, n) I = t × y + u (2) where n = the number of inspections, standardized variable y j = −ln [−ln {j / (n + 1)]] (j = 1,
n) t = regression coefficient u = constant [Equation 2 '] Calculation formula (regression formula) of ultrasonic reflected wave height data I max from estimated maximum non-metallic inclusion in test object metal (regression formula) I max = t × y max + u (2 ′) where V o = inspection reference volume (mm 3 ) V = volume to perform prediction (mm 3 ) T (recursion period) = (V + V o ) / V o y max (normalized variable) = -ln [-ln {(T-1) / T]
] [Formula A] 30 ≦ V / V 0 ≦ 10000 (1) [Formula 2] 1 ≦ V 0 ≦ 400000 (2) ” It is.

【0040】同様に、非金属介在物径と非金属介在物か
らの超音波反射波高データとの間には相関関係があるた
め、まず非金属介在物からの超音波反射波高データか
ら、上記式により被検対象金属中の推定最大非金属介在
物からの超音波反射波高データImax を算出し、次い
で、該推定最大超音波反射波高データImax から推定最
大非金属介在物径を換算して求める手順としても良いの
である。
Similarly, since there is a correlation between the diameter of the non-metallic inclusions and the ultrasonic wave height data from the non-metallic inclusions, first, the above equation is derived from the ultrasonic wave height data from the non-metallic inclusions. by calculating the reflected ultrasonic wave height data I max from the estimated maximum non-metallic inclusion in a test subject in the metal, then converts the estimated maximum non-metallic inclusion diameter from said estimated maximum ultrasound reflected wave height data I max It is also a good procedure.

【0041】本願請求項7に記載の発明は、「超音波反
射波高データを下記式(3)により深度距離補正するこ
とを特徴とする請求項3乃至6のいずれかに記載の金属
材料の清浄度評価方法。」である。 [式3] 反射波波高データB=超音波波高データA×深度補正係数fd・・・・・(3) ただし、fd=1+ad+bd2 d=金属中の焦点位置から介在物までの距離(|d|≦
e) a,bおよびe=定数 本発明の実施において、介在物の位置が焦点位置から前
後にずれている場合に、介在物からの超音波反射強度が
下がってしまうという不都合が起こることが分かった
(図4)。この現象が起きると本発明法の精度を損なう
恐れがある。
According to a seventh aspect of the present invention, there is provided a method for cleaning a metal material according to any one of the third to sixth aspects, wherein the ultrasonic reflected wave height data is corrected for the depth distance by the following equation (3). Degree evaluation method. " [Equation 3] Reflected wave height data B = Ultrasonic wave height data A × depth correction coefficient fd (3) where fd = 1 + ad + bd 2 d = distance from focus position in metal to inclusion (| d | ≦
e) a, b, and e = constant In the practice of the present invention, it has been found that, when the position of the inclusion is shifted back and forth from the focal position, the disadvantage that the ultrasonic reflection intensity from the inclusion decreases. (FIG. 4). When this phenomenon occurs, the accuracy of the method of the present invention may be impaired.

【0042】そこで、反射強度の距離補正式を導入する
方法を開発したものである(図4)。本発明により、本
発明法の精度をさらに向上することができた。
Therefore, a method for introducing a distance correction formula for reflection intensity has been developed (FIG. 4). According to the present invention, the accuracy of the method of the present invention can be further improved.

【0043】図4は、下式で表わすことができる。FIG. 4 can be expressed by the following equation.

【0044】fd=1−0.032667d−1.9675d2 本願請求項8に記載の発明は、「一部又は全部の検査部
位について、検査部位を切り出して検査試料とした後、
超音波探傷法による金属中非金属介在物の走査を行うこ
とを特徴とする請求項1乃至7のいずれかに記載の金属
材料の清浄度評価方法。」である。
Fd = 1−0.032667d−1.9675d 2 The invention described in claim 8 of the present application is based on the description that “for some or all of the test sites, the test sites are cut out and used as test samples.
The method for evaluating the cleanliness of a metal material according to any one of claims 1 to 7, wherein scanning of nonmetallic inclusions in metal is performed by ultrasonic flaw detection. ".

【0045】検査部位を切り出して検査試料とすること
によって、とくに検査試料をたて×よこ×厚さを同一形
状にすることによりn個の繰り返し連続検査、自動測定
が可能となった。
By cutting out the inspection site and using it as an inspection sample, it is possible to perform n repeated continuous inspections and automatic measurement, especially by making the inspection sample the same shape in the vertical, horizontal, and thickness directions.

【0046】切り出す検査試料の形状は、被検対象金属
材料の外周部、中心部、及び両者の中間部を含む全断面
検査を可能とする形状とすることがより好ましい。この
ような形状とすることによって、非金属介在物の最悪部
を効率的に検査することができる。
It is more preferable that the shape of the test sample to be cut out is such that the entire cross-section including the outer peripheral portion, the central portion, and an intermediate portion between the two can be inspected. By adopting such a shape, the worst part of the nonmetallic inclusion can be efficiently inspected.

【0047】一般に、中心部は最終凝固位置であり、介
在物の濃化溶鋼への排出、また介在物の沈降量も多いた
め、これを含む全断面検査をすることによって、大型の
介在物の検出率が格段に向上し、その結果、清浄度評価
の精度を大幅に向上させることができる。
In general, the center is the final solidification position, and the inclusions are discharged into the concentrated molten steel and the amount of the settling of the inclusions is large. The detection rate is significantly improved, and as a result, the accuracy of the cleanliness evaluation can be greatly improved.

【0048】細物系鋼材、板材は、中心を含み当該探触
子の特徴(深さ方向の探傷範囲)、表面入射側不感帯
部、有効探傷幅の厚み、反対面近傍(底面側)などを考
慮して試料片厚みを決めれば良い。
The fine steel material and plate material include the center, including the center, the characteristics of the probe (the range of flaw detection in the depth direction), the surface entrance side dead zone, the thickness of the effective flaw detection width, and the vicinity of the opposite surface (bottom side). The thickness of the sample piece may be determined in consideration of this.

【0049】本願請求項9に記載の発明は、「各検査部
位の金属中非金属介在物を超音波探傷法により走査する
前に、被検体を圧鍛することを特徴とする請求項1乃至
8のいずれかに記載の金属材料の清浄度評価方法。」で
ある。
The invention according to claim 9 of the present application is characterized in that "the subject is forged before scanning the nonmetallic inclusions in the metal at each inspection site by the ultrasonic flaw detection method. 8. The method for evaluating the cleanliness of a metal material according to any one of 8.

【0050】金属材料においては、一般的に鋳造のまま
ではミクロ的な空洞が無数にあり乱反射で検査できない
といったことがあり、超音波探傷法により走査する場合
に、これによる無数の乱反射、ノイズが発生する不都合
が生ずる。そこで、超音波走査する前に被検体を圧鍛す
れば、これらが圧着して空洞が消滅することによって、
必要な介在物のみを検査できる効果が得られるものであ
る。
In the case of metal materials, there are a myriad of microscopic cavities that cannot be inspected by irregular reflection when cast as is. Generally, when scanning by an ultrasonic flaw detection method, an infinite number of irregular reflections and noise due to this are generated. Inconvenience occurs. Therefore, if the subject is squeezed before ultrasonic scanning, these are compressed and the cavities disappear,
The effect of being able to inspect only necessary inclusions is obtained.

【0051】本願請求項10に記載の発明は、「超音波
探傷法に用いる探触子を焦点型高周波探触子としたこと
を特徴とする請求項1乃至9のいずれかに記載の金属材
料の清浄度評価方法。」である。
According to a tenth aspect of the present invention, there is provided the metal material according to any one of the first to ninth aspects, wherein the probe used for the ultrasonic flaw detection is a focus type high frequency probe. Cleanliness evaluation method. "

【0052】本願発明は微小な介在物を精度よく検出す
ることを目的とするものであるが、焦点型高周波探触子
を用いると、従来フラット型では1/2波長といわれる
検出能が焦点型ではほぼ1/4波長の検出能が得られる
という顕著な効果が得られることが分かった。
The object of the present invention is to detect minute inclusions with high accuracy. However, if a focus type high frequency probe is used, the detection capability, which is conventionally known as 波長 wavelength in a flat type, is reduced to a focus type. It was found that a remarkable effect that approximately 1/4 wavelength detection ability was obtained was obtained.

【0053】また、探傷ピッチを焦点型高周波探触子の
焦点位置におけるビーム束の有効直径の1/2以下とす
ることが好ましい。これは、特別な微小の人工欠陥を持
つテストピースにより探触子の焦点ビ−ム束の把握が可
能になったものであるが、ビーム束の1/2とすれば検
出もれが防止できる。
Further, it is preferable that the flaw detection pitch be equal to or less than 1/2 of the effective diameter of the beam bundle at the focal position of the focus type high frequency probe. In this method, the focus beam bundle of the probe can be grasped by using a test piece having a special minute artificial defect. .

【0054】本願請求項11に記載の発明は、「超音波
を入射する材料表面の表面粗さRma x を5.0μm以下
とすることを特徴とする請求項1乃至10のいずれかに
記載の金属材料の清浄度評価方法。」である。
[0054] The invention described in the claims 11, "according to one of claims 1 to 10, characterized in that the surface roughness R ma x of the material surface to incident ultrasound or less 5.0μm Is a method for evaluating the cleanliness of metal materials. "

【0055】超音波探傷法を利用した本発明方法につい
て研究を進めた結果、超音波減衰、ノイズ発生防止の点
から、材料表面の表面粗さRmax を5.0μm以下とす
ることが有効であることが判明した。
As a result of research on the method of the present invention utilizing the ultrasonic flaw detection method, it is effective to set the surface roughness R max of the material surface to 5.0 μm or less from the viewpoint of ultrasonic attenuation and noise generation prevention. It turned out to be.

【0056】材料表面の表面粗さRmax を5.0μm以
下とするための方法は特に限定されるものではないが、
例えば、材料表面に湿式研磨を実施すれば良い。
The method for reducing the surface roughness R max of the material surface to 5.0 μm or less is not particularly limited.
For example, wet polishing may be performed on the material surface.

【0057】本発明の評価方法は、Mg合金、Al合
金、Ti合金、Cr合金、Fe合金、Co合金、Ni合
金、Cu合金、Zn合金、Ag合金、Au合金をはじめ
とする各種金属材料に広く適用できるが、好適なものと
しては、Fe合金、Ni合金などが挙げられ、より好適
なものとしてアルミキルド鋼など、気泡を抑えたり、介
在物のもととなる酸素の含有量を下げるため、脱酸を意
図してアルミを添加した鋼種あるいは合金に好適であ
り、さらに具体的にはAl≧0.005wt%含有の高
清浄度アルミキルド鋼などが好適なものとして挙げられ
る。
The evaluation method of the present invention is applicable to various metal materials including Mg alloy, Al alloy, Ti alloy, Cr alloy, Fe alloy, Co alloy, Ni alloy, Cu alloy, Zn alloy, Ag alloy, and Au alloy. Although widely applicable, preferred examples include Fe alloys and Ni alloys, and more preferred are aluminum killed steel and the like, such as suppressing bubbles and lowering the oxygen content that is a source of inclusions. It is suitable for a steel type or an alloy to which aluminum is added for the purpose of deoxidation, and more specifically, a high cleanliness aluminum killed steel containing Al ≧ 0.005 wt% is preferable.

【0058】[0058]

【実施例】以下、本発明の実施例を詳細に説明する。な
お、下記実施例は鋼材による例を示すが、本発明の評価
方法は下記の実施例に限定されるものではない。
Embodiments of the present invention will be described below in detail. In addition, although the following Example shows the example using a steel material, the evaluation method of this invention is not limited to the following Examples.

【0059】〔実施例1〕 1.被検対象金属材料およびその処理 被検対象金属材料として、連続鋳造法により製造した、
165tの高炭素Cr軸受鋼(棒管用)の図1に示すよ
うな丸棒状の鋼片を用い、本発明実施例法によって清浄
度の評価を行った。
[Example 1] 1. Test target metal material and its treatment As a test target metal material, manufactured by a continuous casting method,
Using a round bar-shaped steel piece as shown in FIG. 1 of 165 t high carbon Cr bearing steel (for a rod tube), the cleanliness was evaluated by the method of the present invention.

【0060】前記丸棒状鋼片の図1に示す〜の部分
に、それぞれ3か所又は4か所の検査部位を設定し、圧
鍛比9で圧鍛して、各検査部位から70×70×12m
mの試料片(検査試料)計30個を切り出した。次に、
各試料片の表面に湿式研磨を実施し、Rmax≦ 4.0μm 以
下とした。このようにして70×70×12mmの試料
片を得、70×70mm面を走査面とした。
In each of the round bar-shaped steel slabs shown in FIG. 1, three or four inspection sites were set, and forging was performed at a forging ratio of 9 to obtain 70 × 70 from each inspection site. × 12m
A total of 30 m test pieces (test samples) were cut out. next,
Wet polishing was performed on the surface of each sample to make Rmax ≦ 4.0 μm or less. Thus, a 70 × 70 × 12 mm sample piece was obtained, and the 70 × 70 mm surface was used as a scanning surface.

【0061】2.検査データの採取 上記のように処理した各試料片について、走査面の外周
4mmを除く62×62mmの部分を測定部分とし、探
傷試験は深さ約1.5mmの所で深さ方向で約1.0m
mの間に存在する介在物について実施した。探触子が基
準面積相当部を走査するときに超音波探傷を行い、その
反射波高を測定してさらに反射強度距離補正係数により
補正を加え(図4)データとして記録した。超音波探傷
には、焦点型探触子を用い、50〜125MHzの条件
で走査した。図5に、超音波探傷時の模式図を示す。
[0061] 2. Sampling of Inspection Data For each sample piece processed as described above, a 62 × 62 mm portion excluding the outer circumference 4 mm of the scanning surface was used as a measurement portion, and a flaw detection test was performed at a depth of approximately 1.5 mm at a depth of approximately 1 mm. .0m
The measurement was performed for inclusions existing between m. Ultrasonic flaw detection was performed when the probe scanned a portion corresponding to the reference area, the reflected wave height was measured, and further corrected by a reflection intensity distance correction coefficient (FIG. 4) and recorded as data. For the ultrasonic flaw detection, scanning was performed under a condition of 50 to 125 MHz using a focus type probe. FIG. 5 shows a schematic diagram during ultrasonic flaw detection.

【0062】各々の検査試料からの超音波反射波高値を
大きい順に5個まで個別評価し、同時に<介在物反射波
高値(%)、検出位置(x、y、z座標)、反射波特性
(波形反転有無−すなわち 空洞/介在物識別)>の組
合せデータとして求めた。その結果を表2に示す。
Up to five ultrasonic reflected wave peak values from each test sample are individually evaluated in descending order, and at the same time, <incident reflected wave peak value (%), detection position (x, y, z coordinates), reflected wave characteristics (Waveform inversion—that is, cavity / inclusion discrimination)>. Table 2 shows the results.

【0063】[0063]

【表2】 [Table 2]

【0064】実際にはCスコープ画像を分割指定し、 ス
タートポイントを指定して走査した。 計算後ワークシー
ト作成し、メモリーに読込んだ。 5個のデータ採取数は
試験後測定値の異常有無を確認し最適値を取捨選択して
解を求めるための予備データを含むものである。
Actually, the C scope image was divided and designated, and a start point was designated and scanning was performed. After the calculation, I created a worksheet and read it into memory. The five data collection numbers include preliminary data for confirming the presence or absence of abnormalities in the measured values after the test, selecting the optimum value, and finding a solution.

【0065】各検査部位毎に最適値を取捨選択し、各検
査部位毎の最大反射波高値を選択した。
The optimum value was selected for each inspection site, and the maximum reflected wave height value for each inspection site was selected.

【0066】次いで、各検査部位毎の最大反射波高値か
ら、検量線(介在物反射波高値−介在物直径の関係)に
より最大非金属介在物径aj (j=1,n)を求めた。
Next, the maximum non-metallic inclusion diameter a j (j = 1, n) was determined from the maximum reflection peak value for each inspection site by a calibration curve (the relationship between the inclusion reflection peak value-inclusion diameter). .

【0067】3.被検対象金属材料中の最大非金属介在
物径の推定 上記のようにして求めた、30個の各試料片(検査部
位)毎の最大非金属介在物径aj (j=1,n)から推
定最大非金属介在物径amax を求めた。
3. Estimation of the maximum non-metallic inclusion diameter in the test target metal material The maximum non-metallic inclusion diameter a j (j = 1, n) for each of the 30 sample pieces (inspection sites) obtained as described above. From this, the estimated maximum non-metallic inclusion diameter a max was determined.

【0068】まず表面波エコーや空洞波形等の異常値を
除外して求めた各試料片(検査部位)毎の最適な最大反
射波高値と検量線により求めた最大非金属介在物径aを
最小値から順に並べ、小さい順にa1 、a2 、・・・a
j と定義した。
First, the optimum maximum reflected wave height value for each sample piece (inspection site) obtained by excluding abnormal values such as surface wave echoes and cavity waveforms and the maximum nonmetallic inclusion diameter a obtained from the calibration curve are minimized. A 1 , a 2 ,... A
Defined as j .

【0069】ここで試料片の順位を表わす1、2、・・
・jを対数で2回計算したものが、[式1]但し書きに
ある基準化変数yj である。このj、aj 、yj の一例
が表3である。介在物径を横軸にとり、この基準化変数
を縦軸とし、介在物径の小さいもの(即ちa1 )から順
にプロットしたものが図6の●印である。そしてこの●
を一次回帰したものが図6の右側の右上がりの直線であ
る。
Here, 1, 2,...
A value obtained by calculating j twice by logarithm is a normalized variable y j in the proviso to [Equation 1]. Table 3 shows an example of j, a j , and y j . In FIG. 6, the inclusion diameter is plotted in order from the smallest inclusion diameter (i.e., a 1 ) with the abscissa representing the inclusion diameter and the ordinate representing this standardized variable. And this ●
Is a straight line that rises to the right on the right side of FIG.

【0070】[0070]

【表3】 [Table 3]

【0071】ここで超音波探傷試験による各試験片内の
最大介在物を小さい順に並べている。極値確率用紙に印
すと図6のように表され、縦軸の基準化変数yは、試料
の累積分布(確率)を2回対数をとり、直線化すること
で求められる。ある体積Vに対し、その領域内に含まれ
る最大介在物径amax を予測するには、先に求められた
基準化変数yの直線に基づき、その体積Vに相当する縦
軸(基準化変数)の値から、対応する介在物径を求めれ
ばよい。予測を行う体積Vに対する基準化変数であるy
maxは、再帰期間T(=(V+V0)/V0)から求める
ことができる。すなわち、この換算式が[式1’]で、
[式1’]但し書きにあるT(再帰期間)で予測したい
その体積Vに相当する縦軸(基準化変数)の値を求めれ
ばよい。
Here, the largest inclusions in each test piece by the ultrasonic flaw detection test are arranged in ascending order. When marked on an extreme value probability sheet, it is represented as shown in FIG. 6, and the standardized variable y on the vertical axis is obtained by taking the logarithm of the cumulative distribution (probability) of the sample twice and linearizing it. In order to predict the maximum inclusion diameter a max included in the region for a certain volume V, the vertical axis corresponding to the volume V (standardization variable ) May be used to determine the corresponding inclusion diameter. Y, the scaling variable for the volume V for which the prediction is made
The max can be obtained from the recursion period T (= (V + V 0 ) / V 0 ). That is, this conversion equation is [Equation 1 '],
[Expression 1 '] The value of the vertical axis (normalization variable) corresponding to the volume V to be predicted at T (recursion period) in the proviso may be obtained.

【0072】例えば図6の場合、予測したい体積27万
mm3 に対し、右側の右上がりの直線が示す最大介在物
径は30.3μmとなる。体積27万mm3 は重量に換
算すると2.12kgになる。また超音波探傷で厚さ
1.0mm程度を測定したものとみなすと、520mm
四方の面内に存在する最大介在物径を推定したことにな
る。
For example, in the case of FIG. 6, for a volume of 270,000 mm 3 to be predicted, the maximum inclusion diameter indicated by a straight line rising to the right on the right is 30.3 μm. The volume of 270,000 mm 3 is 2.12 kg in terms of weight. In addition, if it is assumed that the thickness is about 1.0 mm measured by ultrasonic testing, 520 mm
This means that the maximum inclusion diameter existing in the four planes has been estimated.

【0073】4.被検対象金属材料の清浄度の評価 被検対象金属材料の清浄度の評価は、推定最大介在物
径:amax 、検査基準体積:Vo mm3 、予測を行う体
積:Vmm3 として与えることができる。
4. Evaluation of cleanliness cleanliness rating test subject metal material of the test object metal material, the estimated maximum inclusion size: a max, inspection reference volume: V o mm 3, volume for prediction: providing a Vmm 3 Can be.

【0074】本実施例では、被検対象金属材料である丸
棒状鋼塊の清浄度の評価は、推定最大介在物径:amax
=30.3μm、検査基準体積:Vo =3800mm
3 、予測を行う体積:V=270000mm3 となっ
た。
In this embodiment, the evaluation of the cleanliness of the round bar-shaped steel ingot as the metal material to be inspected is based on the estimated maximum inclusion diameter: a max
= 30.3 μm, inspection reference volume: V o = 3800 mm
3. Volume for prediction: V = 270000 mm 3 .

【0075】比較例として本実施例で用いたものと同じ
金属材料270000mm3について酸溶解抽出による
介在物調査を行ったところ、最大介在物径は35.0μ
mであり、本発明の評価方法の精度の高さが実証され
た。
As a comparative example, the same metal material as that used in the present example, 270000 mm 3 , was examined for inclusions by acid dissolution extraction. The maximum inclusion diameter was 35.0 μm.
m, demonstrating the high accuracy of the evaluation method of the present invention.

【0076】〔実施例2〕ばね鋼(JIS鋼種 SUP
10)を電気炉で150ton溶解した。これをRH脱
ガス後連続鋳造で断面が380×450mmの鋳片(ブ
ルーム)に鋳造した。そして分塊圧延しφ167mmで
重量が2tonのビレットを得た。これを圧延し、φ5
の弁バネに加工した。このバネを使用すると使用中に破
断したので破断部を調査すると60μm介在物が確認さ
れた。
[Example 2] Spring steel (JIS steel type SUP)
10) was melted in an electric furnace for 150 tons. This was cast into a slab (bloom) having a cross section of 380 × 450 mm by continuous casting after RH degassing. Then, it was subjected to slab rolling to obtain a billet having a diameter of 167 mm and a weight of 2 ton. This is rolled, φ5
Was processed into a valve spring. When this spring was used, it was broken during use. When the broken portion was examined, inclusions of 60 μm were found.

【0077】一方、このバネに供した圧延材のうち、バ
ネ加工せず保管しておいた圧延材の残材から、上述の実
施例1と同様にして、試料片を切出し、試料片調整、超
音波探傷、評価を行ったところ、このバネ加工に供した
圧延材約2ton(V=0.255×109mm3)中に
存在し得る最大介在物径は63μmであると推定され
た。本実施例2の場合V/V0=0.255×109/3
800=67105である。このように、本発明は鋼材
の清浄度評価法として、V0=3800mm3、V/V0
=67105の鋼材について、精度よく清浄度を評価で
きることが確認された。
On the other hand, from the rolled material subjected to the spring, a sample piece was cut out from the remaining rolled material that was stored without being subjected to the spring processing in the same manner as in Example 1 described above, and the sample piece was adjusted. As a result of ultrasonic testing and evaluation, it was estimated that the maximum inclusion diameter that could be present in about 2 ton (V = 0.255 × 10 9 mm 3 ) of the rolled material subjected to the spring processing was 63 μm. In this embodiment 2 V / V 0 = 0.255 × 10 9/3
800 = 67105. As described above, according to the present invention, V 0 = 3800 mm 3 , V / V 0
= 67105, it was confirmed that the cleanliness can be accurately evaluated.

【0078】〔実施例3〕評価する金属材料としてJI
S SCM鋼(Al=0.025%含有)を用い、これ
以外は実施例1の条件と同様にして推定最大非金属介在
物径求めた。(したがって、V0=3800mm3、V=
270000mm3、V/V0≒71.053である。)
また、各試料片を酸溶解して得られた介在物の最大径の
実測値を求めた。表4に結果を示す。
Example 3 JI was used as the metal material to be evaluated.
The estimated maximum non-metallic inclusion diameter was determined in the same manner as in Example 1 except that S SCM steel (containing Al = 0.025%) was used. (Therefore, V 0 = 3800 mm 3 , V =
270000 mm 3 , V / V 0 ≒ 71.053. )
In addition, the actual measurement value of the maximum diameter of the inclusion obtained by dissolving each sample piece in acid was obtained. Table 4 shows the results.

【0079】[0079]

【表4】 [Table 4]

【0080】[0080]

【発明の効果】本発明によれば、小体積の検査試料を用
い、大体積の金属材料中の最大非金属介在物径の予測
を、精度良く、高い信頼性を持って、しかも迅速に行う
ことができる。
According to the present invention, the maximum non-metallic inclusion diameter in a large-volume metal material can be predicted accurately, with high reliability, and quickly using a small-volume test sample. be able to.

【0081】また、本発明は、最近の鋼などの金属材料
の清浄度の大幅な向上に対応し、一段と要望が強くなっ
ている金属材料の清浄度の評価・品質保証に寄与するも
のであり、当業界のニーズに答える極めて有用な発明で
ある。金属材料に機械的加工を施し、部品などを作製す
る金属材料ユーザーにとって、その材料内の介在物径の
予測精度が向上すると、部品等の設計段階での部品強度
の予測精度が向上でき、部品強度のへの信頼性が増す。
これにより部品は過大な安全係数を必要とせず必要な範
囲でより小型化、軽量化が図れるようになる。
The present invention also contributes to the recent significant improvement in the cleanliness of metal materials such as steel, and contributes to the evaluation and quality assurance of the cleanliness of metal materials, which have become more demanding. An extremely useful invention that meets the needs of the industry. For a metal material user who performs mechanical processing on a metal material to produce a part, etc., if the prediction accuracy of the inclusion diameter in the material is improved, the prediction accuracy of the part strength at the design stage of the part etc. can be improved, Increased reliability to strength.
As a result, the components can be made smaller and lighter in the required range without requiring an excessive safety factor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被検対象金属材料における検査部位の設定の一
例を示す図である。
FIG. 1 is a diagram showing an example of setting an inspection site in a metal material to be inspected.

【図2】式イおよびロで示される範囲を示す図である。FIG. 2 is a diagram showing a range indicated by equations a and b.

【図3】非金属介在物からの超音波反射波高強度と非金
属介在物径との対比検量線を示す図である。
FIG. 3 is a diagram showing a calibration curve for comparing the intensity of ultrasonic reflected waves from non-metallic inclusions with the diameter of non-metallic inclusions.

【図4】焦点型超音波探触子による超音波探傷におけ
る、焦点位置からのずれと超音波反射波強度との関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the deviation from the focal position and the intensity of the reflected ultrasonic wave in ultrasonic flaw detection using a focused ultrasonic probe.

【図5】焦点型超音波探触子による超音波探傷の状況を
示す模式図である。
FIG. 5 is a schematic diagram showing a state of ultrasonic flaw detection by a focused ultrasonic probe.

【図6】最大介在物径の推定における光学顕微鏡法(従
来法)と本発明法とを比較して示した図である。
FIG. 6 is a diagram showing a comparison between the optical microscopy (conventional method) and the method of the present invention in estimating the maximum inclusion diameter.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 被検対象金属材料の所定部分にn個の検
査部位を設定し、各検査部位毎に超音波探傷法により金
属中非金属介在物を走査して最大非金属介在物径aj
(j=1,n)を検出し、次いで、該検出した各検査部
位毎の最大非金属介在物径aj (j=1,n)から下記
式(1)、(1’)、(イ)および(ロ)により被検対
象金属材料中の推定最大非金属介在物径amax を算出し
て被検対象金属材料の清浄度を評価することを特徴とす
る金属材料の清浄度評価方法。 [式1] 最大非金属介在物径aj (j=1,n)と基
準化変数yj (j=1,n)の一次回帰式 a=ty+u ・・・・・・・・・・・(1) ただし、n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式1’]被検対象金属中の推定最大非金属介在物径a
max の算出式(回帰式) amax =t×ymax +u・・・・・・・・・・(1’) ただし、Vo =検査基準体積(mm3 ) V =予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax (基準化変数)=−ln[ −ln{(T−1)/ T]
] [式イ] 30≦V/V0≦10000・・・・・・・・・・(イ) [式ロ] 1≦V0≦400000・・・・・・・・・・(ロ)
1. A method for setting n inspection sites in a predetermined portion of a metal material to be inspected, scanning nonmetallic inclusions in metal by ultrasonic flaw detection for each inspection site, and determining a maximum nonmetallic inclusion diameter a j
(J = 1, n) is detected, and then the following formulas (1), (1 ′), and (a) are obtained from the detected maximum non-metallic inclusion diameter a j (j = 1, n) for each inspection site. And b) calculating an estimated maximum non-metallic inclusion diameter a max in the metal material to be tested to evaluate the cleanness of the metal material to be tested. [Equation 1] Linear regression equation of maximum non-metallic inclusion diameter a j (j = 1, n) and normalization variable y j (j = 1, n) a = ty + u (1) Here, n = number of inspections Normalized variable y j = −ln [−ln {j / (n + 1)]] (j = 1
n) t = regression coefficient u = constant [Equation 1 '] Estimated maximum non-metallic inclusion diameter a in the test object metal
max calculation formula (regression formula) a max = t × y max + u (1 ′) where V o = inspection reference volume (mm 3 ) V = predicted volume (mm) 3) T (recursive period) = (V + V o) / V o y max ( normalized variable) = - ln [-ln {( T-1) / T]
[Formula A] 30 ≦ V / V 0 ≦ 10000 (1) [Formula 2] 1 ≦ V 0 ≦ 400000 (2)
【請求項2】 各検査部位毎の最大非金属介在物径aj
(j=1,n)の検出に際し、各検査部位毎に上位複数
個の非金属介在物径を求め、このうちから異常値を除去
した後、最大非金属介在物径aj (j=1,n)を選出
することを特徴とする請求項1に記載の金属材料の清浄
度評価方法。
2. The maximum non-metallic inclusion diameter a j for each inspection site
Upon detection of (j = 1, n), a plurality of upper non-metallic inclusion diameters are obtained for each inspection site, and after removing an abnormal value from these, the maximum non-metallic inclusion diameter a j (j = 1 , N) is selected. The method for evaluating cleanliness of a metal material according to claim 1, wherein
【請求項3】 非金属介在物径を、非金属介在物からの
超音波反射波高データから換算して求めることを特徴と
する請求項1又は2に記載の金属材料の清浄度評価方
法。
3. The method for evaluating cleanliness of a metal material according to claim 1, wherein the diameter of the non-metallic inclusion is calculated by converting ultrasonic reflected wave height data from the non-metallic inclusion.
【請求項4】 非金属介在物径を、超音波反射波高・非
金属介在物径対応の検量線を用いて換算して求めること
を特徴とする請求項3に記載の金属材料の清浄度評価方
法。
4. The evaluation of cleanliness of a metal material according to claim 3, wherein the diameter of the nonmetallic inclusion is obtained by conversion using a calibration curve corresponding to the height of the reflected ultrasonic wave and the diameter of the nonmetallic inclusion. Method.
【請求項5】 各検査部位毎の最大非金属介在物径aj
(j=1,n)の検出に際し、各検査部位毎に超音波探
傷法により金属中非金属介在物を走査して各非金属介在
物からの超音波反射波高データを得、該超音波反射波高
データ同士を比較して最大値を求め、該超音波反射波高
データ中の最大値から最大非金属介在物径aj (j=
1,n)を換算して求めることを特徴とする請求項3又
は4に記載の金属材料の清浄度評価方法。
5. The maximum non-metallic inclusion diameter a j for each inspection site
When detecting (j = 1, n), non-metallic inclusions in metal are scanned by ultrasonic flaw detection for each inspection site to obtain ultrasonic reflection wave height data from each non-metallic inclusion, and the ultrasonic reflection The maximum value is obtained by comparing the wave height data, and the maximum non-metallic inclusion diameter a j (j =
The method for evaluating cleanliness of a metal material according to claim 3, wherein the value is obtained by converting (1, n).
【請求項6】 被検対象金属材料の所定部分にn個の検
査部位を設定し、各検査部位毎に超音波探傷法により金
属中非金属介在物を走査して各検査部位における最大非
金属介在物からの超音波反射波高データIj (j=1,
n)を検出し、次いで、該検出した各検査部位毎の最大
非金属介在物からの超音波反射波高データIj (j=
1,n)から下記式(2)、(2’)、(イ)および
(ロ)により被検対象金属材料中の推定最大非金属介在
物からの推定最大超音波反射波高データImax を算出
し、次いで、該推定最大超音波反射波高データImax
ら推定最大非金属介在物径を算出して被検対象金属材料
の清浄度を評価することを特徴とする金属材料の清浄度
評価方法。 [式2]最大非金属介在物からの超音波反射波高データ
j (j=1,n)と基準化変数yj (j=1,n)の
一次回帰式 I=ty+u ・・・・・・・・・・・・・・(2) ただし、n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式2’]被検対象金属中の推定最大非金属介在物から
の超音波反射波高データImax の算出式 Imax =t×ymax +u・・・・・・・・・・(2’) ただし、Vo =検査基準体積(mm3 ) V =予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax (基準化変数)=−ln[ −ln{(T−1)/ T]
] [式イ] 30≦V/V0≦10000・・・・・・・・・・(イ) [式ロ] 1≦V0≦400000・・・・・・・・・・(ロ)
6. An n-piece inspection site is set in a predetermined portion of a metal material to be inspected, and a non-metallic inclusion in a metal is scanned for each inspection site by an ultrasonic flaw detection method, and the maximum non-metallic material in each inspection site is determined. Ultrasonic reflected wave height data I j from the inclusion (j = 1,
n), and then the ultrasonic reflected wave height data I j (j =
From (1, n), the estimated maximum ultrasonic reflected wave height data I max from the estimated maximum non-metallic inclusion in the test target metal material is calculated by the following equations (2), (2 ′), (a) and (b). and, then, cleanliness evaluation method of a metallic material, characterized in that to calculate the estimated maximum non-metallic inclusion diameter from said estimated maximum ultrasound reflected wave height data I max assess the cleanliness of a subject metal material. [Equation 2] Linear regression equation of ultrasonic reflected wave height data I j (j = 1, n) from maximum non-metallic inclusion and normalized variable y j (j = 1, n) I = ty + u (2) where n = the number of inspections Standardized variable y j = −ln [−ln {j / (n + 1)]] (j = 1
n) t = regression coefficient u = constant [Equation 2 '] Formula for calculating ultrasonic reflected wave height data I max from estimated maximum non-metallic inclusions in the test object metal I max = t × y max + u... (2 ′) where V o = inspection reference volume (mm 3 ) V = volume to perform prediction (mm 3 ) T (recursion period) = (V + V o ) / V o y max (normalization Variable) = − ln [−ln {(T−1) / T]
[Formula A] 30 ≦ V / V 0 ≦ 10000 (1) [Formula 2] 1 ≦ V 0 ≦ 400000 (2)
【請求項7】 超音波反射波高データを下記式(3)に
より深度距離補正することを特徴とする請求項3乃至6
のいずれかに記載の金属材料の清浄度評価方法。 [式3] 補正超音波反射波高データB=超音波反射波高データA÷深度補正係数fd ・・・・・・・(3) ただし、fd=1+ad+bd2 d=金属中の焦点位置から介在物までの距離(|d|≦
e) a,bおよびe=定数
7. The ultrasonic wave reflected wave height data is subjected to depth distance correction by the following equation (3).
The method for evaluating cleanliness of a metal material according to any one of the above. [Equation 3] Corrected ultrasonic reflected wave height data B = Ultrasonic reflected wave height data A / depth correction coefficient fd (3) where fd = 1 + ad + bd 2 d = from focal position in metal to inclusions Distance (| d | ≦
e) a, b and e = constants
【請求項8】 一部又は全部の検査部位について、検査
部位を切り出して検査試料とした後、超音波探傷法によ
る金属中非金属介在物の走査を行うことを特徴とする請
求項1乃至7のいずれかに記載の金属材料の清浄度評価
方法。
8. The method according to claim 1, further comprising: cutting out the inspection site for a part or all of the inspection site to obtain an inspection sample, and then scanning nonmetallic inclusions in the metal by ultrasonic flaw detection. The method for evaluating cleanliness of a metal material according to any one of the above.
【請求項9】 各検査部位の金属中非金属介在物を超音
波探傷法により走査する前に、被検体を圧鍛することを
特徴とする請求項1乃至8のいずれかに記載の金属材料
の清浄度評価方法。
9. The metal material according to claim 1, wherein the subject is forged before scanning the nonmetallic inclusions in the metal at each inspection site by the ultrasonic flaw detection method. Cleanliness evaluation method.
【請求項10】 超音波探傷法に用いる探触子を焦点型
高周波探触子としたことを特徴とする請求項1乃至9の
いずれかに記載の金属材料の清浄度評価方法。
10. The method for evaluating cleanliness of a metal material according to claim 1, wherein the probe used in the ultrasonic flaw detection method is a focus type high frequency probe.
【請求項11】 超音波を入射する材料表面の表面粗さ
max を5.0μm以下とすることを特徴とする請求項
1乃至10のいずれかに記載の金属材料の清浄度評価方
法。
11. cleanliness evaluation method of metallic material according to any one of claims 1 to 10, characterized in that at most 5.0μm surface roughness R max of the surface of the material to incident ultrasonic waves.
JP32324699A 1999-01-20 1999-11-12 Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection Expired - Fee Related JP3563313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP32324699A JP3563313B2 (en) 1999-11-12 1999-11-12 Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection
US09/470,993 US6318178B1 (en) 1999-01-20 1999-12-23 Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness
SE0000152A SE517971C2 (en) 1999-01-20 2000-01-19 Procedure for assessing the purity of metallic materials based on error determination with ultrasound and metallic materials provided with purity assessment
DE2000102344 DE10002344B4 (en) 1999-01-20 2000-01-20 Ultrasonic defect detection based method for determining the degree of purity of metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32324699A JP3563313B2 (en) 1999-11-12 1999-11-12 Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JP2001141704A true JP2001141704A (en) 2001-05-25
JP3563313B2 JP3563313B2 (en) 2004-09-08

Family

ID=18152646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32324699A Expired - Fee Related JP3563313B2 (en) 1999-01-20 1999-11-12 Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP3563313B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037242A (en) * 2002-07-03 2004-02-05 Sanyo Special Steel Co Ltd Method for inspecting inclusion in steel by ultrasonic flaw detection
JP2004045095A (en) * 2002-07-09 2004-02-12 Sanyo Special Steel Co Ltd Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037242A (en) * 2002-07-03 2004-02-05 Sanyo Special Steel Co Ltd Method for inspecting inclusion in steel by ultrasonic flaw detection
JP2004045095A (en) * 2002-07-09 2004-02-12 Sanyo Special Steel Co Ltd Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
US7971484B2 (en) 2005-05-10 2011-07-05 Sanyo Special Steel Co., Ltd. Method for evaluating reliability of steel and high-reliability steel obtained by the same
KR101150455B1 (en) * 2005-05-10 2012-06-01 산요오도꾸슈세이꼬 가부시키가이샤 Method For Evaluating The Reliability Of Steel

Also Published As

Publication number Publication date
JP3563313B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP5085013B2 (en) Steel reliability evaluation method
US20090150095A1 (en) Ultrasonic Method For Detecting Banding In Metals
US6318178B1 (en) Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness
JP4291552B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP2006349698A (en) Evaluation method for cleanliness of high cleanliness steel
JP3505415B2 (en) Evaluation method of cleanliness of metallic materials by ultrasonic testing
JP3563313B2 (en) Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection
JP3712254B2 (en) Estimation method of defect diameter in metal materials
JP2000310620A (en) Metal material with evaluation of degree of cleanliness
JP4084979B2 (en) Detection method of inclusions in steel by water immersion ultrasonic flaw detection
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2001240937A (en) High cleanliness steel
JP4002842B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP6402054B2 (en) Method for evaluating the cleanliness of metal materials
JP2012181112A (en) Cleanliness evaluation method of metallic material
JP3616463B2 (en) Rapid discrimination method for inclusions in steel
JP4362194B2 (en) Inclusion detection method in metal materials
JP4559160B2 (en) Inspection method of high reliability bearing steel
JP4559254B2 (en) Method for evaluating white spot defects in steel
JP6630191B2 (en) Forging steel cleanliness evaluation method
Hansén et al. The concept of the liquid sampling and hot rolling method for determination of macro inclusion characteristics in steel
JP2008128863A (en) Method for estimating diameter of inclusion in steel
JP2002004005A (en) High purity alloy steel for structural purpose
Pandey et al. Evaluation of internal and subsurface quality of continuously cast billets and slabs by ultrasonic techniques
JP2001159627A (en) Method for evaluating cleanliness of metal material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Ref document number: 3563313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees