JP3627594B2 - Ignition coil - Google Patents

Ignition coil Download PDF

Info

Publication number
JP3627594B2
JP3627594B2 JP29760399A JP29760399A JP3627594B2 JP 3627594 B2 JP3627594 B2 JP 3627594B2 JP 29760399 A JP29760399 A JP 29760399A JP 29760399 A JP29760399 A JP 29760399A JP 3627594 B2 JP3627594 B2 JP 3627594B2
Authority
JP
Japan
Prior art keywords
winding
bobbin
ignition coil
turns
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29760399A
Other languages
Japanese (ja)
Other versions
JP2001118741A5 (en
JP2001118741A (en
Inventor
勇夫 高橋
範行 大録
和俊 小林
俊明 植田
研司 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29760399A priority Critical patent/JP3627594B2/en
Publication of JP2001118741A publication Critical patent/JP2001118741A/en
Publication of JP2001118741A5 publication Critical patent/JP2001118741A5/ja
Application granted granted Critical
Publication of JP3627594B2 publication Critical patent/JP3627594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Coil Winding Methods And Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一次コイルと二次コイル及びその間隙に磁性体を装着してなるイグニションコイルや高圧トランス等に使用され、特に二次コイル内の線間電圧、一次コイルと二次コイルとの絶縁距離、二次コイルボビン両端部と電線層との境界面の巻き崩れ等、高い耐電圧を要求される点火コイル及びその巻線方法に関する。
【0002】
【従来の技術】
イグニションコイルや高圧トランス等の2次巻線では、絶縁特性、スペース効率、巻線時間短縮等を向上させるために、従来からいわゆる斜行巻きと言われるものが知られている。図2に示すように、低圧側つば102aから巻き始め、2次ボビン100aを巻回しながら、電線供給用ノズル200を左右に往復動して、略三角形の斜面を形成し、その斜面に沿って巻線して高圧つば101aまで巻線するものである。特開平9−129460号公報では、低圧側から巻き始めて略三角形の斜面を形成した後、所定の巻高さまで連続巻線した後、高圧側に近づくにつれ斜面の巻線数を徐々に、あるいは階段状に減らして縮径し、高圧側の線間電圧および、1次ボビンとの絶縁距離を大きくして絶縁特性を向上させている。また、特許第2630716号公報では、2次ボビンの一方端から他方端に向けて所定数の往路巻きと、逆方向に所定数少ない復路巻きを順次交互に繰り返しつつ、巻き始めと巻き終わりは巻高さを小さくして絶縁特性をを向上させる方法がある。あるいは、特開平9−246075号公報では、2次ボビンの内径が一端から他端にかけて漸増し、その肉厚が漸減、巻数が漸増する公報が出されている。次に、特開平9−69455号公報では、線間電圧を低くするための略三角形の傾斜角規定を目的として、傾斜角を6゜以上20゜以下とする事が示されている。ボビン形状に関するものとしては、特開昭60−107815号公報のように、巻き始め端から進行方向に沿う下り勾配斜面を予めボビンに成型して、斜行巻きの傾斜面を形成するものがある。
【0003】
【発明が解決しようとする課題】
斜行巻きでは、巻線層が傾斜面に連続して積層されるので、巻き進むにつれて発生した巻き乱れが、巻き終わりに行くと大きくなる傾向がある。
【0004】
また、図7の(b)に示すように、本発明に関わる斜行巻きとは異なるが、従来から行われている巻線方法で、2次ボビンを一定間隔毎に絶縁性隔壁で仕切り、隔壁間に所定数巻線した後、隣の巻部に渡りながら、順次巻線する方法、いわゆる分割巻きに於いて、2次巻線から測定用リード線を出し、各測定部位と電圧との関係を測定した。図7(a)に示すように、低圧側から高圧側までの測定部位0から10までの電位を測定した結果、巻数に比例して電圧が増加するはずであるが、2次電圧波形成分の中の数MHz程度の高波数成分は高圧側に電位集中する、すなわち1ターン当たりの電圧が高圧側の方が低圧側より相対的に高くなるという傾向がある。
【0005】
特開平9−129460号公報では、高圧側に巻線するに従い縮径して、傾斜面の斜面長を減らして線間電圧が小さくになるようにしており、小さな巻き乱れならば斜面長が減った分効果はあるが、大きな巻き乱れは伝搬していく恐れがあり、絶縁特性の厳しい高圧側では殊に問題である。また、高圧側と低圧側を縮径して高い絶縁特性を得る方法として特許第2630716号公報のように、往路と復路の合計巻数を常に一定としながら、順次巻線を繰り返して実現しているが、往路と復路の巻数は線間耐圧を確保するために、ある一定の値以下となる制約がある。そうすると、線間電圧が相対的に大きい高圧側を意識して往復巻数を少なく設定すると、低圧側により多くの巻線をする必要が生じ、ボビン長が長くなる傾向がある。次に、斜行巻きの傾斜角については、特開平9−69455号公報で6゜以上20゜以下としているが、これは巻線する上での絶対条件ではなく、種々の制約条件を満たす一例であり、たとえば傾斜角が6度未満であっても、巻数を小さくできれば可能となる。特開平9−246075号公報の2次ボビンの内径が一端から他端にかけて漸増し、その肉厚が漸減、巻数が漸増する公報に関しては、ボビンの中央部は同径で、高圧側端、あるいは低圧側端部のみ巻高さを小さくして縮径する事は公報の漸増、漸減とは異なるということができる。次に、ボビンの形状に関するものとして特開昭60−107815号公報ではボビンに成形した傾斜面を斜行巻きの傾斜角に利用しており、一定の傾斜角仕様で有効だが、角度を少し変えたい時などは、新たに作り直す必要が生じるという問題がある。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、第1の発明では、低圧側からではなく、高圧側を巻き始めとすることによって、巻き乱れが少ない部位を高圧側に配置することが出来る。また、往路巻きと復路巻きを低圧側方向へ繰り返しながら徐々に巻き進めると、往路巻きの巻き進み量に応じた右下がりの傾斜面θ(図4)ができる。更に、復路巻きの巻き戻し量を往路巻きよりも所定数少なくすると、その差分に応じて高圧側の巻線端面の位置が高圧側から低圧側方向に向かって徐々にシフトし、巻高さ及び往復巻数が徐々に増加し、斜面θ1(図4)の斜面ができる。こうすると、高圧側の傾斜面の巻数を少なく制御できるので、線間電圧を低く押さえて耐圧特性が良好な点火コイルを作ることができる。
【0007】
第2の発明では、進行方向の傾斜角θを6゜未満としながらも、第1の発明で高圧側から低圧側に向かう右上がり斜面θ1の傾斜角及び、巻数を制御することで、斜面の往復巻数を低く押さえ、かつ緩やかな傾斜角θによって巻き崩れを防止するという相乗効果がある。
【0008】
第3の発明では、高圧側から低圧側に向かう右上がり斜面の傾斜角θ1は線間距離Pt(図4)とシフト量s(図5)で決まるので、斜面の往復巻数を線間電圧の許容範囲内で、任意に設定し、絶縁性能を向上することが出来る。
【0009】
第4の発明は、高圧側の電位分布に応じて最適に調整する場合の用途に適している。
【0010】
第5の発明は、高圧側の巻高さを許容線間電圧以下に低く押さえ、残る巻数分を低圧側に配分し、巻線する方法で、形状が単純な段付き形状にする事ができる。
【0011】
第6の発明は、巻き始めから低圧側に向かってボビンの高さを徐々に低くする部材であるリブを設置すると、そのリブを設置した断面は略多角形のボビンと見なすことができるのでボビン上の回転速度が回転角によって微妙に増減するため電線を巻き締めするという効果がある。また、リブ間に間隙があるため、巻線後ボビンに例えばエポキシ系樹脂を充填して硬化させる場合、絶縁特性が厳しい高圧側の最下層への浸透が十分でない場合にボイド等による不良が発生するのを防止する効果がある。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を示す実施例を適宜図示しながら説明する。
【0013】
(第1実施例)第1実施例を図1〜図5を引用しながら説明する。
【0014】
図3に於いて、点火コイルは主に、円筒状の2次コイル205と1次コイル206及び鉄心(図示しない)で構成されるトランスである。1次コイル206に流れる電流を遮断すると磁気誘導作用によって1次、2次コイル間の巻数に比例した電圧が2次コイル205に誘起する。本実施例の2次コイル電圧はたとえば30kVである。次に、図示はしないが、点火コイルはエンジンのプラグホール内に挿入して、該コイルの高圧側をプラグの電極と勘合するのが一般的であるため、ボビン形状はプラグに近い方を高圧側として2次電極を設置する。またボビン内部及び、1次、2次コイル間に同心円状に電磁コア材を装着して電磁誘導作用を倍加するようにしているため、ボビンの高圧側は密閉し、他方プラグに遠い低圧側はボビンの円筒内径をオープンにして、2次ボビン巻線時の回転軸を挿入する構造として、高圧側、低圧側をボビン形状で区別している。
【0015】
図2は2次コイルの巻線の従来例を示す図で、2次ボビンへの巻始めは、低圧側から挿入した回転軸(図示せず)に近い、低圧側つば102aより巻き始めるのが一般的である。次に、巻き始めに適当な略三角形の斜面を形成し、該斜面に沿って斜め巻きを繰り返して所定の巻き高さHで巻き進め、高圧側つば101aに近くなったら図のような傾斜角を残して巻き終えるか、あるいは、往復の巻数を徐々に減らしながら斜面長を短くする方法等(図示せず)で縮径し、高圧側の線間電圧を低く押さえる方法がとられている。
【0016】
図1では、回転軸(図示せず)を図2と同様に低圧側から挿入するが、巻き始めは図2とは反対に2次ボビン100の高圧側つば101の壁面下より行う。これは、巻き進むうちに巻き乱れが大きくなる特性に対し、巻数が少ない側を高圧側に配置するためと、高圧側の巻数、傾斜角θを適宜変更できるようにするためである。次に、所定数巻き進める往路巻きと、往路巻きと逆向きに往路巻きより所定数少ない復路巻きで巻き戻しながら、往路巻きと復路巻きの巻数を徐々に増加して、高圧側には右上がり斜面θ1、低圧側へ向かう方向には右下がり斜面θでなる巻線層を形成し、P1で巻高さがhとなるまで繰り返す。その後、巻き高さhをP2まで形成し、P3が巻き終わりとなるように、P2から最後の往路巻線を行なって、巻線を終了する。
【0017】
次に図4、5で巻線の詳細について述べる。まず、図4中の数字、1、20、36……696は巻き始めからの累計巻数を示す。往路巻きとは1から20、あるいは37から72等のことで、復路巻きとは21(図示せず)から36、あるいは73(図示せず)から104等である。従って往路と復路の1往復とは1→20→36、あるいは37→72→104等をさす。図5で巻線順序は1→20→36→37→72→104……のように推移する。その時の巻数の実際例は図5(b)のように、往路20ターンで始まり→復路16ターン→往路36ターン→復路32ターン→往路52ターン……のように往路復路共に徐々に増加し、かつ復路巻きは往路巻きより4ターン少ない巻数で低圧側方向にシフトすることによって、傾斜角θ1を形成する。θ1はシフト量sすなわち、巻線ピッチPtで決まり、本実施例ではθ1≒tan−1 (2×電線径/4×Pt)で求まる。
【0018】
次に、図4で、低圧側方向の傾斜角θであるが、往路巻きでは巻幅Wを予め決めて(たとえば1.2mm)これを低圧側方向への巻き進みシフト量の1単位としている。実施例では巻線ピッチPtを0.06mmとし、20ターンづつ巻き進めている。θは復路の巻数に関係なく、巻幅Wだけ巻き進むと2層分下るから、θ≒tan−1 (2×電線径/W)となる。
【0019】
実際の巻線ボビンでθを測定すると、W=1.2mm、電線径0.058mmのときの約5゜となり、計算値の5.52゜にほぼ一致する。すなわち、この巻線条件ではθを6度未満とすることができる。傾斜角θ1については、往路巻きを例えば20ターン、復路巻きを10ターンとして(図示せず)実際の巻線ボビンで測定した結果、約10゜で、計算値10.9にほぼ一致する。
【0020】
(第2実施例)第2実施例を図4、図6,図7を引用しながら説明する。
【0021】
図7(b)のような、従来から行われているいわゆる分割巻きに於いて、2次ボビン100bを一定間隔毎に絶縁性隔壁210で仕切り、隔壁間に所定数巻線した後、隣の巻部に渡りながら、順次巻線したボビンの2次巻線から測定用リード線を出し、各測定部位と電圧との関係を測定したものが図7(a)である。低圧側から高圧側までの測定部位0から10までの電位を測定した結果、たとえば10kHzの周波数成分ではどの部位でもほぼ一定であるが、2.5MHz程度では高圧側の特定部位により多く電位集中する事が分かった。すなわち1ターン当たりの電圧は高圧側の方が低圧側より相対的に高くなるということが分かった。そこで、図7(a)を参考にしながら、図6に於いて、当該ボビンの電位分布に合うような、放物線状の傾斜面を形成することで線間電圧を最適化する事が出来る。巻線方法は図5に於いて、シフト量sを徐々に小さくなるようにすることによって実現できる。
【0022】
次に、余線105は総巻数を微調整する目的で設ける。すなわち、巻き終わり斜面の巻線は斜面途中で巻線ピッチを広げて即座に巻き下ろすこと等は絶縁特性が低下するため行わないので、所定の巻数に合わせる場合は、余線105で一定の巻線で巻数調整をすることができる。この場合、つば境界で問題となる巻線層の崩れによる線間電圧の問題は、仮に崩れたとしても所定の線間電圧を満足する範囲内の層数とすれば問題はない。
【0023】
(第3実施例)第3実施例を図8を引用しながら説明する。
【0024】
図に於いて、高圧側つば101gを巻き始めとして、一定の巻高さh1で巻線した後、ある時点から巻高さh2で巻線する例である。始めに、高圧側の線間電圧を満足する巻数からh1設定し、残る巻数をh2に配分することによって、巻線設計を簡易にする事ができる。
【0025】
(第4実施例)第4実施例を図9を引用しながら説明する。
【0026】
本実施例はボビンの形状に関するものである。図に於いて、リブ300は高圧側つば101fの近傍に、2次ボビンの円周面に放射状に設置し(例えば8枚以上)、高圧側つば101fに近づくに従い、その高さが漸増する形状となっている。高圧側から巻き始めると巻線面は略多角形と見なすことができるから、リブ300が巻き締め効果を発揮することになり巻線が安定する。更に、巻線後の工程で巻線ボビンにエポキシ系樹脂を注入して封止硬化させるのであるが、狭い線間距離で電線を多層に積層すると、下層に行くほど樹脂が浸透しにくく、その部分からボイド等が発生し、絶縁破壊を生じる恐れがある。しかし、リブ300間に間隙があるために最下層であってもエポキシ樹脂の浸透が容易になる。
【0027】
【発明の効果】
以上説明したように、本発明によれば、巻き始めを高圧側としたので、巻き乱れの少ない巻線部を高圧側に置くことができ、また高圧側端部近傍の巻数が漸増するように傾斜面を形成したので耐圧特性を良好にする事ができる。更に、高圧側と低圧側両端を縮径して、つば近傍の巻線層の高さを最少にしたので、つば近傍で生じる、層の崩れによる耐圧不良を生じない。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す断面図である。
【図2】点火コイルの従来例を示す断面図である。
【図3】点火コイルの部分断面図である。
【図4】点火コイルの説明用断面図である。
【図5】点火コイルの説明用断面の部分拡大図である。
【図6】本発明の第2実施例を示す断面図である。
【図7】点火コイルの出力電圧と測定部位との関係を示す図である。
【図8】本発明の第3実施例を示す図である。
【図9】本発明の第4実施例を示す断面図である。
【符号の説明】
100…ボビン、 101…高圧側つば、 102…低圧側つば、
103…線間距離、 104…電線、 105…余線、
200…ノズル、 205…2次巻線、 206…1次巻線
300…リブ、 θ…低圧側右下がり斜面の傾斜角、
θ1…高圧側右上がり斜面の傾斜角、 H、h…巻高さ、
Pt…巻線ピッチ、 s…シフト量、
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used for an ignition coil, a high voltage transformer, etc. in which a primary body and a secondary coil and a magnetic material are attached to the gap between them, and in particular, a line voltage in the secondary coil, insulation between the primary coil and the secondary coil. The present invention relates to an ignition coil that requires a high withstand voltage, such as distance, collapse of a boundary surface between a secondary coil bobbin and an electric wire layer, and a winding method thereof.
[0002]
[Prior art]
Conventional secondary windings such as ignition coils and high-voltage transformers are known as so-called skew windings in order to improve insulation characteristics, space efficiency, winding time reduction, and the like. As shown in FIG. 2, the wire supply nozzle 200 is moved back and forth while winding the secondary bobbin 100a, starting from the low pressure side collar 102a to form a substantially triangular slope, along the slope. Winding and winding up to the high-pressure collar 101a. In Japanese Patent Application Laid-Open No. 9-129460, winding is started from the low pressure side to form a substantially triangular slope, and then continuously wound up to a predetermined winding height. The diameter is reduced to a reduced shape, the line voltage on the high voltage side, and the insulation distance from the primary bobbin are increased to improve the insulation characteristics. Further, in Japanese Patent No. 2630716, a predetermined number of forward windings and a predetermined number of backward windings are sequentially repeated alternately from one end to the other end of the secondary bobbin, and the winding start and winding ends are repeated at the winding height. There is a method for improving the insulation characteristics by reducing the thickness. Alternatively, Japanese Patent Laid-Open No. 9-246075 discloses a publication in which the inner diameter of the secondary bobbin gradually increases from one end to the other end, the thickness gradually decreases, and the number of turns gradually increases. Next, Japanese Patent Application Laid-Open No. 9-69455 discloses that the inclination angle is 6 ° or more and 20 ° or less for the purpose of defining the inclination angle of a substantially triangular shape for reducing the line voltage. As for the bobbin shape, there is a method of forming a slant surface of oblique winding by previously forming a down-gradient slope along the traveling direction from the winding start end into a bobbin as in JP-A-60-107815. .
[0003]
[Problems to be solved by the invention]
In the oblique winding, since the winding layers are continuously laminated on the inclined surface, the winding disturbance generated as the winding progresses tends to increase at the end of winding.
[0004]
In addition, as shown in FIG. 7B, unlike the skew winding according to the present invention, the secondary bobbin is partitioned by an insulating partition at regular intervals by a winding method that has been conventionally performed. After winding a predetermined number of wires between the partition walls, a method of sequentially winding the wires over the adjacent windings, in a so-called divided winding, a measurement lead wire is taken out from the secondary winding, and each measurement site and voltage are The relationship was measured. As shown in FIG. 7 (a), as a result of measuring the potential from the low pressure side to the high pressure side, the voltage should increase in proportion to the number of turns. The high frequency component of about several MHz in the middle tends to concentrate on the high voltage side, that is, the voltage per turn is relatively higher on the high voltage side than on the low voltage side.
[0005]
In Japanese Patent Application Laid-Open No. 9-129460, the diameter is reduced as the coil is wound on the high voltage side, the slope length of the inclined surface is reduced to reduce the line voltage, and if the winding is small, the slope length is reduced. Although there is an effect, large turbulence may propagate, which is particularly problematic on the high-pressure side where the insulation characteristics are severe. Further, as a method of obtaining high insulation characteristics by reducing the diameter of the high-pressure side and the low-pressure side, as in Japanese Patent No. 2630716, the total number of turns in the forward path and the return path is always kept constant, and the winding is sequentially repeated. However, the number of turns in the forward path and the return path is limited to a certain value or less in order to ensure a line withstand voltage. Then, if the number of reciprocating turns is set small in consideration of the high voltage side where the line voltage is relatively large, it is necessary to perform more windings on the low voltage side, and the bobbin length tends to be long. Next, the inclination angle of the skew winding is set to 6 ° to 20 ° in Japanese Patent Laid-Open No. 9-69455, but this is not an absolute condition for winding but an example satisfying various constraints. For example, even if the inclination angle is less than 6 degrees, it is possible if the number of turns can be reduced. Regarding the publication in which the inner diameter of the secondary bobbin in JP-A-9-246075 gradually increases from one end to the other end, the thickness gradually decreases, and the number of turns gradually increases, the central part of the bobbin has the same diameter and the high-pressure side end, or It can be said that reducing the diameter by reducing the winding height only at the low-pressure side end is different from the gradual increase and decrease of the publication. Next, regarding the shape of the bobbin, Japanese Patent Application Laid-Open No. 60-107815 uses an inclined surface formed on the bobbin for the inclination angle of the oblique winding, which is effective with a constant inclination angle specification, but the angle is slightly changed. There is a problem that it is necessary to make a new one when you want.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, in the first invention, by starting winding from the high-pressure side instead of from the low-pressure side, it is possible to arrange a portion with less winding disturbance on the high-pressure side. Further, when the forward winding and the backward winding are repeated gradually in the low-pressure direction, a downwardly inclined surface θ (FIG. 4) corresponding to the amount of forward winding is formed. Furthermore, when the amount of unwinding of the return winding is made a predetermined number less than that of the outward winding, the position of the winding end surface on the high voltage side gradually shifts from the high voltage side toward the low pressure side according to the difference, and the winding height and reciprocation The number of turns gradually increases, and a slope of slope [theta] 1 (FIG. 4) is formed. In this way, since the number of turns on the inclined surface on the high voltage side can be controlled to be small, it is possible to make an ignition coil with good withstand voltage characteristics by keeping the line voltage low.
[0007]
In the second invention, while the inclination angle θ in the traveling direction is less than 6 °, by controlling the inclination angle and the number of turns of the upward slope θ1 going from the high pressure side to the low pressure side in the first invention, There is a synergistic effect of keeping the number of reciprocating turns low and preventing collapse by a gentle inclination angle θ.
[0008]
In the third aspect of the invention, the slope angle θ1 of the upward slope from the high pressure side to the low pressure side is determined by the line distance Pt (FIG. 4) and the shift amount s (FIG. 5). It can be set arbitrarily within the allowable range to improve the insulation performance.
[0009]
The fourth aspect of the invention is suitable for use in the case of optimal adjustment according to the potential distribution on the high voltage side.
[0010]
In the fifth aspect of the invention, a stepped shape with a simple shape can be obtained by controlling the winding height on the high voltage side to be lower than the allowable line voltage, distributing the remaining number of windings to the low voltage side, and winding. .
[0011]
In the sixth aspect of the present invention, when a rib, which is a member that gradually decreases the height of the bobbin from the beginning of winding toward the low pressure side, is installed, the section on which the rib is installed can be regarded as a substantially polygonal bobbin. Since the upper rotation speed slightly increases or decreases depending on the rotation angle, there is an effect of winding the electric wire. In addition, because there is a gap between the ribs, defects such as voids occur when the bobbin after winding is filled with, for example, epoxy resin and cured, and the penetration to the lowermost layer on the high-pressure side, which has strict insulation properties, is not sufficient This has the effect of preventing
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples illustrating the embodiments of the present invention will be described with reference to the drawings.
[0013]
(First Embodiment) The first embodiment will be described with reference to FIGS.
[0014]
In FIG. 3, the ignition coil is a transformer mainly composed of a cylindrical secondary coil 205, a primary coil 206, and an iron core (not shown). When the current flowing through the primary coil 206 is cut off, a voltage proportional to the number of turns between the primary and secondary coils is induced in the secondary coil 205 by magnetic induction. The secondary coil voltage in this embodiment is, for example, 30 kV. Next, although not shown, the ignition coil is generally inserted into the plug hole of the engine, and the high voltage side of the coil is generally engaged with the electrode of the plug. A secondary electrode is installed on the side. Also, since the electromagnetic core material is mounted concentrically between the bobbin and between the primary and secondary coils to double the electromagnetic induction action, the high pressure side of the bobbin is sealed, while the low pressure side far from the plug is As a structure in which the inner diameter of the bobbin is opened and a rotating shaft is inserted when the secondary bobbin is wound, the high pressure side and the low pressure side are distinguished by the bobbin shape.
[0015]
FIG. 2 is a diagram showing a conventional example of the winding of the secondary coil. The winding to the secondary bobbin starts from the low-pressure side collar 102a, which is close to the rotating shaft (not shown) inserted from the low-pressure side. It is common. Next, an appropriate substantially triangular slope is formed at the beginning of winding, and the oblique winding is repeated along the slope to advance at a predetermined winding height H. The method is such that the winding is finished while leaving the wire, or the diameter is reduced by a method of shortening the slope length while gradually reducing the number of reciprocating turns (not shown), and the line voltage on the high voltage side is kept low.
[0016]
In FIG. 1, the rotating shaft (not shown) is inserted from the low pressure side as in FIG. 2, but the winding is started from below the wall surface of the high pressure side collar 101 of the secondary bobbin 100, contrary to FIG. 2. This is for the characteristic that winding disturbance increases as the winding progresses, in order to arrange the side with a smaller number of turns on the high-pressure side and to change the number of turns on the high-pressure side and the inclination angle θ as appropriate. Next, while increasing the number of turns of the forward winding and the backward winding gradually while increasing the number of windings of the forward winding and the backward winding in a direction opposite to the outward winding in a direction opposite to the forward winding, A winding layer having a downwardly inclined slope θ is formed in the direction toward θ1 and the low pressure side, and the process is repeated until the winding height becomes h at P1. Thereafter, the winding height h is formed up to P2, the last forward winding is performed from P2 so that P3 is finished, and the winding is finished.
[0017]
Next, details of the winding will be described with reference to FIGS. First, numerals 1, 20, 36... 696 in FIG. 4 indicate the total number of windings from the start of winding. The forward winding is 1 to 20, 37 to 72, and the backward winding is 21 (not shown) to 36, or 73 (not shown) to 104, etc. Therefore, one round trip between the forward path and the return path is 1 → 20 → 36 or 37 → 72 → 104. In FIG. 5, the winding sequence changes as 1 → 20 → 36 → 37 → 72 → 104. The actual number of turns at that time, as shown in FIG. 5 (b), starts with 20 turns in the forward direction → 16 turns in the return direction → 36 turns in the forward direction → 32 turns in the return direction → 52 turns in the outward direction. In addition, the inward winding forms a tilt angle θ1 by shifting in the low-pressure direction with a number of turns that is four turns less than the outward winding. θ1 is determined by the shift amount s, that is, the winding pitch Pt. In this embodiment, θ1≈tan −1 (2 × wire diameter / 4 × Pt).
[0018]
Next, in FIG. 4, the inclination angle θ in the low-pressure side direction is determined in advance in the forward winding (for example, 1.2 mm), and this is set as one unit of the winding advance shift amount in the low-pressure side direction. . In the embodiment, the winding pitch Pt is 0.06 mm, and winding is performed every 20 turns. Regardless of the number of turns in the return path, θ decreases by two layers when the winding width W is advanced, and θ≈tan −1 (2 × electric wire diameter / W).
[0019]
When θ is measured with an actual winding bobbin, it is about 5 ° when W = 1.2 mm and the wire diameter is 0.058 mm, which is almost equal to the calculated value of 5.52 °. That is, θ can be less than 6 degrees under this winding condition. With respect to the inclination angle θ1, when measured with an actual winding bobbin (not shown) with 20 turns for the forward winding and 10 turns for the backward winding, for example, it is approximately 10 ° and substantially coincides with the calculated value 10.9.
[0020]
(Second Embodiment) A second embodiment will be described with reference to FIGS.
[0021]
In the so-called split winding conventionally performed as shown in FIG. 7B, the secondary bobbin 100b is partitioned by an insulating partition 210 at regular intervals, and a predetermined number of windings are wound between the partitions. FIG. 7A shows a measurement lead wire taken out from the secondary winding of the bobbin that has been wound sequentially while passing over the winding portion, and the relationship between each measurement site and the voltage measured. As a result of measuring the potential from the low-voltage side to the high-voltage side from the measurement site 0 to 10, for example, the frequency component of 10 kHz is almost constant at any site, but at about 2.5 MHz, the potential concentrates more at the specific site on the high-voltage side. I understood that. That is, it was found that the voltage per turn is relatively higher on the high voltage side than on the low voltage side. Therefore, referring to FIG. 7A, the line voltage can be optimized by forming a parabola-like inclined surface that matches the potential distribution of the bobbin in FIG. The winding method can be realized by gradually reducing the shift amount s in FIG.
[0022]
Next, the extra line 105 is provided for the purpose of finely adjusting the total number of turns. In other words, winding of the winding end slope is not performed because the insulation characteristics are deteriorated and the winding pitch is increased in the middle of the slope because the insulation characteristics are deteriorated. The number of turns can be adjusted with a wire. In this case, the problem of the line voltage due to the collapse of the winding layer, which is a problem at the brim boundary, is not a problem if the number of layers is within a range that satisfies the predetermined line voltage even if it collapses.
[0023]
(Third Embodiment) A third embodiment will be described with reference to FIG.
[0024]
In the figure, an example is shown in which winding is started at a constant winding height h1 from the high-pressure side collar 101g, and then wound at a winding height h2 from a certain point in time. First, the winding design can be simplified by setting h1 from the number of turns satisfying the line voltage on the high voltage side and allocating the remaining number of turns to h2.
[0025]
(Fourth Embodiment) A fourth embodiment will be described with reference to FIG.
[0026]
The present embodiment relates to the shape of the bobbin. In the figure, ribs 300 are radially arranged on the circumferential surface of the secondary bobbin in the vicinity of the high-pressure side collar 101f (for example, eight or more), and the height gradually increases as the high-pressure side collar 101f is approached. It has become. When winding is started from the high voltage side, the winding surface can be regarded as a substantially polygonal shape, so that the rib 300 exhibits a winding tightening effect and the winding is stabilized. Furthermore, in the post-winding process, epoxy resin is injected into the winding bobbin and sealed and hardened, but when the wires are stacked in multiple layers with a narrow line distance, the resin is less likely to penetrate into the lower layer. There is a possibility that voids or the like are generated from the portion, resulting in dielectric breakdown. However, since there is a gap between the ribs 300, the epoxy resin can easily penetrate even in the lowermost layer.
[0027]
【The invention's effect】
As described above, according to the present invention, since the winding start is on the high voltage side, the winding part with less winding disturbance can be placed on the high voltage side, and the number of turns in the vicinity of the high voltage side end is gradually increased. Since the inclined surface is formed, the pressure resistance can be improved. Further, the diameters of both the high-voltage side and the low-voltage side are reduced to minimize the height of the winding layer near the collar, so that a breakdown voltage failure due to the collapse of the layer that occurs near the collar does not occur.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a conventional example of an ignition coil.
FIG. 3 is a partial cross-sectional view of an ignition coil.
FIG. 4 is a cross-sectional view for explaining an ignition coil.
FIG. 5 is a partially enlarged view of a cross section for explaining an ignition coil.
FIG. 6 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 7 is a diagram showing a relationship between an output voltage of an ignition coil and a measurement site.
FIG. 8 is a diagram showing a third embodiment of the present invention.
FIG. 9 is a sectional view showing a fourth embodiment of the present invention.
[Explanation of symbols]
100 ... Bobbin, 101 ... High pressure side collar, 102 ... Low pressure side collar,
103: Distance between lines, 104: Electric wire, 105 ...
200 ... Nozzle, 205 ... Secondary winding, 206 ... Primary winding 300 ... Rib, .theta.
θ1… Inclination angle of the high-pressure-side rising slope, H, h… winding height,
Pt: winding pitch, s: shift amount,

Claims (12)

ボビン上に線材がコイルの軸線に対して斜め巻きされた2次コイルを備えた点火コイルにおいて、In an ignition coil including a secondary coil in which a wire rod is wound obliquely with respect to the axis of the coil on a bobbin,
該2次コイルは、該ボビン上の点火コイルがエンジンのプラグホール内に挿入された状態でプラグに近くなる側を線材の巻き始めとし、往路巻きで所定数巻き進められ、該往路巻きよりも少ない巻数の復路巻きで巻き戻され、往路巻きと復路巻きの巻き数を増加させたコイルであることを特徴とする点火コイル。The secondary coil is advanced by a predetermined number of turns in the forward winding, with the wire coil starting from the side close to the plug with the ignition coil on the bobbin inserted into the plug hole of the engine. Ignition coil characterized in that it is a coil that is rewound with a small number of turns, and has an increased number of turns for forward and return turns.
請求項1において、In claim 1,
該ボビン上の点火コイルがエンジンのプラグホール内に挿入された状態でプラグに近くなる側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that the position of the winding end surface on the side close to the plug in the state where the ignition coil on the bobbin is inserted into the plug hole of the engine forms an inclination angle.
請求項1において、In claim 1,
該ボビン上の点火コイルがエンジンのプラグホール内に挿入された状態でプラグに遠くなる側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that the position of the winding end face on the side far from the plug in the state where the ignition coil on the bobbin is inserted into the plug hole of the engine forms an inclination angle.
請求項3において、In claim 3,
前記傾斜角はThe tilt angle is 66 度未満であることを特徴とする点火コイル。An ignition coil characterized by being less than a degree.
ボビン上に線材がコイルの軸線に対して斜め巻きされた2次コイルを備えた点火コイルにおいて、In an ignition coil including a secondary coil in which a wire rod is wound obliquely with respect to the axis of the coil on a bobbin,
該ボビンに2次電極を有し、The bobbin has a secondary electrode;
該2次コイルは、該ボビン上の該2次電極が形成された側を線材の巻き始めとし、往路巻きで所定数巻き進められ、該往路巻きよりも少ない巻数の復路巻きで巻き戻され、往路巻きと復路巻きの巻き数を増加させたコイルであることを特徴とする点火コイル。The secondary coil has the side on which the secondary electrode is formed on the bobbin as the start of winding of the wire, is advanced by a predetermined number of turns in the forward winding, and is rewound by the return winding of the number of turns smaller than the forward winding, An ignition coil characterized in that the coil has an increased number of turns for forward winding and backward winding.
請求項5において、In claim 5,
該ボビン上の該2次電極が形成された側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that the position of the winding end face on the side where the secondary electrode is formed on the bobbin forms an inclination angle.
請求項5において、In claim 5,
該ボビン上の該2次電極が形成された側の反対側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that the position of the winding end face on the side opposite to the side where the secondary electrode is formed on the bobbin forms an inclination angle.
請求項7において、In claim 7,
前記傾斜角はThe tilt angle is 66 度未満であることを特徴とする点火コイル。An ignition coil characterized by being less than a degree.
ボビン上に線材がコイルの軸線に対して斜め巻きされた2次コイルを備えた点火コイルにおいて、In an ignition coil including a secondary coil in which a wire rod is wound obliquely with respect to the axis of the coil on a bobbin,
該ボビンは、一方の端部が密封され、他方の端部がオープンになっており、The bobbin has one end sealed and the other end open.
該2次コイルは、該ボビンの密封された側を線材の巻き始めとし、往路巻きで所定数巻き進められ、該往路巻きよりも少ない巻数の復路巻きで巻き戻され、往路巻きと復路巻きの巻き数を増加させたコイルであることを特徴とする点火コイル。The secondary coil starts winding the wire on the sealed side of the bobbin, is advanced by a predetermined number of turns in the forward winding, is rewound by a return winding having a smaller number of turns than the forward winding, An ignition coil characterized by being a coil having an increased number of turns.
請求項9において、In claim 9,
該ボビン上の該ボビンの密封された側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that a position of a winding end face on a sealed side of the bobbin on the bobbin forms an inclination angle.
請求項9において、In claim 9,
該ボビン上の該オープンな側における巻線端面の位置が、傾斜角を形成していることを特徴とする点火コイル。An ignition coil characterized in that a position of a winding end face on the open side on the bobbin forms an inclination angle.
請求項11において、In claim 11,
前記傾斜角はThe tilt angle is 66 度未満であることを特徴とする点火コイル。An ignition coil characterized by being less than a degree.
JP29760399A 1999-10-20 1999-10-20 Ignition coil Expired - Fee Related JP3627594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29760399A JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29760399A JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Publications (3)

Publication Number Publication Date
JP2001118741A JP2001118741A (en) 2001-04-27
JP2001118741A5 JP2001118741A5 (en) 2004-10-07
JP3627594B2 true JP3627594B2 (en) 2005-03-09

Family

ID=17848708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29760399A Expired - Fee Related JP3627594B2 (en) 1999-10-20 1999-10-20 Ignition coil

Country Status (1)

Country Link
JP (1) JP3627594B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148115B2 (en) * 2003-12-02 2008-09-10 株式会社村田製作所 Coil winding method and coil component using the same
DE102005043336A1 (en) * 2005-09-12 2007-03-15 Pulse Gmbh Bar ignition transformer for supplying an ignition means, in particular a spark plug of an internal combustion engine, with a high voltage
JP2009038198A (en) * 2007-08-01 2009-02-19 Denso Corp Ignition coil
JP2010103211A (en) * 2008-10-22 2010-05-06 Hanshin Electric Co Ltd Ignition coil for internal combustion engine
JP5120782B2 (en) * 2008-10-30 2013-01-16 Tdk株式会社 High voltage transformer
CN104681271B (en) * 2015-03-11 2017-01-18 沈阳天通电力设备有限公司 Adjustable type amorphous alloy transformer winding die and manufacturing and use method

Also Published As

Publication number Publication date
JP2001118741A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP5379550B2 (en) Armature
CN101346782B (en) Winding method and coil unit
US20090085422A1 (en) Motor Core Component and Motor Component
US4808959A (en) Electrical coil with tap transferring to end-layer position
US9711281B2 (en) Method of manufacturing an ignition coil assembly
KR100981380B1 (en) Winding for a transformer or a coil
JP3627594B2 (en) Ignition coil
US7834732B2 (en) Ignition coil, in particular for an internal combustion engine of a motor vehicle
JP2727462B2 (en) Electric winding parts and winding method
JP2001052935A (en) Step-up transformer for high-frequency heating equipment
JP2006074943A (en) Motor stator
CN208862644U (en) The insulator of stator
JP2727461B2 (en) Winding method of electric winding parts
JP7413651B2 (en) coil device
US20210074473A1 (en) Internal combustion engine ignition device
JP3178593B2 (en) Electromagnetic coil and ignition coil for internal combustion engine using the same
JPH05328651A (en) Coil bobbin
JPH02194507A (en) Small-sized electric winding component
JPH0219940Y2 (en)
US1204749A (en) Electrical coil and method of winding same.
JPS6012259Y2 (en) Ignition coil for internal combustion engine
JPH0128661Y2 (en)
US20200204015A1 (en) Armature structure of three-phase motor
KR200142811Y1 (en) Commutator motor of stator insulator structure
JP2001126932A (en) Transformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees