JP2001121003A - Article having photocatalytic activity - Google Patents

Article having photocatalytic activity

Info

Publication number
JP2001121003A
JP2001121003A JP30946299A JP30946299A JP2001121003A JP 2001121003 A JP2001121003 A JP 2001121003A JP 30946299 A JP30946299 A JP 30946299A JP 30946299 A JP30946299 A JP 30946299A JP 2001121003 A JP2001121003 A JP 2001121003A
Authority
JP
Japan
Prior art keywords
layer
article
electron
photocatalytic activity
accepting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30946299A
Other languages
Japanese (ja)
Other versions
JP3879334B2 (en
Inventor
Kazuhiro Doshita
和宏 堂下
Tetsuo Kawahara
哲郎 河原
Hiroaki Tada
弘明 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP30946299A priority Critical patent/JP3879334B2/en
Publication of JP2001121003A publication Critical patent/JP2001121003A/en
Application granted granted Critical
Publication of JP3879334B2 publication Critical patent/JP3879334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an article covered with a phtocatalyst film which havs a high activity to an organic compound decomposition reaction and does not suffes action saturation or deterioration of photcatalytic action even by exposure to high intensity light or by exposure to light for a long period of time. SOLUTION: An article having a photocatalytic activity and formed by laminating a photocatalyst layer comprising an n type semiconductor and an electron accepting layer comprising an n type semiconductor having a larger energy band gap than that of the n type semiconductor of the phtocatalyst layer on the surface of a substrate is characterized in that one layer of the photocatalyst layer and the electron accepting layer, which is farther, from the substrate covers a part of the other layer nearer to the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒層を被覆し
た物品、特に、有害物質分解、防汚性、防曇性等の機能
を有する光触媒膜被覆物品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an article coated with a photocatalyst layer, and more particularly to an article coated with a photocatalyst film having functions such as decomposition of harmful substances, antifouling property and antifogging property.

【0002】[0002]

【従来の技術】酸化チタンの光触媒機能を有する薄膜を
用いて、有害物質を分解する環境浄化技術や、有機物汚
れを分解するとともに表面を親水化することで防汚性を
得る技術を種々の物品に応用することが試みられてい
る。この場合、実用的な機能を有するためには、酸化チ
タン膜の光触媒活性を大きくすることがきわめて重要で
ある。
2. Description of the Related Art Various articles have been developed for environmental purification technology for decomposing harmful substances by using a thin film of titanium oxide having a photocatalytic function, and for obtaining antifouling properties by decomposing organic dirt and making the surface hydrophilic. Attempts have been made to apply it to In this case, in order to have a practical function, it is extremely important to increase the photocatalytic activity of the titanium oxide film.

【0003】光触媒活性を大きくするためには、酸化チ
タン膜中で光照射によって励起された電子と正孔の電荷
分離を促進し、再結合の機会を少なくすることが試みら
れている。
In order to increase the photocatalytic activity, attempts have been made to promote the charge separation between electrons and holes excited by light irradiation in a titanium oxide film and to reduce the chance of recombination.

【0004】特開平11−10006号公報には、基体
と光触媒層の間に導電性の中間層を設けた積層構成の光
触媒物品が開示されている。
Japanese Patent Application Laid-Open No. 11-10006 discloses a photocatalyst article having a laminated structure in which a conductive intermediate layer is provided between a substrate and a photocatalyst layer.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は光触媒層内部の励起電子あるいは正孔が減少し、表面
近傍のバンドの曲がりが維持されるので光照射強度が増
加しても光触媒活性が低下しない。しかしながら、さら
に光照射強度が大きい、あるいは光照射が長期間に及ぶ
と、中間層に電子が蓄積し、意図した効果が得られない
という問題があった。
In the above prior art, the number of excited electrons or holes in the photocatalyst layer is reduced, and the bending of the band near the surface is maintained, so that even if the light irradiation intensity increases, the photocatalytic activity decreases. do not do. However, when the light irradiation intensity is further increased or the light irradiation is performed for a long period of time, electrons accumulate in the intermediate layer, and there is a problem that the intended effect cannot be obtained.

【0006】本発明は光照射強度が大きくても、または
光照射が長期間に及んでも光触媒作用が飽和または低下
しない、有機物分解反応に対する活性が大きい光触媒膜
を被覆した物品を提供することを目的とする。
An object of the present invention is to provide an article coated with a photocatalytic film having a high activity against an organic substance decomposition reaction, in which the photocatalytic action does not saturate or decrease even when the light irradiation intensity is high or the light irradiation is performed for a long period of time. Aim.

【0007】[0007]

【課題を解決するための手段】本発明は、基体表面に、
n型半導体である光触媒層と、光触媒層よりも大きなエ
ネルギーバンドギャップを持つn型半導体からなる電子
受容層とが積層された光触媒活性を有する物品であっ
て、光触媒層と電子受容層のうちの基体から遠い一方の
層が基体から近い他方の層の一部を被覆していることを
特徴とする光触媒活性を有する物品である。
According to the present invention, a substrate is provided with
An article having photocatalytic activity in which a photocatalyst layer that is an n-type semiconductor and an electron-accepting layer made of an n-type semiconductor having a larger energy band gap than the photocatalyst layer are stacked. An article having photocatalytic activity, wherein one layer far from the substrate covers a part of the other layer near the substrate.

【0008】光触媒層に光が照射されると、膜中に電子
−正孔対が生成する。この電子−正孔対のうち物品表面
に存在または移動したものが光触媒活性に寄与し、特に
正孔による有機物分解能力が大きい。
When the photocatalyst layer is irradiated with light, electron-hole pairs are generated in the film. Of these electron-hole pairs, those that exist or move on the surface of the article contribute to the photocatalytic activity, and particularly have a large ability to decompose organic substances by holes.

【0009】本発明において、光触媒層をn型の半導体
膜とし、光触媒層のバンドギャップよりも大きいバンド
ギャップを有するn型の半導体である電子受容層とを接
合することにより、光照射によって光触媒層内に生成し
た電子−正孔対のうち、電子は電子受容層へと移動し、
正孔は上記接合界面から遠ざかるように移動する。正孔
は光触媒層表面で、直接あるいは水分子との反応で生成
するヒドロキシラジカルを介して、有機物分解反応を促
進する。電子は電子受容層の表面で、酸素分子との反応
によってスーパーオキサイドアニオンを生成し、さらに
これがプロトンと反応することによりペルオキソラジカ
ルとなって有機物分解に寄与する。
In the present invention, the photocatalyst layer is an n-type semiconductor film, and is joined to an electron-accepting layer which is an n-type semiconductor having a band gap larger than the band gap of the photocatalyst layer. Of the electron-hole pairs generated within, electrons move to the electron-accepting layer,
The holes move away from the bonding interface. The holes promote the organic substance decomposition reaction on the surface of the photocatalyst layer, either directly or via hydroxy radicals generated by the reaction with water molecules. Electrons generate superoxide anions by reacting with oxygen molecules on the surface of the electron accepting layer, and further react with protons to form peroxo radicals, which contribute to the decomposition of organic substances.

【0010】図1は、本発明の積層構造が有するエネル
ギーバンド構造を説明する図である。光触媒層(TiO
2層)と電子受容層(SnO2層)の界面の電荷分離効果
によって、正孔(h+)は光触媒層外側表面へ移動し、
電子(e-)は電子受容層側へ移動し、両層内部での電
子−正孔の再結合が抑制される。さらに正孔と電子がと
もに表面での反応(有機物、水、酸素とのそれぞれ酸化
反応および還元反応)によって消費されることによっ
て、光照射強度が大きい場合や光照射が長期間に及んだ
場合でも電子受容層内に電子が蓄積することがなく、光
触媒層−電子受容層界面での電荷分離効果が維持され
る。
FIG. 1 is a view for explaining the energy band structure of the laminated structure of the present invention. Photocatalyst layer (TiO
The holes (h + ) move to the outer surface of the photocatalytic layer due to the charge separation effect at the interface between the two layers) and the electron accepting layer (SnO 2 layer),
The electrons (e ) move to the electron accepting layer side, and the recombination of electrons and holes inside both layers is suppressed. In addition, when the light irradiation intensity is high or the light irradiation lasts for a long time, both holes and electrons are consumed by reactions on the surface (oxidation and reduction reactions with organic substances, water, and oxygen, respectively). However, electrons are not accumulated in the electron accepting layer, and the charge separation effect at the interface between the photocatalytic layer and the electron accepting layer is maintained.

【0011】光触媒層と電子受容層は、電荷分離の効果
を大きくするためには広い界面で接しているのが好まし
く、また両方がともに物品表面に露出している必要があ
る。このような要件は、基体表面に電子受容層を設け、
さらに光触媒層を電子受容層表面の一部を被覆するよう
に設けることによって実現できる。あるいは、基体表面
に光触媒層を設け、電子受容層を光触媒層表面の一部を
被覆するように設けても実現できる。なお後述のごと
く、物品最表面に電荷の外部への移動を妨げない程度の
オーバーコート、例えば親水性膜、を設けることは可能
である。
The photocatalyst layer and the electron accepting layer are preferably in contact at a wide interface in order to increase the effect of charge separation, and both need to be exposed on the surface of the article. Such a requirement is to provide an electron accepting layer on the substrate surface,
Further, it can be realized by providing the photocatalyst layer so as to cover a part of the surface of the electron accepting layer. Alternatively, it can also be realized by providing a photocatalyst layer on the surface of the base and providing the electron-accepting layer so as to cover a part of the surface of the photocatalyst layer. As described later, it is possible to provide an overcoat, for example, a hydrophilic film, on the outermost surface of the article, to such an extent as not to hinder the movement of charges to the outside.

【0012】外側に露出している光触媒層と電子受容層
の面積の割合は、光触媒層からの正孔と電子受容層から
の電子の両方が空気や水の分子と反応する必要がある。
従って、基体表面に前記電子受容層、前記光触媒層の順
に積層されている場合は、光触媒層が電子受容層表面の
面積の5〜95%を被覆してことが好ましく、30〜7
0%を被覆することがさらに好ましい。同様に、基体表
面に前記光触媒層、前記電子受容層の順に積層されてい
る場合は、電子受容層が光触媒層の面積の5〜95%を
被覆することが好ましく、30〜70%を被覆すること
がさらに好ましい。
The ratio of the area of the photocatalyst layer and the area of the electron accepting layer exposed to the outside requires that both holes from the photocatalyst layer and electrons from the electron accepting layer react with molecules of air or water.
Accordingly, when the electron accepting layer and the photocatalytic layer are laminated on the substrate surface in this order, the photocatalytic layer preferably covers 5 to 95% of the area of the electron accepting layer surface, and 30 to 7%.
More preferably, it covers 0%. Similarly, when the photocatalyst layer and the electron-accepting layer are laminated on the substrate surface in this order, the electron-accepting layer preferably covers 5 to 95% of the area of the photocatalyst layer, and covers 30 to 70%. Is more preferable.

【0013】光触媒層と電子受容層の露出部分の形状に
は制限はないが、露出部分のパターンのサイズには好ま
しい範囲がある。パターンの実質的な幅を100nm〜
10mmとするのが好ましく、1μm〜3mmとするの
がさらに好ましい。ここで実質的な幅とは、光触媒層と
電子受容層の界面で分離された電荷の面方向の移動に関
係した概念である。例えば光触媒層と電子受容層の露出
部分が細長い形状の場合にはその幅であり、一方が島状
の形状の場合には島の短径と島の平均的な間隔である。
また意匠性や製造上の問題で起こる局部的なくびれや大
きな単一領域は考慮しない。幅が小さすぎると表面での
電子と正孔の再結合の割合が増える。光触媒層や電子受
容層の導電率を高くすると幅を大きくすることが可能で
あるが、導電率を高くするために欠陥密度を高くし過ぎ
ると層内部での再結合が増えるため、光触媒層と電子受
容層の両方が露出している効果が小さくなる。工業的に
は幅が50μm以上ならフレキソ版による印刷法が利用
できるため、低コストでの製造が可能になる。
The shape of the exposed portion of the photocatalyst layer and the electron accepting layer is not limited, but the size of the pattern of the exposed portion has a preferable range. Substantially 100 nm pattern width
It is preferably 10 mm, more preferably 1 μm to 3 mm. Here, the substantial width is a concept related to the movement in the plane direction of the charges separated at the interface between the photocatalyst layer and the electron accepting layer. For example, when the exposed portion of the photocatalyst layer and the electron accepting layer has an elongated shape, the width is the width. When one of the exposed portions is an island shape, the width is the minor axis of the island and the average distance between the islands.
Neither local necking nor a large single area caused by design or manufacturing problems is taken into account. If the width is too small, the rate of recombination of electrons and holes on the surface increases. It is possible to increase the width by increasing the conductivity of the photocatalyst layer and the electron-accepting layer, but if the defect density is too high to increase the conductivity, recombination inside the layer will increase, so The effect of exposing both of the electron accepting layers is reduced. Industrially, if the width is 50 μm or more, a printing method using a flexographic plate can be used, so that production at low cost becomes possible.

【0014】図2に光触媒層と電子受容層の露出部分の
形状パターン(平面図)の例を示す。ここで斜線部分は
光触媒層の露出領域を示す。図中のAは、細長い形状の
場合(図(a)、(c)および(f))には、その幅
(図(f)では平均幅)を示し、島状の形状の場合(図
(b)、(d)および(e))は、その短径を示してい
る。そして図中のBは電子受容層の露出部分の領域の実
質的な幅を示している。この斜線部分が電子受容層の露
出領域であるとした場合も、同様である。
FIG. 2 shows an example of a shape pattern (plan view) of an exposed portion of the photocatalyst layer and the electron accepting layer. Here, the hatched portions indicate the exposed regions of the photocatalyst layer. A in the figure indicates the width (the average width in the figure (f)) in the case of the elongated shape (FIGS. (A), (c) and (f)), and in the case of the island shape (the figure (FIG. b), (d) and (e)) show the minor axis. B in the drawing indicates the substantial width of the exposed region of the electron accepting layer. The same applies to the case where the hatched portion is the exposed region of the electron accepting layer.

【0015】本発明においては、光触媒層を酸化チタン
(TiO2)の酸化物半導体膜(バンドギャップ:ルチ
ル構造では3.0eV、アナターゼ構造では3.2e
V)で構成するのが、大きな光触媒活性の膜とする上で
好ましい。酸化チタン膜以外の膜としては、たとえばチ
タン酸ストロンチウム(SrTiO3、バンドギャッ
プ:3.2eV)の膜が好ましい光触媒層として例示で
きる。光触媒層は、酸化チタン膜の代わりに、酸化チタ
ンの微粒子をたとえば二酸化珪素の膜のなかに分散させ
たものであってもよい。
In the present invention, the photocatalytic layer is made of an oxide semiconductor film of titanium oxide (TiO 2 ) (band gap: 3.0 eV for rutile structure, 3.2 e for anatase structure).
V) is preferable in order to form a large photocatalytically active film. As a film other than the titanium oxide film, for example, a film of strontium titanate (SrTiO 3 , band gap: 3.2 eV) can be exemplified as a preferable photocatalyst layer. The photocatalyst layer may be formed by dispersing titanium oxide fine particles in, for example, a silicon dioxide film instead of the titanium oxide film.

【0016】光触媒層の厚みは、30nm以上とするこ
とが好ましく、さらに50nm以上とすることがさらに
好ましい。厚みが30nm未満であると光の吸収が十分
に行われないからである。 一方厚みの上限は2000
nm以下とするのが好ましい。厚みが2000nmを超
えると、電子受容層との接合の効果が相対的に小さくな
り、電子受容層を設けた効果が十分に発揮できなくなる
からである。このような観点から光触媒層の厚みは10
00nm以下とするのがさらに好ましい。
The thickness of the photocatalyst layer is preferably at least 30 nm, more preferably at least 50 nm. If the thickness is less than 30 nm, light is not sufficiently absorbed. On the other hand, the upper limit of the thickness is 2000
nm or less is preferable. If the thickness exceeds 2000 nm, the effect of bonding with the electron accepting layer becomes relatively small, and the effect of providing the electron accepting layer cannot be sufficiently exhibited. From such a viewpoint, the thickness of the photocatalyst layer is 10
More preferably, the thickness is not more than 00 nm.

【0017】本発明に用いられる電子受容層は、光触媒
層のn型半導体のエネルギーバンドギャップよりも大き
なバンドギャップを有するn型半導体からなり、このバ
ンドギャップの差は0.05eV以上であることが好ま
しい。例えば、酸化ニオブ(Nb25:3.4eV)、
酸化錫(SnO2:3.5eV)、酸化アルミニウム
(Al23:>5eV)、酸化亜鉛(ZnO:3.3e
V)および酸化ジルコニウム(ZrO2:5.0eV)
からなる金属酸化物群から選ばれた少なくとも1種の酸
化物半導体膜で構成するのが好ましい。
The electron accepting layer used in the present invention is made of an n-type semiconductor having a band gap larger than the energy band gap of the n-type semiconductor of the photocatalyst layer, and the difference in this band gap may be 0.05 eV or more. preferable. For example, niobium oxide (Nb 2 O 5 : 3.4 eV),
Tin oxide (SnO 2 : 3.5 eV), aluminum oxide (Al 2 O 3 :> 5 eV), zinc oxide (ZnO: 3.3 e)
V) and zirconium oxide (ZrO 2 : 5.0 eV)
It is preferable to use at least one kind of oxide semiconductor film selected from the group consisting of metal oxides.

【0018】また、これらの電子受容膜に酸素欠陥や不
純物元素を導入することで、電子の移動度を上げること
ができる。例えば酸化錫に0.01〜1重量%のフッ素
をドープすることで、比抵抗を0.001〜0.000
1Ω・cmに下げることができる。
Further, by introducing oxygen vacancies or impurity elements into these electron accepting films, the electron mobility can be increased. For example, tin oxide is doped with 0.01 to 1% by weight of fluorine to have a specific resistance of 0.001 to 0.000.
It can be reduced to 1 Ω · cm.

【0019】電子受容層の厚みは5nm以上とするのが
好ましい。厚みが5nm未満であると、トンネル効果に
より光触媒層との接合効果が十分に発揮できないからで
ある。一方、厚みの上限は、電子受容層が基体側にあっ
て光を基体側から入射させない場合には特に制限はない
が、光に対して透明な基体を使用して光を基体側から入
射させる場合には、光触媒層に十分な光量が届くよう、
500nm以下とするのが好ましい。また電子受容層が
光触媒層よりも外側にある場合には電子の表面への移動
を潤滑に行わせるために、500nm以下とするのが好
ましい。
The thickness of the electron accepting layer is preferably 5 nm or more. If the thickness is less than 5 nm, the effect of bonding with the photocatalyst layer cannot be sufficiently exhibited due to the tunnel effect. On the other hand, the upper limit of the thickness is not particularly limited when the electron accepting layer is on the substrate side and light is not incident from the substrate side, but light is incident from the substrate side using a substrate transparent to light. In such cases, a sufficient amount of light reaches the photocatalyst layer,
The thickness is preferably 500 nm or less. When the electron-accepting layer is located outside the photocatalyst layer, the thickness is preferably 500 nm or less in order to smoothly transfer electrons to the surface.

【0020】本発明において用いられる基体は特に限定
されない。光学的には透明体、不透明体、材料的には金
属、セラミックス、ガラス、プラスチックなどが用いら
れる。基体を透明なシリケートガラス板、たとえばフロ
ート製法で製造されたガラス板とすることにより、環境
浄化作用や汚れ防止効果のある窓ガラスとすることがで
きる。
The substrate used in the present invention is not particularly limited. Optically, a transparent body or an opaque body is used, and as a material, metal, ceramics, glass, plastic, or the like is used. By using a transparent silicate glass plate as the substrate, for example, a glass plate manufactured by a float manufacturing method, a window glass having an environmental purification action and a stain prevention effect can be obtained.

【0021】シリケートガラス中には、通常溶融性を確
保し、板状に成形するためなどの理由により、ナトリウ
ム、カリウムなどのアルカリ成分が含まれる場合が多
い。ガラス板中にアルカリ成分が含まれる場合、ガラス
板と光触媒層あるいは電子受容層との間にアルカリ拡散
防止膜を介在させて、アルカリ成分が拡散するのを防止
するのが好ましい。このようなアルカリ拡散防止膜とし
て二酸化珪素膜、窒化珪素膜、珪素の酸窒化膜等が例示
できる。その他の金属酸化物の膜も用いることができ
る。
The silicate glass often contains an alkali component such as sodium, potassium or the like, usually for the purpose of securing melting property and forming into a plate shape. When an alkali component is contained in the glass plate, it is preferable to prevent an alkali component from diffusing by interposing an alkali diffusion preventing film between the glass plate and the photocatalytic layer or the electron accepting layer. Examples of such an alkali diffusion preventing film include a silicon dioxide film, a silicon nitride film, and a silicon oxynitride film. Other metal oxide films can also be used.

【0022】本発明の電子受容層として好ましい上記の
酸化ニオブ、酸化錫、酸化アルミニウム、酸化亜鉛およ
び酸化ジルコニウムからなる金属酸化物膜は、それ自体
でアルカリ溶出防止性能を有する。
The above-mentioned metal oxide film composed of niobium oxide, tin oxide, aluminum oxide, zinc oxide and zirconium oxide, which is preferable as the electron-accepting layer of the present invention, itself has alkali elution preventing performance.

【0023】アルカリ溶出防止膜を被覆することによ
り、光触媒層を形成するに際して受ける基体の加熱によ
り、アルカリ成分が光触媒層に拡散してその結晶性を損
なったり、膜の電子構造を乱すことを防止し、それによ
り光触媒活性が低下するのをいっそう防止することがで
きる。
The coating of the alkali elution preventing film prevents the alkali component from diffusing into the photocatalyst layer due to the heating of the substrate when forming the photocatalyst layer and impairing the crystallinity and disturbing the electronic structure of the film. Thereby, it is possible to further prevent the photocatalytic activity from decreasing.

【0024】本発明においては、物品の表面に親水性の
膜を形成することができる。親水性の膜を被覆すること
により、表面をいっそう親水性にすることができる。親
水性の膜の厚みは、光触媒層や電子受容層からの電荷の
表面への移動を妨げない厚みにするのがよく、そのよう
な観点から20nm以下、好ましくは10nm以下、さ
らに好ましくは5nm以下とするのがよい。親水性の膜
は、物品全体を覆うように被覆されていてもよく、その
一部を覆うように被覆されていてもよい。親水性の膜の
材料としては、酸化珪素などの膜が好ましいものとして
例示できる。
In the present invention, a hydrophilic film can be formed on the surface of the article. By coating with a hydrophilic film, the surface can be made more hydrophilic. The thickness of the hydrophilic film is preferably a thickness that does not hinder the transfer of charges from the photocatalyst layer or the electron-accepting layer to the surface, and from such a viewpoint, 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less. It is good to do. The hydrophilic film may be coated so as to cover the entire article, or may be coated so as to cover a part thereof. As a material of the hydrophilic film, a film such as silicon oxide can be exemplified as a preferable material.

【0025】また、光触媒活性や親水性を高めるために
アルカリ溶出防止膜、光触媒層、電子受容層、親水性の
膜のいずれかが凹凸を有する表面となるように形成し
て、物品の表面に凹凸を設けてもよい。
Further, in order to enhance the photocatalytic activity and hydrophilicity, any one of the alkali elution preventing film, the photocatalytic layer, the electron accepting layer and the hydrophilic film is formed so as to have an uneven surface. Irregularities may be provided.

【0026】[0026]

【発明の実施の形態】以下に本発明の実施の形態を実施
例および比較例にもとづいて詳述する。図3は本発明の
光触媒活性を有する物品の一実施例の断面図および平面
図である。光触媒活性を有する物品1は、基体であるガ
ラス板2の表面にアルカリ溶出防止膜である二酸化珪素
膜3、および電子受容層である酸化錫にフッ素をドープ
した膜4が被覆され、その上に光触媒層である酸化チタ
ン膜5が、電子受容層4と光触媒層5の両方が外側に露
出するように、互いに隔てられた複数の列状に積層され
ている。そしてその上に親水性の膜6が被覆されてい
る。このうち、電子受容層4と光触媒層5は必須の膜で
あり、アルカリ溶出防止膜3および親水性膜6は必要に
応じて適宜設けられる膜である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail based on examples and comparative examples. FIG. 3 is a sectional view and a plan view of one embodiment of the article having photocatalytic activity of the present invention. In the article 1 having photocatalytic activity, a surface of a glass plate 2 as a substrate is coated with a silicon dioxide film 3 as an alkali elution preventing film and a film 4 in which tin oxide as an electron-accepting layer is doped with fluorine. Titanium oxide films 5 as photocatalyst layers are stacked in a plurality of rows separated from each other so that both the electron accepting layer 4 and the photocatalyst layer 5 are exposed to the outside. Then, a hydrophilic film 6 is coated thereon. Among them, the electron accepting layer 4 and the photocatalyst layer 5 are essential films, and the alkali elution preventing film 3 and the hydrophilic film 6 are films appropriately provided as needed.

【0027】[実施例1]フロート製法による2mm×
20mm×40mmの大きさのソーダライムシリケート
ガラス板の片側表面に、それぞれCVD法によって厚さ
30nnの二酸化珪素膜と厚さ100nmのフッ素をド
ープした酸化錫膜を順次被覆した。さらに、チタンブト
キシド、ベンゾイルアセトン、メタノールおよび水を混
合撹拌した液をディップ法でコーティングし、100℃
で乾燥した。幅1mm、間隔1mmのストライプ状模様
のフォトマスクを介して紫外線を照射し、紫外線の当た
らなかった部分をエタノールで除去した後、約460℃
で1時間焼成した。これにより、電子受容層である酸化
錫膜上に、幅1mm、長さ20mmのストライプを間隔
1mmで20本並べた形状に、厚さ60nmの酸化チタ
ン膜が形成された。
Example 1 2 mm × float manufacturing method
One side surface of a soda lime silicate glass plate having a size of 20 mm × 40 mm was sequentially coated with a silicon dioxide film having a thickness of 30 nn and a tin oxide film doped with fluorine having a thickness of 100 nm by a CVD method. Further, a solution obtained by mixing and stirring titanium butoxide, benzoylacetone, methanol and water was coated by a dip method,
And dried. Ultraviolet rays are radiated through a 1 mm wide, 1 mm-spaced striped photomask, and the portions not exposed to the ultraviolet rays are removed with ethanol.
For 1 hour. As a result, a titanium oxide film having a thickness of 60 nm was formed on the tin oxide film serving as the electron accepting layer in a shape in which 20 stripes each having a width of 1 mm and a length of 20 mm were arranged at an interval of 1 mm.

【0028】[比較例1]フロート製法による2mm×
20mm×40mmの大きさのソーダライムシリケート
ガラス板の片側表面に、CVD法によって厚さ30nn
の二酸化珪素膜と厚さ100nmのフッ素をドープした
酸化錫膜を順次被覆した。さらに、チタンブトキシド、
ベンゾイルアセトン、メタノールおよび水を混合撹拌し
た液をディップ法でコーティングし、100℃で乾燥し
た。全体に紫外線を照射した後、約460℃で1時間焼
成した。これにより、電子受容層である酸化錫膜上に、
酸化錫膜全体を覆うように厚さ60nmの酸化チタン膜
が形成された。
[Comparative Example 1] 2 mm × float manufacturing method
On a surface of one side of a soda lime silicate glass plate having a size of 20 mm × 40 mm, a thickness of 30 nn is formed by a CVD method.
And a 100 nm-thick fluorine-doped tin oxide film. In addition, titanium butoxide,
A solution obtained by mixing and stirring benzoylacetone, methanol and water was coated by a dip method, and dried at 100 ° C. After irradiating the whole with ultraviolet rays, it was baked at about 460 ° C. for 1 hour. Thereby, on the tin oxide film which is an electron accepting layer,
A titanium oxide film having a thickness of 60 nm was formed so as to cover the entire tin oxide film.

【0029】[比較例2]石英ガラス板の片側表面に、
チタンブトキシド、ベンゾイルアセトン、メタノールお
よび水を混合撹拌した液をディップ法でコーティング
し、100℃で乾燥した。全体に紫外線を照射した後、
約460℃で1時間焼成した。これにより、厚さ60n
mの酸化チタン膜が形成された。
[Comparative Example 2] On one surface of a quartz glass plate,
A solution obtained by mixing and stirring titanium butoxide, benzoylacetone, methanol and water was coated by a dip method, and dried at 100 ° C. After irradiating the whole with ultraviolet rays,
Baking was performed at about 460 ° C. for 1 hour. Thereby, the thickness of 60n
m of titanium oxide film was formed.

【0030】実施例1、比較例1、比較例2のサンプル
について、アセトアルデヒドガス(CH3CHO)の分
解活性を測定した。密閉した容積3リットルの容器中に
サンプルとアセトアルデヒドガスを入れ、サンプルに容
器外部より石英ガラスの窓を通して高圧水銀灯の光をサ
ンプルの膜面側から照射し、容器内の空気を照射開始時
から15分毎に5ミリリットルずつ抜き取り、アセトア
ルデヒド濃度を測定した。このとき、時間tに対して、
アセトアルデヒド初期濃度C0と時間tにおけるアセト
アルデヒド濃度Cの比の自然対数をLn(C0/C)プ
ロットし、このプロットの傾きをアセトアルデヒド分解
反応速度定数kとする。kは時間の逆数の次元を持ち、
容器の容積や照射光強度の関数であるが、同条件での測
定ではkが大きいほどアセトアルデヒド分解活性は高
い。
For the samples of Example 1, Comparative Examples 1 and 2, the decomposition activity of acetaldehyde gas (CH 3 CHO) was measured. The sample and acetaldehyde gas were put into a closed 3 liter container, and the sample was irradiated with light from a high pressure mercury lamp from the outside of the container through a quartz glass window from the film surface side of the sample, and the air in the container was irradiated for 15 minutes from the start of irradiation. Five milliliters were withdrawn every minute and the concentration of acetaldehyde was measured. At this time, with respect to time t,
The natural logarithm of the ratio of the initial acetaldehyde concentration C 0 and the acetaldehyde concentration C at time t is plotted as Ln (C 0 / C), and the slope of this plot is defined as the acetaldehyde decomposition reaction rate constant k. k has the reciprocal dimension of time,
Although it is a function of the volume of the container and the irradiation light intensity, in the measurement under the same conditions, the larger the k, the higher the acetaldehyde decomposition activity.

【0031】図4に実施例1、比較例1について、照射
光中の紫外線強度が1.6mW/cm2の場合のアセト
アルデヒド濃度(C(ppm))の変化を示す。比較例
1では、当初のアセトアルデヒド分解反応速度が小さ
く、しかも時間の経過とともにアセトアルデヒド分解反
応速度が小さくなっていくのに対して、実施例1ではサ
ンプル表面に露出している酸化チタンの面積が比較例1
の半分しかないにもかかわらず、アセトアルデヒド分解
反応速度は大きく、時間の経過に伴う分解反応速度の減
少も見られない。
FIG. 4 shows the change in the acetaldehyde concentration (C (ppm)) in Example 1 and Comparative Example 1 when the ultraviolet intensity in the irradiation light was 1.6 mW / cm 2 . In Comparative Example 1, the initial acetaldehyde decomposition reaction rate was low, and the acetaldehyde decomposition reaction rate was reduced with time. In contrast, in Example 1, the area of titanium oxide exposed on the sample surface was relatively small. Example 1
Despite the fact that there is only half of the above, the acetaldehyde decomposition reaction rate is high, and no decrease in the decomposition reaction rate over time is observed.

【0032】図5に実施例1、比較例1、比較例2につ
いて、照射光の強度を変えてアセトアルデヒド分解反応
速度を測定した。比較例1では比較例2に比べて下地層
である酸化錫膜の効果によって活性が高くなっている
が、光強度が大きくなると、アセトアルデヒド分解反応
定数は、グラフのプロット線が下向きに曲がっているこ
とから判るように、光強度に比例して増大しなくなっ
て、その効果が小さくなっており、電子−正孔の再結合
の影響が現れている。実施例1では、光強度が大きくな
っても電荷分離の効果が有効に発揮され、光強度に比例
してアセトアルデヒド分解反応定数が増大している。
FIG. 5 shows the acetaldehyde decomposition reaction rate of Example 1, Comparative Example 1, and Comparative Example 2 while changing the intensity of the irradiation light. In Comparative Example 1, the activity is higher due to the effect of the tin oxide film as the underlayer than in Comparative Example 2, but when the light intensity increases, the plot line of the acetaldehyde decomposition reaction constant is bent downward. As can be seen, the effect does not increase in proportion to the light intensity, the effect is reduced, and the effect of electron-hole recombination appears. In Example 1, the effect of charge separation is effectively exhibited even when the light intensity increases, and the acetaldehyde decomposition reaction constant increases in proportion to the light intensity.

【0033】[0033]

【発明の効果】以上に説明したように本発明によれば、
基体表面に、n型半導体である光触媒層と、光触媒層よ
りも大きなエネルギーバンドギャップを持つn型半導体
からなる電子受容層とを積層し、光触媒層と電子受容層
のうちの基体から遠い一方の層が基体から近い他方の層
の一部を被覆するようにすることで、光触媒層中で生成
した電子−正孔対の両方を表面反応に供し、光照射強度
が大きい場合や光照射が長期間に及んだ場合でも光触媒
層−電子受容層界面での電荷分離効果が維持され、高い
光触媒活性を有する物品を提供することが可能になっ
た。
According to the present invention as described above,
On the surface of the substrate, a photocatalyst layer of an n-type semiconductor and an electron-accepting layer of an n-type semiconductor having a larger energy band gap than the photocatalyst layer are stacked, and one of the photocatalyst layer and the electron-accepting layer that is farther from the substrate By making the layer cover a part of the other layer close to the substrate, both the electron-hole pairs generated in the photocatalyst layer are subjected to a surface reaction, and when the light irradiation intensity is large or the light irradiation is long. The charge separation effect at the interface between the photocatalyst layer and the electron accepting layer was maintained even when the period was extended, and it was possible to provide an article having high photocatalytic activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の積層構造が有するエネルギーバンド
構造を説明する図
FIG. 1 is a diagram illustrating an energy band structure of a laminated structure of the present invention.

【図2】 本発明の光触媒層と電子受容層の露出部分の
形状の例を示す平面図
FIG. 2 is a plan view showing an example of the shapes of exposed portions of a photocatalyst layer and an electron accepting layer of the present invention.

【図3】 本発明の光触媒活性を有する物品の一実施例
の断面図および平面図
FIG. 3 is a sectional view and a plan view of an embodiment of the article having photocatalytic activity of the present invention.

【図4】 本発明の実施例1と比較例1のアセトアルデ
ヒド分解反応速度をを示すグラフ
FIG. 4 is a graph showing acetaldehyde decomposition reaction rates of Example 1 and Comparative Example 1 of the present invention.

【図5】 本発明の実施例1、比較例1、比較例2のア
セトアルデヒド分解反応速度定数と照射する紫外線の強
度の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the acetaldehyde decomposition reaction rate constant and the intensity of ultraviolet light to be irradiated in Example 1, Comparative Example 1, and Comparative Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1:本発明の物品 2:ガラス板 3:二酸化珪素のアルカリ拡散防止膜 4:フッ素をドープした酸化錫の電子受容膜 5:酸化チタンの光触媒膜 6:親水性膜 1: Article of the present invention 2: Glass plate 3: Alkali diffusion preventing film of silicon dioxide 4: Electron accepting film of tin oxide doped with fluorine 5: Photocatalytic film of titanium oxide 6: Hydrophilic film

フロントページの続き Fターム(参考) 4D048 AA21 AB03 BA03X BA03Y BA06X BA06Y BA07X BA07Y BA08X BA08Y BA16X BA16Y BA21X BA21Y BA24X BA24Y BA41X BA41Y 4G059 AA01 AC21 AC22 EA01 EA02 EA04 EA05 EB02 GA01 GA05 GA12 4G069 AA03 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA05B BA14A BA14B BA48A BC22A BC22B BC35A BC35B BC55A BC55B CA10 4H006 AA02 AA05 AC26 BA10 BA30Continued on the front page F-term (reference) 4D048 AA21 AB03 BA03X BA03Y BA06X BA06Y BA07X BA07Y BA08X BA08Y BA16X BA16Y BA21X BA21Y BA24X BA24Y BA41X BA41Y 4G059 AA01 AC21 AC22 EA01 EA02 EA04 EA05 BA03 BA02 BA01 BA05 BA05 BA14A BA14B BA48A BC22A BC22B BC35A BC35B BC55A BC55B CA10 4H006 AA02 AA05 AC26 BA10 BA30

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 基体表面に、n型半導体からなる光触媒
層と、光触媒層のn型半導体のエネルギーバンドギャッ
プよりも大きなエネルギーバンドギャップを持つn型半
導体からなる電子受容層とが積層された光触媒活性を有
する物品であって、前記光触媒層と前記電子受容層のう
ちの前記基体から遠い一方の層が基体から近い他方の層
の一部を被覆していることを特徴とする光触媒活性を有
する物品。
1. A photocatalyst in which a photocatalyst layer made of an n-type semiconductor and an electron accepting layer made of an n-type semiconductor having an energy band gap larger than the energy band gap of the n-type semiconductor of the photocatalyst layer are laminated on a substrate surface. An article having activity, wherein one of the photocatalytic layer and the electron-accepting layer, which is far from the substrate, covers a part of the other layer, which is closer to the substrate, and has photocatalytic activity. Goods.
【請求項2】 前記基体表面に前記電子受容層、前記光
触媒層をこの順に積層し、光触媒層が電子受容層表面の
面積の5〜95%を被覆しており、光触媒層の領域の実
質的な幅、および光触媒層に被覆されていない電子受容
層の領域の実質的な幅のいずれもが、100nm〜10
mmである請求項1に記載の光触媒活性を有する物品。
2. The electron-accepting layer and the photocatalyst layer are laminated on the surface of the substrate in this order, and the photocatalyst layer covers 5 to 95% of the area of the surface of the electron-accepting layer. Both the critical width and the substantial width of the region of the electron-accepting layer not covered with the photocatalytic layer are 100 nm to 10 nm.
The article having photocatalytic activity according to claim 1, which is in mm.
【請求項3】 前記基体表面に前記光触媒層、前記電子
受容層をこの順に積層し、電子受容層が光触媒層表面の
面積の5〜95%を被覆しており、電子受容層の領域の
実質的な幅、および電子受容層に被覆されていない光触
媒層の領域の実質的な幅のいずれもが100nm〜10
mmである請求項1に記載の光触媒活性を有する物品。
3. The photocatalyst layer and the electron accepting layer are laminated on the substrate surface in this order, and the electron accepting layer covers 5 to 95% of the surface area of the photocatalyst layer, and substantially the area of the electron accepting layer. Width and the substantial width of the region of the photocatalytic layer not covered with the electron accepting layer are both 100 nm to 10 nm.
The article having photocatalytic activity according to claim 1, which is in mm.
【請求項4】 前記光触媒層が酸化チタンの酸化物半導
体膜である請求項1〜3のいずれか1項に記載の光触媒
活性を有する物品。
4. The article having photocatalytic activity according to claim 1, wherein the photocatalyst layer is an oxide semiconductor film of titanium oxide.
【請求項5】 前記電子受容層が、酸化ニオブ、酸化
錫、酸化アルミニウム、酸化亜鉛および酸化ジルコニウ
ムからなる金属酸化物の群から選ばれた少なくとも1種
の酸化物半導体膜である請求項1〜4のいずれか1項に
記載の光触媒活性を有する物品。
5. The electron accepting layer is at least one oxide semiconductor film selected from the group consisting of metal oxides consisting of niobium oxide, tin oxide, aluminum oxide, zinc oxide and zirconium oxide. The article having photocatalytic activity according to any one of the above items 4.
【請求項6】 前記電子受容層がフッ素をドープした酸
化錫の膜である請求項5に記載の光触媒活性を有する物
品。
6. The article having photocatalytic activity according to claim 5, wherein the electron accepting layer is a film of tin oxide doped with fluorine.
【請求項7】 前記光触媒層の厚みが30〜2000n
mである請求項1〜6のいずれかに記載の光触媒活性を
有する物品。
7. The photocatalyst layer has a thickness of 30 to 2000 n.
The article having photocatalytic activity according to any one of claims 1 to 6, which is m.
【請求項8】 前記電子受容層の厚みが5〜500nm
である請求項1〜7のいずれかに記載の光触媒活性を有
する物品。
8. The electron accepting layer has a thickness of 5 to 500 nm.
The article having photocatalytic activity according to claim 1.
【請求項9】 前記基体が透明なガラス板である請求項
1〜8のいずれかに記載の光触媒活性を有する物品。
9. The article having photocatalytic activity according to claim 1, wherein said substrate is a transparent glass plate.
【請求項10】 前記ガラス板と前記光触媒層または前
記電子受容層の間に、前記ガラス板中に含有するアルカ
リ成分が拡散するのを防止するためのアルカリ拡散防止
膜が設けられている請求項9に記載の光触媒活性を有す
る物品。
10. An alkali diffusion preventing film for preventing an alkali component contained in the glass plate from being diffused is provided between the glass plate and the photocatalytic layer or the electron accepting layer. Item 10 having the photocatalytic activity according to Item 9.
【請求項11】 前記光触媒活性を有する物品は、最表
面に親水性の膜を有する請求項1〜10のいずれかに記
載の光触媒活性を有する物品。
11. The article having photocatalytic activity according to claim 1, wherein the article having photocatalytic activity has a hydrophilic film on the outermost surface.
JP30946299A 1999-10-29 1999-10-29 Articles having photocatalytic activity Expired - Fee Related JP3879334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30946299A JP3879334B2 (en) 1999-10-29 1999-10-29 Articles having photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30946299A JP3879334B2 (en) 1999-10-29 1999-10-29 Articles having photocatalytic activity

Publications (2)

Publication Number Publication Date
JP2001121003A true JP2001121003A (en) 2001-05-08
JP3879334B2 JP3879334B2 (en) 2007-02-14

Family

ID=17993292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30946299A Expired - Fee Related JP3879334B2 (en) 1999-10-29 1999-10-29 Articles having photocatalytic activity

Country Status (1)

Country Link
JP (1) JP3879334B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (en) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Photocatalytic member
WO2002024333A1 (en) * 2000-09-22 2002-03-28 Toto Ltd. Member having photocatalyst functionality
WO2003053577A1 (en) * 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
JP2005529823A (en) * 2002-05-14 2005-10-06 ピルキングトン・ノースアメリカ・インコーポレイテッド Reflective solar control coated glass
JP2007301988A (en) * 2006-04-11 2007-11-22 Nippon Sheet Glass Co Ltd Photocatalyst coating having improved low maintenance characteristic
JP2009070858A (en) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp Manufacturing method for electron acceptor organic matter layer for composing photovoltaic element for photosensor and/or electron donor organic matter layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533427C2 (en) * 2008-09-04 2010-09-21 Wallenius Water Ab catalysts

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (en) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Photocatalytic member
WO2002024333A1 (en) * 2000-09-22 2002-03-28 Toto Ltd. Member having photocatalyst functionality
JP4919141B2 (en) * 2000-09-22 2012-04-18 Toto株式会社 Photocatalytic member and method for producing the same
WO2003053577A1 (en) * 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
EP1466665A1 (en) * 2001-12-21 2004-10-13 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
EP1466665A4 (en) * 2001-12-21 2007-12-12 Nippon Sheet Glass Co Ltd Member having photocatalytic function and method for manufacture thereof
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
JP2005529823A (en) * 2002-05-14 2005-10-06 ピルキングトン・ノースアメリカ・インコーポレイテッド Reflective solar control coated glass
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
JP2007301988A (en) * 2006-04-11 2007-11-22 Nippon Sheet Glass Co Ltd Photocatalyst coating having improved low maintenance characteristic
JP2009070858A (en) * 2007-09-10 2009-04-02 Asahi Kasei Chemicals Corp Manufacturing method for electron acceptor organic matter layer for composing photovoltaic element for photosensor and/or electron donor organic matter layer

Also Published As

Publication number Publication date
JP3879334B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
KR100728508B1 (en) Article having photocatalytic activity
EP0870530B1 (en) Photocatalyst and process for the preparation thereof
KR100365663B1 (en) Titanium oxide photocatalyst structure and its manufacturing method
Rampaul et al. Titania and tungsten doped titania thin films on glass; active photocatalysts
CN1541196B (en) Visible-light-responsive photoactive coating, coated article, and method of making same
CN1263695C (en) Photoactive coating, coated article, and method of making same
EP1153658B1 (en) Visible light response type photocatalyst
US6793980B2 (en) Method of forming photo-catalytic film made of titanium oxide on base material and laminated material thereof
JP2003220340A (en) Titanium oxide photocatalyst thin film and its manufacturing method
KR100937597B1 (en) A self-cleaning glazing sheet, a multiple glazing unit and a laminate comprising the self-cleaning glazing sheet, and a window and a facade comprising the self-cleaning glazing sheet, the multiple glazing unit or the laminate
RU2481364C2 (en) Intermediate layers providing improved top layer functionality
KR100882345B1 (en) Photocatalyst element, method and device for preparing the same
JP2001121003A (en) Article having photocatalytic activity
JP2000239047A (en) Hydrophilic photocatalytic member
JPWO2002100633A1 (en) Anti-fog element and method for forming the same
JP5182883B2 (en) Photocatalyst and method for producing the same
Kawahara et al. A Large-Area Patterned TiO 2/SnO 2 Bilayer Type Photocatalyst Prepared by Gravure Printing
JP4112691B2 (en) Surface hydrophilic substrate
JP4063577B2 (en) Method for producing composite material having photocatalytic coating
JP2001347162A (en) Photocatalytic material with thin titanium dioxide film
JP2002028494A (en) Photocatalyst carrier, and producing method thereof
JP2001130928A (en) Article with photocatalytic activity
US7842393B2 (en) Vehicle antifogging element
JP3799822B2 (en) Manufacturing method of complex oxide thin film
JP3867036B2 (en) Method for producing composite material with photocatalytic coating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

LAPS Cancellation because of no payment of annual fees