JP2001132472A - Cryogenic power generation system - Google Patents

Cryogenic power generation system

Info

Publication number
JP2001132472A
JP2001132472A JP26526499A JP26526499A JP2001132472A JP 2001132472 A JP2001132472 A JP 2001132472A JP 26526499 A JP26526499 A JP 26526499A JP 26526499 A JP26526499 A JP 26526499A JP 2001132472 A JP2001132472 A JP 2001132472A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas turbine
gas
pressure
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26526499A
Other languages
Japanese (ja)
Other versions
JP4094185B2 (en
Inventor
Takeshi Suzuki
鈴木  剛
Shigeru Nagamori
茂 永森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP26526499A priority Critical patent/JP4094185B2/en
Publication of JP2001132472A publication Critical patent/JP2001132472A/en
Application granted granted Critical
Publication of JP4094185B2 publication Critical patent/JP4094185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To generation an electricity with high efficiency by utilizing the cold of LNG effectively. SOLUTION: A closed loop 9 is formed by a combustor 1, gas turbine 2, waste boiler 3, condenser 4, compressor 5, carbureter 6, storage tank 7 and pomp 8. In the carbureter 6, carbon dioxide (g) boosted by the utilization of the cold of LNG is cooled below 0 deg.C and LNG is gasified. A clathrate compound (h) is produced by mixing and reacting this carbon dioxide (g), pure water (w) and solvent (i). The clathrate compound (h) in the tank 7 is sent out to the condenser 4 by the pump 8 and the carbon dioxide (g) is separated from a gas turbine exhaust gas (e) and the clathrate compound (h) itself is thermally decomposed. The carbon dioxide and steam with a high pressure produced by the thermal decomposition is supplied to the combustor 1 and a fuel (c) is burned under the existence of carbon dioxide, steam and oxygen (b) and a generator 10 is driven by supplying the produced combustion gas (d) to the gas turbine 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化天然ガス(以
下、LNGと称する)の保有している冷熱を有効に利用
して発電を行う冷熱利用発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic power generation system for effectively utilizing cryogenic heat of liquefied natural gas (hereinafter referred to as LNG) to generate power.

【0002】[0002]

【従来の技術】LNGが保有している冷熱は、莫大であ
るにもかかわらず、LNGのガス化に海水が用いられて
いるため、LNGの液化エネルギーの大半が海に捨てら
れているのが現状である。LNGの冷熱利用は、約25
%程度に過ぎない。
2. Description of the Related Art Despite the enormous amount of cold energy held by LNG, seawater is used for gasification of LNG, so most of the liquefaction energy of LNG is discarded in the sea. It is the current situation. The utilization of cold energy of LNG is about 25
Only about%.

【0003】[0003]

【発明が解決しようとする課題】LNGの冷熱を利用す
る方法としては、空気の深冷分離、冷熱発電、低温破砕
などがあるが、中でも、冷熱発電が最も有効な方法であ
ると思われる。
As a method of utilizing the cold heat of LNG, there are cryogenic separation of air, cold power generation, low-temperature crushing, etc. Among them, cold power generation seems to be the most effective method.

【0004】しかしながら、従来の冷熱発電は、旧来の
ランキンサイクル方式を利用したものであるから効率が
悪く、処理するLNGに比べて出力が低い。
However, the conventional thermal power generation uses a conventional Rankine cycle system, and therefore has low efficiency and a lower output than LNG to be processed.

【0005】本発明の目的は、従来の問題を解消し、L
NGの冷熱を有効に利用して高効率の発電が可能である
冷熱利用発電システムを提供することにある。
[0005] An object of the present invention is to solve the conventional problems and to reduce
An object of the present invention is to provide a cold-heat-utilizing power generation system capable of efficiently generating electric power by effectively utilizing NG cold heat.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明にかかる冷熱利用発電システムは、作業流体
である高圧の二酸化炭素、蒸気及び酸素の存在下で燃料
を燃焼させる燃焼器と、該燃焼器で生じた高温高圧の燃
焼ガスを動力源とするガスタービンと、該ガスタービン
により駆動される発電機と、前記ガスタービンの排ガス
から廃熱を回収する廃熱ボイラと、該廃熱ボイラを経た
ガスタービン排ガス中から二酸化炭素を分離すると同時
に低温高圧の包接化合物を分解させる凝縮器と、該凝縮
器で分離された二酸化炭素を昇圧するコンプレッサと、
該コンプレッサで昇圧された二酸化炭素と液化天然ガス
とを熱交換させて液化天然ガスをガス化させると同時に
昇圧された二酸化炭素を0℃以下に冷却する気化器と、
該気化器で冷却された二酸化炭素と純水及び溶媒を混合
反応させて生成した包接化合物を蓄える貯蔵タンクと、
該貯蔵タンクに蓄えられている包接化合物をガスタービ
ンの要求圧まで昇圧するポンプにより閉ループサイクル
を形成して成ることを特徴としている。
In order to solve the above-mentioned problems, a cryogenic power generation system according to the present invention comprises a combustor for burning fuel in the presence of high-pressure working carbon dioxide, steam and oxygen. A gas turbine powered by a high-temperature and high-pressure combustion gas generated in the combustor, a generator driven by the gas turbine, a waste heat boiler for recovering waste heat from exhaust gas of the gas turbine, A condenser that separates carbon dioxide from the gas turbine exhaust gas that has passed through the heat boiler and simultaneously decomposes a low-temperature and high-pressure clathrate compound, and a compressor that pressurizes the carbon dioxide separated by the condenser,
A vaporizer that heat-exchanges carbon dioxide and liquefied natural gas with the compressor to gasify the liquefied natural gas and simultaneously cools the pressurized carbon dioxide to 0 ° C. or less;
A storage tank that stores the clathrate generated by mixing and reacting the carbon dioxide and pure water and the solvent cooled by the vaporizer,
It is characterized in that a closed loop cycle is formed by a pump that raises the clathrate compound stored in the storage tank to a required pressure of the gas turbine.

【0007】本発明によれば、コンプレッサによって昇
圧された二酸化炭素とLNGとを気化器にて熱交換させ
てLNGをガス化させる一方、LNGの冷熱を利用して
二酸化炭素を0℃以下に冷却する。そして、0℃以下に
冷却された二酸化炭素と純水及び溶媒を混合させてハイ
ドレート又はクラスレート(以下、包接化合物と称す
る)を生成させる。貯蔵タンクに蓄えられた包接化合物
は、ポンプによってガスタービンの要求圧まで昇圧され
たのち、凝縮器を通過する間にガスタービンの排ガスと
熱交換してガスタービン排ガス中の二酸化炭素を分離す
る一方、自分自身も分解し、作業流体ガス、即ち、高圧
の二酸化炭素及び蒸気となって燃焼器に供給される。
According to the present invention, LNG is gasified by exchanging heat between carbon dioxide and LNG pressurized by a compressor in a vaporizer, and the carbon dioxide is cooled to 0 ° C. or less by utilizing the cold heat of LNG. I do. Then, carbon dioxide cooled to 0 ° C. or lower, pure water, and a solvent are mixed to generate a hydrate or clathrate (hereinafter, referred to as an inclusion compound). The clathrate compound stored in the storage tank is boosted to the required pressure of the gas turbine by the pump, and then exchanges heat with the gas turbine exhaust gas while passing through the condenser to separate carbon dioxide in the gas turbine exhaust gas. On the other hand, itself is also decomposed and supplied to the combustor as working fluid gas, ie, high-pressure carbon dioxide and steam.

【0008】更に説明すると、液化天然ガス(LNG)
の冷熱によって0℃以下に冷却された二酸化炭素と純水
との混合時に純水の製氷現象が優先され、包接化合物の
生成が困難な場合がある。純水中に、ある種の溶媒、例
えば、アルコールやアルコール類などを混合すると、純
水の氷結がなく、選択的に包接化合物を生成することが
可能であるため、上記溶媒を同時に混合させる。溶媒
は、比重差を利用して包接化合物から分離可能であるか
ら循環して使用される。
To explain further, liquefied natural gas (LNG)
When mixing carbon dioxide and pure water cooled to 0 ° C. or less by the cold heat of water, the ice-making phenomenon of pure water takes precedence, and it may be difficult to generate an inclusion compound. When pure water is mixed with a certain solvent, for example, alcohol or alcohols, the above-mentioned solvents are mixed at the same time because free water of the pure water does not freeze and an inclusion compound can be selectively generated. . Since the solvent can be separated from the clathrate compound by utilizing the difference in specific gravity, it is circulated and used.

【0009】一方、ガスタービンの高温部分、例えば、
タービン翼列に、燃焼器に供給する作動流体(二酸化炭
素及び蒸気)の一部を導入することにより、ガスタービ
ンの高温部分を冷却することができる。
On the other hand, a high temperature portion of a gas turbine, for example,
By introducing a part of the working fluid (carbon dioxide and steam) to be supplied to the combustor to the turbine cascade, a high temperature part of the gas turbine can be cooled.

【0010】[0010]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の冷熱利用発電システムの概
略図であり、本システムは、燃焼器1と、ガスタービン
2と、廃熱ボイラ3と、凝縮器4と、コンプレッサ5
と、気化器6と、貯蔵タンク7と、ポンプ8により、閉
ループサイクル9を形成している。そして、作業流体で
ある二酸化炭素(CO2 )が、上記閉ループサイクル9
を循環するようになっている。
FIG. 1 is a schematic diagram of a power generation system utilizing cold energy according to the present invention. The system comprises a combustor 1, a gas turbine 2, a waste heat boiler 3, a condenser 4, and a compressor 5
, The vaporizer 6, the storage tank 7, and the pump 8 form a closed loop cycle 9. Then, carbon dioxide (CO 2 ) as a working fluid is supplied to the closed loop cycle 9.
It is designed to circulate.

【0012】上記燃焼器1は、液化天然ガス(LNG)
を燃料cとしており、これに極力理論空気量に相当する
量の純酸素(O2 )bを供給して燃焼させている。燃焼
器1で生じた高温高圧の燃焼ガスdは、ガスタービン2
に導入され、発電機10を駆動する動力源になってい
る。
The combustor 1 is a liquefied natural gas (LNG)
Is used as a fuel c, and pure oxygen (O 2 ) b in an amount corresponding to the theoretical air amount is supplied to the fuel c as much as possible to burn it. The high-temperature and high-pressure combustion gas d generated in the combustor 1 is supplied to a gas turbine 2
And serves as a power source for driving the generator 10.

【0013】上記ガスタービン2から排出された排ガス
eは、廃熱回収する廃熱ボイラ3を経て凝縮器4に導入
される。凝縮器4は、ポンプ8によって昇圧された0℃
以下の二酸化炭素ハイドレート又はクラスレート(以
下、包接化合物と称する)hを利用して排ガスe中の蒸
気(H2 O)を凝集し、除去するようになっている。
The exhaust gas e discharged from the gas turbine 2 is introduced into a condenser 4 via a waste heat boiler 3 for recovering waste heat. The condenser 4 has a pressure of 0 ° C.
The following carbon dioxide hydrate or clathrate (hereinafter, referred to as clathrate) h is used to aggregate and remove the vapor (H 2 O) in the exhaust gas e.

【0014】蒸気(H2 O)を分離したガス状の二酸化
炭素(CO2 )gは、作業流体として閉ループサイクル
9に戻されるが、燃焼の際に生じた余分な二酸化炭素な
どは、排気fとして大気中に放出される。
The gaseous carbon dioxide (CO 2 ) g from which the steam (H 2 O) has been separated is returned to the closed loop cycle 9 as a working fluid. Released into the atmosphere as.

【0015】ガス状の二酸化炭素(CO2 )gは、コン
プレッサ5によって昇圧(2atm)されたのち、気化
器6に導入される。そして、液化天然ガス(LNG)j
と熱交換して液化天然ガス(LNG)jをガス化させる
一方、自分自身も0℃以下、即ち、マイナス45℃に冷
却される。
The gaseous carbon dioxide (CO 2 ) g is pressurized (2 atm) by the compressor 5 and then introduced into the vaporizer 6. And liquefied natural gas (LNG) j
While the liquefied natural gas (LNG) j is gasified by heat exchange with itself, the gas itself is cooled to 0 ° C. or less, that is, −45 ° C.

【0016】LNGによってマイナス45℃に冷却され
たガス状の二酸化炭素gは、純水(H2 O)w、および
アルコールやアルコール類などの溶媒iと一緒に図示し
ないノズルから貯蔵タンク7内に噴出され、包接化合物
hを選択的に生成する。貯蔵タンク7に貯蔵された包接
化合物hは、ポンプ8によってガスタービン2の要求圧
まで昇圧されたのち、凝縮器4に供給される。そして、
ガスタービン2の排ガスeと熱交換して分解されたの
ち、高圧の作業流体ガス(二酸化炭素及び蒸気)aとし
て燃焼器1に供給される。
The gaseous carbon dioxide g cooled to −45 ° C. by LNG is introduced into a storage tank 7 from a nozzle (not shown) together with pure water (H 2 O) w and a solvent i such as alcohol or alcohols. It is ejected to selectively generate the clathrate h. The clathrate compound h stored in the storage tank 7 is supplied to the condenser 4 after the pressure is increased to the required pressure of the gas turbine 2 by the pump 8. And
After being decomposed by exchanging heat with the exhaust gas e of the gas turbine 2, it is supplied to the combustor 1 as a high-pressure working fluid gas (carbon dioxide and steam) a.

【0017】溶媒iの一部は、比重差を利用して包接化
合物hから分離され、ポンプ15を有する循環ライン1
6を経て図示しないノズルに戻される。水槽11には、
純水w及び溶媒iが補給されるようになっている。
A part of the solvent i is separated from the clathrate h by utilizing a specific gravity difference, and
After 6 the nozzle is returned to a nozzle (not shown). In the water tank 11,
Pure water w and solvent i are supplied.

【0018】一方、ガスタービン2の高温部分、例え
ば、タービン翼(図示せず)の部分は、燃焼器1の手前
で配管12から分岐した分岐管13を経て供給される高
圧の作業流体ガス(二酸化炭素及び蒸気)aによって冷
却されるようになっている。また、廃熱ボイラ3は、起
動用バーナー14を備えている。
On the other hand, a high-temperature portion of the gas turbine 2, for example, a portion of a turbine blade (not shown) is supplied with a high-pressure working fluid gas (a high-pressure working fluid gas supplied via a branch pipe 13 branched from a pipe 12 before the combustor 1). (Carbon dioxide and steam) a. Further, the waste heat boiler 3 includes a starter burner 14.

【0019】一般に、純酸素(O2 )の製造に要する原
単価は高いが、LNGが保有している冷熱を利用した深
冷分離法を利用すると、比較的安価に純酸素(O2 )を
製造することができる。
In general, the unit cost required for the production of pure oxygen (O 2 ) is high, but the use of the cryogenic separation method utilizing the cold heat of LNG makes it possible to produce pure oxygen (O 2 ) at relatively low cost. Can be manufactured.

【0020】[0020]

【実施例】(実施例)本発明の発電効率と、通常のガス
タービン発電(以下、通常のGT発電と称する)の発電
効率を「表1」に示す。この「表1」から本発明の方が
通常のGT発電より発電効率が格段に高いことが分か
る。
EXAMPLES (Example) Table 1 shows the power generation efficiency of the present invention and the power generation efficiency of normal gas turbine power generation (hereinafter referred to as normal GT power generation). From Table 1, it can be seen that the power generation efficiency of the present invention is much higher than that of normal GT power generation.

【0021】なお、発電出力は、いずれも、24,00
0kWに設定した。また、「表1」中、※1は、残存酸
素が3.6%有り、また、※2は、深冷分離法による酸
素製造時の製造動力を差し引いた後の発電効率を示して
いる。
The power generation output was 24,000
It was set to 0 kW. In Table 1, * 1 indicates that the residual oxygen is 3.6%, and * 2 indicates the power generation efficiency after subtracting the production power at the time of producing oxygen by the cryogenic separation method.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】上記のように、本発明は、作業流体であ
る高圧の二酸化炭素、蒸気及び酸素の存在下で燃料を燃
焼させる燃焼器と、該燃焼器で生じた高温高圧の燃焼ガ
スを動力源とするガスタービンと、該ガスタービンによ
り駆動される発電機と、前記ガスタービンの排ガスから
廃熱を回収する廃熱ボイラと、該廃熱ボイラを経たガス
タービン排ガス中から二酸化炭素を分離すると同時に低
温高圧の包接化合物を分解させる凝縮器と、該凝縮器で
分離された二酸化炭素を昇圧するコンプレッサと、該コ
ンプレッサで昇圧された二酸化炭素と液化天然ガスとを
熱交換させて液化天然ガスをガス化させると同時に昇圧
された二酸化炭素を0℃以下に冷却する気化器と、該気
化器で冷却された二酸化炭素と純水及び溶媒を混合反応
させて生成した包接化合物を蓄える貯蔵タンクと、該貯
蔵タンクに蓄えられている包接化合物をガスタービンの
要求圧まで昇圧するポンプにより閉ループサイクルを形
成させたので、次のような優れた効果を有する。
As described above, the present invention relates to a combustor for burning fuel in the presence of high-pressure carbon dioxide, steam and oxygen as working fluids, and a high-temperature and high-pressure combustion gas generated in the combustor. A gas turbine serving as a power source, a generator driven by the gas turbine, a waste heat boiler for recovering waste heat from exhaust gas of the gas turbine, and separating carbon dioxide from gas turbine exhaust gas passing through the waste heat boiler At the same time, a condenser that decomposes the inclusion compound at a low temperature and a high pressure, a compressor that pressurizes the carbon dioxide separated by the condenser, and heat exchange between the carbon dioxide pressurized by the compressor and the liquefied natural gas A vaporizer for gasifying gas and simultaneously cooling pressurized carbon dioxide to 0 ° C. or lower, and a package formed by mixing and reacting the carbon dioxide cooled by the vaporizer with pure water and a solvent. A storage tank for storing a compound, since the inclusion compounds are accumulated in the reservoir tank to form a closed loop cycle by a pump to boost to the required pressure of a gas turbine, has excellent effects as follows.

【0024】すなわち、 LNGの冷熱を有効に利用することにより、従来、
海に捨てられていたLNGの液化エネルギーの一部を電
力として高効率で回収することが可能になった。
That is, by effectively utilizing the cold heat of LNG,
It has become possible to recover a part of the liquefied energy of LNG discarded in the sea as electric power with high efficiency.

【0025】 作業流体である二酸化炭素に付与する
純水中にアルコールやアルコール類などの溶媒を混合さ
せることにより、純水の製氷現象を抑制することが可能
になり、安定した運転が可能になった。
By mixing a solvent such as alcohol or alcohols into pure water given to carbon dioxide as a working fluid, it becomes possible to suppress the ice-making phenomenon of pure water and to achieve stable operation. Was.

【0026】 燃焼に必要な酸素濃度を任意に制御で
きるため、燃焼排ガス中の酸素濃度を少なくでき、NO
xなどの削減にも寄与することが可能である。
Since the oxygen concentration required for combustion can be arbitrarily controlled, the oxygen concentration in the combustion exhaust gas can be reduced, and NO
It is also possible to contribute to the reduction of x and the like.

【0027】 通常の空気圧縮機が不要であり、既存
のガスタービンよりコスト的に安価である。
No ordinary air compressor is required, and the cost is lower than existing gas turbines.

【0028】 凝縮器の作業流体(非凝縮ガス)の分
圧を増大することができ、凝縮器をコンパクト化するこ
とが可能になった。
The partial pressure of the working fluid (non-condensable gas) of the condenser can be increased, and the condenser can be made compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷熱利用発電システムの系統図で
ある。
FIG. 1 is a system diagram of a cold heat power generation system according to the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼器 2 ガスタービン 3 廃熱ボイラ 4 凝縮器 5 コンプレッサ 6 気化器 7 貯蔵タンク 8 ポンプ 9 閉ループサイクル 10 発電機 b 酸素 c 燃料 d 燃焼ガス e ガスタービン排ガス g 二酸化炭素 h 包接化合物 i 溶媒 j 液化天然ガス w 純水 DESCRIPTION OF SYMBOLS 1 Combustor 2 Gas turbine 3 Waste heat boiler 4 Condenser 5 Compressor 6 Vaporizer 7 Storage tank 8 Pump 9 Closed-loop cycle 10 Generator b Oxygen c Fuel d Combustion gas e Gas turbine exhaust gas g Carbon dioxide h Inclusion compound i Solvent j Liquefied natural gas w Pure water

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 作業流体である高圧の二酸化炭素、蒸気
及び酸素の存在下で燃料を燃焼させる燃焼器と、該燃焼
器で生じた高温高圧の燃焼ガスを動力源とするガスター
ビンと、該ガスタービンにより駆動される発電機と、前
記ガスタービンの排ガスから廃熱を回収する廃熱ボイラ
と、該廃熱ボイラを経たガスタービン排ガス中から二酸
化炭素を分離すると同時に低温高圧の包接化合物を分解
させる凝縮器と、該凝縮器で分離された二酸化炭素を昇
圧するコンプレッサと、該コンプレッサで昇圧された二
酸化炭素と液化天然ガスとを熱交換させて液化天然ガス
をガス化させると同時に昇圧された二酸化炭素を0℃以
下に冷却する気化器と、該気化器で冷却された二酸化炭
素と純水及び溶媒を混合反応させて生成した包接化合物
を蓄える貯蔵タンクと、該貯蔵タンクに蓄えられている
包接化合物をガスタービンの要求圧まで昇圧するポンプ
により閉ループサイクルを形成して成る冷熱利用発電シ
ステム。
1. A combustor for burning fuel in the presence of high-pressure carbon dioxide, steam and oxygen as a working fluid, a gas turbine powered by high-temperature and high-pressure combustion gas generated in the combustor, A generator driven by a gas turbine, a waste heat boiler that recovers waste heat from the exhaust gas of the gas turbine, and a low temperature and high pressure clathrate compound that separates carbon dioxide from the gas turbine exhaust gas passing through the waste heat boiler. A condenser that decomposes, a compressor that pressurizes the carbon dioxide separated by the condenser, and heat exchange between the carbon dioxide and the liquefied natural gas pressurized by the compressor to gasify the liquefied natural gas and increase the pressure at the same time. And a storage tank for storing clathrates formed by mixing and reacting the carbon dioxide cooled by the vaporizer with pure water and a solvent. And a pump system for increasing the pressure of the clathrate compound stored in the storage tank to the required pressure of the gas turbine to form a closed loop cycle.
【請求項2】 前記燃焼器の上流で分枝した作業流体の
一部によりタービン翼列を冷却することを特徴とする請
求項1記載の冷熱利用発電システム。
2. The system according to claim 1, wherein the turbine cascade is cooled by a part of the working fluid branched upstream of the combustor.
JP26526499A 1999-08-24 1999-09-20 Cold power generation system Expired - Fee Related JP4094185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26526499A JP4094185B2 (en) 1999-08-24 1999-09-20 Cold power generation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-237160 1999-08-24
JP23716099 1999-08-24
JP26526499A JP4094185B2 (en) 1999-08-24 1999-09-20 Cold power generation system

Publications (2)

Publication Number Publication Date
JP2001132472A true JP2001132472A (en) 2001-05-15
JP4094185B2 JP4094185B2 (en) 2008-06-04

Family

ID=26533079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26526499A Expired - Fee Related JP4094185B2 (en) 1999-08-24 1999-09-20 Cold power generation system

Country Status (1)

Country Link
JP (1) JP4094185B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282403A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Method and apparatus for recovering carbon dioxide in exhaust gas
CN100430583C (en) * 2003-03-18 2008-11-05 弗劳尔公司 Humid air turbine cycle with carbon dioxide recovery
US8959887B2 (en) 2009-02-26 2015-02-24 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9062608B2 (en) 2009-02-26 2015-06-23 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9523312B2 (en) 2011-11-02 2016-12-20 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility
US9581082B2 (en) 2012-02-11 2017-02-28 8 Rivers Capital, Llc Partial oxidation reaction with closed cycle quench
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10989113B2 (en) 2016-09-13 2021-04-27 8 Rivers Capital, Llc System and method for power production using partial oxidation
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11549433B2 (en) 2019-10-22 2023-01-10 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430583C (en) * 2003-03-18 2008-11-05 弗劳尔公司 Humid air turbine cycle with carbon dioxide recovery
JP2006282403A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Method and apparatus for recovering carbon dioxide in exhaust gas
JP4644804B2 (en) * 2005-03-31 2011-03-09 独立行政法人産業技術総合研究所 Carbon dioxide recovery method and apparatus for recovering carbon dioxide in exhaust gas
US9869245B2 (en) 2009-02-26 2018-01-16 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9062608B2 (en) 2009-02-26 2015-06-23 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US11674436B2 (en) 2009-02-26 2023-06-13 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US8959887B2 (en) 2009-02-26 2015-02-24 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047671B2 (en) 2009-02-26 2018-08-14 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10975766B2 (en) 2009-02-26 2021-04-13 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9523312B2 (en) 2011-11-02 2016-12-20 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US10415434B2 (en) 2011-11-02 2019-09-17 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US9581082B2 (en) 2012-02-11 2017-02-28 8 Rivers Capital, Llc Partial oxidation reaction with closed cycle quench
US9562473B2 (en) 2013-08-27 2017-02-07 8 Rivers Capital, Llc Gas turbine facility
US10794274B2 (en) 2013-08-27 2020-10-06 8 Rivers Capital, Llc Gas turbine facility with supercritical fluid “CO2” recirculation
US11365679B2 (en) 2014-07-08 2022-06-21 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10711695B2 (en) 2014-07-08 2020-07-14 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US12012904B2 (en) 2014-11-12 2024-06-18 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11473509B2 (en) 2014-11-12 2022-10-18 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US11208323B2 (en) 2016-02-18 2021-12-28 8 Rivers Capital, Llc System and method for power production including methanation
US11466627B2 (en) 2016-02-26 2022-10-11 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10989113B2 (en) 2016-09-13 2021-04-27 8 Rivers Capital, Llc System and method for power production using partial oxidation
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11846232B2 (en) 2017-08-28 2023-12-19 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11560838B2 (en) 2018-03-02 2023-01-24 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11549433B2 (en) 2019-10-22 2023-01-10 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods

Also Published As

Publication number Publication date
JP4094185B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4094185B2 (en) Cold power generation system
US7827794B1 (en) Ultra low emissions fast starting power plant
US6148602A (en) Solid-fueled power generation system with carbon dioxide sequestration and method therefor
RU2009106714A (en) METHOD AND DEVICE FOR EFFICIENT AND LOW-TOXIC OPERATION OF POWER PLANTS, AND ALSO FOR ACCUMULATION AND ENERGY CONVERSION
US20110126549A1 (en) Ultra low emissions fast starting power plant
TW201217630A (en) Low emission triple-cycle power generation systems and methods
CN101566104B (en) Method and device for zero emission of carbon dioxide by utilizing liquid hydrogen condensation
CN101287893A (en) Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle
WO2003021702A1 (en) A power generation apparatus
JP2004229374A (en) Method for mhd single high efficient power generation and system
EP1268985A1 (en) Solid-fueled power generation system with carbon dioxide sequestration and method therefor
JP2971378B2 (en) Hydrogen combustion gas turbine plant and operation method thereof
JP6764798B2 (en) Plant and plant operation method
JPH1172009A (en) Power generation system
JP6946012B2 (en) CO2 liquefaction system and CO2 liquefaction method
JP2662298B2 (en) Power plant with carbon dioxide separator
JPH11200884A (en) Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
CN211008793U (en) Power circulation system for independent air propulsion device
JP2001159318A (en) Cryogenic power generating device
JPH11270347A (en) Gas turbine combined generating set using lng
US20230417187A1 (en) Gas turbine inlet cooling for constant power output
JP2002285175A (en) Combined power generation system with simultaneous dimethyl ether production and method for operating the same
CN109630269A (en) The natural gas-steam combined cycle clean power technique of zero carbon emission
US11492930B2 (en) Power generation system with carbon capture
WO2024018579A1 (en) Cold heat utilizing gas turbin power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees