JP2001118741A - Ignition coil and its winding method - Google Patents

Ignition coil and its winding method

Info

Publication number
JP2001118741A
JP2001118741A JP29760399A JP29760399A JP2001118741A JP 2001118741 A JP2001118741 A JP 2001118741A JP 29760399 A JP29760399 A JP 29760399A JP 29760399 A JP29760399 A JP 29760399A JP 2001118741 A JP2001118741 A JP 2001118741A
Authority
JP
Japan
Prior art keywords
winding
bobbin
ignition coil
backward
voltage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29760399A
Other languages
Japanese (ja)
Other versions
JP2001118741A5 (en
JP3627594B2 (en
Inventor
Isao Takahashi
勇夫 高橋
Noriyuki Dairoku
範行 大録
Kazutoshi Kobayashi
和俊 小林
Toshiaki Ueda
俊明 植田
Kenji Nakabayashi
研司 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29760399A priority Critical patent/JP3627594B2/en
Publication of JP2001118741A publication Critical patent/JP2001118741A/en
Publication of JP2001118741A5 publication Critical patent/JP2001118741A5/ja
Application granted granted Critical
Publication of JP3627594B2 publication Critical patent/JP3627594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Coil Winding Methods And Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high voltage coil improving breakdown voltage, regarding an electromagnetic coil and an ignition coil for an internal combustion engine. SOLUTION: In a winding around a bobbin 100 of a secondary coil, it is started to wind from a high voltage side collar 101 and continued to wind toward the other end of low voltage side with a specified number of turns, thereby forming a forward winding. In a return winding in which a specified number of turns is reduced, the coil is wound back in the direction opposite to the forward winding. In the forward winding and the return winding, the number of turns is increased in sequence by a specified number. An inclined surface having an angle θ1 is formed in the high voltage side, and an inclined surface having an angle θ is formed in the direction of winding progress. As a result, the number of turns in the vicinity of the high voltage side collar 101 is reduced, a line voltage can be lowered, and a winding part where winding disorder is little can be arranged on the high voltage side, so that insulating property is improved. Winding diameters in the vicinities of the high voltage side collar 101 and a low voltage side collar 102 are reduced, winding layers on both sides are lowered so that imperfect breakdown voltage due to layer collapse which turns to a problem on the boundary to the collar is excluded, and a coil excellent in breakdown voltage can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一次コイルと二次
コイル及びその間隙に磁性体を装着してなるイグニショ
ンコイルや高圧トランス等に使用され、特に二次コイル
内の線間電圧、一次コイルと二次コイルとの絶縁距離、
二次コイルボビン両端部と電線層との境界面の巻き崩れ
等、高い耐電圧を要求される点火コイル及びその巻線方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for an ignition coil or a high-voltage transformer having a primary coil and a secondary coil and a magnetic material mounted in a gap between the primary coil and the secondary coil. Insulation distance between the coil and the secondary coil,
The present invention relates to an ignition coil that requires a high withstand voltage, such as collapse of a boundary surface between both ends of a secondary coil bobbin and an electric wire layer, and a winding method thereof.

【0002】[0002]

【従来の技術】イグニションコイルや高圧トランス等の
2次巻線では、絶縁特性、スペース効率、巻線時間短縮
等を向上させるために、従来からいわゆる斜行巻きと言
われるものが知られている。図2に示すように、低圧側
つば102aから巻き始め、2次ボビン100aを巻回
しながら、電線供給用ノズル200を左右に往復動し
て、略三角形の斜面を形成し、その斜面に沿って巻線し
て高圧つば101aまで巻線するものである。特開平9
−129460号公報では、低圧側から巻き始めて略三
角形の斜面を形成した後、所定の巻高さまで連続巻線し
た後、高圧側に近づくにつれ斜面の巻線数を徐々に、あ
るいは階段状に減らして縮径し、高圧側の線間電圧およ
び、1次ボビンとの絶縁距離を大きくして絶縁特性を向
上させている。また、特許第2630716号公報で
は、2次ボビンの一方端から他方端に向けて所定数の往
路巻きと、逆方向に所定数少ない復路巻きを順次交互に
繰り返しつつ、巻き始めと巻き終わりは巻高さを小さく
して絶縁特性をを向上させる方法がある。あるいは、特
開平9−246075号公報では、2次ボビンの内径が
一端から他端にかけて漸増し、その肉厚が漸減、巻数が
漸増する公報が出されている。次に、特開平9−694
55号公報では、線間電圧を低くするための略三角形の
傾斜角規定を目的として、傾斜角を6゜以上20゜以下
とする事が示されている。ボビン形状に関するものとし
ては、特開昭60−107815号公報のように、巻き
始め端から進行方向に沿う下り勾配斜面を予めボビンに
成型して、斜行巻きの傾斜面を形成するものがある。
2. Description of the Related Art A secondary winding such as an ignition coil and a high-voltage transformer is conventionally known as a so-called skew winding in order to improve insulation characteristics, space efficiency, and shortening of a winding time. . As shown in FIG. 2, the winding starts from the low-pressure side collar 102a, and while the secondary bobbin 100a is being wound, the wire supply nozzle 200 is reciprocated right and left to form a substantially triangular slope, and along the slope. The coil is wound up to the high-pressure brim 101a. JP 9
In Japanese Patent Application Laid-Open No. 129460, after starting winding from the low voltage side to form a substantially triangular slope, continuous winding up to a predetermined winding height, and gradually decreasing the number of windings on the slope toward the high pressure side, or gradually decreasing The insulation characteristics are improved by increasing the line voltage on the high voltage side and the insulation distance from the primary bobbin. Further, in Japanese Patent No. 2630716, while a predetermined number of forward windings from the one end of the secondary bobbin to the other end and a predetermined number of backward windings in the opposite direction are alternately repeated, the winding start and the winding end are performed at the winding height. There is a method of improving the insulation characteristics by reducing the thickness. Alternatively, Japanese Patent Application Laid-Open No. Hei 9-246075 discloses that the inner diameter of a secondary bobbin gradually increases from one end to the other end, the wall thickness gradually decreases, and the number of turns gradually increases. Next, JP-A-9-694
No. 55 discloses that the inclination angle is set to 6 ° or more and 20 ° or less for the purpose of defining the inclination angle of a substantially triangular shape for reducing the line voltage. As to the bobbin shape, there is a type in which a downwardly sloped surface along a traveling direction from a winding start end is formed in advance into a bobbin to form a slanted winding inclined surface as disclosed in Japanese Patent Application Laid-Open No. 60-107815. .

【0003】[0003]

【発明が解決しようとする課題】斜行巻きでは、巻線層
が傾斜面に連続して積層されるので、巻き進むにつれて
発生した巻き乱れが、巻き終わりに行くと大きくなる傾
向がある。
In the oblique winding, since the winding layers are continuously laminated on the inclined surface, the winding disturbance generated as the winding proceeds tends to increase toward the end of the winding.

【0004】また、図7の(b)に示すように、本発明
に関わる斜行巻きとは異なるが、従来から行われている
巻線方法で、2次ボビンを一定間隔毎に絶縁性隔壁で仕
切り、隔壁間に所定数巻線した後、隣の巻部に渡りなが
ら、順次巻線する方法、いわゆる分割巻きに於いて、2
次巻線から測定用リード線を出し、各測定部位と電圧と
の関係を測定した。図7(a)に示すように、低圧側か
ら高圧側までの測定部位0から10までの電位を測定し
た結果、巻数に比例して電圧が増加するはずであるが、
2次電圧波形成分の中の数MHz程度の高波数成分は高圧
側に電位集中する、すなわち1ターン当たりの電圧が高
圧側の方が低圧側より相対的に高くなるという傾向があ
る。
Further, as shown in FIG. 7 (b), although different from the oblique winding according to the present invention, the secondary bobbin is insulated at regular intervals by a conventional winding method. After winding a predetermined number of windings between the partition walls, the winding is successively performed while passing over the next winding part, that is, in a so-called split winding method, the winding is performed by two windings.
A measurement lead wire was taken out from the secondary winding, and the relationship between each measurement site and voltage was measured. As shown in FIG. 7 (a), as a result of measuring the potential from the measurement site 0 to 10 from the low voltage side to the high voltage side, the voltage should increase in proportion to the number of turns.
The high wave number component of about several MHz in the secondary voltage waveform component tends to concentrate potential on the high voltage side, that is, the voltage per turn is relatively higher on the high voltage side than on the low voltage side.

【0005】特開平9−129460号公報では、高圧
側に巻線するに従い縮径して、傾斜面の斜面長を減らし
て線間電圧が小さくになるようにしており、小さな巻き
乱れならば斜面長が減った分効果はあるが、大きな巻き
乱れは伝搬していく恐れがあり、絶縁特性の厳しい高圧
側では殊に問題である。また、高圧側と低圧側を縮径し
て高い絶縁特性を得る方法として特許第2630716
号公報のように、往路と復路の合計巻数を常に一定とし
ながら、順次巻線を繰り返して実現しているが、往路と
復路の巻数は線間耐圧を確保するために、ある一定の値
以下となる制約がある。そうすると、線間電圧が相対的
に大きい高圧側を意識して往復巻数を少なく設定する
と、低圧側により多くの巻線をする必要が生じ、ボビン
長が長くなる傾向がある。次に、斜行巻きの傾斜角につ
いては、特開平9−69455号公報で6゜以上20゜
以下としているが、これは巻線する上での絶対条件では
なく、種々の制約条件を満たす一例であり、たとえば傾
斜角が6度未満であっても、巻数を小さくできれば可能
となる。特開平9−246075号公報の2次ボビンの
内径が一端から他端にかけて漸増し、その肉厚が漸減、
巻数が漸増する公報に関しては、ボビンの中央部は同径
で、高圧側端、あるいは低圧側端部のみ巻高さを小さく
して縮径する事は公報の漸増、漸減とは異なるというこ
とができる。次に、ボビンの形状に関するものとして特
開昭60−107815号公報ではボビンに成形した傾
斜面を斜行巻きの傾斜角に利用しており、一定の傾斜角
仕様で有効だが、角度を少し変えたい時などは、新たに
作り直す必要が生じるという問題がある。
In Japanese Patent Application Laid-Open No. Hei 9-129460, the diameter is reduced as the coil is wound on the high voltage side so that the length of the slope is reduced to reduce the line voltage. Although there is an effect due to the reduced length, large turbulence may propagate, which is particularly problematic on the high voltage side where insulation properties are severe. Japanese Patent No. 2630716 discloses a method of obtaining high insulation characteristics by reducing the diameter of the high voltage side and the low voltage side.
As described in Japanese Patent Application Laid-Open Publication No. H10-216, while the total number of turns in the forward path and the return path is always constant, the winding is sequentially repeated, but the number of turns in the forward path and the return path is equal to or less than a certain value in order to secure the line breakdown voltage. There are restrictions. In this case, if the number of reciprocating windings is set to be small in consideration of the high voltage side where the line voltage is relatively large, it is necessary to make more windings on the low voltage side, and the bobbin length tends to be long. Next, the tilt angle of the skew winding is set to be not less than 6 ° and not more than 20 ° in Japanese Patent Application Laid-Open No. 9-69455, but this is not an absolute condition for winding but an example satisfying various constraints. For example, even if the inclination angle is less than 6 degrees, it becomes possible if the number of turns can be reduced. The inner diameter of the secondary bobbin disclosed in Japanese Patent Application Laid-Open No. 9-246075 gradually increases from one end to the other end, and its thickness gradually decreases.
Regarding the publication where the number of turns gradually increases, the fact that reducing the diameter by reducing the winding height only at the high-pressure end or the low-pressure end at the center of the bobbin is different from the gradual increase and decrease of the publication it can. Next, as for the shape of the bobbin, Japanese Unexamined Patent Publication No. Sho 60-107815 uses a slanted surface formed on the bobbin for the slanting angle of the skew winding, and is effective with a fixed slanting angle specification. There is a problem that it is necessary to make a new one when it is necessary.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、第1の発明では、低圧側からではなく、高圧側を巻
き始めとすることによって、巻き乱れが少ない部位を高
圧側に配置することが出来る。また、往路巻きと復路巻
きを低圧側方向へ繰り返しながら徐々に巻き進めると、
往路巻きの巻き進み量に応じた右下がりの傾斜面θ(図
4)ができる。更に、復路巻きの巻き戻し量を往路巻き
よりも所定数少なくすると、その差分に応じて高圧側の
巻線端面の位置が高圧側から低圧側方向に向かって徐々
にシフトし、巻高さ及び往復巻数が徐々に増加し、斜面
θ1(図4)の斜面ができる。こうすると、高圧側の傾
斜面の巻数を少なく制御できるので、線間電圧を低く押
さえて耐圧特性が良好な点火コイルを作ることができ
る。
In order to solve the above-mentioned problems, in the first invention, by starting the winding on the high pressure side instead of the low pressure side, a portion with little winding disturbance is arranged on the high pressure side. I can do it. In addition, when the winding is gradually advanced while repeating the outward winding and the backward winding in the low pressure side direction,
A downwardly inclined surface θ (FIG. 4) corresponding to the amount of forward winding is formed. Further, when the rewinding amount of the backward winding is smaller than the forward winding by a predetermined number, the position of the winding end face on the high voltage side is gradually shifted from the high voltage side to the low voltage side in accordance with the difference, and the winding height and reciprocation are increased. The number of turns gradually increases, and a slope θ1 (FIG. 4) is formed. In this case, the number of turns on the high-pressure side inclined surface can be controlled to be small, so that it is possible to produce an ignition coil having a good withstand voltage characteristic by keeping the line voltage low.

【0007】第2の発明では、進行方向の傾斜角θを6
゜未満としながらも、第1の発明で高圧側から低圧側に
向かう右上がり斜面θ1の傾斜角及び、巻数を制御する
ことで、斜面の往復巻数を低く押さえ、かつ緩やかな傾
斜角θによって巻き崩れを防止するという相乗効果があ
る。
In the second invention, the inclination angle θ in the traveling direction is set to 6
By controlling the inclination angle and the number of turns of the right-sloping slope θ1 from the high pressure side to the low pressure side in the first invention, the number of turns of the reciprocating winding on the slope is kept low, and the winding is performed with a gentle inclination angle θ. There is a synergistic effect of preventing collapse.

【0008】第3の発明では、高圧側から低圧側に向か
う右上がり斜面の傾斜角θ1は線間距離Pt(図4)と
シフト量s(図5)で決まるので、斜面の往復巻数を線
間電圧の許容範囲内で、任意に設定し、絶縁性能を向上
することが出来る。
In the third aspect of the present invention, the inclination angle θ1 of the slope rising upward from the high pressure side to the low pressure side is determined by the line distance Pt (FIG. 4) and the shift amount s (FIG. 5). The insulation performance can be improved arbitrarily within the allowable range of the inter-voltage.

【0009】第4の発明は、高圧側の電位分布に応じて
最適に調整する場合の用途に適している。
The fourth invention is suitable for use in the case of optimal adjustment according to the potential distribution on the high voltage side.

【0010】第5の発明は、高圧側の巻高さを許容線間
電圧以下に低く押さえ、残る巻数分を低圧側に配分し、
巻線する方法で、形状が単純な段付き形状にする事がで
きる。
According to a fifth aspect of the present invention, the winding height on the high voltage side is kept low below the allowable line voltage, and the remaining windings are distributed to the low voltage side.
By winding, a simple stepped shape can be obtained.

【0011】第6の発明は、巻き始めから低圧側に向か
ってボビンの高さを徐々に低くする部材であるリブを設
置すると、そのリブを設置した断面は略多角形のボビン
と見なすことができるのでボビン上の回転速度が回転角
によって微妙に増減するため電線を巻き締めするという
効果がある。また、リブ間に間隙があるため、巻線後ボ
ビンに例えばエポキシ系樹脂を充填して硬化させる場
合、絶縁特性が厳しい高圧側の最下層への浸透が十分で
ない場合にボイド等による不良が発生するのを防止する
効果がある。
According to a sixth aspect of the present invention, when a rib, which is a member for gradually lowering the height of the bobbin from the start of winding toward the low-pressure side, is provided, the cross section on which the rib is provided can be regarded as a substantially polygonal bobbin. As a result, the rotation speed on the bobbin slightly increases or decreases depending on the rotation angle, so that there is an effect that the electric wire is tightened. In addition, since there is a gap between the ribs, when the bobbin is filled with an epoxy resin and hardened after winding, defects such as voids may occur if the insulation properties are not sufficient and the permeation into the lowermost layer on the high voltage side is not sufficient. This has the effect of preventing it.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を示す
実施例を適宜図示しながら説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention.

【0013】(第1実施例)第1実施例を図1〜図5を
引用しながら説明する。
(First Embodiment) A first embodiment will be described with reference to FIGS.

【0014】図3に於いて、点火コイルは主に、円筒状
の2次コイル205と1次コイル206及び鉄心(図示
しない)で構成されるトランスである。1次コイル20
6に流れる電流を遮断すると磁気誘導作用によって1
次、2次コイル間の巻数に比例した電圧が2次コイル2
05に誘起する。本実施例の2次コイル電圧はたとえば
30kVである。次に、図示はしないが、点火コイルはエ
ンジンのプラグホール内に挿入して、該コイルの高圧側
をプラグの電極と勘合するのが一般的であるため、ボビ
ン形状はプラグに近い方を高圧側として2次電極を設置
する。またボビン内部及び、1次、2次コイル間に同心
円状に電磁コア材を装着して電磁誘導作用を倍加するよ
うにしているため、ボビンの高圧側は密閉し、他方プラ
グに遠い低圧側はボビンの円筒内径をオープンにして、
2次ボビン巻線時の回転軸を挿入する構造として、高圧
側、低圧側をボビン形状で区別している。
In FIG. 3, the ignition coil is a transformer mainly composed of a cylindrical secondary coil 205, a primary coil 206 and an iron core (not shown). Primary coil 20
When the current flowing through 6 is cut off, 1
The voltage proportional to the number of turns between the secondary and secondary coils is
Induced at 05. The secondary coil voltage of the present embodiment is, for example, 30 kV. Next, although not shown, it is common to insert the ignition coil into the plug hole of the engine and fit the high-pressure side of the coil with the electrode of the plug. A secondary electrode is installed as the side. In addition, since the electromagnetic induction is doubled by installing an electromagnetic core material concentrically inside the bobbin and between the primary and secondary coils, the high pressure side of the bobbin is sealed, while the low pressure side far from the plug is closed. Open the bobbin cylinder inside diameter,
As a structure for inserting a rotating shaft at the time of secondary bobbin winding, the high-pressure side and the low-pressure side are distinguished by a bobbin shape.

【0015】図2は2次コイルの巻線の従来例を示す図
で、2次ボビンへの巻始めは、低圧側から挿入した回転
軸(図示せず)に近い、低圧側つば102aより巻き始
めるのが一般的である。次に、巻き始めに適当な略三角
形の斜面を形成し、該斜面に沿って斜め巻きを繰り返し
て所定の巻き高さHで巻き進め、高圧側つば101aに
近くなったら図のような傾斜角を残して巻き終えるか、
あるいは、往復の巻数を徐々に減らしながら斜面長を短
くする方法等(図示せず)で縮径し、高圧側の線間電圧
を低く押さえる方法がとられている。
FIG. 2 is a view showing a conventional example of the winding of a secondary coil. The winding on the secondary bobbin is started from a low-pressure side collar 102a close to a rotating shaft (not shown) inserted from the low-pressure side. It is common to get started. Next, a suitable substantially triangular slope is formed at the beginning of winding, and the winding is repeated at a predetermined winding height H by repeating the diagonal winding along the slope. Or finish the winding
Alternatively, a method of reducing the length of the slope while gradually reducing the number of reciprocating windings or the like (not shown) is used to reduce the line voltage on the high voltage side.

【0016】図1では、回転軸(図示せず)を図2と同
様に低圧側から挿入するが、巻き始めは図2とは反対に
2次ボビン100の高圧側つば101の壁面下より行
う。これは、巻き進むうちに巻き乱れが大きくなる特性
に対し、巻数が少ない側を高圧側に配置するためと、高
圧側の巻数、傾斜角θを適宜変更できるようにするため
である。次に、所定数巻き進める往路巻きと、往路巻き
と逆向きに往路巻きより所定数少ない復路巻きで巻き戻
しながら、往路巻きと復路巻きの巻数を徐々に増加し
て、高圧側には右上がり斜面θ1、低圧側へ向かう方向
には右下がり斜面θでなる巻線層を形成し、P1で巻高
さがhとなるまで繰り返す。その後、巻き高さhをP2
まで形成し、P3が巻き終わりとなるように、P2から
最後の往路巻線を行なって、巻線を終了する。
In FIG. 1, a rotary shaft (not shown) is inserted from the low pressure side as in FIG. 2, but the winding is started from below the wall surface of the high pressure side flange 101 of the secondary bobbin 100, contrary to FIG. . This is because, with respect to the characteristic that the turbulence increases as the winding proceeds, the side having the smaller number of turns is arranged on the high voltage side, and the number of turns on the high voltage side and the inclination angle θ can be appropriately changed. Next, the number of windings of the forward winding and the backward winding is gradually increased while rewinding the winding in the forward winding by a predetermined number of times and the backward winding by a predetermined number less than the forward winding in the opposite direction to the forward winding, and the slope is increased to the right toward the high pressure side. In the direction toward θ1 and toward the low pressure side, a winding layer having a downwardly inclined surface θ is formed, and the process is repeated until the winding height becomes h at P1. After that, the winding height h is changed to P2
The last forward winding is performed from P2 so that the winding ends at P3, and the winding ends.

【0017】次に図4、5で巻線の詳細について述べ
る。まず、図4中の数字、1、20、36……696は
巻き始めからの累計巻数を示す。往路巻きとは1から2
0、あるいは37から72等のことで、復路巻きとは2
1(図示せず)から36、あるいは73(図示せず)か
ら104等である。従って往路と復路の1往復とは1→
20→36、あるいは37→72→104等をさす。図
5で巻線順序は1→20→36→37→72→104…
…のように推移する。その時の巻数の実際例は図5
(b)のように、往路20ターンで始まり→復路16タ
ーン→往路36ターン→復路32ターン→往路52ター
ン……のように往路復路共に徐々に増加し、かつ復路巻
きは往路巻きより4ターン少ない巻数で低圧側方向にシ
フトすることによって、傾斜角θ1を形成する。θ1は
シフト量sすなわち、巻線ピッチPtで決まり、本実施
例ではθ1≒tan-1 (2×電線径/4×Pt)で求ま
る。
Next, the details of the winding will be described with reference to FIGS. First, numerals 1, 20, 36... 696 in FIG. 4 indicate the total number of turns from the start of winding. Outbound winding is 1-2
0, or 37 to 72 etc., the return winding is 2
1 (not shown) to 36, or 73 (not shown) to 104. Therefore, one round trip of the outward trip and the return trip is 1 →
20 → 36 or 37 → 72 → 104. In FIG. 5, the winding order is 1 → 20 → 36 → 37 → 72 → 104.
It changes like…. An actual example of the number of turns at that time is shown in FIG.
As shown in (b), it starts with 20 turns on the outbound route, 16 turns on the inbound route, 36 turns on the outbound route, 32 turns on the inbound route, and 52 turns on the outward route. The inclination angle θ1 is formed by shifting in the low pressure side direction with a small number of windings. θ1 is determined by the shift amount s, that is, the winding pitch Pt, and is determined by θ1 ≒ tan −1 (2 × wire diameter / 4 × Pt) in the present embodiment.

【0018】次に、図4で、低圧側方向の傾斜角θであ
るが、往路巻きでは巻幅Wを予め決めて(たとえば1.
2mm)これを低圧側方向への巻き進みシフト量の1単
位としている。実施例では巻線ピッチPtを0.06m
mとし、20ターンづつ巻き進めている。θは復路の巻
数に関係なく、巻幅Wだけ巻き進むと2層分下るから、
θ≒tan-1 (2×電線径/W)となる。
Next, in FIG. 4, for the inclination angle θ in the low pressure side direction, the winding width W is determined in advance in the forward winding (for example, 1.
2 mm) This is defined as one unit of the shift amount of the winding advance in the low pressure side direction. In the embodiment, the winding pitch Pt is set to 0.06 m.
m and the winding is proceeding 20 turns at a time. θ is lowered by two layers when the winding is advanced by the winding width W, regardless of the number of turns in the return path.
θ ≒ tan −1 (2 × wire diameter / W).

【0019】実際の巻線ボビンでθを測定すると、W=
1.2mm、電線径0.058mmのときの約5゜とな
り、計算値の5.52゜にほぼ一致する。すなわち、こ
の巻線条件ではθを6度未満とすることができる。傾斜
角θ1については、往路巻きを例えば20ターン、復路
巻きを10ターンとして(図示せず)実際の巻線ボビン
で測定した結果、約10゜で、計算値10.9にほぼ一
致する。
When θ is measured on an actual winding bobbin, W =
It is approximately 5 ° when the wire diameter is 1.2 mm and the wire diameter is 0.058 mm, which is almost the same as the calculated value of 5.52 °. That is, under these winding conditions, θ can be less than 6 degrees. The inclination angle θ1 was measured at an actual winding bobbin with a forward winding of, for example, 20 turns and a return winding of 10 turns (not shown).

【0020】(第2実施例)第2実施例を図4、図6,
図7を引用しながら説明する。
(Second Embodiment) A second embodiment is shown in FIGS.
This will be described with reference to FIG.

【0021】図7(b)のような、従来から行われてい
るいわゆる分割巻きに於いて、2次ボビン100bを一
定間隔毎に絶縁性隔壁210で仕切り、隔壁間に所定数
巻線した後、隣の巻部に渡りながら、順次巻線したボビ
ンの2次巻線から測定用リード線を出し、各測定部位と
電圧との関係を測定したものが図7(a)である。低圧
側から高圧側までの測定部位0から10までの電位を測
定した結果、たとえば10kHzの周波数成分ではどの部
位でもほぼ一定であるが、2.5MHz程度では高圧側
の特定部位により多く電位集中する事が分かった。すな
わち1ターン当たりの電圧は高圧側の方が低圧側より相
対的に高くなるということが分かった。そこで、図7
(a)を参考にしながら、図6に於いて、当該ボビンの
電位分布に合うような、放物線状の傾斜面を形成するこ
とで線間電圧を最適化する事が出来る。巻線方法は図5
に於いて、シフト量sを徐々に小さくなるようにするこ
とによって実現できる。
In the conventional so-called split winding as shown in FIG. 7B, the secondary bobbin 100b is partitioned by an insulating partition 210 at regular intervals, and after a predetermined number of turns are wound between the partitions. FIG. 7 (a) shows a measurement lead wire taken out of the secondary winding of the bobbin sequentially wound while passing over the next winding part, and the relationship between each measurement site and the voltage is measured. As a result of measuring the potentials from the measurement sites 0 to 10 from the low voltage side to the high voltage side, for example, at 10 kHz frequency components, almost all are constant, but at about 2.5 MHz, more potential concentrates on the specific parts on the high voltage side. I understood that. That is, it was found that the voltage per turn was relatively higher on the high voltage side than on the low voltage side. Therefore, FIG.
Referring to FIG. 6A, the line voltage can be optimized by forming a parabolic inclined surface that matches the potential distribution of the bobbin in FIG. Fig. 5
Can be realized by gradually reducing the shift amount s.

【0022】次に、余線105は総巻数を微調整する目
的で設ける。すなわち、巻き終わり斜面の巻線は斜面途
中で巻線ピッチを広げて即座に巻き下ろすこと等は絶縁
特性が低下するため行わないので、所定の巻数に合わせ
る場合は、余線105で一定の巻線で巻数調整をするこ
とができる。この場合、つば境界で問題となる巻線層の
崩れによる線間電圧の問題は、仮に崩れたとしても所定
の線間電圧を満足する範囲内の層数とすれば問題はな
い。
Next, the extra line 105 is provided for the purpose of finely adjusting the total number of turns. In other words, the winding on the slope at the end of the winding is not performed immediately after the winding pitch is increased by expanding the winding pitch in the middle of the slope because the insulation property is degraded. The number of turns can be adjusted with a wire. In this case, there is no problem with the line voltage due to the collapse of the winding layer, which is a problem at the brim boundary, if the number of layers is within a range that satisfies a predetermined line voltage, even if the layer collapses.

【0023】(第3実施例)第3実施例を図8を引用し
ながら説明する。
(Third Embodiment) A third embodiment will be described with reference to FIG.

【0024】図に於いて、高圧側つば101gを巻き始
めとして、一定の巻高さh1で巻線した後、ある時点か
ら巻高さh2で巻線する例である。始めに、高圧側の線
間電圧を満足する巻数からh1設定し、残る巻数をh2
に配分することによって、巻線設計を簡易にする事がで
きる。
In the figure, the winding is started at a constant winding height h1, starting from the high-pressure side flange 101g, and then winding at a winding height h2 from a certain point. First, h1 is set from the number of turns satisfying the line voltage on the high voltage side, and the remaining number of turns is set to h2.
, The winding design can be simplified.

【0025】(第4実施例)第4実施例を図9を引用し
ながら説明する。
(Fourth Embodiment) A fourth embodiment will be described with reference to FIG.

【0026】本実施例はボビンの形状に関するものであ
る。図に於いて、リブ300は高圧側つば101fの近
傍に、2次ボビンの円周面に放射状に設置し(例えば8
枚以上)、高圧側つば101fに近づくに従い、その高
さが漸増する形状となっている。高圧側から巻き始める
と巻線面は略多角形と見なすことができるから、リブ3
00が巻き締め効果を発揮することになり巻線が安定す
る。更に、巻線後の工程で巻線ボビンにエポキシ系樹脂
を注入して封止硬化させるのであるが、狭い線間距離で
電線を多層に積層すると、下層に行くほど樹脂が浸透し
にくく、その部分からホ゛イト゛等が発生し、絶縁破壊を生
じる恐れがある。しかし、リブ300間に間隙があるた
めに最下層であってもエポキシ樹脂の浸透が容易にな
る。
This embodiment relates to the shape of a bobbin. In the figure, the rib 300 is radially installed on the circumferential surface of the secondary bobbin near the high pressure side flange 101f (for example, 8
), And the height gradually increases as approaching the high-pressure side brim 101f. When winding is started from the high voltage side, the winding surface can be regarded as substantially polygonal.
00 exerts a winding tightening effect, and the winding is stabilized. Furthermore, in the post-winding process, epoxy resin is injected into the winding bobbin and sealed and cured, but when wires are laminated in multiple layers with a small distance between wires, the resin hardly penetrates to the lower layer, There is a possibility that a wire or the like may be generated from the portion and dielectric breakdown may occur. However, since there is a gap between the ribs 300, the epoxy resin can easily penetrate even in the lowermost layer.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
巻き始めを高圧側としたので、巻き乱れの少ない巻線部
を高圧側に置くことができ、また高圧側端部近傍の巻数
が漸増するように傾斜面を形成したので耐圧特性を良好
にする事ができる。更に、高圧側と低圧側両端を縮径し
て、つば近傍の巻線層の高さを最少にしたので、つば近
傍で生じる、層の崩れによる耐圧不良を生じない。
As described above, according to the present invention,
Since the winding start is on the high voltage side, the winding part with little winding disturbance can be placed on the high voltage side, and the inclined surface is formed so that the number of turns near the high voltage side end gradually increases, so that the withstand voltage characteristics are improved. Can do things. Furthermore, since the diameter of both ends on the high voltage side and the low voltage side is reduced to minimize the height of the winding layer in the vicinity of the brim, there is no occurrence of a breakdown voltage failure near the brim due to collapse of the layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】点火コイルの従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example of an ignition coil.

【図3】点火コイルの部分断面図である。FIG. 3 is a partial sectional view of an ignition coil.

【図4】点火コイルの説明用断面図である。FIG. 4 is an explanatory sectional view of an ignition coil.

【図5】点火コイルの説明用断面の部分拡大図である。FIG. 5 is a partially enlarged view of an explanatory cross section of the ignition coil.

【図6】本発明の第2実施例を示す断面図である。FIG. 6 is a sectional view showing a second embodiment of the present invention.

【図7】点火コイルの出力電圧と測定部位との関係を示
す図である。
FIG. 7 is a diagram showing a relationship between an output voltage of an ignition coil and a measurement site.

【図8】本発明の第3実施例を示す図である。FIG. 8 is a diagram showing a third embodiment of the present invention.

【図9】本発明の第4実施例を示す断面図である。FIG. 9 is a sectional view showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

100…ボビン、 101…高圧側つば、 102
…低圧側つば、103…線間距離、 104…電線、
105…余線、200…ノズル、 205…2次
巻線、 206…1次巻線300…リブ、 θ…低
圧側右下がり斜面の傾斜角、θ1…高圧側右上がり斜面
の傾斜角、 H、h…巻高さ、Pt…巻線ピッチ、
s…シフト量、
100: bobbin, 101: high-pressure side brim, 102
... low-pressure side collar, 103 ... line distance, 104 ... electric wire,
105: Auxiliary line, 200: Nozzle, 205: Secondary winding, 206: Primary winding 300: Rib, θ: Incline angle of low-pressure side right-down slope, θ1: Incline angle of high-pressure side right-up slope, H, h: winding height, Pt: winding pitch,
s ... shift amount,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 和俊 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 (72)発明者 植田 俊明 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 (72)発明者 中林 研司 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 Fターム(参考) 3G019 CA08 KC04 5E002 AA19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazutoshi Kobayashi 2520 Address, Takaji, Hitachinaka City, Ibaraki Prefecture Within the Hitachi, Ltd. Automotive Equipment Group (72) Inventor Toshiaki Ueda 2520 Address, Oaza Takaba, Hitachinaka City, Ibaraki Prefecture (72) Inventor Kenji Nakabayashi 2520 Oita Takaba, Hitachinaka-shi, Ibaraki F-term in Hitachi Automotive Equipment Group (reference) 3G019 CA08 KC04 5E002 AA19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ボビン等に線材を複数層巻回して、コイル
の軸線に対して斜め巻きをする点火コイルの巻線方法に
おいて、 該ボビン等の高圧側端を巻き始めとし、他方端の低圧側
方向へ所定量巻き進める往路巻きと、往路巻きと逆向き
に、所定量少ない復路巻きで巻き戻し、往路巻きと復路
巻きの巻数を各々順次増やしながら巻回して巻高さを決
めた後、該往路巻きと復路巻きの巻数を一定とし、順次
交互に巻回して所定の傾斜角を有するように巻き終わる
ことを特徴とする点火コイルの巻線方法。
1. A method of winding an ignition coil in which a wire is wound on a bobbin or the like in a plurality of layers and wound obliquely with respect to the axis of the coil. Forward winding, which is wound by a predetermined amount in the lateral direction, in the opposite direction to the forward winding, rewinding by a predetermined amount smaller in the backward winding, winding while sequentially increasing the number of windings of the forward winding and the backward winding, and determining the winding height, A winding method for an ignition coil, characterized in that the number of turns of the forward winding and the backward winding is constant, and the winding is sequentially and alternately finished to have a predetermined inclination angle.
【請求項2】前記往路巻きと復路巻きで形成する、低圧
側斜面の傾斜角度は6度未満であることを特徴とする請
求項1記載の点火コイルの巻線方法。
2. The method of winding an ignition coil according to claim 1, wherein the inclination angle of the low pressure side slope formed by the forward winding and the backward winding is less than 6 degrees.
【請求項3】前記往路巻きと復路巻きで形成する、高圧
側の包絡線がなす傾斜面の傾斜角度は90度以下である
ことを特徴とする請求項1記載の点火コイルの巻線方
法。
3. The winding method for an ignition coil according to claim 1, wherein an inclination angle of an inclined surface formed by the high-pressure side envelope formed by the forward winding and the backward winding is 90 degrees or less.
【請求項4】前記往路巻きと復路巻きで形成する、高圧
側包絡線がなす傾斜面は低圧側に向かって放物線状であ
ることを特徴とする請求項1記載の点火コイルの巻線方
法。
4. The winding method for an ignition coil according to claim 1, wherein the slope formed by the forward winding and the backward winding and formed by the high-voltage side envelope is parabolic toward the low-voltage side.
【請求項5】前記往路巻きと復路巻きで形成する巻線層
の巻き高さは高圧側で低く、高圧側が高い段付き形状で
あることを特徴とする請求項1記載の点火コイルの巻線
方法。
5. The winding of the ignition coil according to claim 1, wherein the winding layer formed by the forward winding and the backward winding has a low winding height on a high voltage side and a high stepped shape on a high voltage side. Method.
【請求項6】ボビン等に線材を複数層巻回する点火コイ
ルにおいて、 前記コイルボビンの高圧側端を巻き始めとし、他方端の
低圧側方向へ所定量巻き進める往路巻きと、該往路巻き
と逆向きに所定量復路巻きで巻き戻し、前記往路巻きと
前記復路巻きの巻数を各々順次増やしながら巻回した
後、該往路巻きと復路巻きの巻数を略一定とし、前記ボ
ビンの巻き高さを略一定にし、斜め巻き角度を有するよ
うに往路巻きと復路巻きを順次交互に巻回して巻き終端
を形成することを特徴とする点火コイル。
6. An ignition coil in which a wire is wound on a bobbin or the like by a plurality of layers, wherein the coil bobbin starts winding at a high pressure side end, and winds a predetermined amount in a low pressure side direction at the other end. After rewinding by a predetermined amount of backward winding in the direction and winding while sequentially increasing the number of turns of the forward winding and the backward winding, the number of windings of the forward winding and the backward winding is substantially constant, and the winding height of the bobbin is substantially reduced. An ignition coil, wherein a winding end is formed by alternately winding a forward winding and a backward winding so as to have a constant angle and an oblique winding angle.
【請求項7】ボビンに線材を複数層巻回して、軸線に対
して傾斜面を形成してなる点火コイルにおいて、高圧側
巻始め近傍にあって、ボビンの軸線方向、円周上の所定
位置に、所定角度で放射状にリブを設置し、リブの高さ
が高圧側巻き始め端から低圧側に向かって徐々に低くな
ることを特徴とする点火コイルの巻線ボビン。
7. An ignition coil in which a wire is wound on a bobbin by a plurality of layers to form an inclined surface with respect to an axis, and a predetermined position on the circumference of the bobbin in the axial direction of the bobbin near the beginning of high-pressure winding. A winding bobbin for an ignition coil, wherein ribs are radially provided at a predetermined angle, and the height of the ribs gradually decreases from a high-pressure side winding start end toward a low-pressure side.
JP29760399A 1999-10-20 1999-10-20 Ignition coil Expired - Fee Related JP3627594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29760399A JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29760399A JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Publications (3)

Publication Number Publication Date
JP2001118741A true JP2001118741A (en) 2001-04-27
JP2001118741A5 JP2001118741A5 (en) 2004-10-07
JP3627594B2 JP3627594B2 (en) 2005-03-09

Family

ID=17848708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29760399A Expired - Fee Related JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Country Status (1)

Country Link
JP (1) JP3627594B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308977C (en) * 2003-12-02 2007-04-04 株式会社村田制作所 Coil-winding method and coil unit formed by the method
JP2009038198A (en) * 2007-08-01 2009-02-19 Denso Corp Ignition coil
JP2009508345A (en) * 2005-09-12 2009-02-26 プルゼ ゲゼルシャフト ミット ベシュレンクテル ハフツング Rod ignition transformer for supplying high voltage to the ignition element, in particular to the ignition plug of the internal combustion engine
JP2010103211A (en) * 2008-10-22 2010-05-06 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2010109131A (en) * 2008-10-30 2010-05-13 Tdk Corp High voltage transformer
CN104681271A (en) * 2015-03-11 2015-06-03 沈阳天通电力设备有限公司 Adjustable type amorphous alloy transformer winding die and manufacturing and use method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308977C (en) * 2003-12-02 2007-04-04 株式会社村田制作所 Coil-winding method and coil unit formed by the method
JP2009508345A (en) * 2005-09-12 2009-02-26 プルゼ ゲゼルシャフト ミット ベシュレンクテル ハフツング Rod ignition transformer for supplying high voltage to the ignition element, in particular to the ignition plug of the internal combustion engine
JP2009038198A (en) * 2007-08-01 2009-02-19 Denso Corp Ignition coil
JP2010103211A (en) * 2008-10-22 2010-05-06 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP2010109131A (en) * 2008-10-30 2010-05-13 Tdk Corp High voltage transformer
CN104681271A (en) * 2015-03-11 2015-06-03 沈阳天通电力设备有限公司 Adjustable type amorphous alloy transformer winding die and manufacturing and use method

Also Published As

Publication number Publication date
JP3627594B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US8013490B2 (en) Armature
US7053515B2 (en) Rotor for dynamo-electric machine
KR100981380B1 (en) Winding for a transformer or a coil
US6252483B1 (en) Slant winding electromagnetic coil and ignition coil for internal combustion engine using same
JP2001118741A (en) Ignition coil and its winding method
JP2727462B2 (en) Electric winding parts and winding method
JP2001052935A (en) Step-up transformer for high-frequency heating equipment
US7834732B2 (en) Ignition coil, in particular for an internal combustion engine of a motor vehicle
US7574998B2 (en) Ignition apparatus for an internal combustion engine
JP2006074943A (en) Motor stator
JPH02151008A (en) Method of winding electric winding component
JP3178593B2 (en) Electromagnetic coil and ignition coil for internal combustion engine using the same
KR20000029807A (en) Winding, particularly for a high-voltage ignition coil circuit
US11218035B2 (en) Armature structure of three-phase motor
KR20200084221A (en) Method for manufacturing hairpin
CN1205567A (en) Magnetic sleeve electromachine
KR200142811Y1 (en) Commutator motor of stator insulator structure
US986291A (en) Construction of coils for electrical apparatus.
JP2937584B2 (en) Winding of rotating electric machine
JPS6050906A (en) Ignition coil for internal combustion engine
JPS6012259Y2 (en) Ignition coil for internal combustion engine
JPH1092669A (en) Ignition coil for internal combustion engine
JPH09129459A (en) Ignition coil for internal combustion engine
JP2003229317A (en) Internal combustion engine
JPH0128661Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees