JP2001127482A - Molded object absorbing electric wave and method of manufacturing the same - Google Patents

Molded object absorbing electric wave and method of manufacturing the same

Info

Publication number
JP2001127482A
JP2001127482A JP30334699A JP30334699A JP2001127482A JP 2001127482 A JP2001127482 A JP 2001127482A JP 30334699 A JP30334699 A JP 30334699A JP 30334699 A JP30334699 A JP 30334699A JP 2001127482 A JP2001127482 A JP 2001127482A
Authority
JP
Japan
Prior art keywords
weight
parts
semi
granules
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30334699A
Other languages
Japanese (ja)
Inventor
Yutaka Uehara
豊 上原
Masatoshi Sako
正敏 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KANKYO BUSINESS KK
TOYOKAZUTADA KK
Original Assignee
NIPPON KANKYO BUSINESS KK
TOYOKAZUTADA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KANKYO BUSINESS KK, TOYOKAZUTADA KK filed Critical NIPPON KANKYO BUSINESS KK
Priority to JP30334699A priority Critical patent/JP2001127482A/en
Publication of JP2001127482A publication Critical patent/JP2001127482A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light and non-combustible molded object absorbing electric waves of superior durability, which has superior wave-absorbing characteristics over a wide frequency band, at a low cost. SOLUTION: A molded object absorbing electric wave is manufactured by a first process, where potassium silicate solution of 62-85 pts.wt. whose concentration is 25-30 wt.% and alumina cement of 10-30 pts.wt. are added and mixed with a mixture of 100 pts.wt., consisting of a large amount of inorganic hollow small spheres and ferrite powder, a second process, where the added mixture obtained in the first process is granulated into undersize of semi-dry condition, a third process, where the granulated material of the semi-dry condition is injected into a frame, and a fourth process, where carbonic acid gas is injected into the injected granulated material in the frame in the third process to cure the injected granulated material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不燃性で小型、軽
量、低価格で、広い周波数帯域において優れた電波吸収
特性を示す電波吸収成形体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a radio wave absorbing molded article which is nonflammable, compact, lightweight, inexpensive, and exhibits excellent radio wave absorbing characteristics in a wide frequency band.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電波吸
収体には、.誘電体(例えば、ポリウレタン発泡体に
カーボンを分散させた抵抗体)、.磁性体(主として
フェライト)並びに.誘電体と磁性体との組み合わせ
からなる複合体の3つのタイプがある。 .誘電体タイプは、発泡ポリウレタンをピラミッド型
に成形しているため、長年使用すると先端が変形し、ま
た簡単に燃焼するなどの問題点がある。また、耐熱性を
増すために難燃材を塗布しているが、経時変化が大きく
数年で交換が必要となる。さらに、十分な電波吸収特性
を持たせるためには、厚みが1m以上必要であり、専有
スペースが必要であるという問題点がある。また、樹脂
系のものは不燃性についても問題がある。
2. Description of the Related Art Radio wave absorbers include. A dielectric (eg, a resistor in which carbon is dispersed in a polyurethane foam); Magnetic material (mainly ferrite); There are three types of composites consisting of a combination of a dielectric and a magnetic material. . The dielectric type has a problem that the tip is deformed and burns easily when used for many years since the polyurethane foam is formed in a pyramid shape. In addition, a flame retardant is applied to increase heat resistance, but the change with time is large and requires replacement in several years. Furthermore, in order to have sufficient radio wave absorption characteristics, a thickness of 1 m or more is required, and there is a problem that a dedicated space is required. In addition, the resin-based resin has a problem regarding nonflammability.

【0003】.磁性体タイプで一般に使われるフェラ
イトタイルは、低周波数の電波吸収特性に優れ、10m
m以下の厚さでは充分な吸収特性を得ることができる
が、狭帯域であり、周波数が高くなるにつれ、吸収特性
は悪化するという問題点がある。そこで両者の欠点を補
うため、誘電体と磁性体とを組み合わせた場合でも、厚
さが90cm以上となり、電波暗室の小型化という課題
は解決できない。そして、市販の発泡フェライト吸収体
の場合、製造工程が複雑であり高コストになりやすく、
重いため、施工上、部屋の強度を補強しなければならな
い等の問題点がある。本発明は、上記したような従来の
電波吸収体の有する欠点を解消し、不燃性で、優れた電
波吸収特性を有し、軽量かつ小型で、耐久性に優れた電
波吸収成形体を低コストで提供しようとするものであ
る。
[0003] Ferrite tiles commonly used in magnetic materials are excellent in low frequency radio wave absorption characteristics,
When the thickness is less than m, sufficient absorption characteristics can be obtained, but there is a problem that the band is narrow and the absorption characteristics deteriorate as the frequency increases. Therefore, in order to compensate for the disadvantages of both, even when a dielectric and a magnetic material are combined, the thickness becomes 90 cm or more, and the problem of miniaturization of the anechoic chamber cannot be solved. And, in the case of a commercially available foamed ferrite absorber, the manufacturing process is complicated and tends to be expensive,
Since it is heavy, there is a problem that the strength of the room must be reinforced in construction. The present invention solves the above-mentioned drawbacks of the conventional radio wave absorber, is nonflammable, has excellent radio wave absorption characteristics, is lightweight, compact, and has excellent durability at a low cost. It is intended to be provided by.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、種々検討・研究した結果、無機質中空小球体(例え
ば、シラスバルーン)とフェライトとアルミナセメント
の混合粉体に対して、珪酸カリウム水溶液を添加・混合
して造粒体となし、次いでその造粒体を型枠内に充填
し、炭酸ガスを注入して硬化させることによって、上記
課題が解決できる電波吸収成形体が得られること、そし
て好ましくはその製造過程で前記硬化成形体にコロイダ
ルシリカ、珪酸リチウム、リン酸アルミニウム等の無機
質表面処理液を塗布した後、300〜800℃に加熱処
理することで、更に好ましい電波吸収成形体を製造する
ことを可能とした。すなわち本願発明は下記構成の電波
吸収成形体の製造方法である。 (1)多数の無機質中空小球体とフェライト粉末とから
なる混合物100重量部に対して、珪酸カリウムの炭酸
ガス反応硬化物65〜85重量部とアルミナセメントの
水和硬化物10〜30重量部の混在物がマトリックスと
して介在されてなることを特徴とする電波吸収成形体。 (2)多数の無機質中空小球体とフェライト粉末とから
なる混合物100重量部に対して、珪酸カリウムの炭酸
ガス反応硬化物65〜85重量部がマトリックスとして
介在されてなる成形体であり、かつその表面がコロイダ
ルシリカ、珪酸リチウム又はリン酸アルミニウムから選
択される1又は2種以上との加熱反応物で被覆されてな
ることを特徴とする電波吸収成形体。 (3)多数の無機質中空小球体とフェライト粉末とから
なる混合物100重量部に対して、濃度25〜30重量
%の珪酸カリウム水溶液62〜85重量部とアルミナセ
メント10〜30重量部を加配混合する第1工程と、前
記第1工程で得られた加配混合物を半乾状態の小粒に造
粒する第2工程と、前記第2工程で得られた半乾状態の
造粒物を型枠内に充填する第3工程と、前記第3工程の
型枠内の充填造粒物に炭酸ガスを注入して充填造粒物を
硬化させる第4工程とからなることを特徴とする電波吸
収成形体の製造方法。
In order to solve the above-mentioned problems, as a result of various investigations and studies, potassium silicate aqueous solution was mixed with inorganic hollow small spheres (for example, shirasu balloon) and mixed powder of ferrite and alumina cement. Addition and mixing to form a granulated body, and then filling the granulated body in a mold, injecting and curing carbon dioxide gas, to obtain a radio wave absorbing molded body that can solve the above problems, and Preferably, an inorganic surface treatment liquid such as colloidal silica, lithium silicate, or aluminum phosphate is applied to the cured molded body during the production process, and then a heat treatment is performed at 300 to 800 ° C. to produce a more preferable radio wave absorbent molded body. It was possible to do. That is, the present invention is a method for manufacturing a radio wave absorption molded article having the following configuration. (1) With respect to 100 parts by weight of a mixture comprising a large number of inorganic hollow small spheres and ferrite powder, 65 to 85 parts by weight of a carbonic acid reaction hardened product of potassium silicate and 10 to 30 parts by weight of a hydrated hardened product of alumina cement. A radio wave absorption molded article characterized in that a mixture is interposed as a matrix. (2) A molded product in which 65 to 85 parts by weight of a carbon dioxide reaction hardened product of potassium silicate is interposed as a matrix with respect to 100 parts by weight of a mixture composed of a large number of inorganic hollow small spheres and ferrite powder, and A radio wave absorption molded article having a surface coated with a heat reaction product with one or more kinds selected from colloidal silica, lithium silicate and aluminum phosphate. (3) 62-85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25-30% by weight and 10-30 parts by weight of alumina cement are mixed with 100 parts by weight of a mixture composed of a large number of inorganic hollow small spheres and ferrite powder. A first step, a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state, and placing the semi-dry granule in the second step in a mold. A third step of filling and a fourth step of injecting carbon dioxide into the filled granules in the mold of the third step to cure the filled granules, Production method.

【0005】(4)多数の無機質中空小球体30〜50
重量%とフェライト粉末50〜70重量%とからなる混
合物100重量部に対して、濃度25〜30重量%の珪
酸カリウム水溶液65〜85重量部とアルミナセメント
10〜30重量部を加配混合する第1工程と、前記第1
工程で得られた加配混合物を半乾状態の小粒に造粒する
第2工程と、前記第2工程で得られた半乾状態の造粒物
を型枠内に充填する第3工程と、前記第3工程の型枠内
の充填造粒物に炭酸ガスを注入して充填造粒物を硬化さ
せる第4工程とからなることを特徴とする電波吸収成形
体の製造方法。 (5)多数の無機質中空小球体30〜50重量%とフェ
ライト粉末50〜70量%とからなる混合物100重
量部に対して、濃度25〜30重量%の珪酸カリウム水
溶液65〜85重量部とアルミナセメント10〜30重
量部を加配混合する第1工程と、前記第1工程で得られ
た加配混合物を半乾状態の小粒に造粒する第2工程と、
前記第2工程で得られた半乾状態の造粒物を型枠内に充
填する第3工程と、前記第3工程の型枠内の充填造粒物
に炭酸ガスを注入して充填造粒物を硬化させる第4工程
と、前記第4工程で取得された硬化物成形体に、コロイ
ダルシリカ、珪酸リチウム水溶液又はリン酸アルミニウ
ム水溶液から選択される1又は2種以上の表面処理液を
塗布し、300〜800℃で熱処理する第5工程とから
なることを特徴とする電波吸収成形体の製造方法。 (6)多数の無機質中空小球体30〜50重量%とフェ
ライト粉末50〜70重量%とからなる混合物100重
量部に対して、濃度25〜30重量%の珪酸カリウム水
溶液65〜85重量部を加配混合する第1工程と、前記
第1工程で得られた加配混合物を半乾状態の小粒に造粒
する第2工程と、前記第2工程で得られた半乾状態の造
粒物を型枠内に充填する第3工程と、前記第3工程の型
枠内の充填造粒物に炭酸ガスを注入して充填造粒物を硬
化させる第4工程と、前記第4工程で取得された硬化物
成形体に、コロイダルシリカ、珪酸リチウム水溶液又は
リン酸アルミニウム水溶液から選択される1又は2種以
上の表面処理液を塗布し、300〜800℃で熱処理す
る第5工程とからなることを特徴とする電波吸収成形体
の製造方法。
(4) Numerous inorganic hollow small spheres 30 to 50
First, 65-85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25-30% by weight and 10-30 parts by weight of alumina cement are mixed with 100 parts by weight of a mixture consisting of 50% by weight and 50-70% by weight of ferrite powder. The step and the first
A second step of granulating the dispensed mixture obtained in the step into small particles in a semi-dried state, a third step of filling the granulated substance in the semi-dried state obtained in the second step in a mold, A fourth step of injecting carbon dioxide into the filled granules in the mold in the third step to cure the filled granules. (5) for a number of inorganic hollow microspheres 30 to 50 wt% and ferrite powder 50-70 by weight percent consisting of 100 parts by weight of a mixture, the concentration of 25-30% by weight of potassium silicate aqueous 65-85 parts by weight A first step of dispensing and mixing 10 to 30 parts by weight of alumina cement, and a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state,
A third step of filling the semi-dried granules obtained in the second step into a mold; and a filling granulation by injecting carbon dioxide into the filled granules in the mold of the third step. A fourth step of curing the article, and applying one or more surface treatment liquids selected from colloidal silica, an aqueous solution of lithium silicate or an aqueous solution of aluminum phosphate to the cured article obtained in the fourth step. And a fifth step of performing a heat treatment at 300 to 800 ° C. (6) 65-85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25-30% by weight is added to 100 parts by weight of a mixture of 30-50% by weight of a large number of inorganic hollow small spheres and 50-70% by weight of ferrite powder. A first step of mixing, a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state, and a mold forming the semi-dry granule in the second step. A third step of filling the inside, a fourth step of injecting carbon dioxide gas into the filled granules in the mold of the third step to cure the filled granules, and the curing obtained in the fourth step A step of applying one or more surface treatment liquids selected from colloidal silica, an aqueous solution of lithium silicate or an aqueous solution of aluminum phosphate to the molded article, and heat-treating at 300 to 800 ° C. Of manufacturing a radio wave absorption molded article.

【0006】[0006]

【発明の実施の形態】 まず、無機質中空球体とフェラ
イトの混合粉体に対して、アルミナセメントと珪酸カリ
ウムを用いて混合した造粒体を粉体充填して成形した電
波吸収成形体の製造方法について述べる。結合剤として
の珪酸ナトリウムのみを用いた場合、軽量で不燃性の電
波吸収成形体はできるが、成形体の強度が弱く、空気中
の水分を吸いやすく、発華現象が起こりやすいという欠
点があった。そこで、各種の結合剤を用いてテストした
結果、珪酸カリウムを用いることによって、強度と吸水
性及び発華現象が改善されることが解った。 さらに、
無機質中空球体とフェライトの混合体に対して、少量の
アルミナセメントを添加すると、成形体の強度を飛躍的
に向上したことから、珪酸カリウムの添加量を減らすこ
とが可能となった。これにより、高強度で軽量かつ空気
中の水分を吸収し難く発華現象の心配のない小型、軽量
の耐久性に優れた電波吸収成形体の製造が可能となっ
た。なお、前記無機質中空球体とフェライトの混合体
に、トルマリン粉末を加配することも電波吸収特性を向
上する上で好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a method for producing a radio-wave absorption molded article in which a mixed powder of an inorganic hollow sphere and a ferrite is powder-filled with a granulated substance mixed with alumina cement and potassium silicate and molded. Is described. When only sodium silicate is used as a binder, a light-weight and non-flammable radio wave absorbing molded article can be obtained, but has the disadvantage that the molded article has low strength, easily absorbs moisture in the air, and easily causes a flare-up phenomenon. Was. Thus, as a result of a test using various binders, it was found that the strength, water absorption and phenomena were improved by using potassium silicate. further,
When a small amount of alumina cement was added to the mixture of the inorganic hollow spheres and the ferrite, the strength of the molded body was dramatically improved, so that the amount of potassium silicate added could be reduced. This makes it possible to produce a compact, lightweight, and highly durable radio-wave-absorbing molded article having high strength, light weight, hardly absorbing moisture in the air, and having no fear of the occurrence of a fragrance phenomenon. It is also preferable to add tourmaline powder to the mixture of the inorganic hollow sphere and ferrite in order to improve the radio wave absorption characteristics.

【0007】次に、無機質中空球体とフェライトを主原
料とし、結合剤として珪酸カリウムを用いて混合して得
られた半乾状態の造粒体を任意の枠内に充填し、炭酸ガ
スを注入することによって硬化させた成形体に表面処理
液を塗布し、300〜800℃で熱処理することを特徴
とする電波吸収成形体の製造方法について説明する。結
合剤として、珪酸カリウムのみを用いて炭酸ガスで硬化
させただけの成形体の場合、未反応の珪酸カリウムが成
形体中に残存する可能性があり、軽量ではあるが、強度
がアルミナセメントを用いた場合よりも弱く、水を吸収
させると壊れやすいという欠点があった。そこで、炭酸
ガスによる硬化後、コロイダルシリカを塗布し、300
以上で熱処理することによって、成形体表面が緻密化し
強度が向上し、水を含んでも壊れないという優れた特徴
を有する軽量の電波吸収成形体の製造が可能となった。
コロイダルシリカの代わりに、珪酸リチウム又はリン酸
アルミニウムを用いた場合でも、同様な強度向上が認め
られた。
Next, a semi-dry granule obtained by mixing inorganic hollow spheres and ferrite as main raw materials and using potassium silicate as a binder is filled in an arbitrary frame, and carbon dioxide gas is injected. A method for producing a radio wave absorbing molded body, characterized in that a surface treatment liquid is applied to the molded body cured by heat treatment and heat treatment is performed at 300 to 800 ° C. In the case of a molded body that is only hardened with carbon dioxide gas using only potassium silicate as a binder, unreacted potassium silicate may remain in the molded body, and although it is lightweight, the strength of alumina cement is low. There was a drawback that it was weaker than when used and was easily broken when absorbing water. Therefore, after curing with carbon dioxide gas, colloidal silica is applied and 300
By performing the heat treatment as described above, it was possible to produce a light-weight radio wave absorbing molded article having excellent characteristics that the molded article surface was densified, the strength was improved, and the sheet was not broken even when containing water.
Similar strength improvement was observed when lithium silicate or aluminum phosphate was used instead of colloidal silica.

【0008】すなわち、無機質中空小球体とフェライト
の混合粉体と結合剤の珪酸カリウム水溶液を用いて混合
して得られた半乾状態の造粒体を、ピラミッド状、平板
状、三角プリズム状等の型枠内に充填し、炭酸ガス雰囲
気にさらすことで硬化し、一体成形でき、その際に.
原料混合体にアルミナセメント添加するか、.ある
いは、成形体に表面強化水溶液を塗布し、熱処理すると
いう簡単な製造工程を用いることによって、軽量で小型
の電波吸収成形体を低コストで提供できるものである。
また、この電波吸収成形体は、運搬中の破損や電波暗室
内での破損に対して、現場での簡単な補修が可能である
という特徴を有する。
That is, a semi-dry granule obtained by mixing a mixed powder of inorganic hollow small spheres and ferrite with an aqueous solution of potassium silicate as a binder is converted into a pyramid shape, a plate shape, a triangular prism shape or the like. Filled in a mold frame and cured by exposing it to a carbon dioxide atmosphere, and can be integrally molded.
Adding alumina cement to the raw material mixture; Alternatively, by using a simple manufacturing process of applying a surface strengthening aqueous solution to a molded body and heat-treating the same, a lightweight and small radio wave absorbing molded body can be provided at low cost.
Further, the radio wave absorbing molded article has a feature that simple repair on site is possible for damage during transportation and damage in an anechoic chamber.

【0009】[0009]

【実施例】実施例1:下記表1に示す組成比(重量比)
で、まずフェライト(直径1.0〜15μm)とシラス
バルーン(直径30〜200μm)を均一に混合し、次
にそれに珪酸カリウム水溶液(珪酸カリウム29%を含
む水溶液)とアルミナセメントを加えて撹拌して混合体
を造る。次に、図1の製造工程説明図に示すごとく、底
辺10cm角、高さ10cmのピラミッド状の外枠1
と、底辺6cm角、高さ6cmのピラミッド状の内枠2
の間に、前記造粒体3をホッパー4から充填し、それに
炭酸ガス噴出管5が垂設されたプレス蓋6を圧し当て、
炭酸ガスを造粒体3中に注入し、炭酸ガス噴出管5とプ
レス蓋6を取り外して、硬化させ、(電波吸収)成形体
7を取得した。なお、炭酸ガスの造粒体3中への注入
は、炭酸ガスボンベ(図示せず)から送出された加圧炭
酸ガスを噴出管5から噴出させて行った。以上による造
粒体の粉体充填、炭酸ガス注入による硬化、型からの取
り外し等、成形に関する一連の作業は5分間以内で完了
した。
EXAMPLES Example 1: Composition ratio (weight ratio) shown in Table 1 below
First, ferrite (1.0 to 15 μm in diameter) and shirasu balloon (30 to 200 μm in diameter) are uniformly mixed, and then an aqueous solution of potassium silicate (aqueous solution containing 29% of potassium silicate) and alumina cement are added thereto, followed by stirring. To make a mixture. Next, as shown in the manufacturing process explanatory diagram of FIG. 1, a pyramid-shaped outer frame 1 having a base of 10 cm square and a height of 10 cm.
And a pyramid-shaped inner frame 2 with a base of 6 cm square and a height of 6 cm
In the meantime, the granules 3 are filled from a hopper 4, and a press lid 6 provided with a carbon dioxide ejection pipe 5 is pressed against the granules 3,
Carbon dioxide gas was injected into the granules 3, and the carbon dioxide jet pipe 5 and the press lid 6 were removed and cured to obtain a (radio wave absorbing) molded body 7. Note that the carbon dioxide gas was injected into the granules 3 by discharging the pressurized carbon dioxide gas sent from a carbon dioxide gas cylinder (not shown) from the jet pipe 5. A series of molding-related operations, such as powder filling of the granules, hardening by carbon dioxide injection, and removal from the mold, were completed within 5 minutes.

【0010】[0010]

【表1】 [Table 1]

【0011】取得された電波吸収成形体の各周波数にお
ける電波吸収率(dB)を測定し、その結果を図2に示
した。図に示すとおり、本実施例で取得された電波吸収
成形体は、広範な周波数帯域(例えば1〜17GHz)
において優れた電波吸収率(平均25.09dB)を有
することが分かった。
The radio wave absorption rate (dB) at each frequency of the obtained radio wave absorption molded article was measured, and the result is shown in FIG. As shown in the figure, the radio wave absorption molded article obtained in this example has a wide frequency band (for example, 1 to 17 GHz).
It was found to have an excellent radio wave absorption rate (average 25.09 dB).

【0012】実施例2:下記表2に示す組成比(重量
比)で、まずフェライトとシラスバルーンを均一に混合
し、次に珪酸カリウム水溶液を加えて撹拌して半乾状態
混合体を造る。次いで、実施例1と同じ型枠の外枠1
と、内枠2の間に前記造粒体3を充填し、炭酸ガス噴出
管5が垂設されたプレス蓋6を当てて押圧し、炭酸ガス
を注入し、炭酸ガス噴出管5とプレス蓋6を取り外し
て、硬化させて成形体7を得た。その後、得られたの成
形体の表面にコロイダルシリカの水溶液を塗布し、30
0℃で15分間熱処理を行い、電波吸収成形体を得た。
得られた電波吸収成形体の特性は、実施例1の電波吸収
成形体特性と同等の性能が得られた。
Example 2: Ferrite and shirasu balloon are uniformly mixed at a composition ratio (weight ratio) shown in Table 2 below, then an aqueous solution of potassium silicate is added and stirred to produce a semi-dry mixture. . Then, the outer frame 1 of the same formwork as in Example 1
The granulated body 3 is filled between the inner frame 2 and pressed by applying a press lid 6 having a carbon dioxide discharge pipe 5 vertically provided thereto, and carbon dioxide gas is injected. 6 was removed and cured to obtain a molded body 7. Thereafter, an aqueous solution of colloidal silica was applied to the surface of the obtained molded body,
Heat treatment was performed at 0 ° C. for 15 minutes to obtain a radio wave absorption molded article.
Regarding the characteristics of the obtained radio wave absorption molded article, the same performance as that of the radio wave absorption molded article of Example 1 was obtained.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】 本発明により提供される電波吸収成形
体は、広い周波数帯域において優れた電波吸収特性を有
しているため、従来の1GHz帯域までの電波吸収成形
体に追加することで、より高周波帯域までの電波暗室と
して使用できるようになる。また、軽量でかつ小型化で
きるため、小型の電波暗室などにおいてより広い有効空
間を確保でき、また吸収体自体が低コストで、軽量であ
るため購入費用や補強工事等の初期投資額も軽減され
る。また、無機質のみで構成されているので不燃性であ
り、高温、強電磁界にも耐えられる等、耐久性に優れて
おり、長期間安定して使用できる。特に、鹿児島県に豊
富に存在するシラスを有効利用することにより、地域活
性化にもつながる。さらに、電子機器の高性能化、高速
化や、携帯電話などのマイクロ波利用機器の普及に伴
い、今後マイクロ波帯域の需要が益々増えると同時に、
マイクロ波に対応した電波暗室の需要も拡大し、それに
対応した電波吸収成形体の供給が望まれており、本発明
に係る電波吸収成形体の貢献するところが大きい。
EFFECTS OF THE INVENTION Since the radio wave absorption molded article provided by the present invention has excellent radio wave absorption characteristics in a wide frequency band, it can be added to the conventional radio wave absorption molded article up to the 1 GHz band, It can be used as an anechoic chamber up to the high frequency band. In addition, since it is lightweight and compact, a wider effective space can be secured in a small anechoic chamber, etc.The absorber itself is low cost and lightweight, so the purchase cost and initial investment such as reinforcement work are also reduced. You. Further, since it is composed only of inorganic substances, it is nonflammable, has excellent durability such as withstanding high temperatures and strong electromagnetic fields, and can be used stably for a long period of time. In particular, effective use of Shirasu, which is abundant in Kagoshima Prefecture, will lead to regional revitalization. Furthermore, with the increase in performance and speed of electronic devices and the spread of microwave devices such as mobile phones, the demand for microwave bands will continue to increase,
The demand for microwave anechoic chambers for microwaves is also expanding, and the supply of radio wave absorbing molded articles corresponding to the demands is desired, and the radio wave absorbing molded articles according to the present invention greatly contributes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電波吸収成形体の製造工程説明図である。FIG. 1 is an explanatory view of a manufacturing process of a radio wave absorption molded article.

【図2】 実施例1で取得された電波吸収成形体の電波
吸収特性を示すグラフ図である。
FIG. 2 is a graph showing the radio wave absorption characteristics of the radio wave absorption molded article obtained in Example 1.

【符号の説明】[Explanation of symbols]

1 型枠(外枠) 2 プレス型枠(内枠) 3 半乾状態の造粒体 4 ホッパー 5 炭酸ガス噴出管 6 プレス蓋 7 (電波吸収)成形体 DESCRIPTION OF SYMBOLS 1 Mold form (outer frame) 2 Press mold form (inner frame) 3 Granule in semi-dry state 4 Hopper 5 Carbon dioxide emission pipe 6 Press lid 7 (Electromagnetic absorption) molded object

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G019 LA02 LA03 LB02 LD02 5E321 AA42 BB31 BB60 GG11 5J020 BD02 EA02 EA04 EA08 EA10 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G019 LA02 LA03 LB02 LD02 5E321 AA42 BB31 BB60 GG11 5J020 BD02 EA02 EA04 EA08 EA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】多数の無機質中空小球体とフェライト粉末
とからなる混合物100重量部に対して、珪酸カリウム
の炭酸ガス反応硬化物65〜85重量部とアルミナセメ
ントの水和硬化物10〜30重量部の混在物がマトリッ
クスとして介在されてなることを特徴とする電波吸収成
形体。
1. A mixture comprising a large number of inorganic hollow small spheres and ferrite powder, 100 parts by weight, 65 to 85 parts by weight of a carbon dioxide reaction hardened product of potassium silicate and 10 to 30 weights of a hydrated hardened alumina cement. A radio wave absorption molded article characterized in that a mixture of parts is interposed as a matrix.
【請求項2】多数の無機質中空小球体とフェライト粉末
とからなる混合物100重量部に対して、珪酸カリウム
の炭酸ガス反応硬化物65〜85重量部がマトリックス
として介在されてなる成形体であり、かつその表面がコ
ロイダルシリカ、珪酸リチウム又はリン酸アルミニウム
から選択される1又は2種以上との加熱反応物で被覆さ
れてなることを特徴とする電波吸収成形体。
2. A molded product in which 65 to 85 parts by weight of a carbon dioxide reaction-hardened product of potassium silicate is interposed as a matrix with respect to 100 parts by weight of a mixture comprising a large number of inorganic hollow small spheres and ferrite powder, And a radio wave absorption molded article whose surface is coated with a heating reaction product with one or more kinds selected from colloidal silica, lithium silicate and aluminum phosphate.
【請求項3】多数の無機質中空小球体とフェライト粉末
とからなる混合物100重量部に対して、濃度25〜3
0重量%の珪酸カリウム水溶液62〜85重量部とアル
ミナセメント10〜30重量部を加配混合する第1工程
と、前記第1工程で得られた加配混合物を半乾状態の小
粒に造粒する第2工程と、前記第2工程で得られた半乾
状態の造粒物を型枠内に充填する第3工程と、前記第3
工程の型枠内の充填造粒物に炭酸ガスを注入して充填造
粒物を硬化させる第4工程とからなることを特徴とする
電波吸収成形体の製造方法。
3. A concentration of 25 to 3 with respect to 100 parts by weight of a mixture comprising a large number of inorganic hollow small spheres and ferrite powder.
A first step of distributing and mixing 62 to 85 parts by weight of an aqueous solution of 0% by weight of potassium silicate and 10 to 30 parts by weight of alumina cement, and a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state. A second step, a third step of filling the granules in a semi-dry state obtained in the second step into a mold, and a third step of
A step of injecting carbon dioxide gas into the filled granules in the mold of the step to harden the filled granules.
【請求項4】多数の無機質中空小球体30〜50重量%
とフェライト粉末50〜70重量%とからなる混合物1
00重量部に対して、濃度25〜30重量%の珪酸カリ
ウム水溶液65〜85重量部とアルミナセメント10〜
30重量部を加配混合する第1工程と、前記第1工程で
得られた加配混合物を半乾状態の小粒に造粒する第2工
程と、前記第2工程で得られた半乾状態の造粒物を型枠
内に充填する第3工程と、前記第3工程の型枠内の充填
造粒物に炭酸ガスを注入して充填造粒物を硬化させる第
4工程とからなることを特徴とする電波吸収成形体の製
造方法。
4. A large number of inorganic hollow small spheres in an amount of 30 to 50% by weight.
1 comprising a ferrite powder and 50 to 70% by weight
65 to 85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25 to 30% by weight and alumina cement 10 to 100 parts by weight.
A first step of dispensing and mixing 30 parts by weight, a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state, and a step of granulating the semi-dry state obtained in the second step. A third step of filling the granules in the mold; and a fourth step of injecting carbon dioxide gas into the filled granules in the mold in the third step to harden the filled granules. A method for producing a radio wave absorption molded article.
【請求項5】多数の無機質中空小球体30〜50重量%
とフェライト粉末50〜70重量%とからなる混合物1
00重量部に対して、濃度25〜30重量%の珪酸カリ
ウム水溶液65〜85重量部とアルミナセメント10〜
30重量部を加配混合する第1工程と、前記第1工程で
得られた加配混合物を半乾状態の小粒に造粒する第2工
程と、前記第2工程で得られた半乾状態の造粒物を型枠
内に充填する第3工程と、前記第3工程の型枠内の充填
造粒物に炭酸ガスを注入して充填造粒物を硬化させる第
4工程と、前記第4工程で取得された硬化物成形体に、
コロイダルシリカ、珪酸リチウム水溶液又はリン酸アル
ミニウム水溶液から選択される1又は2種以上の表面処
理液を塗布し、300〜800℃で熱処理する第5工程
とからなることを特徴とする電波吸収成形体の製造方
法。
5. A large number of inorganic hollow small spheres in an amount of 30 to 50% by weight.
1 comprising a ferrite powder and 50 to 70% by weight
65 to 85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25 to 30% by weight and alumina cement 10 to 100 parts by weight.
A first step of dispensing and mixing 30 parts by weight, a second step of granulating the dispensed mixture obtained in the first step into small particles in a semi-dry state, and a step of granulating the semi-dry state obtained in the second step. A third step of filling the granules in the mold, a fourth step of injecting carbon dioxide gas into the filled granules in the mold in the third step to harden the filled granules, and the fourth step To the cured product obtained in
A fifth step of applying one or more surface treatment liquids selected from colloidal silica, lithium silicate aqueous solution or aluminum phosphate aqueous solution, and heat-treating at 300 to 800 ° C. Manufacturing method.
【請求項6】多数の無機質中空小球体30〜50重量%
とフェライト粉末50〜70重量%とからなる混合物1
00重量部に対して、濃度25〜30重量%の珪酸カリ
ウム水溶液65〜85重量部を加配混合する第1工程
と、前記第1工程で得られた加配混合物を半乾状態の小
粒に造粒する第2工程と、前記第2工程で得られた半乾
状態の造粒物を型枠内に充填する第3工程と、前記第3
工程の型枠内の充填造粒物に炭酸ガスを注入して充填造
粒物を硬化させる第4工程と、前記第4工程で取得され
た硬化物成形体に、コロイダルシリカ、珪酸リチウム水
溶液又はリン酸アルミニウム水溶液から選択される1又
は2種以上の表面処理液を塗布し、300〜800℃で
熱処理する第5工程とからなることを特徴とする電波吸
収成形体の製造方法。
6. A large number of inorganic hollow small spheres in an amount of 30 to 50% by weight.
1 comprising a ferrite powder and 50 to 70% by weight
A first step in which 65 to 85 parts by weight of an aqueous solution of potassium silicate having a concentration of 25 to 30% by weight is added to and mixed with 00 parts by weight, and the added mixture obtained in the first step is granulated into small particles in a semi-dry state. A second step of filling the semi-dried granules obtained in the second step into a mold;
A fourth step of injecting carbon dioxide gas into the filled granules in the mold of the step to cure the filled granules, and forming the cured product obtained in the fourth step into colloidal silica, an aqueous solution of lithium silicate or A fifth step of applying one or more surface treatment liquids selected from an aqueous solution of aluminum phosphate and heat-treating at 300 to 800 ° C.
JP30334699A 1999-10-26 1999-10-26 Molded object absorbing electric wave and method of manufacturing the same Pending JP2001127482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30334699A JP2001127482A (en) 1999-10-26 1999-10-26 Molded object absorbing electric wave and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30334699A JP2001127482A (en) 1999-10-26 1999-10-26 Molded object absorbing electric wave and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001127482A true JP2001127482A (en) 2001-05-11

Family

ID=17919877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30334699A Pending JP2001127482A (en) 1999-10-26 1999-10-26 Molded object absorbing electric wave and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001127482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028373A (en) * 2010-07-20 2012-02-09 Riken Corp Radio wave absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028373A (en) * 2010-07-20 2012-02-09 Riken Corp Radio wave absorber

Similar Documents

Publication Publication Date Title
EP0340707B1 (en) Insulating material with a density of 0,1 to 0,4 g/cm3
JPH0688823B2 (en) Inorganic molded plate and method for manufacturing the same
CN103301787B (en) A kind of silicon dioxide silica aerogel composite material and forming method
EP0384256A1 (en) Method of making porous inorganic particle filled polyimide foam insulation products
WO2009011533A2 (en) Adiabatic material comprising expanded perlite and polyurethane and method of preparing the same and construction meterials comprising the adiabatic material
CN108975836A (en) A kind of Electromgnetically-transparent composite material and preparation method and application
US4162166A (en) Porous, lightweight, particulate aggregates and process of manufacture
JP2001127482A (en) Molded object absorbing electric wave and method of manufacturing the same
KR101477108B1 (en) Lightweight Concrete Composition With High Insulation Effect
JP2004296728A (en) Wave absorber, forming material and forming body therefor and its manufacturing method
CN105153337A (en) Elastomer coating hollow micro-spheres, method for preparing same and application of elastomer coating hollow micro-spheres
CN109081637A (en) A kind of suction wave bullet for anechoic chamber,
JPH08175861A (en) Formed plate of inorganic material and its production
CN113501673A (en) Cement-based porous high-strength baking-free lightweight aggregate and preparation method thereof
JPS6026149B2 (en) Manufacturing method of sound absorber
US20090072449A1 (en) Composite material formation
JPS5811124A (en) Forming for porous material
CN109489494B (en) Method for preparing bright beads by gel in-situ forming
JPH04104974A (en) Porous material having open-cell structure and method for forming the same
JP2004091285A (en) Radio wave absorbing body
KR20070032512A (en) Unhydrated cement chalk and process for producing the same
JPH01215742A (en) Heat-insulation material and production thereof
EP3652127A1 (en) Method for producing a brick
JPH0335268B2 (en)
CN114573366A (en) Forsterite porous body for carbon neutralization and preparation method thereof