JP2001136750A - Pwm pulse generating circuit of three-level npc inverter - Google Patents

Pwm pulse generating circuit of three-level npc inverter

Info

Publication number
JP2001136750A
JP2001136750A JP31991799A JP31991799A JP2001136750A JP 2001136750 A JP2001136750 A JP 2001136750A JP 31991799 A JP31991799 A JP 31991799A JP 31991799 A JP31991799 A JP 31991799A JP 2001136750 A JP2001136750 A JP 2001136750A
Authority
JP
Japan
Prior art keywords
pwm pulse
voltage
switch
inverter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31991799A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yamanaka
克利 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP31991799A priority Critical patent/JP2001136750A/en
Publication of JP2001136750A publication Critical patent/JP2001136750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high quality PWM pulse generator of a three-level NPC inverter by adding a simplified circuit to the PWM pulse generating circuit of two-level. SOLUTION: In this PWM pulse generating circuit of three-level NPC inverter for connecting in series four switching element per phase, providing two rectifying elements for clamping to the neutral point and generating the PWM pulse signal of four switches from a command voltage, a comparator 4 for generating a PWM pulse phase, a first switch 7 for distributing the PWM pulse signal to the four switch elements and a control signal (3) for controlling such distribution are provided. Thereby, when the modulation rate of the command voltage 1 is small, the control signal and command voltage are switched for each period of carrier and the pulse for outputting a positive bus voltage to a phase voltage output terminal, and the pulse for outputting a negative bus voltage are switched and outputted for each period of carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータの可変速駆
動や系統連係を行う3レベルNPCインバータなどの電
力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion device such as a three-level NPC inverter for performing variable speed driving of a motor and system linkage.

【0002】[0002]

【従来の技術】従来の3レベルNPC(中性点電位クラ
ンプ方式)インバータの主回路は図10に示すような構
成となっている。図10において、102、103は直
流電源101をE/2に分圧し正電圧、中性点電圧(零
電位)、負電圧という3レベルの電圧レベルを作成する
分圧コンデンサであり、104、105はコンデンサ1
02、103の中性点電圧を導出する整流素子で、13
0〜133は夫々還流用ダイオード106〜109を備
えたU相1相分のスイッチングアームを構成する4個直
列のIGBT等のスイッチ素子である。同様な構成はV
相、W相のスイッチングアームも有しており、PWMパ
ルスが各々U相、V相、W相のスイッチング素子130
〜141に印加されON/OFF駆動が行われる。3レ
ベルNPCインバータに印加されるPWMパルスは、指
令電圧と三角波キャリアとを比較して作成されるのが一
般的であるが、その出力電圧発生方法としては、図7に
示すようなPWMパルス半周期分を反転するユニポーラ
変調方式、図8に示すような三角波キャリヤを2系統使
用するダブルキャリアユニポーラ方式、図9に示すよう
な2波の指令電圧を用いるバイポーラ変調方式などがあ
る。なお、各図7〜図9では、(a)で指令電圧と比較
する三角波キャリヤの波形図と、(b)で相電圧の波形
図と、(c)で3相出力インバータの場合の線間電圧の
波形を各々示している。図7のユニポーラ変調は、
(a)のように1つの指令電圧と1つの三角波キャリヤ
とを比較して、指令電圧が三角波キャリヤを超えている
間スイッチング素子を導通させるものである。これによ
って、(b)のような3相出力インバータの場合の相電
圧の波形図と、(c)のような線間電圧の波形が得られ
る。これによると、(c)の線間電圧波形のように、線
間出力電圧の高い部分でも零電圧までスイッチングされ
てしまい、線間出力電圧の品質は悪い。図8のダブルキ
ャリヤユニポーラ変調は、(a)のように1つの指令電
圧とレベルの異なる2つの三角波キャリヤとを比較し
て、指令電圧が三角波キャリヤを超えている間スイッチ
ング素子を導通させるものである。これによって、
(b)のような3相出力インバータの場合の相電圧の波
形図と、(c)のような線間電圧の波形が得られる。図
8のダブルキャリヤユニポーラ変調は、このように、図
7のユニポーラ変調に比べて線間出力電圧の高い部分で
零電圧までスイッチングすることは無くなり、線間出力
電圧の品質が良くなる。しかしながら、PWMパルスの
発生回路にレベルの違う三角波キャリヤが2つ必要で回
路が複雑になるという欠点があった。図9のバイポーラ
変調は、(a)のように2つの指令電圧と1つの三角波
キャリヤとを比較して、各指令電圧が三角波キャリヤを
超えている間各スイッチング素子を導通させるものであ
る。これによって、(b)のような3相出力インバータ
の場合の相電圧の波形図と、(c)のような線間電圧の
波形が得られる。図9のバイポーラ変調は、このよう
に、図7のユニポーラ変調に比べて線間出力電圧の高い
部分で高電圧までスイッチングすることは無くなり、低
変調率時の線間出力電圧の品質が良くなる。しかしなが
ら、図のように、指令電圧が2つ必要であり、これもP
WMパルスの発生回路が複雑となった。
2. Description of the Related Art The main circuit of a conventional three-level NPC (neutral potential clamp system) inverter has a configuration as shown in FIG. In FIG. 10, reference numerals 102 and 103 denote voltage dividing capacitors for dividing the DC power supply 101 into E / 2 to generate three voltage levels of a positive voltage, a neutral point voltage (zero potential), and a negative voltage. Is the capacitor 1
Rectifier element for deriving neutral point voltage
Reference numerals 0 to 133 denote four series-connected switching elements such as IGBTs that constitute a switching arm for one U-phase provided with reflux diodes 106 to 109, respectively. A similar configuration is V
And a W-phase switching arm, and the PWM pulse is supplied to the U-phase, V-phase, and W-phase switching elements 130, respectively.
ON / OFF drive is performed. The PWM pulse applied to the three-level NPC inverter is generally created by comparing the command voltage with the triangular wave carrier. The method of generating the output voltage is as follows. There are a unipolar modulation method for inverting the period, a double carrier unipolar method using two triangular wave carriers as shown in FIG. 8, and a bipolar modulation method using two wave command voltages as shown in FIG. In each of FIGS. 7 to 9, (a) is a waveform diagram of a triangular wave carrier to be compared with a command voltage, (b) is a waveform diagram of a phase voltage, and (c) is a three-phase output inverter. Voltage waveforms are shown. The unipolar modulation of FIG.
As shown in (a), one command voltage is compared with one triangular wave carrier, and the switching element is turned on while the command voltage exceeds the triangular wave carrier. As a result, a waveform diagram of the phase voltage in the case of the three-phase output inverter as shown in (b) and a waveform of the line voltage as shown in (c) are obtained. According to this, even in a portion where the line output voltage is high as in the line voltage waveform (c), switching is performed to zero voltage, and the quality of the line output voltage is poor. In the double carrier unipolar modulation shown in FIG. 8, one command voltage is compared with two triangular wave carriers having different levels as shown in FIG. 8A, and the switching element is turned on while the command voltage exceeds the triangular wave carrier. is there. by this,
A waveform diagram of the phase voltage in the case of the three-phase output inverter as shown in (b) and a waveform of the line voltage as shown in (c) are obtained. The double carrier unipolar modulation shown in FIG. 8 does not switch to zero voltage in a portion where the line output voltage is high as compared with the unipolar modulation shown in FIG. 7, thus improving the quality of the line output voltage. However, there is a disadvantage in that the circuit for generating the PWM pulse requires two triangular wave carriers having different levels and the circuit becomes complicated. In the bipolar modulation shown in FIG. 9, two command voltages are compared with one triangular wave carrier as shown in FIG. 9A, and each switching element is turned on while each command voltage exceeds the triangular wave carrier. As a result, a waveform diagram of the phase voltage in the case of the three-phase output inverter as shown in (b) and a waveform of the line voltage as shown in (c) are obtained. The bipolar modulation of FIG. 9 does not switch to a high voltage in a portion where the line output voltage is high as compared with the unipolar modulation of FIG. 7, thus improving the quality of the line output voltage at a low modulation rate. . However, as shown in the figure, two command voltages are required, which is also P
The circuit for generating the WM pulse has become complicated.

【0003】[0003]

【発明が解決しようとする課題】以上のように、上記の
各従来例では、3レベルNPCインバータのPWMパル
ス発生方法で、ユニポーラ変調は図7の線間電圧波形の
ように、線間出力電圧の高い部分でも零電圧までスイッ
チングされてしまい、線間出力電圧の品質が悪い。一
方、ダブルキャリヤユニポーラ変調は図8のように、ユ
ニポーラ変調に比べて線間出力電圧の高い部分で零電圧
までスイッチングすることは無く、線間出力電圧の品質
は良いが、PWMパルスの発生回路にレベルの違う三角
波キャリヤが2つ必要で回路が複雑になる。また、バイ
ポーラ変調では図9のように、指令電圧が2つ必要であ
り、これもPWMパルスの発生回路が複雑となる。この
ようにユニポーラ変調は線間出力電圧の品質が悪く、タ
ブルキャリヤユニポーラ変調と、バイポーラ変調は回路
規模が大きくなるという問題があった。そこで、本発明
は、低コストで単純化された回路構成によって高品質な
インバータの出力電圧を提供できる3レベルNPCイン
バータのPWMパルス発生回路を提供することを目的と
している。
As described above, in each of the prior arts described above, in the PWM pulse generating method of the three-level NPC inverter, the unipolar modulation is performed by the line output voltage as shown in the line voltage waveform of FIG. Is switched to zero voltage even in the high part, and the quality of the line-to-line output voltage is poor. On the other hand, the double-carrier unipolar modulation does not switch to zero voltage in a portion where the line output voltage is high as compared with the unipolar modulation as shown in FIG. 8, and the quality of the line output voltage is good. The circuit becomes complicated because two triangular wave carriers of different levels are required. Further, as shown in FIG. 9, the bipolar modulation requires two command voltages, which also complicates the PWM pulse generation circuit. As described above, the unipolar modulation has a poor quality of the line output voltage, and the double carrier modulation and the double carrier modulation have a problem that the circuit scale is large. Therefore, an object of the present invention is to provide a PWM pulse generating circuit of a three-level NPC inverter that can provide a high-quality inverter output voltage with a low-cost and simplified circuit configuration.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、1相あたり4つのスイッチ素子を直列接
続し、中性点にクランプするための2つの整流素子を持
ち、指令電圧から前記4つのスイッチのPWMパルス信
号を作り出す、3レベルNPCインバータのPWMパル
ス発生回路において、1相あたりに1つのPWMパルス
を発生させるコンパレータと、PWMパルス信号を前記
4つのスイッチ素子に分配する第1の切替器と、その分
配を制御する制御信号を備え、前記指令電圧の変調率が
小さい場合には、前記制御信号と前記指令電圧をキャリ
ヤ周期毎に切替え、相電圧出力端子に正母線電圧を出力
するパルスと負母線電圧を出力するパルスとを前記キャ
リヤ周期毎に切替えて出力できるようにしたことを特徴
としている。また、請求項1記載の3レベルNPCイン
バータのPWMパルス発生回路において、PWMパルス
を反転させる反転器と、前記PWMパルスを前記反転器
に通すか通さないかを切替える第2の切替器と、前記第
2の切替器の切換信号を発生させる信号発生器を備え、
指令電圧の変調率が大きい場合には前記PWMパルスを
前記反転器に通すようにして前記4つのスイッチ素子の
PWMパルスを発生させることを特徴としている。この
構成によれば、2レベルのPWMパルス発生回路に簡単
なスイッチ回路を付加して3レベルNPCインバータの
PWMパルスを作成するものであり、変調率が小さい場
合には、制御信号と指令電圧をキャリヤ周期毎に切替
え、相電圧出力の正母線電圧と負母線電圧をキャリヤ周
期毎に切替えて出力できるようにすると共に、一方、変
調率が高い場合には、反転器を設けてスイッチ切替え信
号がキャリヤ周期毎に切替わらない時にはPWMパルス
を反転器に通すことでダブルキャリヤユニポーラ変調に
切替わるようにすることによって、簡単な回路構成によ
り高品質な3レベルNPCインバータのPWMパルス発
生回路を構成できる。
In order to achieve the above-mentioned object, the present invention has four switch elements connected in series per phase, has two rectifying elements for clamping to a neutral point, and has two rectifying elements. In a PWM pulse generation circuit of a three-level NPC inverter for generating PWM pulse signals of the four switches, a comparator for generating one PWM pulse per phase and a first distributing a PWM pulse signal to the four switch elements And a control signal for controlling the distribution thereof, and when the modulation rate of the command voltage is small, the control signal and the command voltage are switched every carrier cycle, and the positive bus voltage is applied to the phase voltage output terminal. It is characterized in that a pulse to be output and a pulse to output a negative bus voltage can be switched and output every carrier cycle. The PWM pulse generating circuit of a three-level NPC inverter according to claim 1, wherein an inverter for inverting a PWM pulse, a second switch for switching whether to pass the PWM pulse through the inverter or not. A signal generator for generating a switching signal of the second switching device;
When the modulation rate of the command voltage is large, the PWM pulse is generated by passing the PWM pulse through the inverter and generating the PWM pulse of the four switch elements. According to this configuration, a simple switch circuit is added to a two-level PWM pulse generating circuit to generate a PWM pulse of a three-level NPC inverter. When the modulation rate is small, the control signal and the command voltage are converted. Switching is performed at each carrier cycle, and the positive bus voltage and the negative bus voltage of the phase voltage output can be switched and output at each carrier cycle.On the other hand, when the modulation rate is high, an inverter is provided and the switch switching signal is output. When switching is not performed every carrier cycle, the PWM pulse is passed through an inverter to switch to double carrier unipolar modulation, whereby a high-quality PWM pulse generating circuit of a three-level NPC inverter can be configured with a simple circuit configuration. .

【0005】[0005]

【発明の実施の形態】以下、本発明の第1の実施の形態
について図を参照して説明する。図1は本発明の第1の
実施の形態に係る3レベルNPCインバータのPWMパ
ルス発生回路のブロック図である。図2は図1に示すP
WMパルス発生回路の変調率が基準値1よりも小さい場
合の波形図である。図3は図1に示すPWM発生回路の
変調率が基準値1よりも大きい場合の波形図である。基
準値1としてはPWMパルスの切り替えポイントとして
通常0.5が取られることが多いが、状況に応じて変更
してもよい。図1において、1は出力電圧や出力周波数
等の情報を含む電圧指令で、2はスイッチ制御器でスイ
ッチ切替信号(3)を出力する。3は三角波キャリヤ発
生器であり、発生キャリヤと指令電圧1を比較器4によ
り比較して2レベルのPWMパルスを作成する。5、6
は抵抗で、7はスイッチ制御器2からのスイッチ切替信
号(3)によって、PWMパルスを切替える第1のスイ
ッチである。8、9は反転器(反転用インバータ)で、
S1〜S4は、従来図10に示したような3レベルNP
Cインバータの各相のスイッチングアームを構成するI
GBTに印加されるPWMパルスの駆動信号を表わし、
S1は図10のU相(又はV相、W相)を例に取り具体
例で示すと、正母線に接続する素子130に印加される
駆動信号、S2が素子131に印加される駆動信号、S
3は下側アーム素子132に印加される駆動信号、S4
が素子133に印加される駆動信号である。このよう
に、図1の回路は一般的な2レベルPWMパルス発生器
の1相分(点線で囲んだ回路)の回路に、スイッチ7と
スイッチ制御器2を付け加えた構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a PWM pulse generation circuit of a three-level NPC inverter according to a first embodiment of the present invention. FIG. 2 shows the P shown in FIG.
FIG. 9 is a waveform chart when the modulation rate of the WM pulse generation circuit is smaller than a reference value 1. FIG. 3 is a waveform diagram when the modulation factor of the PWM generation circuit shown in FIG. 1 is larger than the reference value 1. The reference value 1 is usually set to 0.5 as a PWM pulse switching point, but may be changed according to the situation. In FIG. 1, 1 is a voltage command including information such as an output voltage and an output frequency, and 2 is a switch controller that outputs a switch switching signal (3). Reference numeral 3 denotes a triangular-wave carrier generator, which compares the generated carrier with a command voltage 1 by a comparator 4 to generate a two-level PWM pulse. 5,6
Is a resistor, and 7 is a first switch for switching a PWM pulse in response to a switch switching signal (3) from the switch controller 2. 8 and 9 are inverters (inverters for inversion),
S1 to S4 are three-level NPs as shown in FIG.
I constituting the switching arm of each phase of the C inverter
Represents a drive signal of a PWM pulse applied to the GBT,
S1 is a drive signal applied to the element 130 connected to the positive bus, S2 is a drive signal applied to the element 131, taking the U phase (or V phase, W phase) of FIG. 10 as an example. S
3 is a drive signal applied to the lower arm element 132, S4
Is a drive signal applied to the element 133. As described above, the circuit in FIG. 1 has a configuration in which the switch 7 and the switch controller 2 are added to the circuit for one phase (circuit surrounded by a dotted line) of a general two-level PWM pulse generator.

【0006】つぎに動作について説明する。先ず、図1
に示す回路を用いて、電圧指令の変調率が基準値1より
も小さい時には、図2に示すように、指令電圧S1用と
S2用とスイッチ切替信号(3)を与える。このスイッ
チ切替信号(3)がHの場合にスイッチ7はA側に接続
され、Lの時にスイッチ7はB側に接続されるようにす
る。図1の2レベル(スイッチ素子2個のアームで構成
されるタイプ)PWMパルス発生器から、電圧指令1と
して図2に示すパルス状の上側電圧指令S1用と下側電
圧指令S2用と、キャリヤ3とによりPWMパルスを作
成する。スイッチ切替信号(3)は電圧指令S1、S2
用と同期して切替わり、上側電圧指令S1はスイッチA
に、下側電圧指令S2はスイッチBに対応するので、図
2に示すように、駆動信号S1はスイッチ7がAの時の
通過パルスとなり、駆動信号S2はスイッチ7がBの時
の通過パルスが反転器9を通って負パルスとして出力さ
れる。駆動信号S3はスイッチ7がAの時のS1の信号
が反転器8を通って極性反転した負パルスとして出力さ
れる。駆動信号S4はスイッチ7がBの時のバルスがそ
のまま出力される。このように3レベルNPCインバー
タの下側アーム用S3、S4の信号は言わば補完の形で
スイッチ7と反転器を用いて生成し、これによって3レ
ベルNPCインバータの相出力電圧として正母線電圧
P、中性点電圧C、負母線電圧Nの3レベルを出力でき
る。このように、指令電圧をスイッチ切替信号に同期し
て変更し、指令電圧もキャリヤ毎に切替え、低変調時に
相出力電圧の平均値が所望の電圧となるようにパルス幅
を調整することによって、図1のような簡単な回路構成
によって相出力パルスが、正母線電圧P、中性点電圧
C、負母線電圧Nの3レベルが交互に出力されるパルス
を出力することができる。また、この正母線電圧を出力
する時間と、負母線電圧を出力する時間を指令電圧によ
って調整することで、相電圧出力の平均値を細かくコン
トロールすることができる。このように、本発明の実施
の形態によれば、2レベルPWMパルスの発生回路に簡
単なスイッチ回路を付加するたけで、バイポーラ方式と
同等な3レベルNPCインバータ用PWMパルスを発生
させることができる。また、従来例の図9で示したバイ
ポーラ変調が、相出力電圧が三角波キャリア一周期の間
に正母線電圧、中性点電圧、負母線電圧の3つを出力し
ているのに対し、本発明の実施の形態の出力パルスは三
角波キャリヤ2周期の間に正母線電圧、中性点電圧、負
母線電圧の3つを出力するため、本発明の実施の形態の
方が図9のバイポーラ変調よりも1周期あたりのスイッ
チング回数が少なく、スイッチングロスが少なくなると
いう利点もある。
Next, the operation will be described. First, FIG.
When the modulation ratio of the voltage command is smaller than the reference value 1 by using the circuit shown in FIG. 2, a switch switching signal (3) for command voltages S1 and S2 is given as shown in FIG. When the switch switching signal (3) is H, the switch 7 is connected to the A side, and when L is L, the switch 7 is connected to the B side. The two-level (type composed of two switch elements) PWM pulse generator of FIG. 1 is used to generate a voltage command 1 for the pulse-like upper voltage command S1 and the lower voltage command S2 shown in FIG. 3 to generate a PWM pulse. The switch switching signal (3) is a voltage command S1, S2
And the upper voltage command S1 is switched by the switch A
Since the lower voltage command S2 corresponds to the switch B, as shown in FIG. 2, the driving signal S1 is a passing pulse when the switch 7 is A, and the driving signal S2 is a passing pulse when the switch 7 is B. Is output as a negative pulse through the inverter 9. The drive signal S3 is output as a negative pulse obtained by inverting the polarity of the signal of S1 when the switch 7 is set to A through the inverter 8. As the drive signal S4, the pulse when the switch 7 is at B is output as it is. In this manner, the signals of the lower arm S3 and S4 for the lower arm of the three-level NPC inverter are generated using the switch 7 and the inverter in a complementary manner, so that the positive bus voltage P, Three levels of the neutral point voltage C and the negative bus voltage N can be output. As described above, the command voltage is changed in synchronization with the switch switching signal, the command voltage is also switched for each carrier, and the pulse width is adjusted so that the average value of the phase output voltage becomes a desired voltage during low modulation. With the simple circuit configuration as shown in FIG. 1, the phase output pulse can output a pulse in which three levels of the positive bus voltage P, the neutral point voltage C, and the negative bus voltage N are alternately output. Further, by adjusting the time for outputting the positive bus voltage and the time for outputting the negative bus voltage by the command voltage, the average value of the phase voltage output can be finely controlled. As described above, according to the embodiment of the present invention, it is possible to generate a PWM pulse for a three-level NPC inverter equivalent to that of the bipolar system simply by adding a simple switch circuit to a circuit for generating a two-level PWM pulse. . In contrast to the conventional bipolar modulation shown in FIG. 9, the phase output voltage outputs three positive bus voltage, neutral point voltage, and negative bus voltage during one cycle of the triangular wave carrier. Since the output pulse of the embodiment of the present invention outputs a positive bus voltage, a neutral point voltage, and a negative bus voltage during two cycles of the triangular wave carrier, the bipolar modulation shown in FIG. There is also an advantage that the number of times of switching per cycle is smaller than that of the first embodiment, and the switching loss is reduced.

【0007】次に、本発明の第2の実施の形態について
図を参照して説明する。図4は本発明の第2の実施の形
態に係る3レベルNPCインバータのPWMパルス発生
回路のブロック図である。図5は図4に示すPWMパル
ス発生回路の波形図である。図6は図4に示すPWMパ
ルス発生回路の動作説明図である。図4において、10
はPWMパルス用反転器、11はキャリヤ同期クロック
の反転器、12は反転器10の切替スイッチで第2の切
替器である。13はスイッチ切替信号(3)の遅延器、
14はDFF回路、15は反転型XOR回路、16はO
R回路である。図1に第2の実施の形態で追加された構
成は以上であり、点線内の部分である。その他の図1と
同一構成には同一符号を付し重複する説明は省略する。
つぎに動作について説明する。前実施の形態の図1の回
路では、例えば、図3のように電圧指令の変調率が大き
くなった場合は、図3に示すような出力パルス(S1〜
S4)となり、キャリヤ周期とスイッチ切替信号は非同
期となって、図7に示したユニポーラ変調の場合と等価
となり、線間電圧の品質が悪くなってしまう。第2の実
施の形態はこれを改善するものである。図4におけるS
1〜S4は図1の場合と同じ、3レベルNPCインバー
タの各相スイッチアームの各スイッチ素子の駆動信号に
対応している。また、駆動信号S1〜S4は、2レベル
の信号S1、S2からスイッチと反転器によりS3、S
4を補完生成して出力するのは第1の実施の形態の時と
同じであるが、さらに、第2の実施の形態では、三角波
キャリヤとスイッチ切替信号の同期・非同期の判定回路
と、非同期の場合に駆動信号S2、S4を反転する反転
器10を設けている。三角波キャリヤとスイッチ切替信
号の同期・非同期状態を検出してスイッチ12の切替信
号を出力する信号発生器は、図4の点線で示す構成であ
り、図5に示すような三角波キャリヤに同期した、同期
クロックAを作成し、スイッチ制御器2からのスイッチ
切替信号Bを遅延器13に通して、少し遅らせたスイッ
チ切替信号C信号と、三角波キャリヤ周期クロックAを
反転器11で反転して遅らせたクロックをDFF回路1
4に加えて、1キャリヤ遅らせたスイッチ切替信号Dを
出力する。XORゲート回路15にD信号とスイッチ切
替信号Bを加えて、ゲート出力信号Eを得て反転、OR
ゲート回路16に信号Eとスイッチ切替信号Bを加えた
出力信号Fから、非同期区間を検出してスイッチ12の
切替信号が得られる。この信号発生器の出力信号Fは、
スイッチ切替信号Bが1クロック毎に交互に変化する同
期範囲と、スイッチ切替信号Bが1クロック毎に変化し
ない非同期範囲を含み、同期範囲ではスイッチ12はL
側に接続されて駆動信号S1〜S4は図1の動作とな
る。一方、非同期範囲の場合は制御部は、スイッチ12
をH側に切替えて、図6に示す電圧指令に切替える(下
側電圧指令を変更)。PWMパルスは反転器10を通っ
て反転されるが、結果的にS2は反転器10と反転器9
を通るので、反転処理は行われずS4だけになる。すな
わち、図4の処理によって、図1と図3の場合のシング
ルキャリヤ・ユニポーラ変調が、図6のS2の反転処理
が要らないダブルキャリヤ・ユニポーラ変調に切替えら
れる事を意味し、これによって信号S2の期間も同期が
確保され、線間の波形が改善されることになる。このよ
うに、第2の実施の形態によれば、スイッチ切替信号が
三角波キャリヤに同期したクロックの周期毎に交互に変
化する同期状態と、キャリヤとスイッチ切替信号が交互
に変化しない非同期状態時を検出して、同期時には2レ
ベルのシングルユニポーラ方式で反転・補完により3レ
ベルNPCインバータの駆動信号を作成し、非同期時に
は電圧指令を変更して結果的にS2は反転しない2キャ
リヤ・ユニポーラ方式に切替えることによって、2レベ
ル方式のPWMパルス発生回路に簡単な切替え回路を付
加するだけで、電圧指令の変調率が低い場合も、高い場
合も高品質な3レベルNPCインバータのPWMバルス
を生成できる。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram of a PWM pulse generating circuit of a three-level NPC inverter according to a second embodiment of the present invention. FIG. 5 is a waveform diagram of the PWM pulse generation circuit shown in FIG. FIG. 6 is an explanatory diagram of the operation of the PWM pulse generation circuit shown in FIG. In FIG. 4, 10
Is a PWM pulse inverter, 11 is a carrier synchronous clock inverter, and 12 is a switch for the inverter 10 which is a second switch. 13 is a delay unit for the switch switching signal (3),
14 is a DFF circuit, 15 is an inverted XOR circuit, 16 is O
This is an R circuit. The configuration added in the second embodiment to FIG. 1 has been described above, and is the portion within the dotted line. The same components as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
Next, the operation will be described. In the circuit of FIG. 1 of the previous embodiment, for example, when the modulation ratio of the voltage command is increased as shown in FIG. 3, the output pulses (S1 to S1) as shown in FIG.
In step S4), the carrier cycle and the switch switching signal become asynchronous, which is equivalent to the unipolar modulation shown in FIG. 7, and the quality of the line voltage deteriorates. The second embodiment improves this. S in FIG.
1 to S4 correspond to the drive signals of the respective switch elements of the respective phase switch arms of the three-level NPC inverter as in FIG. The drive signals S1 to S4 are converted from the two-level signals S1 and S2 by switches and inverters to S3 and S4.
4 is the same as that of the first embodiment, and furthermore, in the second embodiment, a synchronous / asynchronous determination circuit for the triangular wave carrier and the switch switching signal, and an asynchronous circuit In this case, an inverter 10 for inverting the drive signals S2 and S4 is provided. The signal generator that detects the synchronous / asynchronous state of the triangular wave carrier and the switch switching signal and outputs the switching signal of the switch 12 has a configuration shown by a dotted line in FIG. 4 and is synchronized with the triangular wave carrier as shown in FIG. A synchronous clock A is generated, a switch switching signal B from the switch controller 2 is passed through a delay unit 13, and a slightly delayed switch switching signal C signal and a triangular carrier cycle clock A are inverted and delayed by an inverter 11. Clock to DFF circuit 1
In addition to 4, the switch switching signal D delayed by one carrier is output. The D signal and the switch signal B are added to the XOR gate circuit 15 to obtain a gate output signal E, which is then inverted.
An asynchronous section is detected from the output signal F obtained by adding the signal E and the switch switching signal B to the gate circuit 16, and a switching signal of the switch 12 is obtained. The output signal F of this signal generator is
The switch range includes a synchronous range in which the switch switching signal B changes alternately every clock and an asynchronous range in which the switch switch signal B does not change every clock.
And the drive signals S1 to S4 operate as shown in FIG. On the other hand, in the case of the asynchronous range, the control unit
To the H side to switch to the voltage command shown in FIG. 6 (change the lower voltage command). The PWM pulse is inverted through inverter 10, which results in S2 being inverted by inverter 10 and inverter 9
, The inversion process is not performed and only S4 is performed. That is, the processing of FIG. 4 means that the single-carrier unipolar modulation in FIGS. 1 and 3 is switched to the double-carrier unipolar modulation that does not require the inversion of S2 of FIG. In this period, synchronization is ensured, and the waveform between lines is improved. As described above, according to the second embodiment, the synchronous state in which the switch switching signal alternately changes every cycle of the clock synchronized with the triangular carrier, and the asynchronous state in which the carrier and the switch switch signal do not alternately change. Detects and generates a drive signal of a three-level NPC inverter by inversion / complementation by a two-level single unipolar system at the time of synchronization, and changes a voltage command at the time of asynchronous to switch to a two-carrier unipolar system in which S2 is not inverted as a result. By simply adding a simple switching circuit to the two-level PWM pulse generation circuit, a high-quality PWM pulse of a three-level NPC inverter can be generated regardless of whether the modulation ratio of the voltage command is low or high.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば、
1相あたり4つのスイッチ素子を直列接続し、中性点に
クランプするための2つの整流素子を持ち、指令電圧か
ら前記4つのスイッチのPWMパルス信号を作り出す、
3レベルNPCインバータのPWMパルス発生回路にお
いて、1相あたりに1つのPWMパルスを発生させるコ
ンパレータと、PWMパルス信号を前記4つのスイッチ
素子に分配する第1の切替器と、その分配を制御する制
御信号を備え、指令電圧の変調率が小さい場合には、制
御信号と指令電圧をキャリヤ周期毎に切替え、相電圧出
力端子に正母線電圧を出力するパルスと負母線電圧を出
力するパルスとをキャリヤ周期毎に切替えて出力できる
ようにしたので、2レベルPWMパルス発生器に簡単な
回路を付加することで、バイポーラ変調と同等な品質の
3レベルNPCインバータのPWMパルスを発生させる
ことができる。また、3レベルNPCインバータのPW
Mパルス発生回路において、PWMパルスを反転させる
反転器と、PWMパルスを反転器に通すか通さないかを
切替える第2の切替器と、第2の切替器の切換信号を発
生させる信号発生器を備え、指令電圧の変調率が大きい
場合にはPWMパルスを反転器に通すようにして4つの
スイッチ素子のPWMパルスを発生させるようにしたの
で、電圧指令の変調率が高い場合にはダブルキャリヤユ
ニポーラ変調と同等品質の3レベルNPCインバータの
PWMパルスの発生が可能で、電圧指令の低い場合も高
い場合も、簡単な回路で低コスト・高品質な3レベルN
PCインバータのPWMパルスを発生させることができ
る。
As described above, according to the present invention,
Four switch elements are connected in series per phase, and two rectifying elements are provided for clamping to a neutral point, and a PWM pulse signal of the four switches is generated from a command voltage.
In a PWM pulse generating circuit of a three-level NPC inverter, a comparator for generating one PWM pulse per phase, a first switch for distributing a PWM pulse signal to the four switch elements, and control for controlling the distribution When the modulation ratio of the command voltage is small, the control signal and the command voltage are switched every carrier cycle, and the pulse for outputting the positive bus voltage and the pulse for outputting the negative bus voltage to the phase voltage output terminal are provided. Since the output can be switched every cycle, a simple circuit can be added to the two-level PWM pulse generator to generate a three-level NPC inverter PWM pulse of the same quality as that of the bipolar modulation. Also, the PW of the three-level NPC inverter
In the M pulse generation circuit, an inverter for inverting the PWM pulse, a second switch for switching whether the PWM pulse is passed or not, and a signal generator for generating a switching signal of the second switch are provided. When the modulation rate of the command voltage is large, the PWM pulse is passed through the inverter to generate the PWM pulses of the four switch elements. Therefore, when the modulation rate of the voltage command is high, the double carrier unipolar is used. A PWM pulse of a three-level NPC inverter of the same quality as the modulation can be generated, and a low-cost and high-quality three-level N can be generated with a simple circuit even when the voltage command is low or high.
A PWM pulse for the PC inverter can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る3レベルNP
CインバータのPWMパルス発生回路のブロック図であ
る。
FIG. 1 shows a three-level NP according to a first embodiment of the present invention.
It is a block diagram of a PWM pulse generation circuit of a C inverter.

【図2】図1に示すPWMパルス発生回路の波形図であ
る。
FIG. 2 is a waveform diagram of the PWM pulse generation circuit shown in FIG.

【図3】図1に示すPWMパルス発生回路の変調率が大
きい場合の波形図である。
FIG. 3 is a waveform chart when the modulation rate of the PWM pulse generation circuit shown in FIG. 1 is large.

【図4】本発明の第2の実施の形態に係る3レベルNP
CインバータのPWMパルス発生回路のブロック図であ
る。
FIG. 4 shows a three-level NP according to a second embodiment of the present invention.
It is a block diagram of a PWM pulse generation circuit of a C inverter.

【図5】図4に示すPWMパルス発生回路の波形図であ
る。
FIG. 5 is a waveform diagram of the PWM pulse generation circuit shown in FIG.

【図6】図4に示すPWMパルス発生回路の動作説明図
である。
6 is an operation explanatory diagram of the PWM pulse generation circuit shown in FIG.

【図7】従来のユニポーラ変調の波形図である。FIG. 7 is a waveform diagram of a conventional unipolar modulation.

【図8】従来のダブルキャリヤユニポーラ変調の波形図
である。
FIG. 8 is a waveform diagram of conventional double carrier unipolar modulation.

【図9】従来のバイポーラ変調の波形図である。FIG. 9 is a waveform diagram of a conventional bipolar modulation.

【図10】従来の3レベルNPCインバータの主回路図
である。
FIG. 10 is a main circuit diagram of a conventional three-level NPC inverter.

【符号の説明】[Explanation of symbols]

1 電圧指令 2 スイッチ制御器 3 キャリヤ発生器 4 コンパレータ 5、6 抵抗 7、12 スイッチ 8〜11 反転器 13 遅延器 14 DFF 15 XOR回路 16 OR回路 DESCRIPTION OF SYMBOLS 1 Voltage command 2 Switch controller 3 Carrier generator 4 Comparator 5, 6 Resistance 7, 12 Switch 8-11 Inverter 13 Delayer 14 DFF 15 XOR circuit 16 OR circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1相あたり4つのスイッチ素子を直列接
続し、中性点にクランプするための2つの整流素子を持
ち、指令電圧から前記4つのスイッチのPWMパルス信
号を作り出す、3レベルNPCインバータのPWMパル
ス発生回路において、 1相あたりに1つのPWMパルスを発生させるコンパレ
ータと、PWMパルス信号を前記4つのスイッチ素子に
分配する第1の切替器と、その分配を制御する制御信号
を備え、前記指令電圧の変調率が小さい場合には、前記
制御信号と前記指令電圧をキャリヤ周期毎に切替え、相
電圧出力端子に正母線電圧を出力するパルスと負母線電
圧を出力するパルスとを前記キャリヤ周期毎に切替えて
出力できるようにしたことを特徴とする3レベルNPC
インバータのPWMパルス発生回路。
1. A three-level NPC inverter having four switch elements connected in series per phase, two rectifier elements for clamping to a neutral point, and generating a PWM pulse signal of the four switches from a command voltage. A PWM pulse generating circuit comprising: a comparator for generating one PWM pulse per phase; a first switch for distributing a PWM pulse signal to the four switch elements; and a control signal for controlling the distribution. When the modulation rate of the command voltage is small, the control signal and the command voltage are switched every carrier cycle, and a pulse for outputting a positive bus voltage and a pulse for outputting a negative bus voltage to a phase voltage output terminal are output from the carrier. 3-level NPC characterized by being able to switch and output every cycle
Inverter PWM pulse generation circuit.
【請求項2】 請求項1記載の3レベルNPCインバー
タのPWMパルス発生回路において、 PWMパルスを反転させる反転器と、前記PWMパルス
を前記反転器に通すか通さないかを切替える第2の切替
器と、前記第2の切替器の切換信号を発生させる信号発
生器を備え、指令電圧の変調率が大きい場合には前記P
WMパルスを前記反転器に通すようにして前記4つのス
イッチ素子のPWMパルスを発生させることを特徴とし
た3レベルNPCインバータのPWMパルス発生回路。
2. The PWM pulse generating circuit for a three-level NPC inverter according to claim 1, wherein an inverter for inverting a PWM pulse, and a second switch for switching whether to pass the PWM pulse through the inverter. And a signal generator for generating a switching signal of the second switching device.
A PWM pulse generating circuit for a three-level NPC inverter, wherein a PWM pulse of the four switch elements is generated by passing a WM pulse through the inverter.
JP31991799A 1999-11-10 1999-11-10 Pwm pulse generating circuit of three-level npc inverter Pending JP2001136750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31991799A JP2001136750A (en) 1999-11-10 1999-11-10 Pwm pulse generating circuit of three-level npc inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31991799A JP2001136750A (en) 1999-11-10 1999-11-10 Pwm pulse generating circuit of three-level npc inverter

Publications (1)

Publication Number Publication Date
JP2001136750A true JP2001136750A (en) 2001-05-18

Family

ID=18115685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31991799A Pending JP2001136750A (en) 1999-11-10 1999-11-10 Pwm pulse generating circuit of three-level npc inverter

Country Status (1)

Country Link
JP (1) JP2001136750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074172A1 (en) * 2007-12-12 2009-06-18 Mitsubishi Electric Europe B.V. Signal converter for generating switch drive signals for a multi-level converter, drive circuit, pulse-width-modulation signal generator, multi-level converter, methods and computer program
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
KR101434849B1 (en) 2014-05-07 2014-09-05 주식회사 이온 Method for switching element turn-over and pwm of vector control using three phase tnpc 3level converter and inverter
WO2020255338A1 (en) 2019-06-20 2020-12-24 東芝三菱電機産業システム株式会社 Power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074172A1 (en) * 2007-12-12 2009-06-18 Mitsubishi Electric Europe B.V. Signal converter for generating switch drive signals for a multi-level converter, drive circuit, pulse-width-modulation signal generator, multi-level converter, methods and computer program
US8125803B2 (en) 2007-12-12 2012-02-28 Mitsubishi Electric Europe B.V. Niederlassung Deutschland Signal converter for generating switch drive signals for a multi-level converter, drive circuit, pulse-width-modulation signal generator, multi-level converter, methods and computer program
JP2010068552A (en) * 2008-09-08 2010-03-25 Mitsubishi Electric Corp Ac-dc converter, control method for the ac-dc converter, heat pump water heater, and air conditioner
KR101434849B1 (en) 2014-05-07 2014-09-05 주식회사 이온 Method for switching element turn-over and pwm of vector control using three phase tnpc 3level converter and inverter
WO2020255338A1 (en) 2019-06-20 2020-12-24 東芝三菱電機産業システム株式会社 Power conversion device
US11290003B2 (en) 2019-06-20 2022-03-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device

Similar Documents

Publication Publication Date Title
US6023417A (en) Generalized discontinuous pulse width modulator
JP5178799B2 (en) Motor control device
JP3844060B2 (en) PWM pulse control method
US4599685A (en) Control circuit for power converter apparatus
US20040037097A1 (en) Dead-time compensation with narrow pulse elimination in solid-switch devices
JP3625439B2 (en) 3-level inverter gate control apparatus and method
JPH078146B2 (en) Inverter control device
JP3226609B2 (en) Parallel operation control device for power converter
JPH09149660A (en) Controller for pwm control inverter
JP4957574B2 (en) Rotating machine control device and rotating machine control system
JP2001136750A (en) Pwm pulse generating circuit of three-level npc inverter
JPH08331856A (en) Power converting apparatus
JP3786142B2 (en) Inverter device
JP3297184B2 (en) Power converter
JPH0576179A (en) Power converter
JP4664166B2 (en) Multi-relative multi-phase power converter
JP2654118B2 (en) PWM control method
US20200044579A1 (en) Power conversion device and control method
JP2004312822A (en) Two-phase modulation controlling inverter
JP4419312B2 (en) Semiconductor power converter
JPH09149658A (en) Series multiple inverter device
US20240348181A1 (en) Power conversion device
JP2001251864A (en) Gate signal output apparatus
JPH11275873A (en) Resonant inverter device
JPH10112982A (en) Three-phase PWM waveform generator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324