JP2001123319A - Mouthpiece for shaping and method for producing the same - Google Patents

Mouthpiece for shaping and method for producing the same

Info

Publication number
JP2001123319A
JP2001123319A JP29956199A JP29956199A JP2001123319A JP 2001123319 A JP2001123319 A JP 2001123319A JP 29956199 A JP29956199 A JP 29956199A JP 29956199 A JP29956199 A JP 29956199A JP 2001123319 A JP2001123319 A JP 2001123319A
Authority
JP
Japan
Prior art keywords
divided
bonding
flow path
solid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29956199A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujiki
浩之 藤木
Hideaki Habara
英明 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP29956199A priority Critical patent/JP2001123319A/en
Publication of JP2001123319A publication Critical patent/JP2001123319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shaping mouthpiece in which flow way shape whose processing have been impossible or difficult or flow way shape whose processing cost has been increased can easily be formed at a low cost. SOLUTION: This mouthpiece (1) for shaping is formed from plural plates (2) comprising a same kind and quality of a metal material. Flow ways (3, 5) for polymer materials are dividedly processed in the plates (2), and residual stresses generated on the processing of the flow ways are removed. A pure nickel solid phase thin film is formed on the bonding surface of the plate (2), and then the divided flow ways are matched and bonded to each other by a solid phase diffusion bonding method. The obtained mouthpiece (1) for shaping has a nickel-containing diffusion bonded region (7) on the solid phase diffusion bonded surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子材料を所望
の形状に賦形する、例えば溶融紡糸、乾式紡糸、湿式紡
糸等の紡糸口金やブロー成形、押出成形等の各種成形用
口金などの賦形用口金及び同口金の製造方法に関する。
The present invention relates to a spinneret for forming a polymer material into a desired shape, for example, melt spinning, dry spinning, wet spinning, etc., and various molding die for blow molding, extrusion molding and the like. The present invention relates to a molding die and a method of manufacturing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】通常、
この種の賦形用口金は、ドリル、エンドミル、パンチン
グ等の機械加工や放電加工、エッチングなど、様々な加
工方法を単独あるいは組み合わせて加工している。近年
では高性能、高付加価値を付与するため、賦形品の形状
や構造に複雑なものが要求され、それと共に賦形用口金
の流路も複雑且つ精密な形状が必要となる。しかしなが
ら、賦形用口金内の流路形状によっては、現行の加工方
法では加工が不可能な形状や、加工コストが非常に高く
なる形状もあり、目的とする賦形品を得ることが出来な
かった。
BACKGROUND OF THE INVENTION Generally,
This type of forming die is processed by various processing methods alone or in combination, such as mechanical processing such as drilling, end milling, and punching, electric discharge processing, and etching. In recent years, in order to impart high performance and high added value, complicated shapes and structures of shaped articles are required, and at the same time, the flow path of the shaping die is also required to have a complicated and precise shape. However, depending on the shape of the flow path in the forming die, there are also shapes that cannot be processed by the current processing method and shapes that greatly increase the processing cost, and the desired shaped product cannot be obtained. Was.

【0003】従来、薄い板材に多数の開口を形成し、そ
れらの板材を積層して拡散接合又は焼結によって一体構
造としたブレーカープレートを製造する方法が、例えば
特開平3−241002号公報に開示されている。ま
た、例えば特開平4−323393号公報には拡散接合
により製造されるインクジェットプリンターなどに適用
される微小ノズルが開示されている。これらの方法で
は、部材の厚みがせいぜい2ミリ程度の薄いもの同士の
接合であり、接合前の加工部材に残留する応力の除去処
理がなされていなくとも接合後に所定の形状を得ること
が可能である。また、これらの公報に開示された接合を
行う各材料の調質が同一でないことから、材料の線膨張
係数が異なり、接合時の高温処理によって部材が大きく
変形する可能性がある。特に、特開平3−241002
号公報に開示された接合部品は、部品の開口面積が接合
面積よりも十分に大きいため、接合後の歪みはあまり問
題とならない。
Conventionally, a method of manufacturing a breaker plate having a large number of openings formed in a thin plate material, and laminating those plate materials to form an integrated structure by diffusion bonding or sintering is disclosed in, for example, JP-A-3-241002. Have been. Further, for example, Japanese Patent Application Laid-Open No. 4-323393 discloses a micro nozzle applied to an ink jet printer manufactured by diffusion bonding. In these methods, members having a thickness of at most about 2 mm are bonded to each other, and a predetermined shape can be obtained after bonding without performing a process of removing a stress remaining on a processed member before bonding. is there. Further, since the tempering of the materials to be joined disclosed in these publications is not the same, the coefficients of linear expansion of the materials are different, and the members may be greatly deformed by the high-temperature treatment during the joining. In particular, JP-A-3-241002
In the jointed component disclosed in Japanese Patent Application Laid-Open Publication No. H11-284, since the opening area of the component is sufficiently larger than the joint area, distortion after joining is not a problem.

【0004】一方、本発明が対象とする賦形用口金の場
合、接合する部材の厚みが使用条件、目的によって多種
多様であり、多くの場合、数ミリ以上の厚い部材と数ミ
リ以下の薄い部材との接合や、数ミリ以上の厚い部材同
士の接合となり、接合前の部材に残留する応力を除去す
ることなく接合処理を行うと、部材が変形し所定の形状
が得られない。これは精密に加工された多数の吐出孔や
押出口から均一に賦形して吐出し、或いは押し出すこと
を目的とするこの種の賦形用口金にとって致命的なもの
となる。また、この種の賦形用口金は、口金内に形成さ
れる高分子材料の流路形状も精密で且つ複雑になること
が多く、積層して接合する薄い板材の加工のみによる場
合には、接合時の同一平面上に独立した多数の接合面が
存在することもあり、接合時の位置合わせなど、逆に精
密な接合技術が要求される。
On the other hand, in the case of the molding die to which the present invention is applied, the thickness of the members to be joined varies widely depending on the use conditions and purposes, and in many cases, a thick member of several millimeters or more and a thin member of several millimeters or less. When joining is performed without removing stress remaining on the member before joining, the member is deformed and a predetermined shape cannot be obtained. This is fatal for this type of molding die which aims to uniformly shape and discharge or extrude from a large number of precisely machined discharge holes or extrusion ports. In addition, in the case of this type of forming die, the flow path shape of the polymer material formed in the die is often precise and complicated, and in the case of only processing a thin plate material to be laminated and joined, On the other hand, there may be many independent joining surfaces on the same plane at the time of joining, and conversely, precise joining techniques such as alignment at the time of joining are required.

【0005】或いは、賦形用口金の高分子材料流路部を
分割した状態で流路を加工した後、それらの分割材をボ
ルト等によって締結一体化する方法も考えられるが、そ
の分割材同士を締結するための治具が配置スペースをと
り、賦形用口金のコンパクト化を困難にし、口金におけ
る賦形部の有効面積も減少せざるを得ない。
[0005] Alternatively, a method is also conceivable in which a flow path is processed in a state in which the polymer material flow path portion of the shaping die is divided, and these divided members are fastened and integrated by bolts or the like. The jig for fastening the joint takes up an arrangement space, which makes it difficult to make the shaping die compact, and inevitably reduces the effective area of the shaping part in the die.

【0006】また、母材を分割して流路や吐出口、押出
口を加工した後に、融接接合やろう接接合、液相インサ
ート拡散接合などによって接合を行うことも可能ではあ
るが、接合時に加工部材を溶融させたり、ろう材を液化
させるため、流路の周辺を接合すると所定の流路形状が
保持できなくなり、或いは流路を閉塞してしまう可能性
がある。
[0006] Further, after the base material is divided and the flow path, the discharge port, and the extrusion port are processed, bonding can be performed by fusion bonding, brazing bonding, liquid phase insert diffusion bonding, or the like. In some cases, when the periphery of the flow path is joined to melt the work member or liquefy the brazing material, a predetermined flow path shape cannot be maintained or the flow path may be closed.

【0007】そこで、本出願人により、先に同種で且つ
同質の金属材料からなる複数枚のプレートにそれぞれ高
分子材料の流路を加工した後、焼なまし等の応力除去処
理を施し、その後、各プレートを固相拡散接合法により
接合する高分子材料の賦形用口金を提案している。各プ
レートの材料を同種で且つ同質とすること、及び固相拡
散接合法による接合前に各プレートの応力を除去するこ
とにより、前記プレートが例えば10mm程度の厚みを
有していても、プレートの変形を抑制できると共に、且
つプレート間の接合強度も向上させることができる。
Therefore, the present applicant first processes the flow path of the polymer material on a plurality of plates made of the same kind and the same kind of metal material, and then performs a stress removing process such as annealing. We have proposed a die for polymer material shaping which joins each plate by solid-phase diffusion bonding. By making the material of each plate the same kind and the same, and by removing the stress of each plate before joining by the solid phase diffusion joining method, even if the plate has a thickness of about 10 mm, for example, The deformation can be suppressed, and the bonding strength between the plates can be improved.

【0008】しかしながら、固相拡散接合法とは、接合
すべき金属の接合面同士を固相状体で、しかも著しい変
形を伴うことなく加圧・加熱して接合する方法である。
そのため強力に接合するためには、前記接合面には凹凸
が少なく平滑であること、及び酸化膜や油膜などがなく
清浄であることが必要とされる。更に、接合面の密着化
をはかるためには、上述した接合面の表面状態に加え
て、接合時の加圧力を高く、しかも一様に加圧すること
が必要となる。従って、固相拡散接合法によって強度の
接合を実現しようとすると、接合面の表面処理工程が増
え、また加圧条件の精密な制御を行わなければならず、
生産能率が低下するばかりでなくコストアップにつなが
る。
However, the solid-phase diffusion bonding method is a method of bonding metal surfaces to be bonded in a solid state by applying pressure and heat without significant deformation.
Therefore, in order to join strongly, the joining surface needs to be smooth with few irregularities and clean without an oxide film or an oil film. Further, in order to achieve the close contact of the bonding surface, it is necessary to increase the pressing force at the time of bonding and uniformly pressurize in addition to the above-mentioned surface condition of the bonding surface. Therefore, in order to achieve strong bonding by the solid-phase diffusion bonding method, the number of surface treatment steps for the bonding surface increases, and precise control of the pressing conditions must be performed.
Not only does production efficiency decrease, but it also increases costs.

【0009】そこで本発明の課題は、従来では加工が不
可能又は困難とされた流路形状や加工コストが高騰化す
る流路形状の加工性を容易にし、製造工程数も少なく且
つ各工程作業での条件の制御も容易であり製造コストを
低く抑えることのできる高分子材料の賦形用口金とその
製造方法とを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to facilitate the workability of a flow path shape which has been conventionally impossible or difficult to process and a flow path shape in which the processing cost is increased, the number of manufacturing steps is small, and each process operation is difficult. It is an object of the present invention to provide a polymer material forming die and a method for manufacturing the same, which can easily control the conditions at the same time and can keep the manufacturing cost low.

【0010】[0010]

【課題を解決するための手段】かかる課題は、本件請求
項1〜11に係る発明により解決される。即ち、請求項
1に係る発明は、高分子材料の流路をもつ、高分子材料
を賦形するための各種口金であって、前記口金は複数に
分割された同種で且つ同質の金属材料からなり、前記流
路が2以上に分割して加工され、その分割流路を合わせ
て固相拡散接合されてなり、その固相拡散接合面には前
記金属材料とは異なる金属を含む拡散接合領域が介在し
てなることを特徴としている。
This problem is solved by the present invention. That is, the invention according to claim 1 is a variety of bases for shaping a polymer material having a flow path of the polymer material, wherein the bases are made of a plurality of divided metal materials of the same kind and the same kind. The flow passage is divided into two or more parts and processed, and the divided flow passages are joined to each other by solid-phase diffusion bonding. The solid-phase diffusion bonding surface includes a diffusion bonding region containing a metal different from the metal material. Is characterized by being interposed.

【0011】更に、上記賦形用口金を製造する方法とし
て、請求項6に係る発明は、高分子材料の流路をもつ賦
形用口金の製造方法であって、複数の分割材を同種で且
つ同質の金属材料により構成すること、前記流路を前記
分割材に分割して加工すること、前記分割材から前記流
路の加工時の残留応力を除去すること、前記分割材の相
対する接合面の一方又は双方に、前記金属材料とは異な
る金属からなる固相薄膜を形成すること、及び前記固相
薄膜を介して前記接合面を固相拡散接合法により接合す
ることを特徴としている。
Further, as a method of manufacturing the shaping die, the invention according to claim 6 is a method of manufacturing a shaping die having a flow path of a polymer material, wherein a plurality of divided members are made of the same kind. And made of the same metal material, dividing the channel into the divided members and processing the same, removing residual stress from the divided members when processing the flow channel, and joining the divided members to each other. The method is characterized in that a solid phase thin film made of a metal different from the metal material is formed on one or both of the surfaces, and the joining surface is joined by the solid phase diffusion joining method via the solid phase thin film.

【0012】前記賦形用口金の流路形態は、単純な直線
形態である場合は少なく、例えば曲線形態であったり、
その曲線形態の流路を更に合流させ、或いは分岐させる
ような複雑な形態である場合が多い。かかる形態の流路
は、そもそもが単一の機械加工が不可能であることは勿
論、レーザ加工やエッチングなどによっても単一工程で
加工することは不可能であるため、従来もそれらの流路
の加工を可能にする形態に母材を分割して所望の流路を
加工し、その加工面を合わせて既述したようにボルト等
によって締結し、或いは融接接合やろう接接合、液相イ
ンサート拡散接合法などによって接合を行っているが、
こうした接合等では既述したとおりの課題が発生してい
る。
[0012] The shape of the flow channel of the shaping die is rarely a simple linear shape, for example, a curved shape,
In many cases, the flow path has a complicated shape in which the curved flow path is further merged or branched. Since such a flow path cannot be processed in a single step by laser processing or etching as well as a single mechanical processing in the first place, the flow paths in the related art have been conventionally used. Divide the base material into a form that allows for the processing of the desired flow path, process the desired flow path, combine the processing surfaces and fasten with bolts as described above, or perform fusion welding, brazing welding, liquid phase We perform joining by insert diffusion joining method,
Problems such as those described above occur in such joining and the like.

【0013】本発明にあっては、流路加工は従来と同様
であるが、その接合に上記公報に開示されている拡散接
合法、特に固相拡散接合法を採用する。しかし、この固
相拡散接合法にあっても、接合する材質や流路加工時の
条件などが一致していない場合には、それらの物性や加
工履歴に影響されて高精度の接合が難しい。また、固体
状態での接合であるが故に、上述したように、接合面の
表面状態によっても接合状態が左右される。そこで、本
発明の賦形用口金にあっては前述のように固相拡散接合
法を採用するとともに、口金の金属材料を同一素材で構
成し、しかも加工履歴に最も大きく影響を与える特に加
工時の残留応力を除去したのちに、対応する分割流路を
合わせて固相拡散接合されるものであり、更に、その接
合面には前記金属材料とは異なる金属を含む拡散接合領
域を介在させている。
In the present invention, the flow channel processing is the same as the conventional one, but the diffusion bonding method disclosed in the above-mentioned publication, in particular, the solid phase diffusion bonding method is employed for the bonding. However, even in this solid-phase diffusion bonding method, if the materials to be bonded and the conditions at the time of processing the flow path do not match, high-precision bonding is difficult due to their physical properties and processing history. In addition, since the bonding is performed in a solid state, the bonding state depends on the surface state of the bonding surface as described above. Therefore, in the forming die of the present invention, the solid-phase diffusion bonding method is employed as described above, and the metal material of the die is made of the same material. After removing the residual stress, solid-phase diffusion bonding is performed by matching the corresponding divided channels, and further, a diffusion bonding region containing a metal different from the metal material is interposed on the bonding surface. I have.

【0014】ここで、本発明の賦形用口金とは、高分子
材料を均一に特定の形状で吐出或いは押し出すことが可
能であるが、その流路や吐出口又は押出口の加工が単一
工程では不可能であり、上述のように固相拡散接合法を
用いることにより得られる賦形用口金をいう。こうして
得られる本発明の賦形用口金は、加工コストが低下し、
更には賦形時の耐圧強度や耐磨耗性が向上するといった
予期せぬ利点を生じる。また、本発明における口金内の
流路とは、賦形用口金と高分子材料が接する全ての部分
をいい、その形状は特に限定されるものではなく、貫通
孔や分配溝、スリット部などがある。
Here, the shaping die of the present invention is capable of uniformly discharging or extruding a polymer material in a specific shape. It is impossible in the process, and refers to a molding die obtained by using the solid phase diffusion bonding method as described above. The shaping die of the present invention thus obtained has a reduced processing cost,
Further, unexpected advantages such as improvement of pressure resistance and abrasion resistance at the time of shaping are obtained. In addition, the channel in the mouthpiece in the present invention refers to all portions where the shaping mouthpiece and the polymer material are in contact, and the shape is not particularly limited, and there are a through hole, a distribution groove, a slit portion, and the like. is there.

【0015】本発明の流路が少なくとも2つ以上に分割
されてなるとは、賦形用口金内の流路の加工を可能なら
しめる部分を予め別個のプレートに加工することであ
り、流路の分割位置は加工の難易度、形状に応じて適宜
変更される。
The fact that the flow channel of the present invention is divided into at least two or more means that a portion of the shaping die that enables processing of the flow channel is processed in advance into a separate plate, The division position is appropriately changed according to the difficulty and the shape of the processing.

【0016】本発明の残留応力の除去とは、孔や溝とい
った高分子材料の流路を賦形用口金の分割材に加工する
際に、その加工によって分割材内部に残存する応力を除
去することをいう。この残留応力除去の方法や処理条件
は、前記賦形用口金の材質によっても異なるが、この応
力除去により、後の固相拡散接合時に前記分割材が加熱
されたり、あるいはその接合後に冷却された場合にも歪
みを生じないことが重要である。残留応力除去の方法と
しては、一般には熱処理、例えば焼なまし等の処理方法
を採用することが望ましい。
The removal of residual stress according to the present invention is to remove a stress remaining inside the divided material by processing when a flow path of a polymer material such as a hole or a groove is processed into a divided material of a forming die. That means. The method and processing conditions for removing the residual stress vary depending on the material of the shaping die. However, due to the stress removal, the divided material is heated during the subsequent solid phase diffusion bonding, or cooled after the bonding. It is important that no distortion occurs in such cases. As a method of removing the residual stress, it is generally desirable to employ a heat treatment, for example, a treatment method such as annealing.

【0017】一方、前記分割材への流路などの加工方法
として、応力が発生しにくい方法を採用することも可能
ではあるが、全ての加工方法によって残留応力を低減さ
せることは不可能であり、加工による応力が発生しない
加工法を見出す煩雑さやコスト高を考えたとき、熱処理
などによる応力除去を行うことが最も経済的且つ効果的
である。残留応力の除去は、除去自体を単独で実施して
もよいが、接合時の加熱、冷却を併用することもでき
る。ただし、この残留応力の熱処理条件は、分割材の厚
みや大きさによって変化するため、分割材の温度が均一
となるように、急加熱・急冷却を避けて昇温と降温を行
う必要がある。
On the other hand, it is possible to employ a method in which stress is hardly generated as a processing method of the flow path to the divided material or the like, but it is impossible to reduce the residual stress by all the processing methods. Considering the complexity and cost of finding a processing method that does not generate stress due to processing, it is most economical and effective to remove stress by heat treatment or the like. The removal of the residual stress may be performed by itself, but heating and cooling at the time of joining may be used together. However, since the heat treatment conditions for the residual stress vary depending on the thickness and size of the divided material, it is necessary to raise and lower the temperature so as to make the temperature of the divided material uniform, avoiding rapid heating and rapid cooling. .

【0018】本発明で採用する固相拡散接合とは拡散接
合法の1種で、上述したように加圧と、加熱又は非加熱
下で、接合面同士を固相状態で接合させるものである。
これに対して、接合面に異種金属(インサート材料)を
挿入して溶融させ、液化したインサート材料を媒介とし
て接合するものを液相拡散接合という。
The solid-phase diffusion bonding used in the present invention is a kind of diffusion bonding method, in which bonding surfaces are bonded in a solid state under pressure and under heating or non-heating as described above. .
On the other hand, a method in which a dissimilar metal (insert material) is inserted into a joining surface and melted and joined using the liquefied insert material as a medium is called liquid phase diffusion joining.

【0019】本発明は相対する接合面の一方又は両方
に、前記金属材料とは異なる金属からなる固相薄膜を形
成した後に、両接合面を固相拡散接合により接合してい
る。この固相拡散接合時に、前記固相薄膜は液化しない
よう、同固相薄膜の材質や接合温度を制御している。前
記固相薄膜は接合時に液化することなく、接合面間にお
いてその密着性を増加させ、拡散を促進させて接合を助
長する機能を果たすものである。すなわち、本発明の固
相薄膜は、液相拡散接合において液化して接合面間の隙
間を満たすインサート材料とは異なるものである。
In the present invention, after forming a solid-phase thin film made of a metal different from the above-mentioned metal material on one or both of the opposing bonding surfaces, the two bonding surfaces are bonded by solid-phase diffusion bonding. At the time of the solid phase diffusion bonding, the material and the bonding temperature of the solid phase thin film are controlled so as not to be liquefied. The solid phase thin film does not liquefy at the time of bonding, but functions to increase the adhesion between bonding surfaces, promote diffusion, and promote bonding. That is, the solid-phase thin film of the present invention is different from an insert material that liquefies in liquid-phase diffusion bonding and fills a gap between bonding surfaces.

【0020】このように、接合面の一方又は両方に予め
固相薄膜を形成することにより、接合面同士の密着性が
増し、同固相薄膜の金属が接合する部材へと拡散され、
接合面間での拡散を促進し、接合面間において良好な接
合状態となり、相対する分割材同士が接合一体化され
る。また、固相薄膜を液化させずに固相拡散接合により
接合するため、接合時に固相薄膜が溶融して高分子材料
の流路へと流れ込み、流路形状を変形させたり流路を閉
塞するといった不都合が生じることがない。
As described above, by forming the solid phase thin film on one or both of the bonding surfaces in advance, the adhesion between the bonding surfaces is increased, and the metal of the solid phase thin film is diffused to the member to be bonded.
Diffusion between the joining surfaces is promoted, a good joining state is established between the joining surfaces, and the opposing divided members are joined and integrated. In addition, since the solid-phase thin film is joined by solid-phase diffusion bonding without liquefaction, the solid-phase thin film melts and flows into the flow path of the polymer material at the time of bonding, thereby deforming the flow path shape or closing the flow path. The inconvenience such as described above does not occur.

【0021】こうして製造された賦形用口金は、拡散接
合前に応力除去の処理を施しているため、接合時や接合
後に賦形用口金に歪みが生じることもなく、流路形態も
維持される。また、固相拡散接合面には前記金属材料と
は異なる金属を含む拡散接合領域が介在しているため、
接合面同士が強力に接合されている。しかも、固相拡散
接合であるため、前記金属薄膜の材料が前記流路に流れ
込んだり流路を閉塞するといった不都合もなく、高品質
の賦形口金を得ることができる。なお、この拡散接合領
域は上述したように前記金属材料とは異なる金属を含ん
でいるが、同金属の含有量は前記接合面に近付くに従っ
て漸増している。
Since the shaping die thus manufactured is subjected to a stress removing treatment before the diffusion bonding, no distortion occurs in the shaping die at the time of bonding or after bonding, and the shape of the flow path is maintained. You. Further, since the diffusion bonding region containing a metal different from the metal material is interposed on the solid phase diffusion bonding surface,
The joining surfaces are strongly joined. In addition, since the solid-phase diffusion bonding is employed, a high-quality shaped die can be obtained without the inconvenience that the material of the metal thin film flows into the flow path or closes the flow path. Although the diffusion bonding region contains a metal different from the metal material as described above, the content of the metal gradually increases as approaching the bonding surface.

【0022】請求項2及び3に係る発明は、前記流路の
分割方向を規定している。請求項2に係る発明にあって
は、前記流路を横断面に沿って分割されるものである。
これは、流路形態が単純であり、且つ、例えば流路の横
断面形状の対角線長をdmmとし流路長をLmmとした
ときd≦1.0,L/d≧1.0となるような流路が長
寸法にわたるとき、すなわち流路が直線的であって且つ
口金の肉厚を大きくせざるを得ないときに有効である。
また、請求項3に係る発明にあっては、前記流路が縦断
面に沿って分割されるものであり、流路形態が湾曲状に
延び、或いは流路が途中で分岐したり合流したりしてい
る場合に特に有効である。
The invention according to claims 2 and 3 defines the dividing direction of the flow path. In the invention according to claim 2, the flow path is divided along a cross section.
This is because the flow path form is simple and, for example, when the diagonal length of the cross-sectional shape of the flow path is dmm and the flow path length is Lmm, d ≦ 1.0 and L / d ≧ 1.0. This is effective when the flow path extends over a long dimension, that is, when the flow path is linear and the thickness of the base must be increased.
Further, in the invention according to claim 3, the flow path is divided along a vertical section, and the flow path form extends in a curved shape, or the flow path branches or merges in the middle. It is especially effective when you are doing.

【0023】請求項4に係る発明では、前記拡散接合領
域に含まれている前記金属材料とは異なる金属はニッケ
ルである。なお、前記金属はニッケルに限定されるもの
ではなく、固相拡散接合時の処理温度において液化せ
ず、固相状態を維持できる融点をもつものであればよ
い。更に、賦形用口金の金属材料との親和性に富み、十
分な接合強度が得られ、更には耐熱・耐食性に優れた金
属を採用することが好ましい。
In the invention according to claim 4, the metal different from the metal material contained in the diffusion bonding region is nickel. The metal is not limited to nickel, and may be any metal that does not liquefy at the processing temperature during solid phase diffusion bonding and has a melting point that can maintain a solid phase state. Further, it is preferable to use a metal that has a high affinity with the metal material of the shaping die, provides sufficient bonding strength, and further has excellent heat and corrosion resistance.

【0024】請求項5に係る発明は、口金材料としてス
テンレス鋼を使用することを規定している。接合後に生
じる歪み、反りなどや、紡糸時の吐出圧力による撓みな
どの賦形用口金の変形は極力抑止することが必須条件と
なることから、本発明における同種且つ同質材料の同質
とは、同じ熱処理など、同種の材料にあって接合前の履
歴を同じくすることである。基本的には接合時の高温処
理の温度範囲にあって、材料の線膨張係数が全て一致す
ることが望ましいが、異種類の材料や、調質の種類によ
っては線膨張係数が大きく異なるため、同種類の金属を
同質で用いることが必要で、好ましくは加工性、耐食性
に優れるステンレス鋼がよい。
[0024] The invention according to claim 5 stipulates that stainless steel is used as a base material. Since it is essential that deformation of the shaping die, such as distortion, warping, etc. occurring after bonding, and bending due to the discharge pressure during spinning, be suppressed to the utmost, the same material of the same type and the same material in the present invention is the same. It is to make the history before joining the same kind of material such as heat treatment. Basically, it is desirable that the linear expansion coefficients of the materials be the same in the temperature range of the high-temperature treatment at the time of joining, but since the linear expansion coefficients differ greatly depending on different types of materials and types of refining, It is necessary to use the same kind of metal with the same quality, and stainless steel having excellent workability and corrosion resistance is preferable.

【0025】本件請求項7に係る発明によれば、前記固
相薄膜は電解メッキ加工により形成されている。この固
相薄膜の形成方法は電解メッキ加工に限るものではな
く、例えば各種の蒸着など、いかなる成膜方法を採用し
てもよいが、賦形用口金の加工という工業的な面から見
た場合に、上記電解メッキ加工であることが好ましい。
例えば、固相薄膜の金属にニッケルを使用する場合に、
メッキ加工が無電解(化学)メッキであると、メッキ中
にリン等の不純物が存在するため、純ニッケルの薄膜を
形成することができない。このように不純物が存在する
と融点が低くなってしまい、固相拡散接合を行おうとし
ても、ニッケル薄膜が液化してしまい、賦形用口金の流
路内へと流れ込み、流路形状が変形したり或いは流路を
閉塞する場合もある。
According to the present invention, the solid-phase thin film is formed by electrolytic plating. The method of forming the solid phase thin film is not limited to electrolytic plating, and any film forming method such as various kinds of vapor deposition may be adopted. Preferably, the above-mentioned electrolytic plating is performed.
For example, when using nickel as the metal of the solid phase thin film,
If the plating process is electroless (chemical) plating, impurities such as phosphorus are present in the plating, so that a pure nickel thin film cannot be formed. The presence of such impurities lowers the melting point, so that even when solid-phase diffusion bonding is attempted, the nickel thin film is liquefied and flows into the channel of the shaping die, and the channel shape is deformed. Or the flow path may be closed.

【0026】なお、前記接合面に固相薄膜を形成するの
ではなく、接合面間に純ニッケルの金属箔を挿入して固
相インサート拡散接合を行うことで、本発明と同様の効
果を得ることは可能である。しかしながら、接合面には
流路の孔や溝が形成されているため、接合面形状に応じ
て金属箔を加工しなければならず、また、溝や孔の位置
合わせをして金属箔を介装しなければならないため、工
程数が増加すると共に、作業も煩雑となる。このような
作業効率の観点からも、本発明のように予め接合面にメ
ッキ加工等によって固相薄膜を形成することが好まし
い。
The same effect as that of the present invention can be obtained by performing solid phase insert diffusion bonding by inserting a pure nickel metal foil between the bonding surfaces instead of forming a solid phase thin film on the bonding surface. It is possible. However, since the holes and grooves of the flow path are formed on the joint surface, the metal foil must be processed according to the shape of the joint surface, and the grooves and holes are aligned to interpose the metal foil. Since it must be mounted, the number of steps increases and the operation becomes complicated. From the viewpoint of such work efficiency, it is preferable to form a solid phase thin film on the joint surface in advance by plating or the like as in the present invention.

【0027】前記固相薄膜の形成は、後に固相状態で接
合を行う観点から、接合面内での全体のうねりや局部的
な表面粗さをより少なく高度に仕上げることが望まし
く、前記うねりや表面粗さが1μm以下、より好ましく
は0.4μm以下となるように仕上げる。
In the formation of the solid phase thin film, from the viewpoint of performing bonding in a solid state later, it is desirable to finish the entire surface of the bonding surface and the local surface roughness to a lesser degree and to a high degree. Finish so that the surface roughness is 1 μm or less, more preferably 0.4 μm or less.

【0028】更に、請求項8に係る発明によれば、前記
固相薄膜の膜厚aは0.1μm≦a≦75μmであり、
更に好ましくは前記固相薄膜の膜厚aは0.1μm≦a
≦50μmである。前記膜厚が0.1μm以下では、接
合面の表面状態にもよるが、前記固相薄膜が接合面に均
一に形成されない可能性があるため好ましくない。一
方、75μm以上とすると、前記固相薄膜の形成に要す
る時間や費用が増加するため、好ましくない。
Furthermore, according to the invention of claim 8, the thickness a of the solid phase thin film is 0.1 μm ≦ a ≦ 75 μm,
More preferably, the thickness a of the solid phase thin film is 0.1 μm ≦ a
≦ 50 μm. When the film thickness is 0.1 μm or less, it is not preferable because the solid phase thin film may not be formed uniformly on the bonding surface, though it depends on the surface condition of the bonding surface. On the other hand, when the thickness is 75 μm or more, the time and cost required for forming the solid phase thin film increase, which is not preferable.

【0029】接合時の加圧は、接合面が密着するように
力が作用すれば如何なる方法を用いてもよく、例えば締
結治具で挟んだり、おもりを載せるなどの方法がある。
好ましくは可能な限り塑性変形を生じさせない程度の密
着力とするのがよい。
As the pressure at the time of joining, any method may be used as long as a force acts so that the joining surfaces come into close contact with each other. For example, there is a method of sandwiching with a fastening jig or placing a weight.
Preferably, the adhesive strength is such that plastic deformation is not generated as much as possible.

【0030】接合時の加熱は、アーク加熱、通電抵抗加
熱、輻射熱による加熱、伝熱による加熱、非加熱と多様
であるが、好ましくは輻射熱や伝熱による加熱がよく、
このとき、より好ましくは急激な温度変化を避け、分割
材の温度が均一となるようにするのがよい。
Heating at the time of joining is various, such as arc heating, electric resistance heating, heating by radiant heat, heating by heat transfer, and non-heating. Preferably, heating by radiant heat or heat transfer is preferable.
At this time, it is more preferable to avoid a rapid temperature change and to make the temperature of the divided material uniform.

【0031】請求項9に係る発明によれば、前記固相拡
散接合法による接合時には、前記分割材を均温化処理温
度にて一定時間保持したのち、接合温度まで昇温させる
ことを含んでいる。
According to the ninth aspect of the present invention, at the time of joining by the solid phase diffusion joining method, the method includes holding the divided material at a temperature equalizing treatment temperature for a certain period of time and then increasing the temperature to the joining temperature. I have.

【0032】ここで接合温度とは拡散によって接合が開
始する温度をいう。このように分割材を接合温度よりも
わずかに低い均温化処理温度で一定時間保持することに
より、分割材はその内部まで全体が均一な温度となり温
度斑をなくすことができ、歪みや反りの発生を抑制でき
る。
Here, the bonding temperature means a temperature at which bonding starts due to diffusion. By maintaining the divided material at a soaking temperature slightly lower than the joining temperature for a certain period of time in this way, the divided material has a uniform temperature throughout its interior, eliminating temperature unevenness, and preventing distortion and warping. Generation can be suppressed.

【0033】なお、均温処理後に接合温度まで短時間で
昇温できるよう、均温化処理は前記接合温度よりも略5
0℃低い温度により行うことが好ましい。均温化処理温
度が前記接合温度よりも50℃以上低いと、前記均温化
処理温度まで昇温した際に部材に温度斑が生じ、大きな
歪みや反りの発生が懸念される。
It should be noted that the soaking process is performed at a temperature approximately 5 times lower than the joining temperature so that the temperature can be raised to the joining temperature in a short time after the soaking process.
It is preferable to carry out at a temperature lower by 0 ° C. If the soaking temperature is lower than the joining temperature by 50 ° C. or more, a temperature unevenness occurs in the member when the temperature is raised to the soaking temperature, and there is a concern that large distortion or warpage may occur.

【0034】更には、固相拡散接合法による処理におい
て、特に300℃前後からの昇温や300℃前後までの
冷却の速度は、歪み、反り等の発生を極力抑えて良好な
接合状態を得るために、緩やかにする必要がある。請求
項10に係る発明によれば、前記接合温度まで昇温させ
て所定時間保持したのち徐々に冷却することを含んでい
る。
Further, in the treatment by the solid-phase diffusion bonding method, in particular, the rate of temperature rise from about 300 ° C. and the cooling rate to about 300 ° C. minimize the occurrence of distortion, warpage, and the like to obtain a good bonding state. In order to do this, you need to relax. According to the tenth aspect of the present invention, the method includes increasing the temperature to the bonding temperature, maintaining the temperature for a predetermined time, and then gradually cooling.

【0035】具体的には、請求項11に係る発明に規定
するように、前記冷却速度は5℃/min.以下であ
り、より好ましくは2℃/min.以下、更には、0.
5℃/min.以上1℃/min.以下であることが好
ましい。
Specifically, the cooling rate is 5 ° C./min. Or less, more preferably 2 ° C./min. Hereinafter, further, 0.
5 ° C / min. 1 ° C./min. The following is preferred.

【0036】また、前記均温化処理温度への昇温は、1
0℃/min.以下とすることが好ましく、更には0.
5℃/min.以上1℃/min.以下とすることがよ
り好ましい。
The temperature rise to the soaking temperature is 1
0 ° C./min. It is preferable to set the value as below.
5 ° C / min. 1 ° C./min. It is more preferable to set the following.

【0037】しかしながら、この昇温速度及び冷却速度
が緩やかにすぎると、接合処理に要する時間が長くな
り、加工コストが増大するだけでなく、口金を高温に長
時間さらすことになり、部材組織の増大を招き、結果的
に部材が欠けてしまうといった不都合が生じる惧れがあ
るため、上述の範囲内に設定することが好ましい。な
お、接合時の昇温から冷却までの熱処理時間は、2時間
以上が好ましく、より好ましくは8時間以上、更に好ま
しくは、15時間以上とする。
However, if the heating rate and the cooling rate are too slow, the time required for the joining process is increased, which not only increases the processing cost but also exposes the die to a high temperature for a long period of time. It is preferable to set the value within the above-mentioned range, since there is a possibility that the number of members may be increased, resulting in inconvenience such as chipping. The heat treatment time from the temperature rise to the cooling at the time of joining is preferably 2 hours or more, more preferably 8 hours or more, and further preferably 15 hours or more.

【0038】接合は酸化皮膜が形成されないよう真空炉
中や不活性ガス雰囲気などに置換した炉中で行うことが
好ましい。更には、接合強度を高めるため接合面がより
密着するよう、接合面の中心線平均粗さが0.8μm以
下で鏡面仕上げとするのがよい。なお、この鏡面仕上げ
は前記固相薄膜の形成後に行うこともできるが、固相薄
膜を電解メッキにより形成する場合には、メッキ加工前
に予め接合面を鏡面加工することが好ましい。
The joining is preferably performed in a vacuum furnace or in a furnace replaced with an inert gas atmosphere so that an oxide film is not formed. Further, in order to increase the bonding strength, the bonding surface is preferably mirror-finished with a center line average roughness of 0.8 μm or less so that the bonding surface is more closely adhered. The mirror finish can be performed after the formation of the solid phase thin film. However, when the solid phase thin film is formed by electrolytic plating, it is preferable that the joint surface is mirror-finished before plating.

【0039】また、歪みや反りといった変形の大きさ
は、賦形用口金の特性上、極力小さくすることが望まし
く、接合後の変形を生じさせないことは当然であるが、
接合後に接合によって生じる変形分を後加工によって除
去するようにすることもできる。好ましくは、賦形用口
金として使用する際に、重ね合わせ面或いは吐出面の平
面度を賦形用口金吐出面の大きさに対し、双方共に公差
1mm以内にすることが理想的であり、更に好ましくは
平面度公差を0.5mm以内とするのがよい。
It is desirable that the magnitude of deformation such as distortion or warpage be as small as possible in view of the characteristics of the shaping die, and it is natural that no deformation occurs after bonding.
Deformation caused by joining after joining may be removed by post-processing. Preferably, when used as a shaping die, it is ideal that the flatness of the superimposed surface or the discharge surface is both within a tolerance of 1 mm with respect to the size of the shaping die discharge surface. Preferably, the flatness tolerance should be within 0.5 mm.

【0040】特に、前記口金が紡糸口金の場合には、紡
糸に使用する紡糸時の耐圧性を向上するために、口金の
板厚は厚いほうがよいが、この肉厚を厚くし過ぎると、
加工時間及び加工コストが増加し、しかも重量も増加す
るため、その取り扱い性が低下する。従って、加工板厚
は賦形用口金としての機能が発揮できる必要最小限に止
めることが好ましい。
In particular, when the spinneret is a spinneret, it is preferable that the thickness of the spinneret be large in order to improve the pressure resistance during spinning used for spinning. However, if the thickness is too large,
Since the processing time and the processing cost are increased, and the weight is also increased, the handling property is reduced. Therefore, it is preferable that the thickness of the processed plate be kept to a minimum necessary for exhibiting the function as a molding die.

【0041】接合面は一つの口金内に複数箇所あっても
よいが、接合面が多すぎると孔部の位置ずれや接合面の
仕上げ部分が増加するなどにより、加工コストが増加
し、或いは口金の性能を十分発揮させることができなく
なるため、極力少なくすることが好ましい。また、接合
は何回かに分けて行っても良いが、加熱と冷却を繰り返
すことによる変形などを抑えるためには、より少ない回
数で行うのが好ましい。
There may be a plurality of joint surfaces in one die. However, if the number of joint surfaces is too large, the processing cost increases due to the misalignment of the hole and the increase in the number of finished portions of the joint surface. Therefore, it is preferable to reduce the performance as much as possible. The bonding may be performed several times, but it is preferable to perform the bonding a smaller number of times in order to suppress deformation or the like due to repeated heating and cooling.

【0042】[0042]

【発明の実施の形態】以下、本発明の好適な実施の形態
を代表的な図示実施例及び比較例に基づいて具体的に説
明する。なお、本発明はこれらに限定されるものではな
いことは勿論である。 (実施例1)図1及び図2には本発明の実施例1に係る
賦形用口金1を示す。同口金1の流路形態は、垂直下方
に延びる2つの入口流路3が合流して1つの垂直下方に
延びる出口流路5からなる。同賦形用口金1は上面形状
が一辺130mmの方形であり、同口金1には前述の形
態をもつ流路が、同一の水平平面内に200ホール形成
されている。そして、各流路は円柱状をなしており、そ
の直径Dは0.4mm、接合するプレート2の幅Wは1
0mm、入口流路3の孔長さL1が10mm、出口流路
3の孔長さL2が5mm、2つの上記入口流路3の孔間
距離Pは5mmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below based on typical illustrated examples and comparative examples. The present invention is, of course, not limited to these. Embodiment 1 FIGS. 1 and 2 show a molding die 1 according to Embodiment 1 of the present invention. The channel form of the base 1 includes an outlet channel 5 that extends vertically downward and joins two vertically extending inlet channels 3. The shaping die 1 has a square shape with an upper surface of 130 mm on a side, and a flow path having the above-described shape is formed in the die 1 in the same horizontal plane with 200 holes. Each channel has a cylindrical shape, the diameter D is 0.4 mm, and the width W of the plate 2 to be joined is 1
0 mm, the hole length L1 of the inlet channel 3 is 10 mm, the hole length L2 of the outlet channel 3 is 5 mm, and the distance P between the two inlet channels 3 is 5 mm.

【0043】まず、加工が可能となるよう接合面4を、
流路の中心線上を結んだ垂直平面に決め、この平面で分
割した形状になるようSUS316の各プレート2に流
路加工を行った。その後、流路加工による応力をプレー
ト2から除去するため、加熱炉中でプレート2の広い面
に784.5Nの力を与え、1030℃で30分の焼な
まし処理を、各プレート2に同一に施した。次いで、接
合を行う面(接合面4)に、電解ニッケルメッキ処理を
施した。この電解ニッケルメッキ処理は、本実施例にあ
っては、各プレート2の流路内面にマスキングを行った
後、同プレート2をpH4.8に調整した硫酸ニッケル
液に40秒浸漬することにより行い、前記接合面4には
図2に示すように、膜厚が約1μmの純ニッケルの固相
薄膜6が形成された。
First, the bonding surface 4 is
A vertical plane connecting the center lines of the flow paths was determined, and flow processing was performed on each plate 2 of SUS316 so as to have a shape divided by this plane. Thereafter, in order to remove the stress due to the channel processing from the plate 2, a force of 784.5 N was applied to a wide surface of the plate 2 in a heating furnace, and an annealing treatment at 1030 ° C. for 30 minutes was performed on each plate 2. It was applied to. Next, the surface to be joined (joining surface 4) was subjected to electrolytic nickel plating. In this embodiment, the electrolytic nickel plating treatment is performed by masking the inner surface of the flow path of each plate 2 and then immersing the plate 2 in a nickel sulfate solution adjusted to pH 4.8 for 40 seconds. As shown in FIG. 2, a solid nickel thin film 6 having a thickness of about 1 μm was formed on the bonding surface 4.

【0044】その後、加工した流路3を一致させて前述
の形状となるよう前記プレート2を重ね合わせ、固相拡
散接合法により分割した面(接合面4)を接合した。こ
のときの固相拡散接合条件は、真空炉を用い、3×10
-10 MPa(abs)下で、784.5Nの力を与えて
いる。更に、昇温及び冷却は図7のグラフに示す温度プ
ロフィールとなるように制御し、接合温度の1050℃
よりも50℃低い温度で1時間保持して均温化処理を施
している。接合後の賦形用口金1には相対する接合面に
ニッケルを含む拡散接合領域7が形成されている。この
拡散接合領域7において、ニッケルの含有量は前記接合
面に近付くに従って漸増している。
Thereafter, the plates 2 were overlapped so that the processed flow paths 3 were made to coincide with each other to have the above-mentioned shape, and the surfaces (joining surfaces 4) divided by the solid phase diffusion bonding method were joined. The solid-phase diffusion bonding conditions at this time were as follows:
Under -10 MPa (abs), a force of 784.5N is applied. Further, the heating and cooling are controlled so as to have a temperature profile shown in the graph of FIG.
The temperature is maintained at a temperature lower by 50 ° C. for 1 hour to perform a soaking process. Diffusion bonding regions 7 containing nickel are formed on opposing bonding surfaces of the shaping die 1 after bonding. In the diffusion bonding region 7, the nickel content gradually increases as approaching the bonding surface.

【0045】この賦形用口金1は複数のプレート2が同
種で且つ同質の金属材料からなり、更に流路加工後に十
分に応力除去を施しているため、接合後に口金1に歪み
が発生することもなく、目的の流路形態をもつ高品質な
賦形用口金1を得ることができる。また、接合時には純
ニッケルからなる前記固相薄膜6が拡散を促進するた
め、接合強度を向上させることができ、接合面4同士が
強力に接合され、紡糸後にも接合面4の剥離は見られな
かった。更に、固相拡散接合であり前記固相薄膜6が液
化することはないため、賦形用口金1には流路の閉塞も
見られず、該賦形用口金による高分子材料の賦形が可能
となった。こうして、従来では加工が不可能とされ、或
いは困難とされていた流路形態をもつ賦形用口金が容易
に得られるようになり、同時に加工コストが高い流路形
態をもつ賦形用口金を低加工コストで得ることができ
た。 (実施例2)上述の実施例1と同一のSUS316の各
プレートに同一の流路加工を行った後、実施例1と同一
の応力除去処理を施した。次いで、接合を行う面に電解
ニッケルメッキを施し、膜厚が約2μmの純ニッケルの
固相薄膜を形成した。その後、加工した流路を一致させ
て重ね合わせ、固相拡散接合法により接合した。このと
きの固相拡散接合条件は、真空炉を用い、炉内の真空度
は3×10-10 MPa(abs) 下で炉内に水素ガスを
充填した。昇温及び冷却は、図7のグラフに示す温度プ
ロフィールとなるように制御し、接合温度の1050℃
よりも50℃低い温度で1時間保持して均温化処理を施
している。昇温開始から400℃までの昇温と300℃
から常温までの冷却とを除く、接合に要した正味の時間
は約20時間であり、昇温及び冷却を時間をかけて徐々
に行っている。なお、300℃から常温までの冷却時に
は、炉内を窒素ガスで置換して行った。
In the shaping die 1, since the plurality of plates 2 are made of the same kind and the same kind of metal material, and the stress is sufficiently removed after the passage processing, the die 1 is distorted after the joining. Therefore, it is possible to obtain a high quality molding die 1 having a desired flow path configuration. Further, at the time of joining, the solid-phase thin film 6 made of pure nickel promotes diffusion, so that the joining strength can be improved, the joining surfaces 4 are strongly joined together, and the joining surface 4 does not peel off after spinning. Did not. Furthermore, since the solid-phase thin film 6 does not liquefy because of solid-phase diffusion bonding, no blockage of the flow path is observed in the shaping die 1, and the shaping of the polymer material by the shaping die is not performed. It has become possible. In this way, a molding die having a flow path configuration that has been conventionally impossible or difficult to process can be easily obtained, and at the same time, a molding die having a flow path configuration having a high processing cost can be obtained. It could be obtained at low processing cost. (Embodiment 2) After the same flow path processing was performed on each plate of SUS 316, which was the same as the above-described embodiment 1, the same stress removing process as that of the embodiment 1 was performed. Next, electrolytic nickel plating was applied to the surface to be joined to form a solid nickel thin film having a thickness of about 2 μm. Thereafter, the processed flow paths were overlapped with each other and joined by a solid-phase diffusion bonding method. At this time, the furnace was filled with hydrogen gas under a solid-phase diffusion bonding condition using a vacuum furnace at a degree of vacuum of 3 × 10 −10 MPa (abs). The heating and cooling were controlled so as to have the temperature profile shown in the graph of FIG.
The temperature is maintained at a temperature lower by 50 ° C. for 1 hour to perform a soaking process. From the start of heating up to 400 ° C and 300 ° C
The net time required for joining, excluding cooling from the temperature to the normal temperature, is about 20 hours, and the temperature rise and cooling are gradually performed over time. During cooling from 300 ° C. to room temperature, the inside of the furnace was replaced with nitrogen gas.

【0046】接合後の賦形用口金1には相対する接合面
にニッケルを含む拡散接合領域7が形成されており、接
合面同士が互いに強度に接合されている。この拡散接合
領域7では、前記ニッケルの含有量が接合面に近付くに
従い漸増している。また、接合後の賦形用口金の平面度
は吐出及び重ね合わせ面の大きさに対し、双方共に公差
0.5mmとなり、接合後に流路の閉塞は見られれず、
該賦形用口金による高分子材料の賦形が可能となった。
更には、紡糸後にも接合面の剥離は見られなかった。 (実施例3)図3には本発明の実施例3に係る賦形用口
金1を示す。同口金1は、一部が直径0.075mmの
極小孔径部からなる高分子材料の流路形態を有してお
り、垂直下方に延びる直径0.4mmの大口径の入口流
路3の下端に、直径0.075mmの微小な口径の出口
流路5がつながっている。本実施例によれば、前記入口
流路3が上下に3分割されるとともに、同入口流路3と
前記出口流路5の切り換え部分で水平に分割され、賦形
用口金1が総数で4枚のプレート2を上下に積層して接
合することにより構成される。
Diffusion bonding regions 7 containing nickel are formed on opposing bonding surfaces of the shaping die 1 after bonding, and the bonding surfaces are strongly bonded to each other. In the diffusion bonding region 7, the nickel content gradually increases as approaching the bonding surface. In addition, the flatness of the shaping die after joining is 0.5 mm for both the ejection and the size of the superimposed surface, and no obstruction of the flow path is observed after joining,
The polymer material can be shaped by the shaping die.
Furthermore, no peeling of the bonding surface was observed after spinning. (Embodiment 3) FIG. 3 shows a molding die 1 according to Embodiment 3 of the present invention. The base 1 has a flow path form of a polymer material having a part having a very small hole diameter of 0.075 mm in diameter, and is provided at a lower end of a large diameter inlet flow path 3 having a diameter of 0.4 mm and extending vertically downward. , An outlet channel 5 having a small diameter of 0.075 mm is connected. According to the present embodiment, the inlet channel 3 is vertically divided into three parts, and the inlet channel 3 and the outlet channel 5 are horizontally divided at the switching portion. It is configured by laminating and joining two plates 2 up and down.

【0047】即ち、3枚のプレート2の同一位置に同一
径の入口流路3a〜3cをそれぞれ穿孔するとともに、
残る1枚のプレート2の前記入口流路3a〜3cの中心
位置に対応する位置を中心として、前記入口流路3a〜
3cよりも小さな口径の出口流路5を穿孔する。前記入
口流路3a〜3c及び出口流路5は各プレート2に所定
の間隔(0.6mm×1.2mm)をおいて700ホー
ル形成している。
That is, the inlet channels 3a to 3c having the same diameter are pierced at the same positions of the three plates 2, respectively.
The inlet channels 3a to 3c of the remaining one plate 2 are centered on positions corresponding to the center positions of the inlet channels 3a to 3c.
The outlet channel 5 having a diameter smaller than 3c is pierced. The inlet channels 3a to 3c and the outlet channel 5 have 700 holes formed in each plate 2 at a predetermined interval (0.6 mm × 1.2 mm).

【0048】この流路加工の後、応力除去処理を施し、
次いで、接合を行う面に電解ニッケルメッキを施して純
ニッケルの固相薄膜を形成した。その後、各プレート2
の各対応する位置に形成された前記入口流路3a〜3c
及び出口流路5の中心を合わせて上下に積層し、上記実
施例1と同一条件で固相拡散接合法を用い、各分割面を
接合して本発明の賦形用口金1を得た。この賦形用口金
1も、上記実施例1と同様に相対する接合面にはニッケ
ルを含む拡散接合領域7が形成され、接合面同士が強固
に接合されている。接合後に流路の閉塞は見られず、高
分子材料の賦形後にも接合面の剥離は見られなかった。 (実施例4)図4に示す実施例4係る賦形用口金1とし
ての押出用口金の流路形態は、水平方向に延びる断面が
矩形状をなしている。本実施例によれば、上下に2枚の
幅の広いプレート2aの間にあって、同プレート2aの
幅方向の両端縁に沿ってそれぞれ小幅プレート2bを配
し、その中央に形成される矩形断面の中空部を高分子材
料の押出流路3とするものである。
After processing the flow path, a stress removing process is performed.
Next, electrolytic nickel plating was performed on the surface to be joined to form a solid phase thin film of pure nickel. Then, each plate 2
The inlet channels 3a to 3c formed at the corresponding positions of
And the upper and lower layers were stacked with the center of the outlet flow path 5 aligned, and the divided surfaces were joined using the solid-phase diffusion bonding method under the same conditions as in Example 1 to obtain a molding die 1 of the present invention. Similarly to the first embodiment, the shaping die 1 is formed with a diffusion bonding region 7 containing nickel on opposing bonding surfaces, and the bonding surfaces are strongly bonded to each other. No blockage of the flow path was observed after joining, and no peeling of the joining surface was observed even after shaping of the polymer material. (Embodiment 4) As shown in FIG. 4, the shape of the flow path of the extrusion die as the shaping die 1 according to Example 4 has a rectangular cross section extending in the horizontal direction. According to the present embodiment, the small width plates 2b are arranged along the widthwise opposite edges of the two wide plates 2a at the top and bottom, respectively, and the rectangular cross section formed at the center thereof is formed. The hollow portion is used as an extrusion channel 3 of a polymer material.

【0049】この流路加工の後、各プレートに応力除去
処理を施し、次いで、接合を行う面に電解ニッケルメッ
キ処理により純ニッケルの固相薄膜を形成した。その
後、上述のように組み立てられた4枚のプレート2a,
2bを上記第1実施例と同一の接合条件で固相拡散接合
法を用い各分割面を接合して、同接合面にニッケルを含
む拡散接合領域7が介在する本発明の賦形用口金1を得
た。
After the passage processing, each plate was subjected to a stress removing treatment, and then a solid nickel thin film was formed on the surface to be joined by electrolytic nickel plating. Thereafter, the four plates 2a,
2b is joined to each divided surface using the solid-state diffusion bonding method under the same bonding conditions as in the first embodiment, and the diffusion bonding region 7 containing nickel is interposed on the bonding surface. I got

【0050】この賦形用口金1にあっても、接合前に各
プレート2から十分に応力除去を行っているため、上記
実施例と同様に接合後にも口金1に歪みが生じることも
なく、流路形態にも変化は見られない。また、固相拡散
接合時に前記固相薄膜が拡散を促進して、接合面同士が
強力に接合されており、高分子材料の押出成形後にも接
合面の剥離は見られなかった。更には、固相拡散接合で
あり前記固相薄膜が液化することもないため、ニッケル
が流路内に流れ込むこともなく、流路の閉塞は認められ
なかった。 (実施例5)図5は本発明の実施例5を示しており、こ
の実施例における賦形用口金1の流路形態は菱形断面の
直線状をなしている。図示例によれば、前記菱形断面の
流路3の対向する一組の隅部同士を結ぶ対角線に沿った
分割面で分割し、得られる各分割プレート2の対応位置
に前記菱形の1/2の断面形状を有する三角溝を形成す
る。この流路加工の後、各プレート2に応力除去処理を
施し、次いで、接合を行う面に電解ニッケルメッキ処理
により純ニッケルの固相薄膜を形成した。その後、対応
する接合面を合わせて上記実施例と同一の接合条件で固
相拡散接合し、分割面を接合することにより所望の流路
形態と接合強度とを有する前記賦形用口金1を得た。 (実施例6)図6は本発明の実施例6を示しており、こ
の実施例における賦形用口金1の流路形態は矩形断面を
もつ直線状の流路である。図示例によれば、前記矩形断
面の対向する各長辺の中点を結ぶ直線に沿って分割して
おり、得られる各分割プレート2の対応位置に前記矩形
の1/2の矩形溝を形成する。この流路加工の後、各プ
レート2に応力除去処理を施し、次いで、接合を行う面
に電解ニッケルメッキ処理により純ニッケルの固相薄膜
を形成した。その後、対応する接合面を合わせて上記実
施例と同一の接合条件で固相拡散接合し、分割面を接合
一体化することにより所望の形態の流路と接合強度とを
有する前記賦形用口金1を得た。 (比較例1)母材にSUS630の固溶化処理材を、接
着薄板にSUS631のTH1050の処理材を用いた
こと以外は、実施例1と同様に機械加工を施し、応力除
去を行うと共に、接合面には純ニッケルの固相薄膜を形
成して、固相拡散接合処理により接合して賦形用口金を
製造した。得られた賦形用口金は、全体で2mm程度の
反りが生じており、また接合面には、一部、未接合の部
分が確認された。 (比較例2)流路加工を施した後に応力除去の焼なまし
処理を行わないこと以外は、実施例1と全て同様にして
賦形用口金を製造した。得られた賦形用口金は、全体で
2mm程度の反りが生じており、また接合面には、一
部、未接合の部分が確認された。 (比較例3)流路加工を施した後に接合面に電解ニッケ
ルメッキを行わないこと以外は、実施例1と全て同様に
して賦形用口金を製造した。得られた賦形用口金の接合
状態を確認するため、賦形用口金を石鹸水へ浸漬させた
後、0.4mmの流路へ0.2MPaのエアーで圧力を
かけたところ、0.4mmの流路以外の接合面からエア
ーのリークが認められた。
Even in the shaping die 1, since the stress is sufficiently removed from each plate 2 before the bonding, the die 1 is not distorted even after the bonding as in the above embodiment. No change is seen in the channel configuration. In addition, the solid-phase thin film promoted diffusion during solid-phase diffusion bonding, and the bonding surfaces were strongly bonded to each other. No peeling of the bonding surfaces was observed even after extrusion molding of the polymer material. Furthermore, since solid-phase diffusion bonding was performed and the solid-phase thin film did not liquefy, nickel did not flow into the channel, and no blockage of the channel was recognized. (Embodiment 5) FIG. 5 shows Embodiment 5 of the present invention. In this embodiment, the shape of the flow path of the shaping die 1 is a rhombus-shaped cross section. According to the illustrated example, the flow path 3 having the rhombic cross section is divided by a diagonal dividing plane that connects a pair of opposing corners, and a half of the rhombus is placed at a corresponding position of each of the obtained divided plates 2. A triangular groove having a cross-sectional shape of is formed. After the passage processing, each plate 2 was subjected to a stress removing treatment, and then a solid nickel thin film was formed on the surface to be joined by electrolytic nickel plating. Thereafter, the corresponding bonding surfaces are combined and solid-phase diffusion bonding is performed under the same bonding conditions as in the above embodiment, and the divided surfaces are bonded to obtain the shaping die 1 having a desired flow path form and bonding strength. Was. (Embodiment 6) FIG. 6 shows Embodiment 6 of the present invention. In this embodiment, the shape of the channel of the shaping die 1 is a straight channel having a rectangular cross section. According to the illustrated example, the rectangular section is divided along a straight line connecting the midpoints of the opposing long sides, and a rectangular groove that is の of the rectangle is formed at the corresponding position of each obtained divided plate 2. I do. After the passage processing, each plate 2 was subjected to a stress removing treatment, and then a solid nickel thin film was formed on the surface to be joined by electrolytic nickel plating. Thereafter, the corresponding bonding surfaces are combined and solid-phase diffusion bonding is performed under the same bonding conditions as in the above embodiment, and the divided surfaces are bonded and integrated to form the desired shape of the flow channel and the bonding strength. 1 was obtained. (Comparative Example 1) Machine processing was performed in the same manner as in Example 1 except that a solution treatment material of SUS630 was used as a base material and a treatment material of TH1050 of SUS631 was used as an adhesive thin plate, and stress was removed and bonding was performed. A solid-state thin film of pure nickel was formed on the surface and joined by a solid-phase diffusion bonding process to produce a forming die. The resulting molding die had a warpage of about 2 mm as a whole, and a part of the joint surface was unjoined. (Comparative Example 2) A shaping die was manufactured in the same manner as in Example 1 except that annealing for removing stress was not performed after the passage processing. The resulting molding die had a warpage of about 2 mm as a whole, and a part of the joint surface was unjoined. (Comparative Example 3) A shaping die was manufactured in the same manner as in Example 1, except that electrolytic nickel plating was not performed on the joint surface after the passage processing. In order to confirm the bonding state of the obtained molding die, the molding die was immersed in soapy water, and then a pressure of 0.2 MPa was applied to a 0.4 mm flow path to obtain a 0.4 mm flow. Leakage of air was observed from the joint surface other than the flow path.

【0051】[0051]

【発明の効果】以上、詳述したように、本発明によれ
ば、従来では加工が不可能であるか、或いは加工が困難
な流路形態を有する賦形用口金が低コストで、しかも容
易に得ることが可能となる。また、本発明によれば、肉
厚の板材であっても微小な孔形状の貫通孔が加工可能と
なるため、耐圧性の向上も図ることができ、しかも接合
後に流路の閉塞も見られず、紡糸或いは成形後も接合面
の剥離が見られないことから、賦形用口金として十分に
実用に耐え得ることが確認された。
As described above in detail, according to the present invention, a molding die having a flow path configuration which is conventionally impossible or difficult to process is inexpensive and easy. Can be obtained. Further, according to the present invention, a through hole having a small hole shape can be machined even with a thick plate material, so that the pressure resistance can be improved, and the flow path is blocked after joining. No peeling of the bonding surface was observed even after spinning or molding, and it was confirmed that it could sufficiently withstand practical use as a molding die.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る紡糸用口金の一部を切
開して示す斜視図である。
FIG. 1 is a perspective view showing a part of a spinneret according to a first embodiment of the present invention, which is cut away.

【図2】接合前のプレートの一部を拡大して示す斜視図
である。
FIG. 2 is an enlarged perspective view showing a part of a plate before joining.

【図3】本発明の実施例3に係る紡糸用口金の一部を切
開して示す斜視図である。
FIG. 3 is a cutaway perspective view showing a part of a spinneret according to a third embodiment of the present invention.

【図4】本発明の実施例4に係る紡糸用口金の一部を切
開して示す斜視図である。
FIG. 4 is a perspective view in which a part of a spinneret according to a fourth embodiment of the present invention is cut away.

【図5】本発明の実施例5に係る紡糸用口金の一部を切
開して示す斜視図である。
FIG. 5 is a cutaway perspective view showing a part of a spinneret according to a fifth embodiment of the present invention.

【図6】本発明の実施例6に係る紡糸用口金の一部を切
開して示す斜視図である。
FIG. 6 is a perspective view in which a part of a spinneret according to a sixth embodiment of the present invention is cut away.

【図7】本発明の固相拡散接合処理時における昇温及び
降温の温度プロフィールを示すグラフである。
FIG. 7 is a graph showing a temperature profile of a temperature rise and a temperature fall during a solid phase diffusion bonding process of the present invention.

【符号の説明】[Explanation of symbols]

1 賦形用口金 2 プレート 3,5 流体の流路 4 分割面(接合面) 6 固相薄膜 7 拡散接合領域 REFERENCE SIGNS LIST 1 shaping die 2 plate 3, 5 fluid flow path 4 division surface (joining surface) 6 solid thin film 7 diffusion bonding region

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料の流路(3,5) をもつ、高分子
材料を賦形するための各種口金であって、 前記口金(1) は複数に分割された同種で且つ同質の金属
材料からなり、 前記流路(3,5) が2以上に分割して加工され、その分割
流路を合わせて固相拡散接合されてなり、 その固相拡散接合面には前記金属材料とは異なる金属を
含む拡散接合領域(7)が介在してなる、ことを特徴とす
る賦形用口金。
1. A die for shaping a polymer material having a flow path (3, 5) for the polymer material, wherein the die (1) is divided into a plurality of homogeneous and homogeneous materials. The channel (3, 5) is made of a metal material, and is processed by being divided into two or more, and the divided channels are joined together to perform solid-phase diffusion bonding. Wherein a diffusion bonding region (7) containing a different metal is interposed.
【請求項2】 前記分割流路(3a 〜3b,5) が流路(3,5)
の横断面に沿って分割されてなる請求項1記載の賦形用
口金。
2. The method according to claim 1, wherein the divided flow passages (3a to 3b, 5) are provided in
2. The molding die according to claim 1, wherein the molding die is divided along a transverse cross section of the molding die.
【請求項3】 前記分割流路(3,5) が流路の縦断面に沿
って分割されてなる請求項1記載の賦形用口金。
3. The molding die according to claim 1, wherein the divided flow path is divided along a vertical section of the flow path.
【請求項4】 前記拡散接合領域に含まれている前記金
属材料とは異なる金属はニッケルである請求項1〜3の
いずれかに記載の賦形用口金。
4. The molding die according to claim 1, wherein the metal different from the metal material contained in the diffusion bonding region is nickel.
【請求項5】 前記金属材料がステンレス鋼である請求
項1〜4のいずれかに記載の賦形用口金。
5. The shaping die according to claim 1, wherein the metal material is stainless steel.
【請求項6】 高分子材料の流路をもつ賦形用口金の製
造方法であって、 複数の分割材を同種で且つ同質の金属材料により構成す
ること、 前記流路を前記分割材に分割して加工すること、 前記分割材から前記流路の加工時の残留応力を除去する
こと、 前記分割材の相対する接合面の一方又は双方に、前記金
属材料とは異なる金属からなる固相薄膜を形成するこ
と、及び前記固相薄膜を介して前記接合面を固相拡散接
合法により接合すること、を含んでなることを特徴とす
る賦形用口金の製造方法。
6. A method of manufacturing a shaping die having a flow path of a polymer material, wherein a plurality of divided members are formed of the same kind and the same metal material, and the flow path is divided into the divided members. Removing the residual stress at the time of processing the flow path from the divided material; one or both of the opposing joint surfaces of the divided material, a solid-phase thin film made of a metal different from the metal material And bonding the bonding surface via the solid-phase thin film by a solid-phase diffusion bonding method.
【請求項7】 メッキ加工により前記固相薄膜を形成す
ることを含んでなる請求項6記載の賦形用口金の製造方
法。
7. The method according to claim 6, further comprising forming the solid phase thin film by plating.
【請求項8】 前記固相薄膜の膜厚aは0.1μm≦a
≦75μmである請求項6記載の賦形用口金の製造方
法。
8. The film thickness a of the solid phase thin film is 0.1 μm ≦ a
The method according to claim 6, wherein ≤75 µm.
【請求項9】 前記固相拡散接合法による接合時には、
前記分割材を均温化処理温度にて一定時間保持したの
ち、接合温度まで昇温させることを含んでなる請求項6
記載の賦形用口金の製造方法。
9. At the time of joining by the solid phase diffusion joining method,
7. The method according to claim 6, further comprising: holding the divided material at a soaking temperature for a certain period of time, and then increasing the temperature to a joining temperature.
A method for producing the shaping die according to the above.
【請求項10】 前記接合温度まで昇温させて所定時間
保持したのち徐々に冷却することを含んでなる請求項9
記載の賦形用口金の製造方法。
10. The method according to claim 9, further comprising increasing the temperature to the bonding temperature, maintaining the temperature for a predetermined time, and then gradually cooling.
A method for producing the shaping die according to the above.
【請求項11】 前記冷却速度は5℃/min.以下で
ある請求項10記載の賦形用口金の製造方法。
11. The cooling rate is 5 ° C./min. The method for producing a shaping die according to claim 10, which is as follows.
JP29956199A 1999-10-21 1999-10-21 Mouthpiece for shaping and method for producing the same Pending JP2001123319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29956199A JP2001123319A (en) 1999-10-21 1999-10-21 Mouthpiece for shaping and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29956199A JP2001123319A (en) 1999-10-21 1999-10-21 Mouthpiece for shaping and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001123319A true JP2001123319A (en) 2001-05-08

Family

ID=17874230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29956199A Pending JP2001123319A (en) 1999-10-21 1999-10-21 Mouthpiece for shaping and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001123319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203567A (en) * 2008-02-26 2009-09-10 Mitsubishi Rayon Co Ltd Method for producing nozzle made of stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203567A (en) * 2008-02-26 2009-09-10 Mitsubishi Rayon Co Ltd Method for producing nozzle made of stainless steel

Similar Documents

Publication Publication Date Title
EP2025427B1 (en) Method of forming a heat exchanger and heat exchanger
US4883219A (en) Manufacture of ink jet print heads by diffusion bonding and brazing
JP5242201B2 (en) Joining jig and method for manufacturing dissimilar material joined body using the same
JPH04227481A (en) Heat exchanger element and manufacture thereof
US5702659A (en) Honeycomb extrusion die and methods
KR100681534B1 (en) Tool for structural part by diffusion bonding of multi-sheet metal and Method of manufacturing the same and Structural part by the method
US20170106469A1 (en) Ultrasonic additive manufacturing assembly and method
US9831073B2 (en) Low deflection sputtering target assembly and methods of making same
JP2001123319A (en) Mouthpiece for shaping and method for producing the same
EP1154886B1 (en) Moulds and method of making the same
EP2291598A1 (en) Methods of manufacturing brazed aluminum heat exchangers
JP3945909B2 (en) Manufacturing method of shaping die
US5038857A (en) Method of diffusion bonding and laminated heat exchanger formed thereby
JP5473711B2 (en) Laminated mold for resin molding and method for producing the same
CN115265242A (en) Heat exchanger and manufacturing method
JP3814413B2 (en) Die for wet spinning of core-sheath composite fiber
JP2005271429A (en) Molding die device and molding method
KR100505534B1 (en) A Machining And Brazing Methood Of Thin Metal Plate With Micro Flow Path And Pattern
JP5242200B2 (en) Manufacturing method of dissimilar material joined body
CN116689932B (en) Diffusion welding method of micro-channel heat exchanger and welded product
JP2019531457A (en) Titanium plate heat exchanger
JP4875805B2 (en) Mold equipment for molding
WO2020110287A1 (en) Electrical connection member, electrical connection structure, and method for producing electrical connection member
WO2006038616A1 (en) Metal mold cooling structure
JP2004044688A (en) Valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428