JP2001123239A - High strength aluminum alloy for casting and aluminum alloy casting - Google Patents

High strength aluminum alloy for casting and aluminum alloy casting

Info

Publication number
JP2001123239A
JP2001123239A JP29957899A JP29957899A JP2001123239A JP 2001123239 A JP2001123239 A JP 2001123239A JP 29957899 A JP29957899 A JP 29957899A JP 29957899 A JP29957899 A JP 29957899A JP 2001123239 A JP2001123239 A JP 2001123239A
Authority
JP
Japan
Prior art keywords
low
casting
aluminum alloy
added
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29957899A
Other languages
Japanese (ja)
Inventor
Takao Suzuki
喬雄 鈴木
Naoto Oshiro
直人 大城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Aluminium Industry Co Ltd
Original Assignee
Daiki Aluminium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Aluminium Industry Co Ltd filed Critical Daiki Aluminium Industry Co Ltd
Priority to JP29957899A priority Critical patent/JP2001123239A/en
Priority to EP00309071A priority patent/EP1096028A3/en
Priority to EP03006409A priority patent/EP1347066A2/en
Priority to EP03006408A priority patent/EP1371741A2/en
Publication of JP2001123239A publication Critical patent/JP2001123239A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Abstract

PROBLEM TO BE SOLVED: To develop a high toughness aluminum alloy casting capable of substituting for AC4CH, satisfying cost effectiveness as well as castability and moreover having tensile strength of >=380 Mpa, elongation of >=9%, 0.2% proof stress of 200 Mpa and impact value of >=90 kJ/m2. SOLUTION: This alloy casting has a composition containing 3.5 to 4.3% Cu, 5.0 to 7.5% Si, 0.10 to 0.25% Mg, <=0.2% Fe and <=0.0003% P, and the balance Al with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、引っ張り強さや伸び、
衝撃値に優れた高強度鋳造用アルミニウム合金更にはこ
れに加えて表面処理の仕上がりが美しい高強度鋳造用ア
ルミニウム合金と該合金を利用した高強度アルミニウム
合金鋳物に関する。
BACKGROUND OF THE INVENTION The present invention relates to tensile strength and elongation.
The present invention relates to a high-strength aluminum alloy for casting which has an excellent impact value, and further to a high-strength aluminum alloy for casting which has a beautiful surface treatment finish and a high-strength aluminum alloy casting using the alloy.

【0002】[0002]

【従来の技術】アルミニウム合金は、自動車や産業機
械、航空機、家庭電化製品その他各種分野においてその
構成部品素材として広く使用されている。その一つとし
てアルミニウム鋳物合金の分野があり、その代表的なも
のとしてAC4CHに代表されるAl鋳物合金がある。このAl
鋳物合金は、自動車用車両、架線金具、油圧部品等の機
械的性質を要求される重要保安部品等の用途に使用され
ている。
2. Description of the Related Art Aluminum alloys are widely used as constituent materials in automobiles, industrial machines, aircraft, home appliances and various other fields. One of them is the field of aluminum casting alloys, and a typical example thereof is an aluminum casting alloy represented by AC4CH. This Al
BACKGROUND ART Cast alloys are used in applications such as automobile vehicles, overhead wire fittings, hydraulic components, and other important security components requiring mechanical properties.

【0003】しかしながら、この合金鋳物のT6処理材
は、伸びは高いが引っ張り強さや0.2%耐力及び衝撃値
が低いという欠点がある。以下にAC4CH−T6処理材の一
般的な機械的性質を表1に示し、AC4CHの成分を表2に
示す。
[0003] However, the T6 treated material of this alloy casting has a drawback of high elongation but low tensile strength, 0.2% proof stress and impact value. Table 1 below shows general mechanical properties of the AC4CH-T6 treated material, and Table 2 shows components of AC4CH.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【表2】 [Table 2]

【0006】[0006]

【発明が解決しようとする課題】本発明の解決課題の第
1は、AC4CHに代わり得るものであって鋳造性は元より経
済性も満足し、しかも引っ張り強さが380MPa以上、伸び
が9%以上、0.2%耐力が200MPa、衝撃値が90kJ/m2以上
ある高靱性アルミニウム合金鋳物の開発にあり、第2に
は前記条件を満足し更には表面処理をした時の美観にも
優れた高強度鋳造用アルミニウム合金を開発する事にあ
る。
SUMMARY OF THE INVENTION
1, castability be those obtained instead AC4CH also satisfied than the original economy, moreover tensile strength of more than 380 MPa, elongation of 9% or more, 0.2% proof stress is 200 MPa, impact value 90 kJ / m 2 or more A second object is to develop a high-toughness aluminum alloy casting, and secondly to develop a high-strength aluminum alloy for casting that satisfies the above-mentioned conditions and is also excellent in appearance when subjected to surface treatment.

【0007】[0007]

【課題を解決するための手段】「請求項1」の鋳物用高
強度鋳造用アルミニウム合金(第1実施例)は、「Cu:3.5
〜4.3%,Si:5.0〜7.5%,Mg:0.10〜0.25%,Fe≦0.2%、
P≦0.0003%を含有し、残部がAl及び不可避不純物とか
らなる」事を特徴とする。
The high-strength casting aluminum alloy for castings according to claim 1 (first embodiment) has a Cu: 3.5
~ 4.3%, Si: 5.0 ~ 7.5%, Mg: 0.10 ~ 0.25%, Fe≤0.2%,
P ≦ 0.0003%, and the balance consists of Al and unavoidable impurities. ”

【0008】本合金のPは0.0003%以下と非常に低いの
で、鋳造材のT6処理材の金属組織は通常P含有材(P:
0.0004〜0.0030% 図1−No.59 通常P量 参照)に比
べて共晶Siが微細化し、その結果、従来のAC4CH材に対
して十分に鋳造性や経済性に付いて競争力を満足しなが
ら引っ張り強さが380MPa以上、伸びが9%以上、0.2%
耐力が200MPa、衝撃値が90kJ/m2以上という優れた機械
的条件を満足させる事が出来た。(図1−No.47 低P参
照) なお、Cu、Si、Mg、Fe等の基本成分の含有範囲に
付いては実施例と比較例との実験データに基づいて後に
説明する。
[0008] Since the P of this alloy is very low, that is, 0.0003% or less, the metal structure of the T6 treated material of the cast material is usually P-containing material (P:
0.0004% to 0.0030% Eutectic Si is finer than that of Fig. 1-No.59 Normal P content). As a result, it is more satisfactory in terms of castability and economy than conventional AC4CH materials, and satisfies competitiveness. While the tensile strength is more than 380MPa, elongation is more than 9%, 0.2%
Excellent mechanical conditions with a proof stress of 200 MPa and an impact value of 90 kJ / m 2 or more could be satisfied. (See FIG. 1-No. 47, low P) The content ranges of basic components such as Cu, Si, Mg, and Fe will be described later based on experimental data of Examples and Comparative Examples.

【0009】「請求項2」の鋳物用高強度鋳造用アルミ
ニウム合金(第2実施例)は、「Cu:3.5〜4.3%,Si:5.0
〜7.5%,Mg:0.10〜0.25%,Fe≦0.2%、P:0.0004〜0.0
030%、Sb:0.05〜0.2%を含有し、残部がAl及び不可避
不純物とからなる」事を特徴とする。
The high-strength aluminum alloy for casting according to the second aspect of the present invention (second embodiment) is as follows: "Cu: 3.5 to 4.3%, Si: 5.0%".
~ 7.5%, Mg: 0.10 ~ 0.25%, Fe≤0.2%, P: 0.0004 ~ 0.0
030%, Sb: 0.05-0.2%, with the balance being Al and unavoidable impurities. "

【0010】本合金は通常P含有材(P:0.0004〜0.003
0% 図1−No.59 通常P量 参照)にSb:0.05〜0.2%
を含有させたもので、僅かなSbの存在により通常P含有
材であるにも拘わらず、鋳造材のT6処理材の金属組織
(図1−No.62 通常P量 参照)は、Sbを添加していな
い通常P含有材に比べて共晶Siを微細化させる事が出
来、その結果、従来のAC4CH材に対して十分に鋳造性や
経済性に付いて競争力を満足しながら引っ張り強さが38
0MPa以上、伸びが9%以上、0.2%耐力が200MPa、衝撃
値が90kJ/m2以上という優れた機械的条件を満足させる
事が出来た。
This alloy is usually a P-containing material (P: 0.0004 to 0.003)
0% Sb: 0.05-0.2%
The metal structure of the T6 treated material of the cast material despite the fact that it is usually a P-containing material due to the presence of a small amount of Sb
(Refer to Fig. 1-No.62 Normal P content) can make eutectic Si finer than the normal P-containing material to which Sb is not added. 38 tensile strength while satisfying competitiveness in terms of castability and economy
Excellent mechanical conditions of 0 MPa or more, elongation of 9% or more, 0.2% proof stress of 200 MPa, and impact value of 90 kJ / m 2 or more could be satisfied.

【0011】「請求項3」の鋳物用高強度鋳造用アルミ
ニウム合金(第3実施例)は「Cu:3.5〜4.3%,Si:5.0〜
7.5%,Mg:0.10〜0.25%,Fe≦0.2%、P:0.0004〜0.003
0%、Sr:0.005〜0.030%を含有し、残部がAl及び不可
避不純物とからなる」事を特徴とする。
The high-strength casting aluminum alloy for casting according to claim 3 (third embodiment) has a composition of “Cu: 3.5-4.3%, Si: 5.0-
7.5%, Mg: 0.10 to 0.25%, Fe ≦ 0.2%, P: 0.0004 to 0.003
0%, Sr: 0.005 to 0.030%, and the balance consists of Al and unavoidable impurities. "

【0012】本合金は通常P含有材(P:0.0004〜0.003
0% 図1−No.59 通常P量 参照)にSr:0.005〜0.03
0%を含有させたもので、僅かなSrの存在により通常P
含有材であるにも拘わらず、鋳造材のT6処理材の金属組
織(図1−No.60 Sr 参照)は、Srを添加していない通
常P含有材に比べて共晶Siを微細化させる事が出来、そ
の結果、従来のAC4CH材に対して十分に鋳造性や経済性
に付いて競争力を満足しながら引っ張り強さが380MPa以
上、伸びが9%以上、0.2%耐力が200MPa、衝撃値が90k
J/m2以上という優れた機械的条件を満足させる事が出来
た。
This alloy is usually a P-containing material (P: 0.0004 to 0.003)
0% Sr: 0.005 to 0.03
0%, usually P due to the presence of slight Sr
Despite the inclusion, the metal structure of the cast T6 treated material (see Fig. 1-No.60 Sr) makes the eutectic Si finer than the normal P-containing material without Sr added. As a result, the tensile strength is more than 380MPa, the elongation is more than 9%, the 0.2% proof stress is 200MPa, and the impact is higher than the conventional AC4CH material while satisfying the competitiveness with sufficient castability and economy. Value is 90k
Excellent mechanical conditions of J / m 2 or more could be satisfied.

【0013】「請求項4」は請求項1〜3の何れかに記
載の高強度鋳造用アルミニウム合金にTiを添加したもの
で「Tiの添加量が、0.05〜0.35%である」事を特徴とす
る。「請求項5」は請求項1〜3の何れかに記載の高強
度鋳造用アルミニウム合金にTi及びBを添加したもので
「Tiの添加量が、0.05〜0.35%、Bの添加量が、0.003
%以下である」事を特徴とする。
[0013] Claim 4 is a high-strength aluminum alloy for casting according to any one of claims 1 to 3, to which Ti is added, wherein "the amount of Ti added is 0.05 to 0.35%". And "Claim 5" is obtained by adding Ti and B to the aluminum alloy for high-strength casting according to any one of claims 1 to 3, wherein "the addition amount of Ti is 0.05 to 0.35% and the addition amount of B is 0.003
% Or less ".

【0014】これによれば、TiやTi及びBを少量添加す
る事で、耐衝撃値の向上は望めないものの結晶粒の微細
化を図る事が出来、表面処理の仕上りが向上する。この
場合で、Tiだけを添加するよりは、TiにBを更に添加し
た方がより結晶粒の微細化を達成する事が出来る。(図1
4はその図面代用金属組織写真である。)なお、結晶粒の
微細化に伴い引っ張り強さや0.2%耐力は向上する。
According to this, by adding a small amount of Ti, Ti and B, it is possible to achieve a finer crystal grain, although the improvement of the impact resistance is not expected, and the finish of the surface treatment is improved. In this case, it is possible to further refine the crystal grains by adding B to Ti rather than adding only Ti. (Figure 1
4 is a photograph of the metallographic structure used as a drawing. ) In addition, tensile strength and 0.2% proof stress improve with refinement of crystal grains.

【0015】「請求項6」は請求項1〜5に記載の合金
の熱処理に関し、「請求項1〜5に記載の合金を鋳造し
た後、T6処理を施した」事を特徴とする。
[0015] Claim 6 relates to the heat treatment of the alloy according to claims 1 to 5, characterized in that "the alloy according to claims 1 to 5 is cast and then subjected to T6 treatment".

【0016】本発明合金は、鋳造の鋳放し状態では引っ
張り強さや伸びは従来のAC4CH材と大差がないが、T6処
理を施すことで共晶Siを微細化且つ粒状化する事で引っ
張り強さ380MPa以上、伸びが9%以上、0.2%耐力が200
MPa、衝撃値が90kJ/m2以上を達成出来た。
In the alloy of the present invention, the tensile strength and elongation in the as-cast state are not much different from those of the conventional AC4CH material, but the tensile strength is improved by making eutectic Si finer and granulated by performing T6 treatment. 380MPa or more, elongation 9% or more, 0.2% proof stress 200
MPa and impact value of 90 kJ / m 2 or more.

【0017】[0017]

【発明の実施の様態】以下、本発明の実施例(試料番号4
7,53,63,51,54,55,60,62,57,58)と比較例(試料番号49,4
6,48,44,43,50,52,56,59)とを比較しつつ詳述する。本
発明の実施例並びその比較例の成分表並びに機械的性質
を表3に示す。
Embodiments of the present invention will be described below with reference to Examples (Sample No. 4).
7,53,63,51,54,55,60,62,57,58) and Comparative Example (Sample Nos. 49,4
6, 48, 44, 43, 50, 52, 56, 59). Table 3 shows a component table and mechanical properties of Examples of the present invention and Comparative Examples thereof.

【0018】[0018]

【表3】 [Table 3]

【0019】本発明の対象となる高強度鋳造用アルミニ
ウム合金の第1実施例(試料番号No.47,53,63,51,54,55
顕微鏡写真は図1 No.47低Pを参照)は、以下の組成
を有する。
Example 1 of a high-strength casting aluminum alloy to which the present invention is applied (Sample Nos. 47, 53, 63, 51, 54, 55)
The micrograph (see FIG. 1 No. 47 low P) has the following composition:

【0020】Cu:3.5〜4.3%,Si:5.0〜7.5%,Mg:0.10〜
0.25%,Fe≦0.2%、P≦0.0003%、残部:Al及び不可避
不純物ここで特徴的なのは、Pの含有量が0.0003%以下
と通常のPの含有量(0.0004〜0.0030%)より小さい事で
ある。Pの含有量が高いと、T6処理した時の共晶Siが細
長く且つ大きく、これが切り欠き効果を生じ、機械的性
質、特に耐衝撃値を低下させる原因となっていたのに対
して、Pの含有量が0.0003%以下と通常のPの含有量よ
り低くする事でT6処理した時の共晶Siを微細且球状化さ
せる事が出来、機械的性質、特に耐衝撃値を向上させる
事が出来た。
Cu: 3.5 to 4.3%, Si: 5.0 to 7.5%, Mg: 0.10 to
0.25%, Fe ≦ 0.2%, P ≦ 0.0003%, balance: Al and unavoidable impurities The characteristic feature here is that the P content is less than 0.0003% and smaller than the usual P content (0.0004 to 0.0030%). is there. When the P content is high, the eutectic Si after T6 treatment is elongated and large, which causes a notch effect, which causes the mechanical properties, particularly the impact resistance, to decrease. By reducing the content of P to 0.0003% or less, which is lower than the usual content of P, eutectic Si after T6 treatment can be made fine and spherical, and the mechanical properties, especially the impact resistance, can be improved. done.

【0021】本発明の高強度鋳造用アルミニウム合金の
第2実施例(図1 試料番号No.62Sbを参照)は、以下の
組成を有する。
The second embodiment of the high-strength casting aluminum alloy of the present invention (see FIG. 1, sample No. 62Sb) has the following composition.

【0022】Cu:3.5〜4.3%,Si:5.0〜7.5%,Mg:0.10〜
0.25%,Fe≦0.2%、P:0.0004〜0.0030%、Sb:0.05〜
0.2% 残部:Al及び不可避不純物ここで特徴的なのは、Pの含
有量は0.0004〜0.0030%と通常材の含有量であるが、Sb
が0.05〜0.2%が少量添加されている点である。Sbの添
加された通常P含有鋳造材のT6処理材の金属組織は、Sb
を添加していない場合に比べて共晶Siを微細化させる事
が出来た。
Cu: 3.5-4.3%, Si: 5.0-7.5%, Mg: 0.10-
0.25%, Fe ≦ 0.2%, P: 0.0004 ~ 0.0030%, Sb: 0.05 ~
0.2% balance: Al and unavoidable impurities The characteristic feature here is that the content of P is 0.0004 to 0.0030%, which is the content of ordinary materials,
Is that a small amount of 0.05 to 0.2% is added. The metal structure of the T6 treated material of the ordinary P-containing cast material with Sb added is Sb
Eutectic Si could be made finer than in the case where no was added.

【0023】本発明の高強度鋳造用アルミニウム合金の
第3実施例(図1 試料番号No.60Srを参照)は、以下の
組成を有する。
The third embodiment of the high-strength casting aluminum alloy of the present invention (see FIG. 1, sample No. 60Sr) has the following composition.

【0024】Cu:3.5〜4.3%,Si:5.0〜7.5%,Mg:0.10〜
0.25%,Fe≦0.2%、P:0.0004〜0.0030%、Sr:0.005
〜0.030% 残部:Al及び不可避不純物ここで特徴的なのは、第2実
施例と同様、Pの含有量は0.0004〜0.0030%と通常材の
含有量であるが、Srが0.005〜0.030%と少量添加されて
いる点である。Sbの添加された通常P含有鋳造材のT6処
理材の金属組織は、Sbを添加していない場合に比べて共
晶Siを微細化させる事が出来た。
Cu: 3.5 to 4.3%, Si: 5.0 to 7.5%, Mg: 0.10 to
0.25%, Fe ≦ 0.2%, P: 0.0004-0.0030%, Sr: 0.005
-0.030% Remainder: Al and unavoidable impurities The characteristic feature is that the P content is 0.0004-0.0030% as in the case of the ordinary material, as in the second embodiment, but the Sr content is as small as 0.005-0.030%. That is the point. The metal structure of the T6 treated material of the ordinary P-containing cast material to which Sb was added was able to make eutectic Si finer than in the case where Sb was not added.

【0025】本発明の第4実施例(試料番号No.57)は、前
記第1〜3実施例に示す合金にTi:0.05〜0.35%を添加
したものであり、第5実施例(試料番号No.58)は前記第
1〜3実施例に示す合金にTi:0.05〜0.35%、及びB:
0.003%以下を添加したものである。TiやTi及びBの少
量添加は、耐衝撃値の向上の改善には寄与しないが、T6
処理材の結晶粒の微細化を図る事が出来、表面処理の仕
上りの向上に寄与する。
The fourth embodiment (sample No. 57) of the present invention is obtained by adding 0.05 to 0.35% of Ti to the alloys shown in the first to third embodiments. No. 58) was obtained by adding 0.05 to 0.35% of Ti:
0.003% or less is added. Although the addition of a small amount of Ti, Ti and B does not contribute to the improvement of the impact resistance value,
The crystal grains of the treatment material can be made finer, which contributes to the improvement of the surface treatment finish.

【0026】前記第1〜5実施例に示す合金は、鋳造の
鋳放し状態では引っ張り強さや伸びは従来のAC4CH材と
大差がないため通常はT6処理と呼ばれる熱処理が行われ
る。T6処理の処理条件は、溶体化温度が500〜520℃、溶
体化時間は、4〜12時間、時効処理温度は140〜180℃、
時効処理時間は2〜7時間である。本発明合金は、T6処
理を施すことで引っ張り強さ380MPa以上、伸びが9%以
上、0.2%耐力が200MPa、衝撃値が90kJ/m2以上を達成出
来た。
The alloys shown in the first to fifth embodiments have a tensile strength and an elongation that are substantially the same as those of the conventional AC4CH material in an as-cast state, and are usually subjected to a heat treatment called T6 treatment. The processing conditions of T6 treatment are as follows: solution temperature is 500-520 ° C, solution time is 4-12 hours, aging temperature is 140-180 ° C,
The aging time is 2 to 7 hours. The alloy of the present invention achieved a tensile strength of 380 MPa or more, an elongation of 9% or more, a 0.2% proof stress of 200 MPa, and an impact value of 90 kJ / m 2 or more by performing T6 treatment.

【0027】次に本発明合金と比較例とを示す。実施例
1(試料番号No.47,53,63,51,54,55)と比較例(試料番号N
o.49,46,48,44,43,50,52,56)は何れもPが0.0003%と低
く、Cu、Si、Mg、Feの含有量を変化させてその影響を調
べた。比較例(試料番号No.59)はCu、Si、Mg、Feの含有
量を規定範囲とし、Pを0.0007%と高くしPの影響を調
べた。実施例(試料番号No.60,62)はPの量を規定以上の
0.0019%及び0.0010%とし、これにSr、Sbを添加してS
r、Sbの効果を調べた。実施例(試料番号No.57)はPの量
を含めて規定範囲内とし、これにTiを添加し、実施例
(試料番号No.58)はPの量を含めて規定範囲内とし、こ
れにTiとBとを添加して、Ti及びBの影響を調べた。表
1の合金は何れもT6処理したもので処理条件は、520℃
で12時間の溶体化処理を行い、水冷後、160℃で5時間
の時効処理を行い、その後、空冷した。
Next, the alloy of the present invention and a comparative example will be described. Example 1 (Sample No. 47, 53, 63, 51, 54, 55) and Comparative Example (Sample No.
o. 49, 46, 48, 44, 43, 50, 52, 56), all had low P of 0.0003%, and the effects were examined by changing the contents of Cu, Si, Mg, and Fe. In the comparative example (sample number No. 59), the contents of Cu, Si, Mg, and Fe were set in the specified ranges, and P was increased to 0.0007%, and the influence of P was examined. In the examples (Sample Nos. 60 and 62), the amount of P was
0.0019% and 0.0010%, to which Sr and Sb are added
The effects of r and Sb were investigated. In the example (sample No. 57), the content was within the specified range including the amount of P, and Ti was added thereto.
(Sample No. 58) was within the specified range including the amount of P, and Ti and B were added thereto, and the effects of Ti and B were examined. All the alloys in Table 1 were T6 treated and the treatment conditions were 520 ° C.
For 12 hours, water-cooling, aging treatment at 160 ° C. for 5 hours, and then air-cooled.

【0028】Cuの添加は、溶体化処理後、時効処理によ
り銅−アルミニウム金属間化合物(例えば、CuAl2化合
物)を析出させ、これによりα-Alを強化しT6処理材の
引っ張り強さの向上を図るものである。他の成分が、規
定範囲内でCu量が3.24%と低い場合(比較例=試料番号4
9)は、引っ張り強さが364MPaと低く、Cu量が4.51%と高
い場合(比較例=試料番号46)は、伸びが5.2%、衝撃値
が66kJ/m2と低い。(比較例=試料番号48)も同様の傾向
を示す。これに対して、Cu量が4.03%の場合(実施例=
試料番号47)は、引っ張り強さ395MPa、伸びが10.4%、
0.2%耐力が229MPa、衝撃値が109kJ/m2という値を示し
目標値を達成した。また、銅の含有量の変化と機械的性
質の変化を図2に示す。Al-X%Cu-7%Si-0.2%Mg-0.1%Fe-
低P合金のT6処理材での銅の含有量が4%前後(即ち、
3.5〜4.3%)が目標の機械的性質を満足する範囲である
事が分かる。
After the solution treatment, the addition of Cu precipitates a copper-aluminum intermetallic compound (eg, CuAl 2 compound) by aging treatment, thereby strengthening α-Al and improving the tensile strength of the T6 treated material. It is intended. When the Cu content of other components is as low as 3.24% within the specified range (Comparative Example = Sample No. 4
In 9), when the tensile strength is as low as 364 MPa and the Cu content is as high as 4.51% (Comparative Example = Sample No. 46), the elongation is 5.2% and the impact value is as low as 66 kJ / m 2 . (Comparative Example = Sample No. 48) shows the same tendency. On the other hand, when the Cu content is 4.03% (Example =
Sample No. 47) has a tensile strength of 395 MPa, an elongation of 10.4%,
0.2% proof stress is 229MPa, impact value was achieved the target value indicates a value of 109kJ / m 2. FIG. 2 shows a change in copper content and a change in mechanical properties. Al-X% Cu-7% Si-0.2% Mg-0.1% Fe-
Copper content in low P alloy T6 treated material is around 4% (ie,
(3.5 to 4.3%) is within the range satisfying the target mechanical properties.

【0029】Siの添加は、溶湯の流動性を確保して鋳造
性の向上を図るものである。他の成分が、規定範囲内で
Si量が9%以上と高い場合(比較例=試料番号44,43)
は、伸びが3〜4%、衝撃値が45〜47kJ/m2と低い。Si
量が5%以下の場合は、流動性が低く鋳造材として使用
できない。これに対して、Si量が5〜7%の場合(実施
例=試料番号46,48)は、引っ張り強さ390MPa以上、伸び
が10.4%、0.2%耐力が229MPa、衝撃値が109kJ/m2とい
う値を示し目標値を達成した。また、Siの含有量の変化
と機械的性質の変化を図3に示す。Al-4%Cu-X%Si-0.2%M
g-0.1%Fe-低P合金のT6処理材でのSiの含有量が7%前
後(即ち、5.0〜7.5%)が目標の機械的性質を満足する範
囲である事が分かる。
The addition of Si is intended to secure the fluidity of the molten metal and improve the castability. Other ingredients within the specified range
When the amount of Si is as high as 9% or more (Comparative example = sample numbers 44 and 43)
The elongation 3-4%, the impact value is low and 45~47kJ / m 2. Si
When the amount is 5% or less, the fluidity is low and it cannot be used as a casting material. On the other hand, when the Si content is 5 to 7% (Examples: sample numbers 46 and 48), the tensile strength is 390 MPa or more, the elongation is 10.4%, the 0.2% proof stress is 229 MPa, and the impact value is 109 kJ / m 2. And achieved the target value. FIG. 3 shows a change in Si content and a change in mechanical properties. Al-4% Cu-X% Si-0.2% M
It can be seen that the content of Si in the T6 treated material of g-0.1% Fe-low P alloy is around 7% (that is, 5.0-7.5%), which is a range satisfying the target mechanical properties.

【0030】Mg添加は、溶体化処理を行い、続いて時効
処理を行う事で、Cuと同様にマグネシウム−シリコン金
属間化合物(例えば、Mg2SiやAl−Cu−Mg化合物)が析
出しα−Al相を強化する。他の成分が、規定範囲内でMg
量が0.01%と低い場合(比較例=試料番号50)は、引っ張
り強さが380MPa、伸びが8.9%と低く、逆にMg量が0.30
%と高い場合(比較例=試料番号52)は、伸びが5.4%、
衝撃値が75kJ/m2と低い。Mg量が0.10〜0.20%の場合(実
施例=試料番号44,43)は、引っ張り強さ386MPa以上、伸
びが10.4%以上、0.2%耐力が219MPa以上、衝撃値が109
kJ/m2という値を示し目標値を達成した。また、Mgの含
有量の変化と機械的性質の変化を図4に示す。Al-4%Cu-
7%Si-X%Mg-0.1%Fe-低P合金のT6処理材でのMgの含有量
が0.15%前後(即ち、0.10〜0.25%)が目標の機械的性質
を満足する範囲である事が分かる。
In the case of adding Mg, a solution treatment is performed, followed by an aging treatment, whereby a magnesium-silicon intermetallic compound (for example, Mg 2 Si or an Al—Cu—Mg compound) precipitates like α, and α Strengthen the Al phase; Other components, within the specified range Mg
When the amount is as low as 0.01% (Comparative Example = Sample No. 50), the tensile strength is 380 MPa, the elongation is as low as 8.9%, and the Mg amount is 0.30.
% (Comparative Example = Sample No. 52), the elongation is 5.4%,
Impact value as low as 75 kJ / m 2. When the Mg content is 0.10 to 0.20% (Examples: sample numbers 44 and 43), the tensile strength is 386 MPa or more, the elongation is 10.4% or more, the 0.2% proof stress is 219 MPa or more, and the impact value is 109
The value of kJ / m 2 was achieved, achieving the target value. FIG. 4 shows changes in the content of Mg and changes in mechanical properties. Al-4% Cu-
7% Si-X% Mg-0.1% Fe-Low P alloy T6 treated material with Mg content around 0.15% (that is, 0.10-0.25%) is a range that satisfies the target mechanical properties I understand.

【0031】Fe添加は、機械的強度を低下させる元素で
あるので低いほど好ましく、他の成分が、規定範囲内で
Fe量が0.29%と高い場合(比較例=試料番号56)は、引っ
張り強さが377MPa、伸びが8.5%、衝撃値が88kJ/m2と低
い。これに対して、Fe量が0.20%以下と低い場合(実施
例=試料番号55)は、引っ張り強さ383MPa以上、伸びが
9.9%以上、0.2%耐力が223MPa以上、衝撃値が98kJ/m2
という値を示し目標値を達成した。また、Feの含有量の
変化と機械的性質の変化を図5に示す。Al-4%Cu-7%Si-
0.15%Mg-X%Fe-低P合金のT6処理材でのFeの含有量が0.2
%以下が目標の機械的性質を満足する範囲である事が分
かる。
Since Fe addition is an element which lowers the mechanical strength, the lower it is, the more preferable it is.
When the Fe content is as high as 0.29% (Comparative Example = Sample No. 56), the tensile strength is 377 MPa, the elongation is 8.5%, and the impact value is as low as 88 kJ / m 2 . On the other hand, when the Fe content is as low as 0.20% or less (Example = Sample No. 55), the tensile strength is 383 MPa or more and the elongation is
9.9% or more, 0.2% proof stress is 223MPa or more, impact value is 98kJ / m 2
And achieved the target value. FIG. 5 shows a change in Fe content and a change in mechanical properties. Al-4% Cu-7% Si-
Fe content in T6 treated material of 0.15% Mg-X% Fe-low P alloy is 0.2
% Or less is a range that satisfies the target mechanical properties.

【0032】なお、(比較例=試料番号59)は高P材であ
り、伸びは7.6%、衝撃値は70kJ/m2と低い値を示す。こ
れは、(図1の試料番号59のマクロ組織写真)に示すよう
にT6処理材の共晶Siが細長く且つ大きく成長しているた
めで、前述のように低Pにする事で、共晶Siの微細化且
つ粒状化を計ることで引っ張り強さや0.2%耐力は勿
論、目標の伸びや衝撃値を達成する事が出来る。
Incidentally, (Comparative Example = Sample No. 59) is a high-P material, showing a low elongation of 7.6% and a low impact value of 70 kJ / m 2 . This is because the eutectic Si of the T6 treated material is elongated and large as shown in the macrostructure photograph of sample No. 59 in FIG. 1. By measuring the fineness and grain size of Si, not only the tensile strength and 0.2% proof stress, but also the target elongation and impact value can be achieved.

【0033】次に、(実施例=試料番号60,62)に付いて
説明する。この場合はSb、Srを添加した場合で、Pの含
有量が規定量より多く、伸びや衝撃値が低くなるが、S
b、Srの添加により共晶Siを微細化及び粒状化を図り、
伸びや衝撃値の改善を達成したものである。(実施例=
試料番号60)の場合、P:0.0019%に対してSrを0.0088
%添加することで、目標の機械的性質を達成する事が出
来、(実施例=試料番号62)の場合、P:0.0010%に対し
てSbを0.158%添加することで、目標の機械的性質を達
成する事が出来た。
Next, (Example = sample numbers 60 and 62) will be described. In this case, when Sb and Sr were added, the content of P was larger than the specified amount, and the elongation and impact value were low.
b, Addition of Sr to refine and granulate eutectic Si,
This is an improvement in elongation and impact value. (Example =
In the case of sample No. 60), P: 0.0019% and Sr 0.0088%
%, The target mechanical properties can be achieved. In the case of (Example = sample No. 62), the target mechanical properties can be achieved by adding 0.158% of Sb to P: 0.0010%. Was achieved.

【0034】次に、図6〜10において、機械的性質とと
改良剤との関係を示す。ここで使用される合金は、Al-4
%Cu-7%Si-0.15%Mg-0.1%Fe-合金の高P材(比較例=試料
番号59)、低P材(P≦0.0003%)、Sb添加材及びSr添加
材のT6処理材である。図6は、引っ張り強さと改良剤と
の関係に関するものでいずれの平均値も目標値を越えて
いる。ただ、Sr添加材の場合、バラツキが大きいという
傾向にある。
Next, FIGS. 6 to 10 show the relationship between the mechanical properties and the modifier. The alloy used here is Al-4
% P-7% Si-0.15% Mg-0.1% Fe-alloy high P material (comparative example = sample No.59), low P material (P ≦ 0.0003%), Tb treated material with Sb additive material and Sr additive material It is. FIG. 6 relates to the relationship between the tensile strength and the modifier, and all the average values exceed the target values. However, in the case of the Sr-added material, the dispersion tends to be large.

【0035】図7は、0.2%耐力と改良剤との関係に関
するものでいずれの平均値も目標値を越えている。Sb添
加材はバラツキが少ないが他の3つのバラツキは大き
い。
FIG. 7 shows the relationship between the 0.2% proof stress and the modifier, and all the average values exceed the target values. The Sb additive has little variation, but the other three variations are large.

【0036】図8は、伸びと改良剤との関係に関するも
ので、高P材の平均値は7.4%と目標の9%を大きく下
回る。他の3つは10%以上を示し、目標値を越えてい
る。
FIG. 8 relates to the relationship between the elongation and the improver. The average value of the high P material is 7.4%, which is far below the target of 9%. The other three show more than 10%, exceeding the target.

【0037】図9は、衝撃値と改良剤との関係に関する
もので、高P材の平均値は70kJ/m2と目標の90kJ/m2を大
きく下回る。他の3つは100kJ/m2以上を示し、目標値を
越えている。
FIG. 9 relates to the relationship between the impact value and the modifier, and the average value of the high P material is 70 kJ / m 2, which is much lower than the target value of 90 kJ / m 2 . The other three showed 100 kJ / m 2 or more, exceeding the target value.

【0038】図10〜13は、低P材にTi或いはTi+Bを添
加した場合の機械的性質の変化を調べたもので、Al-4%C
u-7%Si-0.15%Mg-0.1%Fe-低P合金を比較例とし、これに
Ti或いはTi+Bを添加したものである。マクロ組織写真
を図14に示す。低P材でTi或いはTi+Bの無添加材に比
べて低P材でTi添加材の方が、更には低P材でTi+B添
加材の方が結晶粒が微細化している事が分かる。いずれ
もT6処理材である。
FIGS. 10 to 13 show changes in mechanical properties when Ti or Ti + B was added to the low P material.
u-7% Si-0.15% Mg-0.1% Fe-low P alloy is a comparative example.
Ti or Ti + B is added. The macro structure photograph is shown in FIG. It can be seen that the crystal grains are finer in the low-P material with the Ti-added material and in the low-P material with the Ti + B-added material than in the low-P material with no added Ti or Ti + B. Both are T6 treated materials.

【0039】図10では、低P材と低P材にTi或いはTi+
B添加材した場合における引っ張り強さの変化を調べた
もので、その平均値は割と等しく、粒子の微細化した分
だけ引っ張り強度が高くなる傾向にある。即ち、低P材
に比べてTi添加低P材の方が、Ti添加低P材に比べてTi
+B添加低P材の方が高い。
In FIG. 10, Ti or Ti + is added to the low P material and the low P material.
The change in tensile strength when the B additive was used was examined. The average value was equal to a certain value, and the tensile strength tended to increase as the particles became finer. That is, the Ti-added low-P material has a higher Ti content than the low-P material.
+ P added low P material is higher.

【0040】図11では、低P材と低P材にTi或いはTi+
B添加材した場合における0.2%耐力の変化を調べたも
ので、この場合もその平均値は割と等しく、Ti添加低P
材が最も高く、次Ti+B添加低P材が高く、低P材が最
も低い値を示した。
In FIG. 11, Ti or Ti + is added to the low P material and the low P material.
The change in 0.2% proof stress when B was added was examined. In this case also, the average value was equal to a percentage.
The low P material showed the highest value, and the low P material added the next Ti + B showed the lowest value.

【0041】図12では、低P材と低P材にTi或いはTi+
B添加材した場合における伸びの変化を調べたもので、
Ti+B添加低P材と低P材とが同程度の伸びを示した
が、Ti添加低P材の伸びは前2者より下回り、伸びの目
標値を若干上回る程度であった。
In FIG. 12, Ti or Ti + is added to the low P material and the low P material.
Investigation of the change in elongation when B additive is used.
The Ti + B-added low-P material and the low-P material showed the same elongation, but the elongation of the Ti-added low-P material was lower than the former two, and was slightly higher than the target value of elongation.

【0042】図13では、低P材と低P材にTi或いはTi+
B添加材した場合における衝撃値の変化を調べたもの
で、低P材に比べてTi+B添加低P材とTi添加低P材の
衝撃値は大きく低下し、衝撃値の目標値を若干上回る程
度であった。
In FIG. 13, Ti or Ti + is added to the low P material and the low P material.
The change in impact value when B-added material was examined. The impact value of Ti + B-added low-P material and Ti-added low-P material was significantly lower than that of low-P material, and slightly exceeded the target value of the impact value. Met.

【0043】[0043]

【発明の効果】以上のように、本発明合金の第1はP≦
0.0003%と低P材とする事で、第2及び3は、P:0.00
04〜0.0030%と高P材であったとしてもSbやSrを添加す
る事で、共晶Siの微細化と粒状化とを達成し、鋳造性は
元より経済性も満足し、しかもT6処理材の引っ張り強さ
が380MPa以上、伸びが9%以上、0.2%耐力が200MPa、
衝撃値が90kJ/m2以上という目標値を超える事が出来
た。
As described above, the first aspect of the alloy of the present invention is that P ≦
By using a low P material as low as 0.0003%, the second and third P: 0.00
Even if the P material is as high as 04-0.0030%, by adding Sb and Sr, the eutectic Si can be refined and granulated, and the castability satisfies the economic efficiency as well as the T6 treatment. The material has tensile strength of 380MPa or more, elongation of 9% or more, 0.2% proof stress of 200MPa,
The impact value exceeded the target value of 90 kJ / m 2 or more.

【0044】又、本発明合金の前記低P材にTi又はTi及
びBを添加することで、機械的性質を損なう事なく結晶
粒の微細化を達成し、これにより表面処理をした時の美
観の向上を図る事が出来た。
Further, by adding Ti or Ti and B to the low-P material of the alloy of the present invention, the crystal grains can be refined without impairing the mechanical properties, and thereby the aesthetic appearance when the surface treatment is performed. Was able to be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比較例となる高P材、本発明合金に係
る低P材、Sr添加材及びSb添加材の各図面代用顕微鏡写
真図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a micrograph of a high-P material as a comparative example of the present invention, a low-P material, an Sr-added material, and an Sb-added material according to the alloy of the present invention.

【図2】Cu含有量と機械的性質との関係を示すグラフFIG. 2 is a graph showing the relationship between Cu content and mechanical properties.

【図3】Si含有量と機械的性質との関係を示すグラフFIG. 3 is a graph showing the relationship between Si content and mechanical properties.

【図4】Mg含有量と機械的性質との関係を示すグラフFIG. 4 is a graph showing the relationship between Mg content and mechanical properties.

【図5】Fe含有量と機械的性質との関係を示すグラフFIG. 5 is a graph showing the relationship between Fe content and mechanical properties.

【図6】機械的性質と高P及び改良剤との関係を示すグ
ラフ
FIG. 6 is a graph showing the relationship between mechanical properties and high P and modifier.

【図7】0.2%耐力と高P及び改良剤との関係を示すグ
ラフ
FIG. 7 is a graph showing the relationship between 0.2% proof stress, high P and modifier.

【図8】伸びと高P及び改良剤との関係を示すグラフFIG. 8 is a graph showing the relationship between elongation, high P, and modifier.

【図9】衝撃値と高P及び改良剤との関係を示すグラフFIG. 9 is a graph showing the relationship between impact value and high P and modifier.

【図10】低P材、Ti添加低P材及びTi+B添加低P材
の引っ張り強さの関係を示すグラフ
FIG. 10 is a graph showing the relationship between the tensile strength of a low P material, a Ti-added low P material, and a Ti + B added low P material.

【図11】低P材、Ti添加低P材及びTi+B添加低P材
の0.2%耐力の関係を示すグラフ
FIG. 11 is a graph showing the relationship between 0.2% proof stress of a low P material, a Ti-added low P material, and a Ti + B added low P material.

【図12】低P材、Ti添加低P材及びTi+B添加低P材
の伸びの関係を示すグラフ
FIG. 12 is a graph showing the relationship between the elongation of a low P material, a Ti-added low P material, and a Ti + B added low P material.

【図13】低P材、Ti添加低P材及びTi+B添加低P材
の衝撃値の関係を示すグラフ
FIG. 13 is a graph showing a relationship between impact values of a low P material, a Ti-added low P material, and a Ti + B added low P material.

【図14】本実施例における基準例となる低P材及びこ
れに対するTi添加低P材及びTi+B添加低P材各図面代
用マクロ組織写真図
FIG. 14 is a photograph showing a macrostructure of a low-P material serving as a reference example and a Ti-added low-P material and a Ti + B-added low-P material for the low-P material serving as reference examples in the present embodiment.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cu:3.5〜4.3%,Si:5.0〜7.5%,M
g:0.10〜0.25%,Fe≦0.2%、P≦0.0003%を含有し、残
部がAl及び不可避不純物とからなる事を特徴とする高強
度鋳造用アルミニウム合金。
1. Cu: 3.5-4.3%, Si: 5.0-7.5%, M
g: A high-strength casting aluminum alloy containing 0.10 to 0.25%, Fe ≦ 0.2%, and P ≦ 0.0003%, with the balance being Al and unavoidable impurities.
【請求項2】 Cu:3.5〜4.3%,Si:5.0〜7.5%,M
g:0.10〜0.25%,Fe≦0.2%、P:0.0004〜0.0030%、S
b:0.05〜0.2%を含有し、残部がAl及び不可避不純物と
からなる高強度鋳造用アルミニウム合金。
2. Cu: 3.5-4.3%, Si: 5.0-7.5%, M
g: 0.10 to 0.25%, Fe ≤ 0.2%, P: 0.0004 to 0.0030%, S
b: A high-strength casting aluminum alloy containing 0.05 to 0.2%, with the balance being Al and unavoidable impurities.
【請求項3】 Cu:3.5〜4.3%,Si:5.0〜7.5%,M
g:0.10〜0.25%,Fe≦0.2%、P:0.0004〜0.0030%、S
r:0.005〜0.030%を含有し、残部がAl及び不可避不純
物とからなる事を特徴とする高強度鋳造用アルミニウム
合金。
3. Cu: 3.5-4.3%, Si: 5.0-7.5%, M
g: 0.10 to 0.25%, Fe ≤ 0.2%, P: 0.0004 to 0.0030%, S
r: A high-strength casting aluminum alloy containing 0.005 to 0.030%, with the balance being Al and unavoidable impurities.
【請求項4】 請求項1〜3の何れかに記載の高
強度鋳造用アルミニウム合金において、Ti:0.05〜0.35
%添加した事を特徴とする高強度鋳造用アルミニウム合
金。
4. The aluminum alloy for high-strength casting according to claim 1, wherein Ti: 0.05 to 0.35.
% High-strength aluminum alloy for casting.
【請求項5】 請求項1〜3の何れかに記載の高
強度鋳造用アルミニウム合金において、Ti:0.05〜0.35
%、B≦0.003%添加した事を特徴とする高強度鋳造用
アルミニウム合金。
5. The aluminum alloy for high-strength casting according to claim 1, wherein Ti: 0.05 to 0.35.
%, B ≦ 0.003%. High strength aluminum alloy for casting.
【請求項6】 請求項1〜5に記載の合金を鋳造
した後、T6処理を施した事を特徴とする高強度鋳造用ア
ルミニウム合金鋳物。
6. An aluminum alloy casting for high-strength casting, wherein the alloy according to claim 1 is cast and then subjected to T6 treatment.
JP29957899A 1999-10-21 1999-10-21 High strength aluminum alloy for casting and aluminum alloy casting Pending JP2001123239A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29957899A JP2001123239A (en) 1999-10-21 1999-10-21 High strength aluminum alloy for casting and aluminum alloy casting
EP00309071A EP1096028A3 (en) 1999-10-21 2000-10-16 High-strength aluminum alloy for pressure casting and cast aluminum alloy comprising the same
EP03006409A EP1347066A2 (en) 1999-10-21 2000-10-16 High-strength aluminium alloy for pressure casting and cast aluminium alloy comprising the same
EP03006408A EP1371741A2 (en) 1999-10-21 2000-10-16 High-strength aluminium alloy for pressure casting and cast aluminium alloy comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29957899A JP2001123239A (en) 1999-10-21 1999-10-21 High strength aluminum alloy for casting and aluminum alloy casting

Publications (1)

Publication Number Publication Date
JP2001123239A true JP2001123239A (en) 2001-05-08

Family

ID=17874460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29957899A Pending JP2001123239A (en) 1999-10-21 1999-10-21 High strength aluminum alloy for casting and aluminum alloy casting

Country Status (2)

Country Link
EP (3) EP1096028A3 (en)
JP (1) JP2001123239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031788A (en) * 2005-07-27 2007-02-08 Aisin Aw Co Ltd Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy
KR20190093614A (en) * 2016-12-14 2019-08-09 제이에프이 스틸 가부시키가이샤 A grain-oriented electrical steel sheet and its manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ540653A (en) 2002-12-23 2008-02-29 Lundbeck & Co As H A process for the preparation of racemic citalopram diol and/or S- or R- citalopram diols and the use of such diols for the preparation of racemic citalopram, R-citalopram and/or S-citalopram
CN103266243A (en) * 2013-06-06 2013-08-28 中南林业科技大学 High performance aluminum alloy for low pressure casting of minicar structural member and preparation method of high performance aluminum alloy
CN103643088B (en) * 2013-11-29 2016-03-16 哈尔滨工业大学 A kind of Modification Manners of ADC12 aluminium alloy
GB201402323D0 (en) 2014-02-11 2014-03-26 Univ Brunel A high strength cast aluminium alloy for high pressure die casting
CN106917014B (en) * 2017-02-23 2019-03-01 中国第一汽车股份有限公司 A kind of car aluminium alloy knuckle and its extrusion casting method
GB201713005D0 (en) 2017-08-14 2017-09-27 Univ Brunel The alloy and manufacturing method of Al-Si-Mg castings for improved mechanical performance
CN110042281B (en) * 2019-04-23 2020-10-23 中国兵器工业第五九研究所 Cast aluminum alloy and preparation method thereof
US20240018631A1 (en) * 2020-12-07 2024-01-18 Norsk Hydro Asa A high temperature stable alsicu alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274043A (en) * 1985-09-27 1987-04-04 Ube Ind Ltd High strength aluminum alloy for pressure casting
JP2551882B2 (en) * 1991-07-03 1996-11-06 日本軽金属株式会社 Aluminum alloy for forging
JPH06145866A (en) * 1992-11-13 1994-05-27 Ube Ind Ltd Aluminum alloy for high pressure casting excellent in castability
DE69403716T2 (en) * 1993-03-26 1997-10-23 Hitachi Metals Ltd Airtight cast aluminum alloy casting and manufacturing method
JPH07242975A (en) * 1994-03-03 1995-09-19 Hitachi Metals Ltd Aluminum alloy casting excellent in airtightness
JPH08199275A (en) * 1995-01-20 1996-08-06 Daiki Alum Kogyosho:Kk Aluminum-silicon alloy
JPH09263867A (en) * 1996-01-24 1997-10-07 Mitsubishi Chem Corp Aluminum alloy for casting
JPH10158772A (en) * 1996-11-29 1998-06-16 Hitachi Metals Ltd Rocker arm and its production
JPH10251790A (en) * 1997-03-13 1998-09-22 Hitachi Metals Ltd Aluminum alloy casting excellent in thermal fatigue strength
JP3271550B2 (en) * 1997-05-21 2002-04-02 トヨタ自動車株式会社 High heat-resistant aluminum alloy casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031788A (en) * 2005-07-27 2007-02-08 Aisin Aw Co Ltd Aluminum alloy for casting, manufacturing method therefor, and method for manufacturing cast product of aluminum alloy
JP4623372B2 (en) * 2005-07-27 2011-02-02 アイシン・エィ・ダブリュ株式会社 Aluminum alloy for casting, method for producing the same, and method for producing aluminum alloy cast product
KR20190093614A (en) * 2016-12-14 2019-08-09 제이에프이 스틸 가부시키가이샤 A grain-oriented electrical steel sheet and its manufacturing method
KR102263869B1 (en) 2016-12-14 2021-06-11 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method

Also Published As

Publication number Publication date
EP1371741A2 (en) 2003-12-17
EP1096028A3 (en) 2002-02-06
EP1096028A2 (en) 2001-05-02
EP1347066A2 (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
WO2005106057A2 (en) Heat treatable al-zn-mg alloy for aerospace and automotive castings
JP2009506215A (en) Cast aluminum alloy
JP2001123239A (en) High strength aluminum alloy for casting and aluminum alloy casting
JP6028546B2 (en) Aluminum alloy
CN109136697B (en) High-strength aluminum-copper aluminum alloy
US6416710B1 (en) High-strength aluminum alloy for pressure casting and cast aluminum alloy comprising the same
JPS6151017B2 (en)
JPH07242976A (en) Aluminum alloy for elongation, excellent in heat resistance, and its production
JPH07145440A (en) Aluminum alloy forging stock
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPS6154853B2 (en)
JP3303661B2 (en) Heat resistant high strength aluminum alloy
JP2693175B2 (en) Aluminum alloy with excellent heat resistance
JPH1017975A (en) Aluminum alloy for casting
JPH0860281A (en) Ductile aluminum alloy having high rigidity and high heat resistance
JP5910206B2 (en) Aluminum alloy
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
US2290024A (en) Aluminum alloy
JPH07179977A (en) Highly heat resistant aluminum alloy and its production
JPH07216486A (en) Aluminum alloy for squeeze casting
JPH0547613B2 (en)
JP2023513664A (en) Copper-nickel-silicon-manganese (Cu-Ni-Si-Mn) alloy containing G phase and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624