JP2001141177A - Heat insulating material and manufacturing method therefor - Google Patents

Heat insulating material and manufacturing method therefor

Info

Publication number
JP2001141177A
JP2001141177A JP31814499A JP31814499A JP2001141177A JP 2001141177 A JP2001141177 A JP 2001141177A JP 31814499 A JP31814499 A JP 31814499A JP 31814499 A JP31814499 A JP 31814499A JP 2001141177 A JP2001141177 A JP 2001141177A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
heat
polystyrene
organic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31814499A
Other languages
Japanese (ja)
Inventor
Chiharu Yamaguchi
千春 山口
Hiroya Kakegawa
宏弥 掛川
Ayumi Yasuda
歩 安田
Kokudo Ryu
国堂 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP31814499A priority Critical patent/JP2001141177A/en
Publication of JP2001141177A publication Critical patent/JP2001141177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating piping material excellent in flexibility, a transportation property and manufacturing easiness. SOLUTION: A heat insulating material made of a foamed crosslinking organic resin is characterized by a percentage of void of 80% or more and occupying 50% or more with void of a void diameter 0.1 micron or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温水、冷水、オイ
ル等の熱媒体を、熱的なロスを最小にして送液する断熱
配管材、断熱パイプに関する。具体的には、ガス湯沸か
し器、床暖房を含む温水暖房機器、冷暖房機器の機器内
部、外部、機器間の接続で使用する断熱パイプに関す
る。また本発明は、戸建て住宅、集合住宅、ホテル、オ
フィス、店舗等室内の、床暖房にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-insulating piping material and a heat-insulating pipe for feeding a heat medium such as hot water, cold water, oil or the like with minimum thermal loss. More specifically, the present invention relates to a gas water heater, a hot water heating device including floor heating, a heat insulating pipe used for connecting the inside of the device, the outside of the device, and the connection between the devices. The present invention also relates to underfloor heating in a room such as a detached house, an apartment house, a hotel, an office, a store, and the like.

【0002】[0002]

【従来の技術】温水、冷水、オイル等、熱媒体の送液パ
イプの断熱は、長い歴史のある技術で、現在は、有機系
の断熱材(ポリエチレンフォーム、ポリスチレンフォー
ム、ポリウレタンフォーム等)、無機系の断熱材(グラ
スウール、ロックウール、珪酸カルシウムを主成分とす
る発泡成型品)が用いられている。
2. Description of the Related Art Insulation of heat transfer pipes for heating medium such as hot water, cold water, oil, etc. is a technology with a long history, and currently, organic insulation materials (polyethylene foam, polystyrene foam, polyurethane foam, etc.), inorganic A heat insulating material (glass wool, rock wool, foam molded product mainly composed of calcium silicate) is used.

【0003】現在使われている技術としては、温水配管
の断熱には樹脂製あるいは金属製の配管をポリエチレン
フォーム、ポリスチレンフォーム、ポリウレタンフォー
ム等の断熱材で被覆する方法が一般的である(特開平01
-57026号公報、特開平04-260485号公報)。更に大規模
な地域冷暖房においても、同様な温冷水配管の断熱材が
使用されている(特開平03-20536号公報)。
[0003] As a currently used technique, a method of covering a resin or metal pipe with a heat insulating material such as a polyethylene foam, a polystyrene foam, or a polyurethane foam is generally used for heat insulation of a hot water pipe (Japanese Patent Application Laid-Open No. HEI 9-163568). 01
-57026, JP-A-04-260485). Further, in large-scale district heating and cooling, a similar heat insulating material for hot and cold water pipes is used (Japanese Patent Application Laid-Open No. 03-20536).

【0004】また、不燃性が要求される電気用途には、
グラスウール、ロックウールが用いられ(特開平03-234
741号公報)、その他の不燃用途には、珪酸カルシウム
成型品等も用いられる。
[0004] In addition, for electrical applications requiring nonflammability,
Glass wool and rock wool are used (Japanese Unexamined Patent Publication No.
No. 741), and for other non-combustible uses, calcium silicate molded products are also used.

【0005】以上の従来技術で用いられる断熱材は、空
気の気泡により熱伝導率を下げるもので、原理的に空気
以下の熱伝導率にはなり得ない。現在は、空気以下の熱
伝導率の断熱材、その応用技術が要望されている。
[0005] The heat insulating material used in the prior art described above lowers the thermal conductivity by air bubbles, and in principle cannot have a thermal conductivity lower than that of air. At present, there is a demand for a heat insulating material having a heat conductivity equal to or lower than that of air, and its applied technology.

【0006】[0006]

【発明が解決しようとする課題】断熱パイプの断熱性
は、その断熱材の熱伝導率で決定される。現在使われる
断熱材は、空気、あるいは、それ以外のガスを充填した
気泡により断熱性を発現させるため、空気以下の熱伝導
率には達せず、性能は十分ではない。したがって、実際
には、温水配管には肉厚のポリエチレンフォームが用い
られ、配管時の作業性(狭いスペースに配管できない)
に課題がある。また、機器内の配管においては、この断
熱材が小型、小スペース機器の普及の障害になってい
る。同時に、温水等の送液時のエネルギーロスの改善に
ついても課題を残している。
The heat insulation of a heat insulating pipe is determined by the thermal conductivity of the heat insulating material. Currently used heat insulating materials exhibit heat insulating properties by air or air bubbles filled with other gases, and therefore do not reach thermal conductivity equal to or lower than air, and their performance is not sufficient. Therefore, in practice, thick polyethylene foam is used for hot water piping, and workability at the time of piping (cannot be piped in a narrow space)
There is a problem. In addition, in the piping in the equipment, the heat insulating material is an obstacle to the spread of small and small space equipment. At the same time, there is still a problem in improving energy loss when sending hot water or the like.

【0007】従来用いられている断熱材(熱伝導率k=0.
04〜0.038 W/mK)に代えて、空気より熱伝導率の低い無
機系超微粒子粉体断熱材(熱伝導率k=0.021 W/mK)は、
すでに実用に供されている(マイクロサーム:日本マイ
クロサーム社、Wacker WDS:ハリマセラミックス社、
等)。また、現状の超微粒子粉体断熱材は、非常にもろ
いものであるので、新たに少量のバインダーによりもろ
さを改善した、あるいは、表面保護層を設けることによ
り、もろさの課題を解決し、実用レベルの新規断熱パイ
プとする試みもなされてきている。
A conventionally used heat insulating material (thermal conductivity k = 0.
04-0.038 W / mK), instead of inorganic ultra-fine particle powder heat insulator with lower thermal conductivity than air (thermal conductivity k = 0.021 W / mK),
Already in practical use (Microtherm: Japan Microtherm, Wacker WDS: Harima Ceramics,
etc). In addition, the current ultra-fine particle powder heat insulating material is very fragile, so the fragility has been improved by newly adding a small amount of binder, or the fragility problem has been solved by providing a surface protective layer, and the practical level has been improved. Attempts have been made to use a new heat insulating pipe.

【0008】本発明は、成形性に課題がある無機系超微
粒子粉体を用いないで、有機樹脂だけを用いて、無機系
超微粒子粉体断熱材と同等のメカニズムで、空気以下の
熱伝導率を有し、可とう性、輸送性、製造の容易さにお
いて優れる断熱配管材を提供することを目的とする。
[0008] The present invention does not use an inorganic ultrafine particle powder having a problem in moldability, but uses only an organic resin and has a heat conduction lower than that of air by the same mechanism as that of the inorganic ultrafine particle heat insulator. It is an object of the present invention to provide a heat-insulating piping material having excellent efficiency in flexibility, transportability, and ease of production.

【0009】[0009]

【課題を解決するための手段】本発明は、以下の断熱材
及び断熱配管材を提供するものである。 項1. 発泡させた架橋有機樹脂よりなる断熱材が、空
隙率80%以上で、空隙径0.1ミクロン以下の空隙が50%以
上を占めることを特徴とする、断熱材。 項2. 有機樹脂がポリスチレンである項1に記載の断
熱材。 項3. 架橋密度が0.1〜50%である項1又は2に記載
の断熱材。 項4. 熱媒体を送液する配管材の周囲を項1または2
に記載の断熱材で被覆してなる断熱配管材。
The present invention provides the following heat insulating material and heat insulating piping material. Item 1. A heat insulating material characterized in that a heat insulating material made of a foamed crosslinked organic resin has a porosity of 80% or more and 50% or more of pores having a pore diameter of 0.1 μm or less. Item 2. Item 2. The heat insulating material according to item 1, wherein the organic resin is polystyrene. Item 3. Item 3. The heat insulating material according to Item 1 or 2, wherein the crosslink density is 0.1 to 50%. Item 4. Item 1 or 2 around the piping material that sends the heat medium
A heat-insulating piping material covered with the heat-insulating material according to 1.

【0010】架橋した有機樹脂は微小内部空隙を利用
し、吸着剤、フィルターに用いる試みはなされている
(V.A. Davankov, G.I. Timofeeva, M.M. Ilyin, M.P.
Tsyurupa, J. Poly. Sci. A 35, 3847 (1997))。ただ
し、これらは架橋密度が高く、発泡、成型ができないた
め、断熱材に使用することはできなかった。本発明は、
これらの従来技術を基に、さらに可とう性、断熱性を満
たす新たな断熱配管材を研究した成果である。
Attempts have been made to use crosslinked organic resins as adsorbents and filters by utilizing minute internal voids (VA Davankov, GI Timofeeva, MM Ilyin, MP
Tsyurupa, J. Poly. Sci. A 35, 3847 (1997)). However, they could not be used as heat insulators because of their high crosslink density and cannot be foamed or molded. The present invention
Based on these conventional technologies, it is the result of researching new heat-insulating piping materials that further satisfy flexibility and heat-insulating properties.

【0011】[0011]

【発明の実施の形態】本発明において、発泡される有機
樹脂としては、特に限定されないが、ポリエチレン、ポ
リスチレン、ポリウレタン、エチレンビニルアセテート
(EVA)などの熱可塑性樹脂などが挙げられる。好ましい
有機樹脂は、ポリスチレンである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the organic resin to be foamed is not particularly limited, but may be polyethylene, polystyrene, polyurethane, ethylene vinyl acetate.
(EVA) and the like. A preferred organic resin is polystyrene.

【0012】断熱材の空隙率は、80%以上、好ましくは8
5%以上、より好ましくは90%以上である。空隙径0.1ミ
クロン以下の空隙は、50%以上、好ましくは60%以上、
より好ましくは63%以上である。
The porosity of the heat insulating material is 80% or more, preferably 8%.
It is at least 5%, more preferably at least 90%. A void having a void diameter of 0.1 micron or less is 50% or more, preferably 60% or more,
It is more preferably at least 63%.

【0013】配管材が送液する熱媒体としては、冷水、
熱水、オイルなどが挙げられる。
[0013] The heat medium that the piping material sends is cold water,
Hot water, oil and the like can be mentioned.

【0014】有機樹脂の架橋剤としては、特に限定され
ないが、p-キシリレンジクロリド、4,4-ビス(ブロモメ
チル)ビフェニル、p-キシリレングリコール、ジクロロ
-p-キシレン、などが挙げられる。
The crosslinking agent for the organic resin is not particularly limited, but may be p-xylylene dichloride, 4,4-bis (bromomethyl) biphenyl, p-xylylene glycol, dichloro
-p-xylene, and the like.

【0015】架橋密度は、好ましくは0.1〜50%程度、
より好ましくは0.2〜30%程度である。
The crosslink density is preferably about 0.1 to 50%,
More preferably, it is about 0.2 to 30%.

【0016】配管材は、公知のものが制限なく使用で
き、例えば、樹脂製、金属製等の配管材が使用できる。
Known piping materials can be used without limitation. For example, piping materials made of resin, metal, or the like can be used.

【0017】本発明の断熱材は、例えばオートクレーブ
中に架橋有機樹脂と発泡剤(例えばHCFC141b)を仕込
み、150℃程度に加熱し、常圧に戻し、水で急冷して発
泡させることにより製造できる。
The heat insulating material of the present invention can be produced, for example, by charging a crosslinked organic resin and a foaming agent (eg, HCFC141b) in an autoclave, heating to about 150 ° C., returning to normal pressure, and rapidly cooling with water to foam. .

【0018】[0018]

【発明の効果】本発明の断熱パイプは、断熱性能(断熱
材厚さを考慮したエネルギロスの比率の逆数)におい
て、従来品に比べて、1.3〜1.7倍の断熱性能を示す。こ
れは、断熱材厚さが同じであれば、本発明の断熱パイプ
は、送液中の放熱によるエネルギーロスが1/1.3〜1/1.7
であることを意味する。従って、断熱材の厚みをより薄
くすることが可能になる。
The heat-insulating pipe of the present invention exhibits 1.3-1.7 times the heat-insulating performance (reciprocal of the energy loss ratio in consideration of the heat-insulating material thickness) as compared with the conventional product. This means that if the thickness of the heat insulating material is the same, the heat insulating pipe of the present invention has an energy loss due to heat radiation during liquid supply of 1 / 1.3 to 1 / 1.7.
Means that Therefore, the thickness of the heat insulating material can be further reduced.

【0019】[0019]

【実施例】以下実施例、比較例を示す。放熱量の測定
法、測定結果については最後にまとめて示す。 実施例1 本発明の実施例1を図1に示す。樹脂製の送液パイプ2
本を有機樹脂超微細発泡断熱材でくるんだ構造をしてい
る。樹脂製の送液パイプは後述する比較例1と同様であ
る。
EXAMPLES Examples and comparative examples will be described below. The method of measuring the heat release and the measurement results will be summarized at the end. Embodiment 1 Embodiment 1 of the present invention is shown in FIG. Liquid feed pipe 2 made of resin
The book is wrapped in organic resin ultra-fine foam insulation. The resin-made liquid sending pipe is the same as in Comparative Example 1 described later.

【0020】有機樹脂超微細発泡断熱材は、ポリスチレ
ンを架橋反応させ、その後、発泡剤を用いて発泡させる
ことにより作製した。まず、フラスコ中でポリスチレン
(Aldrich)10.4gとp-キシリレンジクロリド(東京化
成)0.9gをジクロロエタン(ナカライテスク)400mlに
加熱溶解し、0℃に冷却した後、アルゴン気流下で、SnC
l4(ナカライテスク)2.2gを滴下し、80℃で8時間反応
させた。本仕込量では、架橋密度(ポリスチレンのスチ
レンユニットが架橋されている割合)は10%にあたる。
生成したゲル状物を、1M HCl/MeOHで3回洗浄し、更に蒸
留水で2回洗浄した後、真空乾燥した。オートクレーブ
中に調製した架橋ポリスチレン10gと発泡剤としてHCFC1
41b(ダイキン工業株式会社製)20gを仕込み、150℃に
加熱した。このとき圧力は3kgf/cm2まで上昇した。常圧
に戻し、水で急冷して発泡させた。本有機樹脂超微細発
泡断熱材を用い、図1のように断熱配管材を作製した。 実施例2 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレン(Aldr
ich)10.4gとp-キシリレンジクロリド(東京化成)17.6
gをジクロロエタン(ナカライテスク製)400mlに加熱溶
解し、0℃に冷却した後、アルゴン気流下で、SnCl4(ナ
カライテスク製)2.2gを滴下し、80℃で8時間反応させ
た。本仕込量では架橋密度20%にあたる。実施例1と同
様に洗浄、真空乾燥したのち、発泡させた。本有機樹脂
超微細発泡断熱材を用い、図1のように断熱配管材を作
製した。 実施例3 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレン(Aldr
ich)10.4gとp-キシリレンジクロリド(東京化成)0.45
gをジクロロエタン(ナカライテスク製)400mlに加熱溶
解し、0℃に冷却した後、アルゴン気流下で、SnCl4(ナ
カライテスク製)2.2gを滴下し、80℃で8時間反応させ
た。本仕込量では架橋密度5%にあたる。実施例1と同様
に洗浄、真空乾燥したのち、発泡させた。本有機樹脂超
微細発泡断熱材を用い、図1のように断熱配管材を作製
した。 実施例4 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレン(Aldr
ich)10.4gと4,4(-ビス(ブロモメチル)ビフェニル
(東京化成)1.7gをジクロロエタン(ナカライテスク
製)400mlに加熱溶解し、0℃に冷却した後、アルゴン気
流下で、SnCl4(ナカライテスク製)2.2gを滴下し、80
℃で8時間反応させた。本仕込量では、架橋密度は10%に
あたる。実施例1と同様に洗浄、真空乾燥したのち、架
橋ポリスチレン10gと発泡剤としてHCFC141b(ダイキン
工業株式会社製)10gを用いて発泡させた。本有機樹脂
超微細発泡断熱材を用い、図1のように断熱配管材を作
製した。 実施例5 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレン(Aldr
ich)10.4gとキシレングリコール(東京化成)0.35gを
ジクロロエタン(ナカライテスク製)400mlに加熱溶解
し、更にp-トルエンスルホン酸(東京化成)0.76gを溶
解させた後、アルゴン気流下で、SnCl4(ナカライテス
ク製)2.2gを滴下し、80℃で8時間反応させた。本仕込
量では架橋密度5%にあたる。実施例1と同様に洗浄、真
空乾燥したのち、発泡させた。本有機樹脂超微細発泡断
熱材を用い、図1のように断熱配管材を作製した。 実施例6 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレンエラス
トマー(Aldrich)10.0gとキシレングリコール(東京化
成)0.046gをジクロロエタン(ナカライテスク製)400m
lに加熱溶解し、更にp-トルエンスルホン酸(東京化
成)0.102gを溶解させた後、アルゴン気流下で、SnCl4
(ナカライテスク製)2.2gを滴下し、80℃で8時間反応
させた。本仕込量では架橋密度0.35%にあたる。実施例
1と同様に洗浄、真空乾燥したのち、発泡させた。本有
機樹脂超微細発泡断熱材を用い、図1のように断熱配管
材を作製した。 実施例7 実施例1と同様にして、断熱配管材を作製した。ポリス
チレンを架橋反応させるにおいて、ポリスチレン(Aldr
ich)1.04gとジクロロp-キシレン(東京化成)0.063gを
ジクロロエタン(ナカライテスク製)400mlに加熱溶解
し、-10℃に冷却した後、アルゴン気流下で、SnCl4(ナ
カライテスク製)0.22gを滴下し、80℃で8時間反応させ
た。本仕込量では架橋密度7%にあたる。実施例1と同様
に洗浄、真空乾燥したのち、発泡させた。本有機樹脂超
微細発泡断熱材を用い、図1のように断熱配管材を作製
した。 比較例1 実施例1−7の比較として用いた比較例1を図2に示
す。本比較例では、一般に広く用いられる温冷水送液パ
イプと断熱材の組み合わせを用いた。断熱材は12mm厚さ
のポリエチレンフォームを用い、温冷水送液パイプとし
てポリエチレン製10A樹脂管を用いた。 比較例2 架橋させないポリスチレン(Aldrich)を、実施例1と同
様にして発泡させ、比較例2の形状の断熱配管材を比較
例1と同様にして作製した。
The organic resin ultrafine foamed heat insulating material was produced by subjecting polystyrene to a crosslinking reaction and then foaming using a foaming agent. First, 10.4 g of polystyrene (Aldrich) and 0.9 g of p-xylylene dichloride (Tokyo Kasei) were dissolved in 400 ml of dichloroethane (Nacalai Tesque) by heating and cooled to 0 ° C.
l 4 was added dropwise (Nacalai Tesque) 2.2 g, was reacted for 8 hours at 80 ° C.. At this charge, the crosslink density (the ratio of styrene units of polystyrene being crosslinked) is 10%.
The resulting gel was washed three times with 1M HCl / MeOH, twice with distilled water, and dried under vacuum. 10 g of cross-linked polystyrene prepared in an autoclave and HCFC1 as a blowing agent
20 g of 41b (manufactured by Daikin Industries, Ltd.) was charged and heated to 150 ° C. At this time, the pressure rose to 3 kgf / cm 2 . The pressure was returned to normal pressure, and the mixture was rapidly cooled with water to foam. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 2 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, polystyrene (Aldr
ich) 10.4 g and p-xylylene dichloride (Tokyo Kasei) 17.6
g was dissolved in 400 ml of dichloroethane (manufactured by Nacalai Tesque) under heating and cooled to 0 ° C., and 2.2 g of SnCl 4 (manufactured by Nacalai Tesque) was added dropwise under an argon stream, followed by reaction at 80 ° C. for 8 hours. This charge amount corresponds to a crosslink density of 20%. After washing and vacuum drying in the same manner as in Example 1, foaming was performed. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 3 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, polystyrene (Aldr
ich) 10.4 g and p-xylylene dichloride (Tokyo Kasei) 0.45
g was dissolved in 400 ml of dichloroethane (manufactured by Nacalai Tesque) under heating and cooled to 0 ° C., and 2.2 g of SnCl 4 (manufactured by Nacalai Tesque) was added dropwise under an argon stream, followed by reaction at 80 ° C. for 8 hours. This charge corresponds to a crosslink density of 5%. After washing and vacuum drying in the same manner as in Example 1, foaming was performed. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 4 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, polystyrene (Aldr
ich) 10.4 g and 1.7 g of 4,4 (-bis (bromomethyl) biphenyl (Tokyo Kasei) were dissolved by heating in 400 ml of dichloroethane (manufactured by Nacalai Tesque), cooled to 0 ° C, and then SnCl 4 (Nacalai) under an argon stream. 2.2 g of Tesque)
The reaction was performed at 8 ° C. for 8 hours. At this charge, the crosslink density is 10%. After washing and vacuum drying in the same manner as in Example 1, foaming was carried out using 10 g of crosslinked polystyrene and 10 g of HCFC141b (manufactured by Daikin Industries, Ltd.) as a foaming agent. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 5 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, polystyrene (Aldr
ich) 10.4 g of xylene glycol (Tokyo Kasei) 0.35 g was dissolved in 400 ml of dichloroethane (manufactured by Nacalai Tesque) under heating, and 0.76 g of p-toluenesulfonic acid (Tokyo Kasei) was further dissolved. 4 2.2 g (manufactured by Nacalai Tesque) was added dropwise and reacted at 80 ° C. for 8 hours. This charge corresponds to a crosslink density of 5%. After washing and vacuum drying in the same manner as in Example 1, foaming was performed. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 6 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, 10.0 g of polystyrene elastomer (Aldrich) and 0.046 g of xylene glycol (Tokyo Kasei) are mixed with 400 m of dichloroethane (manufactured by Nacalai Tesque).
was heated and dissolved in l, after dissolving the further p- toluenesulfonic acid (Tokyo Kasei) 0.102 g, in an argon stream, SnCl 4
2.2 g (manufactured by Nacalai Tesque) was added dropwise and reacted at 80 ° C. for 8 hours. This charge corresponds to a crosslink density of 0.35%. After washing and vacuum drying in the same manner as in Example 1, foaming was performed. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Example 7 In the same manner as in Example 1, a heat insulating piping material was produced. In the cross-linking reaction of polystyrene, polystyrene (Aldr
ich) 1.04 g and 0.063 g of dichloro p-xylene (Tokyo Kasei) were dissolved by heating in 400 ml of dichloroethane (manufactured by Nacalai Tesque), cooled to -10 ° C, and then 0.22 g of SnCl 4 (manufactured by Nacalai Tesque) under an argon stream. Was added dropwise and reacted at 80 ° C. for 8 hours. This charge amount corresponds to a crosslink density of 7%. After washing and vacuum drying in the same manner as in Example 1, foaming was performed. Using this organic resin ultrafine foamed heat insulating material, a heat insulating piping material was produced as shown in FIG. Comparative Example 1 FIG. 2 shows Comparative Example 1 used as a comparison of Example 1-7. In this comparative example, a combination of a generally used hot and cold water supply pipe and a heat insulating material was used. As a heat insulating material, a polyethylene foam having a thickness of 12 mm was used, and a polyethylene 10A resin pipe was used as a hot and cold water supply pipe. Comparative Example 2 Non-crosslinked polystyrene (Aldrich) was foamed in the same manner as in Example 1, and a heat-insulating piping material having the shape of Comparative Example 2 was produced in the same manner as in Comparative Example 1.

【0021】以上に示した実施例、比較例の断熱性を調
べるために、各断熱パイプの表面温度を測定した。断熱
パイプの表面と断熱パイプ内部の温水パイプ表面に熱電
対を設置して温度測定をした。温水パイプ、冷水パイプ
両パイプに60℃の温水を流し、測定周囲雰囲気は18℃,
60%RHとした。結果を次の表1及び表2にまとめる。
The surface temperature of each heat insulating pipe was measured in order to examine the heat insulating properties of the above Examples and Comparative Examples. A thermocouple was installed on the surface of the heat insulating pipe and on the surface of the hot water pipe inside the heat insulating pipe to measure the temperature. Flow hot water at 60 ° C through both the hot and cold water pipes.
It was set to 60% RH. The results are summarized in Tables 1 and 2 below.

【0022】[0022]

【表1】 [Table 1]

【0023】表1では断熱性能を表す断熱性能比率を以
下のように定義して計算した。この数値は比較例に対す
る実施例の断熱性能(断熱材厚さを考慮したエネルギー
ロスの比率の逆数)を表す。
In Table 1, the heat insulation performance ratio representing the heat insulation performance was defined and calculated as follows. This numerical value represents the heat insulation performance of the example relative to the comparative example (the reciprocal of the energy loss ratio in consideration of the thickness of the heat insulating material).

【0024】[0024]

【数1】 (Equation 1)

【0025】表1によれば、実施例1-7とも、温水の送
液中の、放熱によるエネルギーロスの小さい優れた断熱
性能を示す断熱パイプであることがわかる。
According to Table 1, it can be seen that Examples 1 to 7 are heat-insulating pipes exhibiting excellent heat-insulating performance with little energy loss due to heat radiation during hot water supply.

【0026】また、透過電顕の観察、写真の解析により
以下の、空隙が形成されていることを確認した。いずれ
も、空気の平均自由行程(約0.1μm)以下が、優先的に
形成されていることがわかる。
Further, it was confirmed by observation with a transmission electron microscope and analysis of photographs that the following voids were formed. In each case, it can be seen that the mean free path (about 0.1 μm) or less is preferentially formed.

【0027】[0027]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の断熱材の構造を示す。FIG. 1 shows the structure of a heat insulating material according to a first embodiment.

【図2】 比較例1の断熱材の構造を示す。FIG. 2 shows the structure of a heat insulating material of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 温水パイプ 2 冷水パイプ 3 有機樹脂超微細発泡断熱材(架橋ポリスチレンフォ
ーム) 4 気泡 5 有機樹脂(架橋ポリスチレン) 11 温水パイプ 12 冷水パイプ 13 有機樹脂超微細発泡断熱材(ポリスチレンフォーム
あるいはポリエチレンフォーム) 14 気泡 15 有機樹脂(ポリスチレンあるいはポリエチレン)
DESCRIPTION OF SYMBOLS 1 Hot water pipe 2 Cold water pipe 3 Organic resin ultrafine foam insulation (crosslinked polystyrene foam) 4 Air bubbles 5 Organic resin (crosslinked polystyrene) 11 Hot water pipe 12 Cold water pipe 13 Organic resin ultrafine foam insulation (polystyrene foam or polyethylene foam) 14 Bubble 15 Organic resin (polystyrene or polyethylene)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 歩 京都府京都市中京区壬生坊城町48−3壬生 坊城団地4−1028 (72)発明者 劉 国堂 京都府京都市西京区牛ヶ背奥ノ坊11−1フ ァミリオ奥ノ坊102 Fターム(参考) 3H036 AA01 AB18 AB25 AE13 3L070 BD02 BD07 4F074 AA32N BA45 BA53 BB10 CA31 CC04Y CC06X DA02 DA04 DA32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ayumu Yasuda 48-3 Mibubojocho, Nakagyo-ku, Kyoto-shi, Kyoto 4-1028 Mibu-Bokajo Danchi (72) Inventor Liu Kokudo Ushiga, Nishikyo-ku, Kyoto-shi, Kyoto 11-1 Familio Okunobo 102 F term (reference) 3H036 AA01 AB18 AB25 AE13 3L070 BD02 BD07 4F074 AA32N BA45 BA53 BB10 CA31 CC04Y CC06X DA02 DA04 DA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】発泡させた架橋有機樹脂よりなる断熱材
が、空隙率80%以上で、空隙径0.1ミクロン以下の空隙が
50%以上を占めることを特徴とする、断熱材。
A heat insulating material comprising a foamed crosslinked organic resin has a porosity of 80% or more and a pore having a pore diameter of 0.1 μm or less.
Insulation material characterized by 50% or more.
【請求項2】有機樹脂がポリスチレンである請求項1に
記載の断熱材。
2. The heat insulating material according to claim 1, wherein the organic resin is polystyrene.
【請求項3】架橋密度が0.1〜50%である請求項1又は
2に記載の断熱材。
3. The heat insulating material according to claim 1, wherein the crosslink density is 0.1 to 50%.
【請求項4】熱媒体を送液する配管材の周囲を請求項1
または2に記載の断熱材で被覆してなる断熱配管材。
4. The surroundings of a pipe member for feeding a heat medium.
Or a heat insulating pipe material coated with the heat insulating material according to 2.
JP31814499A 1999-11-09 1999-11-09 Heat insulating material and manufacturing method therefor Pending JP2001141177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31814499A JP2001141177A (en) 1999-11-09 1999-11-09 Heat insulating material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31814499A JP2001141177A (en) 1999-11-09 1999-11-09 Heat insulating material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001141177A true JP2001141177A (en) 2001-05-25

Family

ID=18095996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31814499A Pending JP2001141177A (en) 1999-11-09 1999-11-09 Heat insulating material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001141177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN1308611C (en) * 2002-05-31 2007-04-04 松下冷机株式会社 Vacuum thermal insulating material, process for producing the same and refrigerator including the same
US7571582B2 (en) 2002-05-31 2009-08-11 Panasonic Corporation Vacuum heat insulator, method of manufacturing the same, and refrigerator using the same
JP2004011705A (en) * 2002-06-05 2004-01-15 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator

Similar Documents

Publication Publication Date Title
US6485805B1 (en) Multilayer insulation composite
EP2245351A2 (en) Multilayer heat tracing insulation device and method
EP2418080B9 (en) Flexible insulation system for high temperatures
EA039608B1 (en) Insulated pipe
JP2007510111A5 (en)
US3417785A (en) Pipe support
TW200521370A (en) Vacuum heat insulating material and refrigerating apparatus including the same
JP2001141177A (en) Heat insulating material and manufacturing method therefor
CN108990187A (en) A kind of radiator that graphene is thermally conductive
CN108507388B (en) Phase change heat storage device and water heater
KR200411561Y1 (en) Adiabatic cover structure of pipe and adiabatic pipe structure
CN115085108A (en) Composite high-temperature-resistant cable protection structure and communication cable
JP2016529465A (en) Energy storage system
CN108493504B (en) Fireproof cotton with heat absorption and fire extinguishing functions
EP3508551A1 (en) Composite member and production method therefor, heat storage material and production method therefor, heat-storage-type air conditioner, and heat-storage-type heat-pipe-based fueling system
CN209540223U (en) A kind of polyolefin glass microballoon composite insulating pipe
Cheng et al. The thermal energy storage capacity and fire risk of phase change material based on the framework of modified melamine sponge
KR101425786B1 (en) The insulation for Reinforcing and manufacture of insulation for Reinforcing
CN111070830A (en) Flame-retardant heat-insulating material for aircraft
JP2017140787A (en) Heat insulating material and method for producing the same
CN212273297U (en) Nano antibacterial PE-RT thermal insulation pipe
JP2001099393A (en) Heat insulating material, manufacture thereof and heat insulating box body
JP2022060684A (en) Heat insulation structure and heat insulation structure having humidifier
JPS6257869B2 (en)
JPH10318445A (en) Insulated piping material