JP2001126781A - Method for recovering valuables from waste nickel- hydrogen secondary cell - Google Patents

Method for recovering valuables from waste nickel- hydrogen secondary cell

Info

Publication number
JP2001126781A
JP2001126781A JP30116399A JP30116399A JP2001126781A JP 2001126781 A JP2001126781 A JP 2001126781A JP 30116399 A JP30116399 A JP 30116399A JP 30116399 A JP30116399 A JP 30116399A JP 2001126781 A JP2001126781 A JP 2001126781A
Authority
JP
Japan
Prior art keywords
nickel
hydrogen secondary
secondary battery
waste nickel
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30116399A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyagawa
博 宮川
Ryoichi Shirai
良一 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP30116399A priority Critical patent/JP2001126781A/en
Publication of JP2001126781A publication Critical patent/JP2001126781A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To simply and economicall provide a method for recovering valuables from a waste nickel-hydrogen secondary cell moreover with high yield and high purity. SOLUTION: This method for recover valuables from a waste nickel hydrogen secondary cell comprises steps of cooling a waste nickel-hydrogen secondary cell using a liquid nitrogen, disassembling the nickel-hydrogen secondary cell after the cooling step, and water-levigating and sieving the disassembling product obtained from the disassembling step without crushing or milling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、廃ニッケル−水素二次
電池からの有価物の回収方法に関し、詳しくは簡便で経
済性に優れ、しかも高収率、高純度の廃ニッケル−水素
二次電池からの有価物の回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering valuable resources from a waste nickel-hydrogen secondary battery, and more particularly to a simple, economical, high-yield, high-purity waste nickel-hydrogen secondary battery. The present invention relates to a method for recovering valuable resources from a battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電気自
動車用二次電池としては、リチウムイオン二次電池、ニ
ッケル−水素二次電池、ニッケル−カドミウム二次電
池、鉛畜電池等が提案されているが、特に電気自動車に
要求される高出力密度、長寿命、高エネルギー密度に優
れている点でリチウムイオン二次電池、ニッケル−水素
二次電池が有望視されている。その場合、大量の廃二次
電池(使用済電池)が発生するが、水素吸蔵合金(負極
活物質)、ニッケル、カドミウム等の有価金属を多く含
むので、これら廃二次電池のリサイクル処理が重要とな
る。
2. Description of the Related Art As secondary batteries for electric vehicles, lithium ion secondary batteries, nickel-hydrogen secondary batteries, nickel-cadmium secondary batteries, lead-acid batteries, and the like have been proposed. However, lithium ion secondary batteries and nickel-hydrogen secondary batteries are expected to be particularly promising in that they are excellent in high output density, long life, and high energy density required especially for electric vehicles. In such a case, a large amount of waste secondary batteries (spent batteries) are generated, but because they contain a large amount of valuable metals such as hydrogen storage alloys (negative electrode active materials), nickel, and cadmium, recycling of these waste secondary batteries is important. Becomes

【0003】廃二次電池のリサイクル処理方法の一例と
して、特開平9−117748号公報及び特開平9−1
17749号公報が提案されている。これらの公報に開
示の方法は、廃二次電池を機械的手段によって切断、分
離等を行い、これによってプラスチック、金物、負極板
等の各部材を回収するものである。
As an example of a method for recycling a used secondary battery, Japanese Patent Application Laid-Open Nos.
No. 17749 has been proposed. The methods disclosed in these publications are to cut and separate a waste secondary battery by mechanical means, thereby recovering each member such as plastic, hardware, and a negative electrode plate.

【0004】また、特開平10−189063号公報、
特開平10−211446号公報及び特開平10−21
1447号公報には、二次電池の正、負極材の分離回収
方法が記載されている。この方法は、廃ニッケル−水素
二次電池を破砕、切断、風力分別した電極剤粉末を湿式
で薄流選別手段によって正極剤粉末と、負極剤粉末に層
流分離を行うものである。しかし、この方法において
は、各部材への破砕、切断のための工程が煩雑になると
いう問題がある。
[0004] Japanese Patent Application Laid-Open No. 10-189063,
Japanese Patent Application Laid-Open Nos. Hei 10-212446 and Hei 10-21
No. 1447 describes a method for separating and collecting positive and negative electrode materials of a secondary battery. In this method, a waste nickel-hydrogen secondary battery is crushed, cut, and separated by wind. The electrode material powder is subjected to laminar flow separation into a positive electrode material powder and a negative electrode material powder by a wet thin-film separator. However, this method has a problem in that the steps for crushing and cutting each member are complicated.

【0005】従って、本発明の目的は、簡便で経済性に
優れ、しかも高純度、高収率の廃ニッケル−水素二次電
池からの有価物の回収方法を提供することにある。
Accordingly, an object of the present invention is to provide a simple and economical method for recovering valuable materials from a waste nickel-hydrogen secondary battery with high purity and high yield.

【0006】[0006]

【課題を解決するための手段】よって、本発明は、廃ニ
ッケル−水素二次電池から有価物を回収するに際し、該
廃ニッケル−水素二次電池を液体窒素で冷却する冷却工
程と、冷却工程後に該廃ニッケル−水素二次電池を解体
する解体工程と、該解体工程で得られた解体物を破砕・
粉砕することなくそのまま水簸し、篩分する工程とから
なることを特徴とする廃ニッケル−水素二次電池からの
有価物の回収方法である。
Accordingly, the present invention provides a cooling step of cooling a waste nickel-hydrogen secondary battery with liquid nitrogen when recovering valuable resources from the waste nickel-hydrogen secondary battery, and a cooling step. A dismantling step of dismantling the waste nickel-hydrogen secondary battery later, and crushing and dismantling the dismantled product obtained in the dismantling step.
A process of elutriation and sieving without crushing the valuable nickel-hydrogen secondary battery.

【0007】[0007]

【発明の実施の形態】以下、本発明の回収方法を図面に
基づいて詳細に説明する。図1は、本発明の回収方法を
示す工程図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The recovery method of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a process chart showing the recovery method of the present invention.

【0008】本発明で対象とする廃二次電池は、特に制
限されず、例えばリチウムイオン二次電池、ニッケル−
水素二次電池、ニッケル−カドミウム二次電池、鉛畜電
池等の廃二次電池が挙げられるが、ハイブリッド型電気
自動車(H−EV)の電池として用いられる廃ニッケル
−水素二次電池が好ましい対象とされる。このニッケル
−水素二次電池に用いられる負極材は水素吸蔵合金を主
成分とし、また正極材は水酸化ニッケル等からなるもの
である。
The waste secondary battery targeted in the present invention is not particularly limited. For example, a lithium ion secondary battery, a nickel
Examples include waste secondary batteries such as a hydrogen secondary battery, a nickel-cadmium secondary battery, and a lead-acid battery, and a waste nickel-hydrogen secondary battery used as a battery of a hybrid electric vehicle (H-EV) is a preferable object. It is said. The negative electrode material used in this nickel-hydrogen secondary battery is mainly composed of a hydrogen storage alloy, and the positive electrode material is made of nickel hydroxide or the like.

【0009】図1に示すように、本発明では、この廃ニ
ッケル−水素二次電池から下記の1.〜8.の工程で有
価金属を回収する。
As shown in FIG. 1, according to the present invention, the following 1. ~ 8. The valuable metal is recovered in the step.

【0010】冷却工程 廃ニッケル−水素二次電池を冷却容器に入れ、そのまま
低温脆性化させる。冷却手段として液体窒素が好まし
く、廃ニッケル−水素二次電池を液体窒素にそのまま浸
漬することによって冷却がなされる。液体窒素による冷
却温度は約−200℃で、冷却時間は5分以上である。
このような低温脆性化は、後工程の破砕時の缶体圧縮に
よる缶体内の各成分の分離困難に対応し、かつ安全性の
確保のためである。
Cooling Step A waste nickel-hydrogen secondary battery is placed in a cooling container and is directly embrittled at low temperature. Liquid nitrogen is preferable as the cooling means, and cooling is performed by immersing the waste nickel-hydrogen secondary battery in liquid nitrogen as it is. The cooling temperature by liquid nitrogen is about -200 ° C, and the cooling time is 5 minutes or more.
Such low-temperature embrittlement is to cope with difficulties in separating each component in the can body due to compression of the can body during crushing in a subsequent step, and to ensure safety.

【0011】解体工程 低温脆性化した廃ニッケル−水素二次電池を2軸低速剪
断破砕機で解体する。この解体工程では、廃ニッケル−
水素二次電池の内容物を缶体から分離・破砕することを
目的とするのではなく、次の水簸工程で廃ニッケル−水
素二次電池の内容物を缶体から分離しやすくするため
に、缶体を切断・解体することを目的とする。
Dismantling Step The low temperature embrittled waste nickel-hydrogen secondary battery is dismantled by a twin-screw low-speed shearing crusher. In this dismantling process, waste nickel
The purpose is not to separate and crush the contents of the hydrogen secondary battery from the can, but to make it easier to separate the contents of the waste nickel-hydrogen secondary battery from the can in the next elutriation step. The purpose is to cut and dismantle can bodies.

【0012】水簸工程 水中エアレーション分離装置によって水簸を行い、セパ
レータ及びプラスチック製の缶体(産物D)をそれ以外
の成分に分離する。この装置は、機械的攪拌とエアレー
ションを併用する機能を有するもので、前工程での解体
物を水中で攪拌し、セパレータ及びプラスチック製の缶
体の分離とともに、対象有価物の解しと水素吸蔵合金の
基板からの剥離を行う。セパレータ、缶体は軽いエアレ
ーション等で水面近くに集まるので、スキンマー等によ
って容易に分離・回収できる。
Elutriation step Elutriation is performed by an underwater aeration separator to separate the separator and the plastic can (product D) into other components. This device has the function of combining mechanical agitation and aeration.It disperses the dismantled material in the previous process in water, separates separators and plastic cans, disassembles target valuables, and stores hydrogen. The alloy is separated from the substrate. Since the separators and cans gather near the water surface by light aeration or the like, they can be easily separated and collected by a skinmer or the like.

【0013】4.篩分工程 水素吸蔵合金を主体とした粉状物質と、電極基板などの
板状物質とを湿式で篩分する。網目は1mm程度とす
る。
4. Sieving Step A powdery substance mainly composed of a hydrogen storage alloy and a plate-like substance such as an electrode substrate are sieved by a wet method. The mesh is about 1 mm.

【0014】5.篩分(二次)工程 上記篩分工程で篩を通過した粉状物質を、更に湿式で篩
分し、水素吸蔵合金主体の成分(産物A)を篩下で回収
する。網目は0.21mm程度とする。
5. Sieving (Secondary) Step The powdery substance that has passed through the sieve in the above-mentioned sieving step is further sieved by a wet method, and a component (product A) mainly composed of a hydrogen storage alloy is recovered under the sieving. The mesh is about 0.21 mm.

【0015】6.水切工程 篩分工程、及び篩分(二次)工程での篩上を集めて水切
りを行う。
6. Draining Step The sieves in the sieving step and the sieving (secondary) step are collected and drained.

【0016】7.磁選工程 水素吸蔵合金の剥がれた負極基板(産物C)と、正極材
(産物B:発泡ニッケル及び水酸化ニッケル)とをその
磁性の差で分離する。正極材は比重が大きく、弱い磁場
では負極基板に比べて磁石に磁着しにくいという特徴を
利用する。なお、産物Bの発泡ニッケルと水酸化ニッケ
ルとの分離には、水酸化ニッケルの酸浸出法と、ボール
ミルによる湿式粉砕で発泡ニッケルを破砕し、中に充填
されている水酸化ニッケルを分離する摩鉱法がある。
[7] Magnetic Separation Step The negative electrode substrate (product C) from which the hydrogen storage alloy has been peeled off and the positive electrode material (product B: foamed nickel and nickel hydroxide) are separated based on the difference in magnetism. The positive electrode material has a feature that it has a large specific gravity and is less likely to be magnetically attached to a magnet in a weak magnetic field than a negative electrode substrate. In addition, to separate the foamed nickel and the nickel hydroxide of the product B, the foamed nickel is crushed by an acid leaching method of the nickel hydroxide and wet pulverization by a ball mill to separate the nickel hydroxide filled therein. There is mining law.

【0017】[0017]

【実施例】以下、実施例等に基づいて本発明を具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like.

【0018】実施例1 図1の工程図に基づいて廃ニッケル−水素二次電池から
有価金属を回収した。この廃ニッケル−水素二次は、負
極活物質として水素吸蔵合金、正極活物質として発泡ニ
ッケル及び水酸化ニッケルを用いたものであり、缶体に
はプラスチック、負極基板には鉄が用いられている。
Example 1 Valuable metals were recovered from a waste nickel-hydrogen secondary battery based on the process diagram of FIG. This waste nickel-hydrogen secondary uses a hydrogen storage alloy as a negative electrode active material, foamed nickel and nickel hydroxide as a positive electrode active material, and plastic is used for a can body and iron is used for a negative electrode substrate. .

【0019】この廃ニッケル−水素二次電池を6個連な
った状態で冷却容器に挿入し、そのまま液体窒素に5分
以上浸漬した(上記1.冷却工程)次に、2軸低速剪断
破砕機(グッドカッターUG2010−20−320、
氏家製作所社製)を用い、廃ニッケル−水素二次電池を
縦方向に挿入し、解体を行った(上記2.解体工程)。
Six such waste nickel-hydrogen secondary batteries were inserted into a cooling vessel in a state of being connected in series, and were immersed in liquid nitrogen for 5 minutes or more (the above-mentioned 1. cooling step). Good cutter UG2010-20-320,
A waste nickel-hydrogen secondary battery was inserted in the vertical direction and disassembled (Ulke Seisakusho Co., Ltd.).

【0020】水中エアレーション分離装置によって水簸
を行い、セパレータ及びプラスチック製の缶体(産物
D)をそれ以外の成分に分離した。この装置は、機械的
攪拌とエアレーションを併用する機能を有するもので、
前工程での解体物を水中で攪拌し、セパレータ及びプラ
スチック製の缶体の分離とともに、対象有価物の解しと
水素吸蔵合金の基板からの剥離を行った。セパレータ、
缶体は軽いエアレーション等で水面近くに集まるので、
スキンマー等によって容易に分離・回収できた(上記
3.水簸工程)。
Elutriation was performed by an underwater aeration separation device, and the separator and the plastic can (product D) were separated into other components. This device has the function of using both mechanical stirring and aeration.
The dismantled material in the previous step was stirred in water, and the separator and the plastic can were separated, and the target valuable material was disassembled and the hydrogen storage alloy was separated from the substrate. Separator,
Since the can bodies gather near the water surface by light aeration, etc.,
It could be easily separated and collected by a skinmer or the like (3. Elutriation step).

【0021】次に、水素吸蔵合金を主体とした粉状物質
と、電極基板などの板状物質とを湿式で篩分した(上記
4.篩分工程)。網目は1mmとした。
Next, a powdery substance mainly composed of a hydrogen storage alloy and a plate-like substance such as an electrode substrate were sieved by a wet method (the above-mentioned 4. sieving step). The mesh was 1 mm.

【0022】上記篩分工程で篩を通過した粉状物質を、
更に湿式で篩分し、水素吸蔵合金主体の成分(産物A)
を篩下で回収した(上記5.篩分(二次)工程)。網目
は0.21mmとした。
The powdery substance passing through the sieve in the sieving step is
Further sieved by wet method, component mainly composed of hydrogen storage alloy (product A)
Was collected under a sieve (5. Sieve (secondary) step described above). The mesh was 0.21 mm.

【0023】篩分工程、及び篩分(二次)工程での篩上
を集めて水切りを行った(上記6.水切工程)。
The sieves in the sieving step and the sieving (secondary) step were collected and drained (the above-mentioned 6. draining step).

【0024】棒磁石(100ガウス)を用いて、半湿式
磁選を行い、水素吸蔵合金の剥がれた負極基板(産物
C)と、正極材(産物B:発泡ニッケル及び水酸化ニッ
ケル)とをその磁性の差で分離した(上記7.磁選工
程)。以上の工程で得られた産物A〜Dの回収成績を表
1に示す。
Using a bar magnet (100 gauss), semi-wet magnetic separation is performed, and the negative electrode substrate (product C) from which the hydrogen storage alloy has been peeled off and the positive electrode material (product B: foamed nickel and nickel hydroxide) are magnetically separated. (The above-mentioned 7. magnetic separation step). Table 1 shows the recovery results of the products A to D obtained in the above steps.

【0025】[0025]

【表1】 [Table 1]

【0026】なお、産物Aの純度を上げる為、テーブル
分離を行った。その結果を表2に示す。
In order to increase the purity of the product A, table separation was performed. Table 2 shows the results.

【0027】[0027]

【表2】 [Table 2]

【0028】また、産物Bを摩鉱法で処理した後、篩い
分け、発泡ニッケルと水酸化ニッケルとに分離した。そ
の結果を表3に示す。
Further, after the product B was treated by the grinding method, it was sieved to separate into nickel foam and nickel hydroxide. Table 3 shows the results.

【0029】[0029]

【表3】 [Table 3]

【0030】表1の結果から、水素吸蔵合金は産物Aで
ほとんど回収され、その他の成分についても非常に高収
率で分離されていることが分かる。
From the results shown in Table 1, it can be seen that the hydrogen storage alloy was almost completely recovered as the product A, and the other components were separated at a very high yield.

【0031】[0031]

【発明の効果】簡便で経済性に優れ、しかも高収率、高
純度で廃ニッケル−水素二次電池から有価物が回収でき
る。
According to the present invention, valuable materials can be recovered from waste nickel-hydrogen secondary batteries with high yield and high purity in a simple and economical manner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回収方法を示す工程図である。FIG. 1 is a process chart showing a recovery method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃ニッケル−水素二次電池から有価物を回
収するに際し、該廃ニッケル−水素二次電池を液体窒素
で冷却する冷却工程と、冷却工程後に該廃ニッケル−水
素二次電池を解体する解体工程と、該解体工程で得られ
た解体物を破砕・粉砕することなくそのまま水簸し、篩
分する工程とからなることを特徴とする廃ニッケル−水
素二次電池からの有価物の回収方法。
When recovering valuable resources from a waste nickel-hydrogen secondary battery, the waste nickel-hydrogen secondary battery is cooled with liquid nitrogen, and after the cooling step, the waste nickel-hydrogen secondary battery is recycled. A valuable product from a waste nickel-hydrogen secondary battery, comprising: a dismantling step of dismantling; and a step of elutriating and sieving the dismantled material obtained in the dismantling step without crushing / crushing. Collection method.
JP30116399A 1999-10-22 1999-10-22 Method for recovering valuables from waste nickel- hydrogen secondary cell Pending JP2001126781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30116399A JP2001126781A (en) 1999-10-22 1999-10-22 Method for recovering valuables from waste nickel- hydrogen secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30116399A JP2001126781A (en) 1999-10-22 1999-10-22 Method for recovering valuables from waste nickel- hydrogen secondary cell

Publications (1)

Publication Number Publication Date
JP2001126781A true JP2001126781A (en) 2001-05-11

Family

ID=17893557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30116399A Pending JP2001126781A (en) 1999-10-22 1999-10-22 Method for recovering valuables from waste nickel- hydrogen secondary cell

Country Status (1)

Country Link
JP (1) JP2001126781A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526374A (en) * 2007-03-15 2009-07-16 ヨウン ハン リー Waste battery dismantling device
US9413044B2 (en) 2012-06-04 2016-08-09 Empire Technology Development Llc Battery assembly, unit cell and cut-off device
WO2024072147A1 (en) * 2022-09-27 2024-04-04 포스코홀딩스 주식회사 Unit battery shredding, battery shredded material containing same, and method of treatment of battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526374A (en) * 2007-03-15 2009-07-16 ヨウン ハン リー Waste battery dismantling device
US9413044B2 (en) 2012-06-04 2016-08-09 Empire Technology Development Llc Battery assembly, unit cell and cut-off device
WO2024072147A1 (en) * 2022-09-27 2024-04-04 포스코홀딩스 주식회사 Unit battery shredding, battery shredded material containing same, and method of treatment of battery

Similar Documents

Publication Publication Date Title
US8882007B1 (en) Process for recovering and regenerating lithium cathode material from lithium-ion batteries
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
KR101883100B1 (en) Method of recovering valuable metals from wasted batteries and system for the same
da Costa et al. Beneficiation of cobalt, copper and aluminum from wasted lithium-ion batteries by mechanical processing
CN100595970C (en) Method for selectively removing copper from waste lithium ion battery
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
US20050241943A1 (en) Method and apparatus for recycling electrode material of lithium secondary battery
Tenório et al. Recovery of Ni-based alloys from spent NiMH batteries
EP0649912B1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
US20020124691A1 (en) Process and system for recovering valent metals from refuse secondary batteries
CN108390119B (en) Recovery processing method of lithium iron phosphate/ternary-lithium titanate battery
CN106450542A (en) Recycling method of waste lithium manganate lithium-ion battery
Rahman et al. Recycling and disposal of lithium battery: Economic and environmental approach
CN109713394B (en) Method for separating lithium cobaltate and graphite in waste electrode material
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
CN106920999A (en) A kind of recovery method of anode material for lithium-ion batteries
US5429887A (en) Process for treating AB5 nickel-metal hydride battery scrap
JP4654548B2 (en) Valuable metal recovery method from nickel metal hydride secondary battery scrap
JP2001126781A (en) Method for recovering valuables from waste nickel- hydrogen secondary cell
CN112676302A (en) Method for sorting battery pole powder from ternary lithium battery
Valio Critical review on Li ion battery recycling technologies
JP3183619B2 (en) Method for recovering valuable resources from secondary batteries for electric vehicles
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
WO2023128773A1 (en) Battery fractionation unit and battery fractionation method
Akram et al. EV battery recycling and its impact on society