JP2001116733A - Ultrasonic sensor and material-measuring apparatus - Google Patents

Ultrasonic sensor and material-measuring apparatus

Info

Publication number
JP2001116733A
JP2001116733A JP29835099A JP29835099A JP2001116733A JP 2001116733 A JP2001116733 A JP 2001116733A JP 29835099 A JP29835099 A JP 29835099A JP 29835099 A JP29835099 A JP 29835099A JP 2001116733 A JP2001116733 A JP 2001116733A
Authority
JP
Japan
Prior art keywords
ultrasonic
temperature
sensor
ultrasonic sensor
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29835099A
Other languages
Japanese (ja)
Inventor
Mikio Fukuhara
幹夫 福原
Tomohisa Degawa
智久 出川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP29835099A priority Critical patent/JP2001116733A/en
Publication of JP2001116733A publication Critical patent/JP2001116733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a reliability by temperature correcting measured values when evaluating various kinds of materials and diagnosing a deterioration of the materials. SOLUTION: An ultrasonic sensor 1 has a transmitting element 4 and a receiving element 5. Ultrasonic waves are transmitted and received to a sample body 2 through shoe members 6a and 6b. An ultrasonic probe 7 for measuring a surface temperature of the sample body 2 is added to the ultrasonic sensor 1. A standard member 12 of a polymer material is set between a transmitting element 10 and a receiving element 11 opposite to each other. A transmission time is measured at the standard member 12, and a temperature is calculated backwards from a preliminarily formed calibration curve of the temperature- transmission time. Each parameter of the sample body 2 is temperature corrected on the basis of the backward calculated temperature by a CPU 25 of a material-measuring apparatus 20, and obtained as a correct measured value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波センサ及び
材料測定装置に関し、特に、ポリマ−材の各種評価や劣
化診断において超音波特性の温度による変化を補正する
ことにより、測定値の信頼性が向上するようにしたもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic sensor and a material measuring apparatus, and more particularly, to the reliability of measured values by compensating for changes in ultrasonic characteristics due to temperature in various evaluations and deterioration diagnosis of polymer materials. Is improved.

【0002】[0002]

【従来の技術】従来、常温における固体の超音波計測で
は、試料体の温度を計測して温度補正するという習慣は
なく、また超音波計測そのものが正確ではなかった。
2. Description of the Related Art Conventionally, in ultrasonic measurement of a solid at room temperature, there has been no custom of measuring the temperature of a sample body and correcting the temperature, and the ultrasonic measurement itself has not been accurate.

【0003】ところで、本発明者等は、セラミックス、
金属、ポリマ−等における超音波伝搬特性を精密計測し
ているが、ポリマ−材における測定値は、信頼性が向上
していないという欠点があった。
[0003] By the way, the present inventors have proposed ceramics,
Although the ultrasonic wave propagation characteristics of metals, polymers, and the like are precisely measured, the reliability of the measured values of polymer materials has not been improved.

【0004】[0004]

【発明が解決しようとする課題】一方、本発明者等は、
音速の遅いポリマ−では、常温付近の温度で音速がかな
り異なり、温度補正をしないと測定値の信用性が向上し
ないという知見を得た。このようなことから、本発明で
は、ポリマ−材からなる標準部材の伝達時間を測定し
て、この測定値を基に検量線から温度補正するようにし
た超音波センサ及びこの超音波センサを組込んだ材料測
定装置を提供するものである。
SUMMARY OF THE INVENTION On the other hand, the present inventors have
It has been found that in a polymer having a low sound speed, the sound speed is considerably different at a temperature near normal temperature, and the reliability of the measured value is not improved unless the temperature is corrected. For this reason, in the present invention, the ultrasonic sensor which measures the transmission time of the standard member made of a polymer material and corrects the temperature from the calibration curve based on the measured value, and this ultrasonic sensor are assembled. The present invention provides an embedded material measuring device.

【0005】[0005]

【課題を解決するための手段】本発明は、上述の点に鑑
みなされたもので、請求項1〜請求項3に係る発明で
は、センサ本体内に設けられた超音波の送信素子及び受
信素子間では、超音波がシュ−部材を介して試料体表面
に伝搬され、またこのセンサ本体には、試料体表面の温
度を測定する超音波プロ−ブが付加され超音波センサを
提供するものである。この場合、前記超音波プロ−ブ
は、プロ−ブ本体内で対向する送信素子及び受信素子間
には、超音波の伝達時間が測定されるポリマ−材からな
る温度補正用の標準部材が位置するようにしたものであ
る。また、センサ本体内に設けられた前記送信素子は、
受信素子も兼ねることができ、超音波プロ−ブの標準部
材を伝搬する超音波としては、周波数が1〜10MHz
好ましくは1〜3MHzのパルス波を適用するとよい。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and according to the first to third aspects of the present invention, an ultrasonic transmitting element and an ultrasonic transmitting element provided in a sensor body are provided. In between, ultrasonic waves are transmitted to the surface of the sample through the shoe member, and an ultrasonic probe for measuring the temperature of the surface of the sample is added to the sensor body to provide an ultrasonic sensor. is there. In this case, in the ultrasonic probe, a standard member for temperature correction made of a polymer material whose ultrasonic transmission time is measured is located between the opposed transmitting element and receiving element in the probe main body. It is something to do. Further, the transmitting element provided in the sensor body,
The ultrasonic wave propagating through the standard member of the ultrasonic probe can have a frequency of 1 to 10 MHz.
Preferably, a pulse wave of 1 to 3 MHz is applied.

【0006】また、請求項4及び請求項5に係る発明で
は、前述した超音波センサが組込まれた材料測定装置で
あって、前記超音波センサには、切換えスイッチ機能を
有するマルチプレキサを介して超音波の発信及び受信を
制御するパルサ−レシバが接続され、しかもこのパルサ
−レシ−バには、前記超音波センサからの受信波をデジ
タル変換するA/D変換部、デ−タを演算処理するCP
U及びデ−タを表示するディスプレイがそれぞれ接続さ
れるようにしたものである。したがって、温度補正用の
標準部材における超音波の伝達時間が測定され、この測
定値に基づいて予め作成されている温度−伝搬時間の検
量線から試料体温度を逆算して補正することから測定デ
−タの精度が向上する。
According to the fourth and fifth aspects of the present invention, there is provided a material measuring apparatus in which the above-described ultrasonic sensor is incorporated, wherein the ultrasonic sensor is connected via a multiplexer having a changeover switch function. A pulser-receiver for controlling transmission and reception of ultrasonic waves is connected to the pulser-receiver. The pulser-receiver includes an A / D converter for digitally converting a wave received from the ultrasonic sensor and data processing. CP to do
U and a display for displaying data are connected to each other. Therefore, the transmission time of the ultrasonic wave in the standard member for temperature correction is measured, and based on the measured value, the sample body temperature is back calculated from the calibration curve of the temperature-propagation time and corrected to correct the measurement data. The accuracy of the data is improved.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る超音波センサ
及び材料測定装置の一実施例について、図を参照しなが
ら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an ultrasonic sensor and a material measuring device according to the present invention will be described below with reference to the drawings.

【0008】図1乃至図3は、本発明に係る超音波セン
サ1の概念を示す説明図で、試料体2の上部に載置され
る接触形式のものが例示されている。そして、超音波セ
ンサ1のセンサ本体3は、アクリルなどの合成樹脂から
なり、図示の場合ゲ−ト状ブロックの形状を呈し、起立
部分3a,3bの内部には、超音波を送受信する送信素
子4及び受信素子5がそれぞれ備えられている。
FIGS. 1 to 3 are explanatory views showing the concept of an ultrasonic sensor 1 according to the present invention, and illustrate an example of a contact type mounted on an upper portion of a sample body 2. FIG. The sensor main body 3 of the ultrasonic sensor 1 is made of a synthetic resin such as acrylic, and has a gate-like block shape in the case shown in the figure. 4 and a receiving element 5 are provided.

【0009】したがって、この超音波センサ1は、超音
波を送信素子4側から受信素子5側に送信すれば、図2
で示されているように超音波がシュ−部材6aを介して
試料体2の表面を伝搬し、他方のシュ−部材6bを経て
受信素子5側で受信される。この超音波は、縦波、横波
又はパルス波のいずれでもよいが、その周波数として
は、1〜100MHzの範囲内、好ましくは1〜20M
Hzの範囲内で選択される。これは、周波数が大きすぎ
ると減衰が大きく、小さすぎると精度が悪くなるからで
ある。
Therefore, the ultrasonic sensor 1 transmits the ultrasonic wave from the transmitting element 4 side to the receiving element 5 side as shown in FIG.
The ultrasonic wave propagates through the surface of the sample body 2 via the shoe member 6a, and is received by the receiving element 5 via the other shoe member 6b, as shown in FIG. This ultrasonic wave may be any of a longitudinal wave, a transverse wave or a pulse wave, and the frequency thereof is in the range of 1 to 100 MHz, preferably 1 to 20 MHz.
Hz. This is because if the frequency is too high, the attenuation is large, and if it is too low, the accuracy is deteriorated.

【0010】ところで、本発明者等は、試料体2として
ポリマ−を対象としたときには、温度補正しないと測定
値の信頼性が向上しないこと及び金属その他の試料体2
においても温度補正をすれば、より正確な測定値が得ら
れることを知見した。この場合、ポリマ−の測定値の信
頼性が欠けるのは、ポリマ−自体の音速が遅く、しかも
常温付近の温度で音速がかなり異なるためである。
By the way, the present inventors have found that when a polymer is used as the sample 2, the reliability of the measured value cannot be improved unless the temperature is corrected.
It was also found that a more accurate measurement value can be obtained by performing temperature correction in the above. In this case, the lack of reliability of the measured value of the polymer is because the sound speed of the polymer itself is slow and the sound speed is considerably different at a temperature near normal temperature.

【0011】そこで、前述した超音波センサ1では、試
料体2の表面温度を測定する超音波プロ−ブ7が備えら
れるようにしたものであり、図示の場合超音波センサ1
に対する影響を排除するためコルクなどの境界部材8を
介在させている。
Therefore, the above-described ultrasonic sensor 1 is provided with an ultrasonic probe 7 for measuring the surface temperature of the sample body 2.
A boundary member 8 such as cork is interposed in order to eliminate the influence of the above.

【0012】前記超音波プロ−ブ7のプロ−ブ本体9
a、9bは、合成樹脂などから形成されるが、プロ−ブ
本体9a、9bには、超音波が直進するように送信素子
10及び受信素子11が対面関係で備えられ、またこれ
らの間には、ポリマ−材からなる温度補正用の標準部材
12が位置し、下面側にあるシュ−部材13を介して試
料体2と接触するようになっている。この標準部材12
は、試料体2の形状や材質によって送受信間の距離やポ
リマ−の種類が異なるが、本実施例では、シュ−部材1
3と同じくポリエ−テルイミドが適用されている。な
お、温度計を用いない理由は、熱電対や熱放射温度計の
場合、試料体2の表面温度の精密な計測が難しいことに
よる。
The probe body 9 of the ultrasonic probe 7
a and 9b are formed of a synthetic resin or the like, and the probe bodies 9a and 9b are provided with a transmitting element 10 and a receiving element 11 in a face-to-face relationship so that ultrasonic waves travel straight, and between them. In the figure, a standard member 12 for temperature correction made of a polymer material is located, and comes into contact with the sample body 2 via a shoe member 13 on the lower surface side. This standard member 12
Although the distance between transmission and reception and the type of polymer differ depending on the shape and material of the sample body 2, in the present embodiment, the shoe member 1 is used.
As in 3, polyetherimide is applied. The reason why a thermometer is not used is that it is difficult to accurately measure the surface temperature of the sample body 2 in the case of a thermocouple or a thermal radiation thermometer.

【0013】そして、送信素子10及び受信素子11間
に送受信される超音波の周波数としては、1〜10MH
z,好ましくは1〜3MHzが好適する。また超音波の
干渉、解析のしやすさなどからすれば、連続波でないパ
ルス波が好適する。
The frequency of the ultrasonic wave transmitted and received between the transmitting element 10 and the receiving element 11 is 1 to 10 MHz.
z, preferably 1-3 MHz. Also, a pulse wave that is not a continuous wave is preferable in view of interference of ultrasonic waves, ease of analysis, and the like.

【0014】この標準部材12は、図10で概念的に示
される材料測定装置20によって、超音波の伝達時間が
測定され、予め作成されている温度−伝達時間の検量線
から試料体2の表面温度が逆算され、試料体2の各種パ
ラメ−タが正確な超音波特性として測定できる。
The transmission time of the ultrasonic wave is measured by the material measuring device 20 conceptually shown in FIG. 10, and the standard member 12 is provided on the surface of the sample body 2 based on a previously prepared calibration curve of temperature-transmission time. The temperature is back calculated and various parameters of the sample 2 can be measured as accurate ultrasonic characteristics.

【0015】また、図4及び図5は、前述した並列形式
のものとは異なり、センサ本体3には、試料体1の表面
温度を測定する超音波プロ−ブ7が直列形式として付加
されたものである。
FIGS. 4 and 5 are different from the parallel type described above in that an ultrasonic probe 7 for measuring the surface temperature of the sample 1 is added to the sensor body 3 as a serial type. Things.

【0016】さらに、図6及び図7は、試料体2中に傷
13が存在する場合を配慮して、超音波センサ1に設け
られた送信素子4が受信素子5を兼ねるようにした送受
信兼用方式を採用したものである。
FIGS. 6 and 7 show a transmission / reception device in which the transmitting element 4 provided on the ultrasonic sensor 1 also serves as the receiving element 5 in consideration of the case where the scratch 13 exists in the sample 2. It adopts the system.

【0017】また、図8及び図9は、試料体2が円筒形
状をなすものに適用したものであって、超音波プロ−ブ
7を付加した超音波センサ1のセンサ本体3は、前述し
た並列形式のものが適用されている。
FIGS. 8 and 9 show an example in which the sample body 2 has a cylindrical shape, and the sensor body 3 of the ultrasonic sensor 1 to which the ultrasonic probe 7 is added is described above. The parallel type is applied.

【0018】このようにして構成された本発明の超音波
センサ1は、図10で示されるように材料測定装置20
のシステム中に組み込まれる。
As shown in FIG. 10, the ultrasonic sensor 1 of the present invention constructed as described above has a material measuring device 20.
Built into the system.

【0019】すなわち、超音波プロ−ブ7を付加した超
音波センサ1は、ケ−ブル21a,21bによって切換
えスイッチの機能を有するマルチプレキサ22及び超音
波の発信及び受信を制御するパルサ−レシバ23に接続
され、しかもこのパルサ−レシ−バ23には、前記超音
波センサからの受信波をデジタル変換するA/D変換部
24、デ−タを演算処理するCPU25及びデ−タを表
示するディスプレイ26がそれぞれ接続されることによ
り材料測定装置20が構成されている。
That is, the ultrasonic sensor 1 to which the ultrasonic probe 7 is added comprises a multiplexer 22 having a function of a changeover switch by cables 21a and 21b, and a pulser-receiver 23 for controlling transmission and reception of ultrasonic waves. The pulsar receiver 23 has an A / D converter 24 for digitally converting a wave received from the ultrasonic sensor, a CPU 25 for arithmetically processing data, and a display for displaying data. 26 are connected to each other to form the material measuring device 20.

【0020】このようにして構成された本発明の材料測
定装置20による測定は、以下のようにして行なわれ
る。
The measurement by the material measuring apparatus 20 of the present invention thus configured is performed as follows.

【0021】先ず、試料体2に対しては、超音波プロ−
ブ7を付加した超音波センサ1が当接される。そして、
超音波プロ−ブ7側の送信素子10から例えば1.5M
HzのSH超音波パルスを発信すれば、標準部材12を
伝搬したSH波は、受信素子11で受信され、パルサ−
レシ−バ23及びA/D変換部24を経てCPU25で
演算処理される。CPU25では、この時点における伝
搬時間が計測され、ディスプレイ26に表示される。ま
た、試料体2の表面温度は、図11に示されるような予
め作成されている温度−伝搬時間の検量線を利用して逆
算される。なお、図11は、標準部材12としてポリエ
−テルイミドを適用したものである。
First, an ultrasonic probe is applied to the sample 2.
The ultrasonic sensor 1 to which the probe 7 is added contacts. And
For example, 1.5M from the transmitting element 10 on the ultrasonic probe 7 side
When the SH ultrasonic pulse of 1 Hz is transmitted, the SH wave transmitted through the standard member 12 is received by the receiving element 11 and is transmitted to the pulser.
The arithmetic processing is performed by the CPU 25 via the receiver 23 and the A / D converter 24. The CPU 25 measures the propagation time at this point and displays it on the display 26. In addition, the surface temperature of the sample body 2 is calculated back using a previously prepared calibration curve of temperature-propagation time as shown in FIG. FIG. 11 shows an example in which polyetherimide is applied as the standard member 12.

【0022】次いで、マルチプレキサ22により、パル
ス送受信が超音波センサ1側に切換えられ、この送受信
波は、センサ本体3の送信素子4からシュ−部材6aを
経て試料体2の表面に入射、伝搬、シュ−部材6bを経
て受信素子5で受信される。また、この受信波は、パル
サ−レシバ23及びA/D変換部24を経てCPU25
で演算処理され、その中の各種パラメ−タが、超音波プ
ロ−ブ7の伝達時間から逆算された温度に基づいて温度
補正される。
Next, pulse transmission / reception is switched to the ultrasonic sensor 1 side by the multiplexer 22, and this transmission / reception wave enters the surface of the sample body 2 from the transmission element 4 of the sensor body 3 via the shoe member 6a and propagates. , Through the shoe member 6b. The received wave passes through a pulsar-receiver 23 and an A / D converter 24, and is transmitted to a CPU 25.
And various parameters in the temperature are corrected based on the temperature calculated from the transmission time of the ultrasonic probe 7.

【0023】図12は、試料体2としてHRC50の鋼
を適用し、この鋼の伝搬時間とシュ−部材6a,6bと
してのポリエ−テルイミドにおける伝搬時間との関係を
示した検量線図である。そして、この直線は温度の関数
でもあるので、この直線を用いれば鋼の伝搬時間が温度
補正される。
FIG. 12 is a calibration diagram showing the relationship between the propagation time of HRC50 steel as the sample body 2 and the propagation time of polyetherimide as the shoe members 6a and 6b. And since this straight line is also a function of the temperature, the propagation time of the steel is temperature corrected by using this straight line.

【0024】[0024]

【発明の効果】本発明は、以上説明したように、材料の
各種評価や劣化診断に適用される超音波センサ1は、温
度補正用の超音波プロ−ブ7を付加したものであるか
ら、超音波特性の温度による変化が抑えられ、殊にポリ
マ−の試料体2の場合には、測定値の信頼性が向上する
という利点を有する。
According to the present invention, as described above, the ultrasonic sensor 1 applied to various evaluations and deterioration diagnosis of materials is provided with an ultrasonic probe 7 for temperature correction. The change of the ultrasonic characteristics due to the temperature is suppressed, and in particular, in the case of the polymer sample 2, there is an advantage that the reliability of the measured value is improved.

【0025】また、この超音波センサ1を組込んだ材料
測定装置は20は、前記超音波プロ−ブ7により得られ
た伝搬時間を利用して、温度−伝搬時間の検量線から温
度が逆算され、CPU25により超音波特性のうち温度
に関係する各種パラメ−タが温度補正されることから、
正確な超音波特性が計測できるという利点を有する。
The material measuring apparatus 20 incorporating the ultrasonic sensor 1 uses the propagation time obtained by the ultrasonic probe 7 to calculate the temperature back from a temperature-propagation time calibration curve. Since various parameters related to the temperature among the ultrasonic characteristics are corrected by the CPU 25, the temperature is corrected.
There is an advantage that accurate ultrasonic characteristics can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明超音波センサの一実施例を示す概念的
な平面図。
FIG. 1 is a conceptual plan view showing an embodiment of the ultrasonic sensor of the present invention.

【図2】 試料体2に載置した超音波センサの正面図。FIG. 2 is a front view of an ultrasonic sensor mounted on a sample body 2.

【図3】 同じく背面図。FIG. 3 is also a rear view.

【図4】 本発明超音波センサの他の実施例を示す概念
的な平面図。
FIG. 4 is a conceptual plan view showing another embodiment of the ultrasonic sensor of the present invention.

【図5】 試料体2に載置した超音波センサの正面図。FIG. 5 is a front view of an ultrasonic sensor mounted on a sample body 2.

【図6】 本発明超音波センサの別の実施例を示す概念
的な平面図。
FIG. 6 is a conceptual plan view showing another embodiment of the ultrasonic sensor of the present invention.

【図7】 試料体2に載置した超音波センサの正面図。FIG. 7 is a front view of the ultrasonic sensor mounted on the sample body 2.

【図8】 円筒状の試料体2に適用した本発明超音波セ
ンサの一実施例を示す概念的な正面図。
8 is a conceptual front view showing an embodiment of the ultrasonic sensor of the present invention applied to a cylindrical sample 2. FIG.

【図9】 試料体2の図示を省略した平面図。FIG. 9 is a plan view of the sample body 2 with illustration omitted.

【図10】 本発明材料測定装置20のシステムにおけ
る一実施例を示す概念図。
FIG. 10 is a conceptual diagram showing one embodiment of the system of the material measuring apparatus 20 of the present invention.

【図11】 超音波プロ−ブ7の標準部材12としてポ
リエ−テルイミドを適用した場合における温度−伝搬時
間の検量線図。
FIG. 11 is a calibration diagram of temperature-propagation time when polyetherimide is used as the standard member 12 of the ultrasonic probe 7.

【図12】 超音波センサ1におけるシュ−部材の伝搬
時間及び鋼(HRC50)を適用した試料体2における
伝搬時間の関係を示す検量線図。
FIG. 12 is a calibration diagram showing a relationship between a propagation time of a shoe member in the ultrasonic sensor 1 and a propagation time in a sample 2 to which steel (HRC50) is applied.

【符号の説明】[Explanation of symbols]

1 超音波センサ 2 試料体 3 センサ本体 3a,3b 起立部分 4 送信素子 5 受信素子 6a,6b シュ−部材 7 超音波プロ−ブ 8 境界部材 9a,9b プロ−ブ本体 10 送信素子 11 受信素子 12 標準部材 13 シュ−部材 20 材料測定装置 21a,21b ケ−ブル 22 マルチプレキサ 23 パルサレシ−バ 24 A/D変換部 25 CPU 26 ディスプレイ DESCRIPTION OF SYMBOLS 1 Ultrasonic sensor 2 Sample body 3 Sensor main body 3a, 3b Standing part 4 Transmitting element 5 Receiving element 6a, 6b Shoe member 7 Ultrasonic probe 8 Boundary member 9a, 9b Probe main body 10 Transmitting element 11 Receiving element 12 Standard member 13 Shoe member 20 Material measuring device 21a, 21b cable 22 Multiplexer 23 Pulser receiver 24 A / D converter 25 CPU 26 Display

フロントページの続き Fターム(参考) 2G047 AA06 AA08 AA09 AB01 BA01 BC02 BC11 BC19 CB01 CB02 EA11 GB27 GB36 GF11 GG09 GG36 GG43 2G064 AA01 AB01 AB05 BB64 Continued on the front page F term (reference) 2G047 AA06 AA08 AA09 AB01 BA01 BC02 BC11 BC19 CB01 CB02 EA11 GB27 GB36 GF11 GG09 GG36 GG43 2G064 AA01 AB01 AB05 BB64

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 センサ本体内に設けられた超音波の送信
素子及び受信素子間では、超音波がシュ−部材を介して
試料体表面に伝搬されるとともに、このセンサ本体に
は、試料体表面の温度を測定する超音波プロ−ブが付加
されている超音波センサであって、 前記超音波プロ−ブは、対面する送信素子及び受信素子
間には、超音波の伝達時間が測定されるポリマ−材から
なる温度補正用の標準部材が位置することを特徴とする
超音波センサ。
An ultrasonic wave is transmitted to a surface of a sample body via a shoe member between an ultrasonic transmitting element and a receiving element provided in a sensor body, and the sensor body includes a sample surface. An ultrasonic probe to which an ultrasonic probe for measuring the temperature of the ultrasonic probe is added, wherein the ultrasonic probe measures a transmission time of an ultrasonic wave between a transmitting element and a receiving element facing each other. An ultrasonic sensor wherein a standard member for temperature correction made of a polymer material is located.
【請求項2】 センサ本体内に設けられた前記送信素子
は、受信素子も兼ねている請求項1記載の超音波セン
サ。
2. The ultrasonic sensor according to claim 1, wherein the transmitting element provided in the sensor main body also serves as a receiving element.
【請求項3】 超音波プロ−ブの標準部材を伝搬する超
音波としては、周波数が1〜10MHz好ましくは1〜
3MHzのパルス波を適用した請求項1又は請求項2記
載の超音波センサ。
3. An ultrasonic wave propagating through a standard member of an ultrasonic probe has a frequency of 1 to 10 MHz, preferably 1 to 10 MHz.
3. The ultrasonic sensor according to claim 1, wherein a pulse wave of 3 MHz is applied.
【請求項4】 前記超音波センサには、切換えスイッチ
の機能を有するマルチプレキサを介して超音波の発信及
び受信を制御するパルサ−レシ−バが接続され、しかも
このパルサ−レシ−バには、前記超音波センサからの受
信波をデジタル変換するA/D変換部、デ−タを演算処
理するCPU及びデ−タを表示するディスプレイがそれ
ぞれ接続されるようにしたことを特徴とする材料測定装
置。
4. A pulser receiver for controlling transmission and reception of ultrasonic waves via a multiplexer having a function of a changeover switch is connected to the ultrasonic sensor. Further, the pulser receiver is connected to the pulser receiver. An A / D converter for digitally converting a wave received from the ultrasonic sensor, a CPU for arithmetically processing data, and a display for displaying data are connected to each other. apparatus.
【請求項5】 前記標準部材における超音波の伝達時間
が測定され、この測定値に基づいて予め作成されている
温度−伝搬時間の検量線から試料体温度を逆算して試料
体2の各種パラメ−タがCPUにより温度補正されるよ
うにした請求項4記載の材料測定装置。
5. The transmission time of the ultrasonic wave in the standard member is measured, and based on the measured value, the sample body temperature is back calculated from a calibration curve of temperature-propagation time, and various parameters of the sample body 2 are calculated. 5. The material measuring apparatus according to claim 4, wherein the temperature of the material is corrected by a CPU.
JP29835099A 1999-10-20 1999-10-20 Ultrasonic sensor and material-measuring apparatus Pending JP2001116733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29835099A JP2001116733A (en) 1999-10-20 1999-10-20 Ultrasonic sensor and material-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29835099A JP2001116733A (en) 1999-10-20 1999-10-20 Ultrasonic sensor and material-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2001116733A true JP2001116733A (en) 2001-04-27

Family

ID=17858554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29835099A Pending JP2001116733A (en) 1999-10-20 1999-10-20 Ultrasonic sensor and material-measuring apparatus

Country Status (1)

Country Link
JP (1) JP2001116733A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924504B1 (en) 2009-04-14 2009-11-02 주식회사 피레타 Non destructive inspection apparatus and life evaluation method using by it
CN102590346A (en) * 2012-01-13 2012-07-18 北京化工大学 Method for testing annular orientation of pipe
JP2012141211A (en) * 2010-12-28 2012-07-26 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2012141213A (en) * 2010-12-28 2012-07-26 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2016518585A (en) * 2013-03-12 2016-06-23 ノベリス・インコーポレイテッドNovelis Inc. Measurement of roll thermal expansion and thermal crown
WO2019139121A1 (en) * 2018-01-12 2019-07-18 超音波工業株式会社 Device for measuring speed-of-sound-related eigenvalue of gas, device for measuring component ratio of gas to which said device is applied, and global environment monitor device to which said devices are applied

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924504B1 (en) 2009-04-14 2009-11-02 주식회사 피레타 Non destructive inspection apparatus and life evaluation method using by it
JP2012141211A (en) * 2010-12-28 2012-07-26 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2012141213A (en) * 2010-12-28 2012-07-26 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
CN102590346A (en) * 2012-01-13 2012-07-18 北京化工大学 Method for testing annular orientation of pipe
JP2016518585A (en) * 2013-03-12 2016-06-23 ノベリス・インコーポレイテッドNovelis Inc. Measurement of roll thermal expansion and thermal crown
US10010916B2 (en) 2013-03-12 2018-07-03 Novelis Inc. Measuring thermal expansion and the thermal crown of rolls
US10799926B2 (en) 2013-03-12 2020-10-13 Novelis Inc. Measuring thermal expansion and the thermal crown of rolls
WO2019139121A1 (en) * 2018-01-12 2019-07-18 超音波工業株式会社 Device for measuring speed-of-sound-related eigenvalue of gas, device for measuring component ratio of gas to which said device is applied, and global environment monitor device to which said devices are applied

Similar Documents

Publication Publication Date Title
JP2840040B2 (en) Measurement method of sound velocity in tissue
US5777230A (en) Delay line for an ultrasonic probe and method of using same
JPS5987311A (en) Double element ultrasonic probe and pulse echo ultrasonic measuring meter
EP0341969A3 (en) Ultrasonic densitometer device and method
US20090282920A1 (en) Nuclear reactor vibration surveillance system and its method
JP2002214012A (en) Ultrasonic gas concentration and flow rate measuring method and apparatus thereof
US7806003B2 (en) Doppler type ultrasonic flow meter
ES2644882T3 (en)  Procedure and device for non-destructive ultrasonic control of the porosity of a piece of composite material
JP2001116733A (en) Ultrasonic sensor and material-measuring apparatus
US20030074953A1 (en) Device for determining the change in the density of a medium
JPH1048009A (en) Ultrasound temperature current meter
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
JP4536939B2 (en) Ultrasonic reflection type gas concentration measuring method and apparatus
JP2711208B2 (en) Measurement method of sound velocity in tissue
JPH10127632A (en) Ultrasonic diagnostic system
JPH04329938A (en) Probe system for measuring elastic modulus of blood vessel
JPH04166732A (en) Ultrasonic-wave axial-tension measuring apparatus
FI124645B (en) Calibratable method and device for measuring bone density
JPS631987A (en) Ultrasonic distance measuring device
JPH0650264B2 (en) Temperature measuring method and device
JPH02116745A (en) Ultrasonic solution density measuring apparatus
JPS6347609A (en) Shape inspection apparatus
US9464889B2 (en) Method and apparatus for measuring hardened surface layer
JP2731622B2 (en) Ultrasonic thickness gauge
JPH1096673A (en) Apparatus for measuring axial stress of bolt

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050204