JP2001115427A - Anti-fouling device of structure in contact with sea water, and its performance degradation monitoring method - Google Patents

Anti-fouling device of structure in contact with sea water, and its performance degradation monitoring method

Info

Publication number
JP2001115427A
JP2001115427A JP29698899A JP29698899A JP2001115427A JP 2001115427 A JP2001115427 A JP 2001115427A JP 29698899 A JP29698899 A JP 29698899A JP 29698899 A JP29698899 A JP 29698899A JP 2001115427 A JP2001115427 A JP 2001115427A
Authority
JP
Japan
Prior art keywords
anode
side conductor
seawater
contact structure
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29698899A
Other languages
Japanese (ja)
Other versions
JP3776647B2 (en
Inventor
Shuichi Inagaki
垣 修 一 稲
Shigeru Sakurada
田 繁 桜
Shoji Nakajima
島 昌 二 中
Akinori Nagata
田 晃 則 永
Tadahiko Oba
庭 忠 彦 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Toshiba Corp
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nakabohtec Corrosion Protecting Co Ltd filed Critical Toshiba Corp
Priority to JP29698899A priority Critical patent/JP3776647B2/en
Publication of JP2001115427A publication Critical patent/JP2001115427A/en
Application granted granted Critical
Publication of JP3776647B2 publication Critical patent/JP3776647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anti-fouling device of a structure in contact with sea water, and its performance degradation monitoring method to surely and easily understand the presence or absence of generation and locations of problems attributable to a secular or external factor such as an anode forming member and an electrical catalyst. SOLUTION: An anode side conductive body 4 is provided on a tube plate 2a of a heat exchanger 2 via an insulating adhesive 3. The anode side conductive body 4 comprises an anode forming member 5 and the electric catalyst 6 covered on the anode forming member 5. A cathode side conductive body 8 is provided on a side wall of a water chamber 13. An external DC power source 7 controls the electric potential of a energization circuit formed between a positive pole 7a and a negative pole 7b so as to generate oxygen without substantially generating chlorine gas in sea water 15 via the electrical catalyst 6. A current monitoring device 9 monitors the current flowing in the anode side conductive body elements 4a and 4b. A judging device 10 judges the durable condition (integrity and performance degradation) of the anode side conductive bodies 4a and 4b based on the output data (a change in the cumulative current value and the current value) from the current monitoring device 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は海水に接触する海水
接触構造物への海生生物の付着を防止する海水接触構造
物の防汚装置に係り、とりわけ、海水接触構造物の海水
側表面上に設けられた電気的触媒を介して酸素を発生さ
せることにより海水接触構造物への海生生物の着性を抑
制する海水接触構造物の防汚装置およびその性能劣化監
視方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifouling device for a seawater contact structure for preventing the attachment of marine organisms to a seawater contact structure that comes into contact with seawater, and more particularly, to an antifouling device on a seawater side surface of a seawater contact structure. The present invention relates to an antifouling device for a seawater contact structure which suppresses the adhesion of marine organisms to the seawater contact structure by generating oxygen via an electric catalyst provided in the seawater contact structure, and a performance deterioration monitoring method thereof.

【0002】[0002]

【従来の技術】海水を冷却水として取水する発電所にお
いては、熱交換器の管板(伝熱管の入口および出口に位
置する支持部材)上に、イガイやフジツボ、ヒドロ虫、
海藻類等の生物(以下「海生生物」という)が付着する
ことがある。これらの海生生物は、伝熱管の管端部を塞
いで洗浄用スポンジの通過障害となったり、伝熱管の内
面を閉塞したりする。このため、このような発電所にお
いては、これらの海生生物の除去作業のためにしばしば
操業の停止を余儀なくされている。なお、これらの海生
生物は、銅合金製の管板や伝熱管等よりも、耐海水性で
あるチタン製の管板や伝熱管等に付着しやすい。
2. Description of the Related Art In a power plant that takes in seawater as cooling water, mussels, barnacles, hydro worms, etc. are placed on a tube plate of a heat exchanger (support members located at the inlet and outlet of a heat transfer tube).
Organisms such as seaweed (hereinafter referred to as "marine organisms") may adhere. These marine organisms obstruct the passage of the cleaning sponge by blocking the tube end of the heat transfer tube, or block the inner surface of the heat transfer tube. For this reason, such power plants often have to be shut down to remove these marine organisms. Note that these marine organisms are more likely to adhere to the seawater-resistant titanium tubesheet or heat transfer tube than the copper alloy tubesheet or heat transfer tube.

【0003】また、このような発電所においては、熱交
換器の上方に設置された鋼製の水室の側壁に、ストレー
ナーの網を通り抜けた幼生の海生生物が着生することが
ある。このような鋼製の水室の表面には通常ゴムライニ
ング等が施されているので、水室の側壁上に着生した海
生生物は、水室の側壁上で一定期間成育した後に脱落
し、水室の下方に位置する伝熱管の管端部や内面等を閉
塞する。
[0003] In such a power plant, larval marine creatures that have passed through a strainer net may be formed on the side wall of a steel water chamber installed above the heat exchanger. Since the surface of such a steel water chamber is usually provided with a rubber lining or the like, marine organisms that have formed on the side wall of the water chamber drop off after growing for a certain period of time on the side wall of the water chamber. In addition, the tube end and the inner surface of the heat transfer tube located below the water chamber are closed.

【0004】従来においては、これらの海生生物の駆除
や付着防止等を行うための防汚対策として、海生生物の
防汚に有効な毒性物質を利用する手法が提案されてい
る。このような手法としては例えば、取水した海水中へ
塩素や塩素化合物等を投入したり、熱交換器の管板や伝
熱管等に毒性イオン生成顔料含有防汚塗料を塗布した
り、海水の電解により塩素や銅等の毒性イオンを生成す
る等の手法がある。
[0004] Conventionally, as an antifouling measure for extermination of these marine organisms and prevention of adhesion, a method using a toxic substance effective for antifouling of marine organisms has been proposed. Such methods include, for example, charging chlorine or chlorine compounds into the seawater withdrawn, applying an antifouling paint containing a toxic ion generating pigment to a tube plate or a heat transfer tube of a heat exchanger, or electrolyzing seawater. For producing toxic ions such as chlorine and copper.

【0005】しかしながら、毒性物質を利用する手法で
は、防汚自体は効果的に行われるが、大量の海水に対す
る塩素等の毒性物質の量や濃度等の管理が容易でなく、
一般には確実な防汚効果を期待してその量や濃度等を過
大に設定しやすく、その結果、環境汚染を引き起こす可
能性が高い。また、このような毒性物質の使用自体が今
日では禁止または抑制される方向にある。
[0005] However, in the method using toxic substances, although the antifouling itself is effectively performed, it is not easy to control the amount and concentration of toxic substances such as chlorine in a large amount of seawater.
Generally, it is easy to set the amount, concentration and the like excessively in expectation of a reliable antifouling effect, and as a result, there is a high possibility of causing environmental pollution. In addition, the use of such toxic substances themselves is being banned or suppressed today.

【0006】このため、無公害でかつ無毒性の防汚対策
の開発が、最近多くの研究者や技術者等によって進めら
れている。具体的には例えば、無公害でかつ無毒性であ
るが有効な防汚効果を発揮する防汚塗料としてシリコー
ン系防汚塗料が注目されており、これを熱交換器の管板
や伝熱管等に塗布する手法が提案されている。
For this reason, development of non-polluting and non-toxic antifouling measures has recently been promoted by many researchers and engineers. Specifically, for example, silicone-based antifouling paints are attracting attention as antifouling paints which are non-polluting and non-toxic, but exhibit an effective antifouling effect. Has been proposed.

【0007】しかしながら、シリコーン系防汚塗料を利
用する手法では、シリコーン系防汚塗料自体に次のよう
な欠点、すなわち貝殻等の異物の接触により防汚寿命が
短くなること、施工コストが高いこと、大面積の対象物
や既存の施設等への簡単でかつ容易な施工手段がないこ
と、海水の流れを止めると防汚効果が減少すること等の
欠点があることから、広く実用化されるには至っていな
い。
However, the method using the silicone-based antifouling paint has the following disadvantages in the silicone-based antifouling paint itself: the antifouling life is shortened by contact of foreign substances such as shells, and the construction cost is high. There are no simple and easy construction methods for large-area objects and existing facilities, and there are drawbacks such as the reduction of the antifouling effect when the flow of seawater is stopped. Has not been reached.

【0008】一方、上述した手法以外の防汚対策とし
て、特公平1−46595号公報および特願平10−2
92142号公報に記載された手法も知られている。
[0008] On the other hand, as an antifouling measure other than the above-mentioned method, Japanese Patent Publication No. 46595/94 and Japanese Patent Application No. Hei 10-2710 / 1994 have been proposed.
The technique described in Japanese Patent No. 92142 is also known.

【0009】このうち、特公平1−46595号公報に
記載された手法は、海水と接触するチタン製部材の表面
に、主として白金族金属の混晶、または白金族金属とこ
れらの金属の酸化物との混合物からなる電気的触媒皮膜
を形成し、これを陽極として電解することにより、塩素
ガスを実質的に発生させないで十分な酸素を発生させる
手法であり、これにより海水中の生物や貝殻等の沈積を
抑制することができる。
Among them, the technique described in Japanese Patent Publication No. 46595/1994 is based on the method of mainly forming a mixed crystal of a platinum group metal or a platinum group metal and an oxide of these metals on the surface of a titanium member which comes into contact with seawater. This is a method to generate sufficient oxygen without forming chlorine gas substantially by forming an electrocatalytic film consisting of a mixture with Deposition can be suppressed.

【0010】ところで、このような防汚対策が講じられ
る熱交換器は一般に、伝熱管や管板等のみがチタン製部
材であり、本体胴や水室、熱交換器へ海水を導く導水
管、海水を海へ戻す放水管等は鋼製部材である。また、
伝熱管および管板等のチタン製部材と、水室、導水管お
よび放水管等の鋼製部材とは電気的に導通している。
[0010] By the way, in the heat exchanger in which such antifouling measures are taken, generally only the heat transfer tube and the tube plate are made of titanium, and the main body, the water chamber, and the water conduit for guiding seawater to the heat exchanger. The discharge pipe for returning seawater to the sea is a steel member. Also,
The titanium members such as the heat transfer tube and the tube sheet and the steel members such as the water chamber, the water pipe and the water discharge pipe are electrically connected.

【0011】このため、上記特公平1−46595号公
報に記載された手法のように、海水と接するチタン製部
材の表面に電気的触媒を形成して陽極として作用させる
場合には、チタン製部材と導通している水室、導水管お
よび放水管等の鋼製部材も陽極として負荷されることと
なる。そして、この状態で、水室、導水管および放水管
等の鋼製部材が海水と接触すると、鋼製部材の表面がガ
ルバニ腐食により激しく腐食されることとなる。なお、
鋼製部材の表面には通常、腐食防止のためにゴムライニ
ング等が施されているので、このような事態は通常の使
用状態では生じないが、仮に、ゴムライニング等が何ら
かの理由で破損した場合には、この破損部位を介して海
水中に電流が流れ水氷室、導水管および放水管等の鋼製
部材が異常腐食する可能性がある。
For this reason, when an electric catalyst is formed on the surface of a titanium member in contact with seawater to act as an anode, as in the method described in Japanese Patent Publication No. 4-46595, the titanium member Steel members, such as a water chamber, a water pipe, and a water discharge pipe, which are in communication with each other, are also loaded as anodes. Then, in this state, when steel members such as the water chamber, the water pipe, and the water discharge pipe come into contact with seawater, the surface of the steel member is severely corroded by galvanic corrosion. In addition,
Since the surface of the steel member is usually provided with rubber lining etc. to prevent corrosion, such a situation does not occur under normal use conditions, but if the rubber lining etc. is broken for any reason In this case, electric current may flow into the seawater through the damaged portion, and steel members such as the water-ice chamber, the water pipe, and the water discharge pipe may be abnormally corroded.

【0012】なお、このようなゴムライニング等の破損
により生じる異常腐食は通常、陰極防食法を採用して鋼
製部材を電気的に鋼材の防食電位まで下げることにより
回避することができる。しかしながら、上記特公平1−
46595号公報に記載された手法では、チタン製部材
が陽極として負荷され、かつ、それに導通している鋼製
水室、導水管および放水管等も陽極として負荷されてい
るので、理論上陰極防食法を採用することができない。
Incidentally, abnormal corrosion caused by such damage of the rubber lining or the like can usually be avoided by adopting the cathodic protection method and electrically lowering the steel member to the corrosion protection potential of the steel material. However, the above-mentioned
In the method described in Japanese Patent No. 46595, a titanium member is loaded as an anode, and a steel water chamber, a water pipe, a water discharge pipe, and the like that are connected to the titanium member are also loaded as an anode. The law cannot be adopted.

【0013】これに対し、上記特願平10−29214
2号公報に記載された手法は、このような上記特公平1
−46595号公報に記載された手法の欠点を解消する
ものであり、熱交換器のチタン製管板上に絶縁性接着剤
を介して陽極形成部材および電気的触媒を設け、この電
気的触媒を介して塩素ガスを実質的に発生させないで十
分な酸素を発生させる手法である。これにより、仮に、
チタン製管板と導通する鋼製部材を保護するゴムライニ
ング等が何らかの理由で破損した場合でも、陰極防食法
を採用して鋼製部材を電気的に鋼材の防食電位まで下げ
ることが可能となり、水室、導水管および放水管等の鋼
製部材が異常腐食することを防止することができる。
On the other hand, the above-mentioned Japanese Patent Application No. Hei 10-29214 is disclosed.
The technique described in Japanese Patent Publication No. 2
In order to solve the disadvantage of the method described in Japanese Patent No. 46595/1992, an anode forming member and an electric catalyst are provided on a titanium tube sheet of a heat exchanger via an insulating adhesive, and the electric catalyst is used. In this method, sufficient oxygen is generated without substantially generating chlorine gas through the gas. By this, temporarily
Even if the rubber lining that protects the steel member that conducts with the titanium tube sheet breaks for some reason, it is possible to electrically lower the steel member to the corrosion protection potential of the steel material by adopting the cathodic protection method, It is possible to prevent abnormal corrosion of steel members such as a water chamber, a water pipe, and a water discharge pipe.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記特
願平10−292142号公報に記載された手法では、
陽極形成部材および電気的触媒等の耐用状態(健全性お
よび性能劣化等)を十分に把握することができないの
で、経時的または外的な要因により以下のような問題が
生じる。
However, according to the method described in Japanese Patent Application No. 10-292142,
Since it is not possible to sufficiently grasp the durable states (soundness and performance degradation, etc.) of the anode forming member and the electric catalyst, the following problems occur due to temporal or external factors.

【0015】第1に、陽極形成部材および電気的触媒等
を長時間使用した場合に、陽極形成部材および電気的触
媒等の性能が劣化し、その性能劣化に起因して海生生物
の付着を引き起こすおそれがある。
First, when the anode forming member and the electrocatalyst are used for a long period of time, the performance of the anode forming member and the electrocatalyst deteriorates. May cause.

【0016】第2に、絶縁性接着剤が劣化した場合に、
陽極形成部材とチタン製管板等との間の電気的絶縁が破
れ、それに起因して上記特公平1−46595号公報に
記載された手法と同様の問題が生じる。すなわち、陽極
形成部材とチタン製管板等との間の電気的絶縁が破れた
状態で、チタン製管板等と導通する鋼製部材を保護する
ゴムライニング等が何らかの理由で破損した場合には、
この破損部位を介して海水中に電流が流れ、水室、導水
管および放水管等の鋼製部材が異常腐食する可能性があ
り、信頼性の面で問題がある。
Second, when the insulating adhesive deteriorates,
The electrical insulation between the anode forming member and the titanium tube sheet or the like is broken, resulting in the same problem as the method described in Japanese Patent Publication No. 46595/94. In other words, when the electrical insulation between the anode forming member and the titanium tube sheet or the like is broken, if the rubber lining or the like that protects the steel member that conducts with the titanium tube sheet or the like is broken for any reason. ,
Electric current flows into the seawater through the damaged portion, and there is a possibility that steel members such as a water chamber, a water pipe, and a water discharge pipe may be abnormally corroded, and there is a problem in reliability.

【0017】第3に、海水中を漂う導電性異物(例えば
針金等)がたまたま熱交換器の伝熱管の入口等に引っか
かり、陽極形成部材と伝熱管(すなわちチタン製管板)
とが導通した場合に、上述した絶縁性接着剤が劣化した
場合と全く同じ事態が生じる可能性があり、信頼性の面
で問題がある。
Third, a conductive foreign substance (eg, a wire) floating in seawater happens to be caught on the entrance of the heat transfer tube of the heat exchanger, and the anode forming member and the heat transfer tube (ie, a titanium tube plate)
In the case where と is conducted, exactly the same situation as when the above-mentioned insulating adhesive is deteriorated may occur, and there is a problem in reliability.

【0018】第4に、陽極形成部材および電気的触媒等
が大面積を有している場合に、その大面積の陽極形成部
材および電気的触媒等の性能劣化がどの部位で起きてい
るのか、また絶縁性接着剤の劣化がどの部位で起きてい
るのか、さらに導電性異物がおおよそどこの部位の伝熱
管の入口等に引っかかっているのか等を特定することが
難しく、ひとたび不具合が生じると、全ての陽極形成部
材および電気的触媒等を更新しなければならず、補修や
更新等の保守管理の費用が膨大となるという問題があ
る。
Fourth, when the anode forming member and the electrocatalyst have a large area, where the performance degradation of the large area anode forming member and the electrocatalyst etc. is occurring, In addition, it is difficult to identify where the deterioration of the insulating adhesive is occurring, and further, approximately where the conductive foreign matter is caught at the entrance of the heat transfer tube, etc., and once a failure occurs, All the anode forming members, the electric catalysts, and the like must be renewed, so that there is a problem that the cost of maintenance management such as repair and renewal becomes enormous.

【0019】本発明はこのような点を考慮してなされた
ものであり、陽極形成部材および電気的触媒等の経時的
または外的な要因による問題の発生の有無および部位等
を確実かつ容易に把握し、海生生物の付着や、海水と接
触する鋼製部材の異常腐食等を未然に防止することがで
きる海水接触構造物の防汚装置およびその性能劣化監視
方法を提供することを目的とする。
The present invention has been made in view of the above points, and it is possible to reliably and easily determine whether or not there is a problem due to aging or external factors such as an anode forming member and an electrocatalyst, and a location thereof. It is an object of the present invention to provide an antifouling device for a seawater contacting structure and a method for monitoring the performance deterioration thereof, which can grasp and grasp the attachment of marine organisms and abnormal corrosion of steel members that come into contact with seawater beforehand. I do.

【0020】[0020]

【課題を解決するための手段】第1の解決手段は、海水
接触構造物への海生生物の着生を抑制する海水接触構造
物の防汚装置において、海水接触構造物の海水側表面上
に絶縁部を介して設けられた陽極側導電体であって、電
気化学的に活性な電気的触媒を有する陽極側導電体と、
海水中に設けられた陰極側導電体と、前記陽極側導電体
に正極が接続されるとともに前記陰極側導電体に負極が
接続された外部電源であって、前記陽極側導電体の前記
電気的触媒を介して海水中で酸素を発生させるよう前記
正極と前記負極との間の電位を制御する外部電源と、前
記陽極側導電体に流れる電流を監視する電流監視装置
と、前記電流監視装置による監視結果に基づいて前記陽
極側導電体の耐用状態を判定する判定装置とを備えたこ
とを特徴とする海水接触構造物の防汚装置である。
A first solution is to provide an antifouling device for a seawater contact structure which suppresses the formation of marine organisms on the seawater contact structure. An anode-side conductor provided via an insulating portion, and an anode-side conductor having an electrochemically active electrocatalyst,
A cathode-side conductor provided in seawater, an external power source having a positive electrode connected to the anode-side conductor and a negative electrode connected to the cathode-side conductor, wherein the electric power of the anode-side conductor is An external power supply that controls a potential between the positive electrode and the negative electrode so as to generate oxygen in seawater via a catalyst, a current monitoring device that monitors a current flowing through the anode-side conductor, and the current monitoring device. A determination device for determining a durable state of the anode-side conductor based on a monitoring result, the antifouling device for a seawater contact structure.

【0021】ここで、上述した第1の解決手段において
は、前記陽極側導電体は互いに絶縁された複数の陽極側
導電体要素からなり、前記電流監視装置は前記各陽極側
導電体要素に流れる電流をそれぞれ監視することが好ま
しい。また、前記判定装置は前記電流監視装置で監視さ
れた積算電流値または電流値の変化に基づいて前記陽極
側導電体の耐用状態を判定することが好ましい。さら
に、前記判定装置は前記電流監視装置で監視された電流
値の変化を前記各陽極側導電体要素間で相対的に比較
し、その比較結果を考慮しつつ前記各陽極側導電体要素
ごとの電流値の変化に基づいて前記各陽極側導電体要素
の耐用状態を判定することが好ましい。なお、前記絶縁
部は前記海水接触構造物の海水側表面と前記陽極側導電
体とを互いに接着するための絶縁性接着剤、前記海水接
触構造物の海水側表面と前記陽極側導電体との間に配置
された絶縁シート、または前記海水接触構造物の海水側
表面に被覆された絶縁体であることが好ましい。また、
前記陽極側導電体の前記電気的触媒は白金系金属、白金
系金属酸化物、およびコバルトまたはマンガンの酸化物
のうちの少なくとも一種を含む単一体、混晶体または複
合体であることが好ましい。
Here, in the above-mentioned first solution, the anode-side conductor comprises a plurality of anode-side conductor elements insulated from each other, and the current monitoring device flows through each of the anode-side conductor elements. It is preferable to monitor the current respectively. Further, it is preferable that the determination device determines a durable state of the anode-side conductor based on an integrated current value or a change in the current value monitored by the current monitoring device. Further, the determination device relatively compares the change in the current value monitored by the current monitoring device between the anode-side conductor elements, and considers the comparison result for each anode-side conductor element. It is preferable to determine the durable state of each of the anode-side conductor elements based on a change in a current value. Note that the insulating portion is an insulating adhesive for bonding the seawater-side surface of the seawater contact structure and the anode-side conductor to each other, the seawater-side surface of the seawater contact structure and the anode-side conductor. It is preferable that the insulating sheet is provided between the insulating sheet and the insulator coated on the seawater side surface of the seawater contact structure. Also,
The electrocatalyst of the anode-side conductor is preferably a single body, a mixed crystal or a composite containing at least one of a platinum-based metal, a platinum-based metal oxide, and an oxide of cobalt or manganese.

【0022】第2の解決手段は、海水接触構造物への海
生生物の着生を抑制する海水接触構造物の防汚装置の性
能劣化監視方法において、海水接触構造物の海水側表面
上に絶縁部を介して設けられた陽極側導電体と、海水中
に設けられた陰極側導電体との問に電流を流すことによ
り、前記陽極側導電体の有する電気化学的に活性な電気
的触媒を介して海水中で酸素を発生させる工程と、前記
酸素発生工程中に前記陽極側導電体に流れる電流を監視
する工程と、前記監視工程による監視結果に基づいて前
記陽極側導電体の耐用状態を判定する工程とを含むこと
を特徴とする性能劣化監視方法である。
[0022] A second solution is a method for monitoring the performance deterioration of an antifouling device for a seawater contact structure, which suppresses the adhesion of marine organisms to the seawater contact structure. By passing a current between the anode-side conductor provided through the insulating portion and the cathode-side conductor provided in seawater, an electrochemically active electrocatalyst of the anode-side conductor is provided. Generating oxygen in seawater via the method, monitoring the current flowing through the anode-side conductor during the oxygen generation step, and using the anode-side conductor based on the monitoring result of the monitoring step. And determining the performance degradation.

【0023】ここで、上述した第2の解決手段において
は、前記陽極側導電体は互いに絶縁された複数の陽極側
導電体要素からなり、前記監視工程において、前記各陽
極側導電体要素に流れる電流をそれぞれ監視することが
好ましい。また、前記判定工程において、前記監視工程
で監視された積算電流値または電流値の変化に基づいて
前記陽極側導電体の耐用状態を判定することが好まし
い。さらに、前記判定工程において、前記監視工程で電
流値の急激な増加が監視されたときに、前記陽極側導電
体に絶縁不良の可能性があると判定することが好まし
い。さらにまた、前記判定工程において、前記陽極側導
電体に絶縁不良の可能性があると判定した後、所定時間
の経過を待って、または海水接触構造物に対する海水の
流れ方向を逆向きにした上で前記陽極側導電体の絶縁不
良の有無を再度判定することが好ましい。
Here, in the above-described second solution, the anode-side conductor is composed of a plurality of anode-side conductor elements that are insulated from each other, and flows in each of the anode-side conductor elements in the monitoring step. It is preferable to monitor the current respectively. Further, it is preferable that in the determining step, the durable state of the anode-side conductor is determined based on the integrated current value or the change in the current value monitored in the monitoring step. Further, it is preferable that, in the determining step, when a rapid increase in the current value is monitored in the monitoring step, it is determined that the anode-side conductor has a possibility of insulation failure. Furthermore, in the determining step, after determining that there is a possibility of insulation failure in the anode-side conductor, wait for a predetermined time to elapse, or reverse the flow direction of seawater with respect to the seawater contact structure. It is preferable to determine again whether there is insulation failure of the anode-side conductor.

【0024】さらにまた、前記判定工程において、前記
監視工程で電流値の急激な減少が検知されたときに、前
記陽極側導電体に剥離または一部破損の可能性があると
判定することが好ましい。なお、前記判定工程におい
て、前記監視工程で監視された電流値の変化を前記各陽
極側導電体要素間で相対的に比較し、その比較結果を考
慮しつつ前記各陽極側導電体要素ごとの電流値の変化に
基づいて前記各陽極側導電体要素の耐用状態を判定する
ことが好ましい。
Further, it is preferable that, in the determining step, when a sudden decrease in the current value is detected in the monitoring step, it is determined that the anode-side conductor may be peeled or partially damaged. . In the determination step, the change in the current value monitored in the monitoring step is relatively compared between the respective anode-side conductor elements, and the comparison is performed for each of the anode-side conductor elements while considering the comparison result. It is preferable to determine the durable state of each of the anode-side conductor elements based on a change in a current value.

【0025】上述した第1および第2の解決手段によれ
ば、陽極側導電体に流れる電流を監視し、陽極側導電体
に流れる電流の積算電流値または電流値の変化に基づい
て陽極側導電体の耐用状態(健全性および性能劣化等)
を判定するので、陽極側導電体の耐用状態を確実に把握
し、陽極側導電体の性能劣化に起因した海生生物の付着
を未然に防止することができる。また、絶縁部が劣化し
た場合や、海水中を漂う導電性異物が海水接触構造物に
引っかかった場合等に生じる絶縁不良現象に起因した、
海水と接触する鋼製部材の異常腐食等を未然に防止する
ことができる。
According to the above-described first and second means, the current flowing through the anode-side conductor is monitored, and based on the integrated current value of the current flowing through the anode-side conductor or a change in the current value, the anode-side conductivity is monitored. Life state of the body (health and performance deterioration, etc.)
Therefore, the useful state of the anode-side conductor can be reliably grasped, and the adhesion of marine organisms due to the performance deterioration of the anode-side conductor can be prevented. Also, due to the insulation failure phenomenon that occurs when the insulating part is deteriorated, or when a conductive foreign substance floating in seawater is caught on the seawater contact structure,
It is possible to prevent abnormal corrosion or the like of the steel member coming into contact with seawater.

【0026】また、陽極側導電体を互いに絶縁された複
数の陽極側導電体要素に分割し、各陽極側導電体要素に
流れる電流をそれぞれ監視することにより、陽極側導電
体が大面積を有している場合でも、その大面積の陽極側
導電体の性能劣化がどの部位で起きているのか等を容易
に特定することができ、補修や更新等の保守管理を簡易
かつ安価に行うことができる。
The anode-side conductor has a large area by dividing the anode-side conductor into a plurality of anode-side conductor elements that are insulated from each other and monitoring the current flowing through each anode-side conductor element. In this case, it is possible to easily identify where the performance degradation of the large-area anode-side conductor has occurred, and to perform maintenance management such as repair and renewal easily and inexpensively. it can.

【0027】[0027]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】図1は本発明による海水接触構造物の防汚
装置の一実施の形態を示す図である。図1に示すよう
に、海水接触構造物の防汚装置1は、海水15に接する
チタン製の熱交換器(海水接触構造物)2への海生生物
の着生を抑制するためのものであり、陽極側導電体4、
陰極側導電体8、外部直流電源(外部電源)7、電流監
視装置9および判定装置10を備えている。なお、熱交
換器2は、チタン製の管板2aと、この管板2aにより
支持された複数のチタン製の伝熱管2bとを有してい
る。また、熱交換器2には、内面にゴムライニング11
が施された鋼製の水室13が設置されている。
FIG. 1 is a view showing an embodiment of an antifouling device for a seawater contact structure according to the present invention. As shown in FIG. 1, an antifouling device 1 for a seawater contact structure is for suppressing the formation of marine organisms on a titanium heat exchanger (seawater contact structure) 2 in contact with seawater 15. Yes, anode-side conductor 4,
A cathode-side conductor 8, an external DC power supply (external power supply) 7, a current monitoring device 9, and a determination device 10 are provided. The heat exchanger 2 includes a titanium tube sheet 2a and a plurality of titanium heat transfer tubes 2b supported by the tube sheet 2a. The heat exchanger 2 has a rubber lining 11 on its inner surface.
A water chamber 13 made of steel is provided.

【0029】図1に示すように、熱交換器2の海水15
側表面に位置する管板2aの略全面上には、絶縁性接着
剤(絶縁部)3を介して陽極側導電体4が設けられてい
る。陽極側導電体4は、厚さが0.1〜0.3mmの陽
極形成部材5と、陽極形成部材5上に被覆された電気的
触媒6とを有している。このうち、電気的触媒6は、電
気化学的に活性で安定な触媒であり、陽極形成部材5上
にあらかじめ触媒被覆処理によって被覆され、電気抵抗
加熱等により350〜450℃で数時間加熱処理を行っ
て熱活性化処理されたものである。なお、電気的触媒6
としては、例えば、白金系金属、白金系金属酸化物、お
よびコバルトまたはマンガンの酸化物のうちの少なくと
も一種を含む単一体、混晶体または複合体を用いること
ができる。
As shown in FIG. 1, the seawater 15 of the heat exchanger 2
On the substantially entire surface of the tube sheet 2a located on the side surface, an anode-side conductor 4 is provided via an insulating adhesive (insulating portion) 3. The anode-side conductor 4 has an anode forming member 5 having a thickness of 0.1 to 0.3 mm, and an electric catalyst 6 coated on the anode forming member 5. Among them, the electrocatalyst 6 is an electrochemically active and stable catalyst, is coated on the anode forming member 5 in advance by a catalyst coating process, and is heated at 350 to 450 ° C. for several hours by electric resistance heating or the like. And heat-activated. The electric catalyst 6
For example, a single body, a mixed crystal body, or a complex body containing at least one of a platinum-based metal, a platinum-based metal oxide, and an oxide of cobalt or manganese can be used.

【0030】また、絶縁性接着剤3および陽極側導電体
4は、複数の伝熱管2bの管径に対応する複数の開孔を
有している。また、陽極側導電体4は、互いに絶縁され
た複数の陽極側導電体要素4a,4b(陽極形成部材要
素5a,5bおよび電気的触媒要素6a,6b)からな
っており、隣接する陽極側導電体要素4a,4b同士は
絶縁性接着剤17を介して絶縁されている。なお、隣接
する陽極側導電体要素4a,4b同士の絶縁方法として
は、これ以外にも、絶縁部材を介して陽極側導電体要素
4a,4b同士を重ね合わせたり、防汚効果が得られる
範囲で陽極側導電体要素4a,4b同士を所定距離だけ
離間させたりする方法を用いることができる。
Further, the insulating adhesive 3 and the anode-side conductor 4 have a plurality of openings corresponding to the diameters of the plurality of heat transfer tubes 2b. The anode-side conductor 4 is composed of a plurality of anode-side conductor elements 4a and 4b (anode forming member elements 5a and 5b and electrocatalyst elements 6a and 6b) that are insulated from each other. The body elements 4a, 4b are insulated from each other via an insulating adhesive 17. In addition, as an insulation method between the adjacent anode-side conductor elements 4a and 4b, other than this, the anode-side conductor elements 4a and 4b may be overlapped with each other via an insulating member, or a range in which an antifouling effect is obtained. For example, a method of separating the anode-side conductor elements 4a and 4b from each other by a predetermined distance can be used.

【0031】一方、熱交換器2に設置された水室13の
側壁上には、ゴムライニング11から海水15側に向か
って陰極側導電体8および照合電極12が突出して設け
られている。
On the other hand, on the side wall of the water chamber 13 provided in the heat exchanger 2, the cathode-side conductor 8 and the reference electrode 12 are provided so as to project from the rubber lining 11 toward the seawater 15.

【0032】ここで、陽極側導電体4および陰極側導電
体8はそれぞれ、外部直流電源(外部電源)7の正極7
aおよび負極7bに接続されている。また、照合電極1
2は外部直流電源7の照合極7rに接続されている。な
お、陽極側導電体4は複数の陽極側導電体要素4a,4
bからなっているので、各陽極側導電体要素4a,4b
ごとに対応する正極7aが設けられている。外部直流電
源7は、自動電位制御部7cを内蔵しており、陽極側導
電体4の電気的触媒6を介して海水15中で塩素ガスを
実質的に発生させないで酸素を発生させるよう、正極7
aと負極7bとの間に形成される通電回路の電位を制御
することができるようになっている。なお、正極7aと
負極7bとの間に形成される通電回路の具体的な電位値
としては、標準海水で塩素ガスを発生させる塩素発生電
位(SCE)1.13Vよりも低く、かつ標準海水で酸
素を発生させる酸素発生電位0.52Vよりも高い値が
用いられる。また、正極7aと負極7bとの間に形成さ
れる通電回路の具体的な電流値としては、電気的触媒6
の種類によって若干の違いはあるが通常0.3〜3.0
A/m程度の値が用いられる。なお、照合電極12の
電位値は、海水15の電位により自動電位制御部7cを
校正するために用いられる。
Here, the anode-side conductor 4 and the cathode-side conductor 8 are respectively connected to a positive electrode 7 of an external DC power supply (external power supply) 7.
a and the negative electrode 7b. In addition, reference electrode 1
2 is connected to the reference pole 7r of the external DC power supply 7. The anode-side conductor 4 includes a plurality of anode-side conductor elements 4a, 4a.
b, the anode-side conductor elements 4a, 4b
A corresponding positive electrode 7a is provided for each. The external DC power supply 7 has a built-in automatic potential control unit 7c, and generates a positive electrode so as to generate oxygen without substantially generating chlorine gas in seawater 15 via the electric catalyst 6 of the anode-side conductor 4. 7
The potential of an energizing circuit formed between a and the negative electrode 7b can be controlled. The specific potential value of the energizing circuit formed between the positive electrode 7a and the negative electrode 7b is lower than a chlorine generation potential (SCE) of 1.13 V for generating chlorine gas in standard seawater, and A value higher than the oxygen generation potential of 0.52 V for generating oxygen is used. The specific current value of the energizing circuit formed between the positive electrode 7a and the negative electrode 7b is as follows.
Although there is a slight difference depending on the type, usually 0.3 to 3.0
A value of about A / m 2 is used. The potential value of the reference electrode 12 is used to calibrate the automatic potential control unit 7c with the potential of the seawater 15.

【0033】また、外部直流電源7の各正極7aには電
流監視装置9が接続されており、各陽極側導電体要素4
a,4bに流れる電流をそれぞれ監視することができる
ようになっている。
A current monitoring device 9 is connected to each positive electrode 7a of the external DC power supply 7, and each of the anode-side conductor elements 4
The currents flowing through a and 4b can be monitored respectively.

【0034】さらに、電流監視装置9には判定装置10
が接続されており、電流監視装置9からの出力データ
(各陽極側導電体要素4a,4bに流れる電流の積算電
流値または電流値の変化)に基づいて各陽極側導電体要
素4a,4bの耐用状態(健全性および性能劣化等)を
判定することができるようになっている。なお、判定装
置10は、電流監視装置9で監視された電流値の変化を
各陽極側導電体要素4a,4b間で相対的に比較し、そ
の比較結果を考慮しつつ各陽極側導電体要素4a,4b
ごとの電流値の変化に基づいて各陽極側導電体要素4
a,4bの耐用状態を判定する。なお、判定装置10で
の判定結果は外部直流電源7に出力され、外部直流電源
7から各陽極側導電体要素4a,4bへの電流供給の遮
断等に用いられるようになっている。
Further, the current monitoring device 9 includes a determination device 10
Is connected, and based on output data from the current monitoring device 9 (integrated current value or change in current value of the current flowing through each anode-side conductor element 4a, 4b), each anode-side conductor element 4a, 4b is The durable state (soundness, performance degradation, etc.) can be determined. The determination device 10 relatively compares the change in the current value monitored by the current monitoring device 9 between the anode-side conductor elements 4a and 4b, and considers each anode-side conductor element while considering the comparison result. 4a, 4b
Each anode-side conductor element 4
The useful states of a and 4b are determined. The result of the judgment by the judging device 10 is output to the external DC power supply 7 and is used for interrupting the current supply from the external DC power supply 7 to each of the anode-side conductor elements 4a and 4b.

【0035】次に、このような構成からなる本実施の形
態の作用について説明する。
Next, the operation of the present embodiment having such a configuration will be described.

【0036】図1において、外部電流電源7を介して陽
極側導電体4(陽極形成部材5および電気的触媒6)と
陰極側導電体8との間に電流を流す。なおこのとき、外
部直流電源7の自動電位制御部7cの制御の下で各陽極
側導電体要素4a,4bと陰極側導電体8との間の電位
は0.52〜1.13Vの範囲に保たれ、かつその電流
値は0.3〜3.0A/m程度に保たれる。これによ
り、電気的触媒6を介して海水15中で塩素ガスを実質
的に発生させないで酸素を発生することができ、熱交換
器2の管板2aおよび伝熱管2bへの海生生物の着生を
防止することができる。
In FIG. 1, a current flows between the anode-side conductor 4 (the anode forming member 5 and the electric catalyst 6) and the cathode-side conductor 8 via an external current power supply 7. At this time, under the control of the automatic potential control unit 7c of the external DC power supply 7, the potential between each anode-side conductor element 4a, 4b and the cathode-side conductor 8 is in the range of 0.52 to 1.13V. The current value is maintained at about 0.3 to 3.0 A / m 2 . This makes it possible to generate oxygen without substantially generating chlorine gas in the seawater 15 via the electric catalyst 6, and to attach marine organisms to the tube plate 2a and the heat transfer tube 2b of the heat exchanger 2. Life can be prevented.

【0037】このとき、各陽極側導電体要素4a,4b
に流れる電流は電流監視装置9によりそれぞれ監視さ
れ、各陽極側導電体要素4a,4bに流れる電流につい
ての積算電流値または電流値の変化に基づいて各陽極側
導電体要素4a,4bの耐用状態(健全性および性能劣
化等)が判定される。
At this time, each anode-side conductive element 4a, 4b
The current flowing through each of the anode-side conductive elements 4a, 4b is monitored by a current monitoring device 9, and based on the integrated current value or the change in the current value of the current flowing through each of the anode-side conductive elements 4a, 4b. (Eg, soundness and performance degradation) are determined.

【0038】図2は図1に示す判定装置10における具
体的な判定方法を説明するための図である。
FIG. 2 is a diagram for explaining a specific determination method in the determination device 10 shown in FIG.

【0039】図2に示すように、判定装置10において
は、まず、電流監視装置9からの出力データを取り込
み、各陽極側導電体要素4a,4bに流れる電流の積算
電流値または電流値の変化を取得する(ステップ10
1)。
As shown in FIG. 2, the determination device 10 first takes in the output data from the current monitoring device 9 and calculates the integrated current value or the change in the current value of the current flowing through each of the anode-side conductor elements 4a and 4b. (Step 10
1).

【0040】次に、各陽極側導電体要素4a,4bに流
れる電流の積算電流値が所定値を越えているか否かを判
断し(ステップ102)、各陽極側導電体要素4a,4
bの中でそれに流れる電流の積算電流値が所定値を越え
ているものが存在している場合には、該当する陽極側導
電体要素4a,4bの電気的触媒6a,6bが消耗して
いるものと判定する(ステップ103)。
Next, it is determined whether or not the integrated current value of the current flowing through each of the anode-side conductive elements 4a, 4b exceeds a predetermined value (step 102).
If any of b has an integrated current value of a current flowing therethrough exceeding a predetermined value, the electric catalysts 6a and 6b of the corresponding anode-side conductor elements 4a and 4b are exhausted. Is determined (step 103).

【0041】ここで、各陽極側導電体要素4a,4bの
各電気的触媒要素6a,6bは積算電流値に比例して溶
解および消耗するので、積算電流値に対する消耗量を電
気的触媒の厚さ(μm)に換算することにより、各電気
的触媒要素6a,6bの消耗寿命を算出することができ
る(図3参照)。具体的には例えば、電気的触媒がコバ
ルト系触媒である場合には、積算電流値に対する消耗量
は520mg/A・年と予測することができ、電気的触
媒の厚さを0.5μmとすると、積算電流値が16.7
A・年を越えたところで消耗することが分かる。なお、
この場合には、電流値1.0A/mで連続通電した場
合に約8年で消耗する。このため、このような消耗寿命
を考慮してステップ102における所定値を設定するこ
とにより、各電気的触媒6a,6bの消耗状態を適切に
判定することが可能である。
Here, since the respective electrocatalyst elements 6a and 6b of the respective anode-side conductor elements 4a and 4b are dissolved and consumed in proportion to the integrated current value, the amount of consumption with respect to the integrated current value is determined by the thickness of the electrocatalyst. By converting the value into the size (μm), the consumption life of each of the electrocatalytic elements 6a and 6b can be calculated (see FIG. 3). Specifically, for example, when the electric catalyst is a cobalt-based catalyst, the amount of consumption with respect to the integrated current value can be predicted to be 520 mg / A · year, and the thickness of the electric catalyst is set to 0.5 μm. , The integrated current value is 16.7
A. You can see that it is worn out beyond the year. In addition,
In this case, when the current is continuously supplied at a current value of 1.0 A / m 2 , the power is consumed in about 8 years. Therefore, by setting the predetermined value in step 102 in consideration of such a consumption life, it is possible to appropriately determine the consumption state of each of the electric catalysts 6a and 6b.

【0042】一方、ステップ102において、各陽極側
導電体要素4a,4bに流れる電流の積算電流値が所定
値を越えていないと判断された場合には、ステップ10
4の処理へ進み、各陽極側導電体要素4a,4bに流れ
る電流値の変化が所定範囲を越えて行われているか否か
を調べる。
On the other hand, if it is determined in step 102 that the integrated current value of the current flowing through each anode-side conductive element 4a, 4b does not exceed the predetermined value, step 10
Proceeding to the process of 4, it is checked whether or not the change in the value of the current flowing through each of the anode-side conductor elements 4a, 4b exceeds a predetermined range.

【0043】ステップ104において、各陽極側導電体
要素4a,4bの中でそれに流れる電流値の変化が所定
範囲を越えて行われているものが存在している場合に
は、ステップ105の処理へ進み、各陽極側導電体要素
4a,4bに流れる電流値の変化が経時的なものである
か否かをさらに判断する。一方、各陽極側導電体要素4
a,4bに流れる電流値の変化が所定範囲内で行われて
いる場合には、ステップ101の処理に戻り、上述した
処理を繰り返す。
In step 104, if any of the anode-side conductor elements 4a, 4b has a change in the value of the current flowing therethrough exceeding a predetermined range, the process proceeds to step 105. Then, it is further determined whether or not the change in the value of the current flowing through each of the anode-side conductor elements 4a and 4b is time-dependent. On the other hand, each anode-side conductor element 4
If the change in the current value flowing through a and 4b is within the predetermined range, the process returns to step 101, and the above-described process is repeated.

【0044】なお、ステップ105において、該当する
陽極側導電体要素4a,4bに流れる電流値の変化が経
時的なものであると判断された場合には、該当する陽極
側導電体要素4a,4bの陽極形成部材5a,5bが性
能劣化したものと判定する(ステップ106)。
If it is determined in step 105 that the change in the value of the current flowing through the corresponding anode-side conductor element 4a, 4b is temporal, the corresponding anode-side conductor element 4a, 4b is determined. It is determined that the anode forming members 5a and 5b have deteriorated in performance (step 106).

【0045】ここで、各陽極側導電体要素4a,4bの
各陽極形成部材5a,5bの性能が劣化すると、各陽極
側導電体要素4a,4bと陰極側導電体8との間の電位
を所定値に保つために必要とされる電流値が低下してく
る(図4(a)(b)参照)。このため、各陽極側導電
体要素4a,4bに流れる電流値の変化を監視すること
により、各陽極形成部材5a,5bの性能劣化を適切に
判定することが可能である。なお、各陽極形成部材5
a,5bの性能劣化により電流値が低下すると、それに
比例して各電気的触媒要素6a,6bからの酸素の発生
量も低下するので、海生生物に対する防汚効果自体も当
然に低下することになる。具体的には、各陽極側導電体
要素4a,4bに流れる電流値の初期値の1/5〜1/
10程度まで電流値が低下した場合に各陽極形成部材5
a,5bが性能劣化したものと判定するようにするとよ
い。なおこのとき、各陽極側導電体要素4a,4bに流
れる電流値は、海水性状等の外的な要因、例えば赤潮や
汚染海水の流入等によって変動することがあるので、電
流監視装置9で監視された電流値の変化を各陽極側導電
体要素4a,4b間で相対的に比較し、その比較結果を
考慮しつつ各陽極側導電体要素4a,4bごとの電流値
の変化に基づいて各陽極側導電体要素4a,4bの各陽
極形成部材5a,5bの性能劣化を判定するようにする
とよい。
Here, when the performance of each anode forming member 5a, 5b of each anode-side conductor element 4a, 4b deteriorates, the potential between each anode-side conductor element 4a, 4b and the cathode-side conductor 8 is reduced. The current value required to maintain the predetermined value decreases (see FIGS. 4A and 4B). Therefore, by monitoring the change in the value of the current flowing through each of the anode-side conductor elements 4a, 4b, it is possible to appropriately determine the performance degradation of each of the anode forming members 5a, 5b. Each anode forming member 5
When the current value decreases due to the deterioration of the performance of the a and 5b, the amount of oxygen generated from each of the electrocatalytic elements 6a and 6b decreases in proportion to the decrease, so that the antifouling effect itself against marine organisms naturally decreases. become. Specifically, the current value flowing through each anode-side conductor element 4a, 4b is 1/5 to 1/1 of the initial value.
When the current value decreases to about 10, each anode forming member 5
It is preferable to determine that a and 5b have deteriorated in performance. At this time, the value of the current flowing through each of the anode-side conductor elements 4a and 4b may fluctuate due to external factors such as the state of seawater, for example, red tide or inflow of contaminated seawater. The change in the current value obtained is relatively compared between the anode-side conductor elements 4a and 4b, and based on the change in the current value for each anode-side conductor element 4a and 4b while taking into account the comparison result. It is preferable to determine the performance deterioration of each of the anode forming members 5a and 5b of the anode-side conductor elements 4a and 4b.

【0046】一方、ステップ105において、該当する
陽極側導電体要素4a,4bに流れる電流値の変化が経
時的なものでないと判断された場合には、ステップ10
7の処理へ進み、該当する陽極側導電体要素4a,4b
に流れる電流値が急激に増大したか否かを判断する(ス
テップ107)。
On the other hand, if it is determined in step 105 that the change in the value of the current flowing through the corresponding anode-side conductor elements 4a, 4b is not temporal,
7, the corresponding anode-side conductor elements 4a, 4b
It is determined whether or not the value of the current flowing through the device has rapidly increased (step 107).

【0047】ステップ107において、該当する陽極側
導電体要素4a,4bに流れる電流値の急激な増加が検
知されたときには、該当する陽極側導電体要素4a,4
bの陽極形成部材5a,5bに絶縁不良の可能性がある
と判定する(ステップ108)。
In step 107, when a sudden increase in the value of the current flowing through the corresponding anode-side conductor element 4a, 4b is detected, the corresponding anode-side conductor element 4a, 4b is detected.
It is determined that there is a possibility that the anode forming members 5a and 5b of b have insulation failure (step 108).

【0048】ここで、各陽極側導電体要素4a,4bに
流れる電流値の急激な増加は、絶縁性接着剤3が劣化し
た場合や、海水15中を漂う導電性異物(例えば針金
等)が伝熱管2bの入口等に引っかかり、各陽極形成部
材要素5a,5bと伝熱管2b(すなわち管板2a)と
が導通した場合に引き起こされる絶縁不良現象であり、
各陽極側導電体要素4a,4bに流れる電流値の変化を
監視することにより判定することができる。しかし、後
者の場合には、海水15中を漂う導電性異物(例えば針
金等)が一時的に伝熱管2bの入口等に引っかかり、そ
の後、流出してしまう場合も多い。
Here, a sharp increase in the value of the current flowing through each anode-side conductive element 4a, 4b may be caused by deterioration of the insulating adhesive 3 or by conductive foreign matter (for example, wire) floating in the seawater 15. This is an insulation failure phenomenon caused when the anode forming member elements 5a, 5b and the heat transfer tube 2b (that is, the tube sheet 2a) are electrically connected to each other by being caught at the entrance of the heat transfer tube 2b or the like.
The determination can be made by monitoring the change in the value of the current flowing through each of the anode-side conductor elements 4a and 4b. However, in the latter case, the conductive foreign matter (for example, wire) floating in the seawater 15 is often caught temporarily at the entrance of the heat transfer tube 2b and then flows out.

【0049】このため、各陽極側導電体要素4a,4b
に流れる電流値の急激な増加を検知した場合には、所定
時間の経過を待って電流値の変化を検知し、各陽極側導
電体要素4a,4bの各陽極形成部材要素5a,5bの
絶縁不良の有無を再度判定するようにするとよい。具体
的には、図5(a)(b)に示すように、最初の急激な
電流値の増加によって、各陽極側導電体要素4a,4b
に絶縁不良の可能性があると判定し、一旦各陽極側導電
体要素4a,4bへの電流供給を遮断した後(時間
A)、数秒から数10秒の経過を待って時間Bのタイミ
ングで各陽極側導電体要素4a,4bへの電流供給を再
開する。このとき、電流値の急激な増加が検知されない
場合には、各陽極側導電体要素4a,4bの絶縁不良の
可能性がないと判定する(図5(a)参照)。一方、再
び電流値の急激な増加がある場合には、各陽極側導電体
要素4a,4bの絶縁不良の可能性があると判定し、時
間Cのタイミングで各陽極側導電体要素4a,4bへの
電流供給を遮断する(図5(b)参照)。
Therefore, each of the anode-side conductor elements 4a, 4b
When a rapid increase in the value of the current flowing through the anode side is detected, a change in the current value is detected after elapse of a predetermined time, and the insulation of each anode forming member element 5a, 5b of each anode side conductor element 4a, 4b is detected. The presence or absence of a defect may be determined again. Specifically, as shown in FIGS. 5 (a) and 5 (b), each of the anode-side conductor elements 4a, 4b
It is determined that there is a possibility of insulation failure, and the current supply to the anode-side conductor elements 4a and 4b is temporarily interrupted (time A). The current supply to each anode-side conductor element 4a, 4b is restarted. At this time, if a rapid increase in the current value is not detected, it is determined that there is no possibility of insulation failure of the anode-side conductor elements 4a and 4b (see FIG. 5A). On the other hand, if the current value sharply increases again, it is determined that there is a possibility of insulation failure of each anode-side conductor element 4a, 4b, and each anode-side conductor element 4a, 4b is determined at the timing of time C. The current supply to the power supply is interrupted (see FIG. 5B).

【0050】なお、海水15中を漂う導電性異物(例え
ば針金等)は、海水15の流れ方向を逆向きにすると流
出することが多いので、各陽極側導電体要素4a,4b
に流れる電流値の急激な増加を検知した場合において、
熱交換器2に対する海水15の流れ方向を逆向きにした
上で各陽極側導電体要素4a,4bの絶縁不良の有無を
再度判定するようにしてもよい。
The conductive foreign matter (for example, wire) floating in the seawater 15 often flows out when the flow direction of the seawater 15 is reversed, so that each anode-side conductive element 4a, 4b
When a sudden increase in the value of the current flowing through
The flow direction of the seawater 15 with respect to the heat exchanger 2 may be reversed, and the presence or absence of insulation failure of each anode-side conductor element 4a, 4b may be determined again.

【0051】一方、ステップ107において、該当する
陽極側導電体要素4a,4bに流れる電流値の急激な減
少が検知されたときには、該当する陽極側導電体要素4
a,4bの面積の減少によるものであるので、該当する
陽極側導電体要素4a,4bに打痕や摩耗等による剥離
または一部破損の可能性があると判定する(ステップ1
09)。
On the other hand, if it is detected in step 107 that the current value flowing through the corresponding anode-side conductor element 4a, 4b is sharply reduced, the corresponding anode-side conductor element 4a, 4b is detected.
It is determined that there is a possibility that the corresponding anode-side conductor elements 4a, 4b may be peeled or partially damaged due to dents, abrasion, or the like (step 1).
09).

【0052】このように本実施の形態によれば、陽極側
導電体4に流れる電流を電流監視装置9により監視し、
陽極側導電体4に流れる電流の積算電流値または電流値
の変化に基づいて陽極側導電体4の耐用状態(健全性お
よび性能劣化等)を判定装置10により判定するので、
陽極側導電体4の耐用状態を確実に把握し、海生生物の
付着や、海水15と接触する鋼製部材(水室13等)の
異常腐食等を未然に防止することができる。具体的には
例えば、陽極側導電体4に流れる電流の積算電流値に基
づいて電気的触媒6の消耗状態を判定することにより、
電気的触媒6を長時間使用した場合における性能劣化を
未然に予測することができ、電気的触媒6の性能劣化に
起因した海生生物の付着を防止することができる。ま
た、陽極側導電体4に流れる電流値の変化に基づいて陽
極形成部材5の性能劣化を判定することにより、陽極形
成部材5を長時間使用した場合における性能劣化を未然
に予測することができ、陽極形成部材5の性能劣化に起
因した海生生物の付着を防止することができる。さら
に、陽極側導電体4に流れる電流値の変化(電流値の急
激の増加)に基づいて、絶縁性接着剤3が劣化した場合
や、海水15中を漂う導電性異物(例えば針金等)が伝
熱管2bの入口等に引っかかった場合に生じる絶縁不良
の有無を確実に把握することにより、海水15と接触す
る鋼製部材(水室13等)の異常腐食を未然に防止する
ことができる。さらにまた、陽極側導電体4に流れる電
流値の変化(電流値の急激の減少)に基づいて、陽極側
導電体4の剥離または一部破損を確実に判定することに
より、陽極側導電体4が流出して熱交換器2や水室13
等に悪影響を及ぼすことを効果的に防止することができ
る。
As described above, according to the present embodiment, the current flowing through the anode-side conductor 4 is monitored by the current monitoring device 9,
Since the use state (soundness and performance degradation, etc.) of the anode-side conductor 4 is determined by the determination device 10 based on the integrated current value of the current flowing through the anode-side conductor 4 or a change in the current value,
It is possible to reliably grasp the durable state of the anode-side conductor 4 and prevent marine organisms from adhering and abnormal corrosion of a steel member (such as the water chamber 13) that comes into contact with the seawater 15 beforehand. Specifically, for example, by determining the consumption state of the electric catalyst 6 based on the integrated current value of the current flowing through the anode-side conductor 4,
Performance degradation when the electric catalyst 6 is used for a long time can be predicted beforehand, and adhesion of marine organisms due to the performance deterioration of the electric catalyst 6 can be prevented. In addition, by determining the performance deterioration of the anode forming member 5 based on the change in the value of the current flowing through the anode-side conductor 4, it is possible to predict the performance deterioration when the anode forming member 5 is used for a long time. In addition, it is possible to prevent marine organisms from adhering due to performance deterioration of the anode forming member 5. Further, based on a change in the value of the current flowing through the anode-side conductor 4 (a sharp increase in the current value), when the insulating adhesive 3 is deteriorated, or when a conductive foreign substance (for example, a wire or the like) floating in the seawater 15 is removed. It is possible to prevent abnormal corrosion of the steel member (the water chamber 13 and the like) that comes into contact with the seawater 15 by reliably grasping the presence or absence of the insulation failure that occurs when the heat transfer tube 2b is caught at the entrance or the like. Furthermore, the peeling or partial breakage of the anode-side conductor 4 is reliably determined on the basis of a change in the value of the current flowing through the anode-side conductor 4 (a sharp decrease in the current value). Flows out and heat exchanger 2 and water chamber 13
Can be effectively prevented.

【0053】また、本実施の形態によれば、陽極側導電
体4を互いに絶縁された複数の陽極側導電体要素4a,
4bに分割し、電流監視装置9により各陽極側導電体要
素4a,4bに流れる電流をそれぞれ監視するので、陽
極側導電体4(陽極形成部材5および電気的触媒6)が
大面積を有している場合でも、その大面積の陽極形成部
材5および電気的触媒6の性能劣化がどの部位で起きて
いるのか、また絶縁性接着剤3の劣化がどの部位で起き
ているのか、さらに導電性異物がおおよそどこの部位の
伝熱管2bの入口等に引っかかっているのか等を容易に
特定することができ、補修や更新等の保守管理を簡易か
つ安価に行うことができる。
According to the present embodiment, the anode-side conductor 4 is provided with a plurality of anode-side conductor elements 4a,
4b, and the current monitoring device 9 monitors the current flowing through each of the anode-side conductor elements 4a and 4b. Therefore, the anode-side conductor 4 (the anode forming member 5 and the electric catalyst 6) has a large area. In this case, where the performance degradation of the large-area anode forming member 5 and the electric catalyst 6 is occurring, where the degradation of the insulating adhesive 3 is occurring, and It is possible to easily specify the approximate location where the foreign matter is caught at the entrance of the heat transfer tube 2b and the like, and it is possible to easily and inexpensively perform maintenance management such as repair and updating.

【0054】さらに、本実施の形態によれば、各陽極側
導電体要素4a,4b間で電流値の変化を相対的に比較
し、その比較結果を考慮しつつ各陽極側導電体要素4
a,4bごとの電流値の変化に基づいて前記各陽極側導
電体要素4a,4bの耐用状態を判定するので、海水性
状等の外的な要因による電流偵の変動の影響を除外して
陽極側導電体4の耐用状態を精度良く判定することがで
きる。
Further, according to the present embodiment, the change in the current value is relatively compared between the respective anode-side conductive elements 4a and 4b, and the respective anode-side conductive elements 4a and 4b are considered in consideration of the comparison result.
The useful state of each of the anode-side conductive elements 4a and 4b is determined based on the change in the current value for each of the anodes 4a and 4b. The durable state of the side conductor 4 can be accurately determined.

【0055】さらにまた、本実施の形態によれば、陽極
側導電体4に流れる電流値の急激な増加を検知した場合
には、所定時間の経過を待って電流値の変化を検知し、
陽極側導電体4の陽極形成部材5の絶縁不良の有無を再
度判定するので、海水15中を漂う導電性異物が一時的
に伝熱管2bの入口等に引っかかり、その後流出した場
合等における絶縁不良誤動作を防止することができる。
なおこのとき、陽極側導電体4の陽極形成部材5の絶縁
不良の有無を再度判定する前に海水15の流れ方向を逆
向きにすることにより、海水15中を漂う導電性異物を
効果的に流出させることができる。
Further, according to the present embodiment, when a sharp increase in the value of the current flowing through the anode-side conductor 4 is detected, a change in the current value is detected after a predetermined time has elapsed.
Since the presence / absence of insulation failure of the anode forming member 5 of the anode-side conductor 4 is determined again, the insulation failure in the case where the conductive foreign matter floating in the seawater 15 is temporarily caught by the inlet of the heat transfer tube 2b and then flows out. Malfunction can be prevented.
At this time, by reversing the flow direction of the seawater 15 before again judging the presence / absence of insulation failure of the anode forming member 5 of the anode-side conductor 4, conductive foreign substances floating in the seawater 15 can be effectively removed. Can be drained.

【0056】なお、本実施の形態によれば、電気的触媒
6があらかじめ被覆された陽極形成部材5を、絶縁性接
着剤3を介して常温で管板2a上に接着しているので、
電気的触媒6の触媒活性のために必要とされる、350
〜450°での数時間の電気抵抗加熱処理等を管板2a
上で行う必要がなくなり、発生熱や熱応力等により管板
2aが損傷する危険性を効果的に回避することができ
る。
According to the present embodiment, the anode forming member 5 coated with the electric catalyst 6 in advance is bonded on the tube sheet 2a at room temperature via the insulating adhesive 3.
350 required for the catalytic activity of the electrocatalyst 6
Heat resistance heating treatment at ~ 450 ° for several hours
It is not necessary to perform the above, and the danger that the tube sheet 2a is damaged due to generated heat, thermal stress or the like can be effectively avoided.

【0057】なお、上述した実施の形態においては、熱
交換器2の管板2a上に絶縁性接着剤3を介して陽極側
導電体4を設けているが、図6に示すように、絶縁性接
着剤3と陽極側導電体4との間に絶縁シート18を配置
するようにしてもよい。これにより、管板2aと陽極側
導電体4との間の電気的絶縁を強固に実現することがで
きる。なお、この場合には、管板2aと絶縁シート18
との間、および絶縁シート18と陽極側導電体4との間
を接着するための接着剤は必ずしも絶縁性を有している
必要はない。
In the above-described embodiment, the anode-side conductor 4 is provided on the tube sheet 2a of the heat exchanger 2 via the insulating adhesive 3, but as shown in FIG. The insulating sheet 18 may be arranged between the conductive adhesive 3 and the anode-side conductor 4. Thereby, electrical insulation between the tube sheet 2a and the anode-side conductor 4 can be firmly realized. In this case, the tube sheet 2a and the insulating sheet 18
And between the insulating sheet 18 and the anode-side conductor 4 need not necessarily have insulating properties.

【0058】また、上述した実施の形態においては、熱
交換器2の管板2a上に陽極側導電体4を設けている
が、これに限らず、海水接触構造物にあらかじめ設けら
れている絶縁体上に陽極側導電体4を設けるようにして
もよい。具体的には例えば、図7に示すように、海水接
触構造物である水室13の表面に施されたゴムライニン
グ(絶縁体)11上に接着剤16を介して陽極側導電体
4を設けることができる。また、図8に示すように、海
水接触構造物であるコンクリート製取水路14上に接着
剤16を介して陽極側導電体4を設けることができる。
なお、図8に示す場合には、冷却用海水取入れコンクリ
ート製取水路14の補強用鉄筋(一部が海水15と接触
している)が導電体8として作用する。また、図7およ
び図8に示すいずれの場合も、ゴムライニング11およ
びコンクリート製取水路14が絶縁性を有していること
から、接着剤16自体は絶縁性を有している必要はな
い。なお、図7および図8に示すゴムライニング11お
よびコンクリート製取水路14に限らず、海水接触構造
物に設けられた樹脂材等の種々の絶縁体上にも同様にし
て陽極側導電体4を設けることが可能である。
In the above-described embodiment, the anode-side conductor 4 is provided on the tube sheet 2a of the heat exchanger 2. However, the present invention is not limited to this. The anode-side conductor 4 may be provided on the body. Specifically, for example, as shown in FIG. 7, the anode-side conductor 4 is provided via an adhesive 16 on a rubber lining (insulator) 11 provided on the surface of a water chamber 13 which is a seawater contact structure. be able to. Further, as shown in FIG. 8, the anode-side conductor 4 can be provided via an adhesive 16 on a concrete intake channel 14 which is a seawater contact structure.
In addition, in the case shown in FIG. 8, the reinforcing reinforcing bar (part of which is in contact with the seawater 15) of the cooling seawater intake concrete intake channel 14 functions as the conductor 8. In each case shown in FIGS. 7 and 8, since the rubber lining 11 and the concrete intake channel 14 have insulating properties, the adhesive 16 itself does not need to have insulating properties. The anode-side conductor 4 is similarly formed on various insulators such as resin materials provided in the seawater contact structure, not limited to the rubber lining 11 and the concrete intake channel 14 shown in FIGS. 7 and 8. It is possible to provide.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、陽
極側導電体に流れる電流を監視し、陽極側導電体に流れ
る電流の積算電流値または電流値の変化に基づいて陽極
側導電体の耐用状態(健全性および性能劣化等)を判定
するので、陽極側導電体の耐用状態を確実に把握し、陽
極側導電体の性能劣化に起因した海生生物の付着を未然
に防止することができる。また、絶縁部が劣化した場合
や、海水中を漂う導電性異物が海水接触構造物に引っか
かった場合等に生じる絶縁不良現象に起因した、海水と
接触する鋼製部材の異常腐食等を未然に防止することが
できる。
As described above, according to the present invention, the current flowing through the anode-side conductor is monitored, and based on the integrated current value of the current flowing through the anode-side conductor or a change in the current value, the anode-side conductor is monitored. Since the service life (health and performance degradation, etc.) of the anode is determined, the service life of the anode-side conductor must be ascertained to prevent marine organisms from adhering due to the performance deterioration of the anode-side conductor. Can be. In addition, abnormal corrosion of steel members that come into contact with seawater, etc. due to insulation failure phenomena that occur when the insulating part has deteriorated, or when conductive foreign matters floating in seawater are caught on the seawater contact structure, etc. Can be prevented.

【0060】また、陽極側導電体を互いに絶縁された複
数の陽極側導電体要素に分割し、各陽極側導電体要素に
流れる電流をそれぞれ監視することにより、陽極側導電
体が大面積を有している場合でも、その大面積の陽極側
導電体の性能劣化がどの部位で起きているのか等を容易
に特定することができ、補修や更新等の保守管理を簡易
かつ安価に行うことができる。
The anode-side conductor has a large area by dividing the anode-side conductor into a plurality of anode-side conductor elements that are insulated from each other and monitoring the current flowing through each anode-side conductor element. In this case, it is possible to easily identify where the performance degradation of the large-area anode-side conductor has occurred, and to perform maintenance management such as repair and renewal easily and inexpensively. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による海水接触構造物の防汚装置の一実
施の形態を示す概略図。
FIG. 1 is a schematic view showing an embodiment of an antifouling device for a seawater contact structure according to the present invention.

【図2】図1に示す海水接触構造物の防汚装買の性能劣
化監視方法を説明するためのフローチャート。
FIG. 2 is a flowchart for explaining a performance deterioration monitoring method for antifouling equipment purchase of the seawater contact structure shown in FIG. 1;

【図3】図1に示す海水接触構造物の防汚装置における
電気的触媒の消耗状態の判定の仕方を説明するための
図。
FIG. 3 is a view for explaining a method of determining a consumption state of an electric catalyst in the antifouling device for a seawater contact structure shown in FIG. 1;

【図4】図1に示す海水接触構造物の防汚装置における
陽極形成部材の性能劣化の判定の仕方を説明するための
図。
FIG. 4 is a view for explaining how to determine the performance deterioration of the anode forming member in the antifouling device for a seawater contact structure shown in FIG. 1;

【図5】図1に示す海水接触構造物の防汚装置において
電流値の急激な増加が検知された場合の陽極形成部材の
判定の仕方を説明するための図。
FIG. 5 is a view for explaining how to determine the anode forming member when a rapid increase in the current value is detected in the antifouling device for a seawater contact structure shown in FIG. 1;

【図6】図1に示す海水接触構造物の防汚装置の一変形
例を示す概略図。
FIG. 6 is a schematic diagram showing a modification of the antifouling device for the seawater contact structure shown in FIG. 1;

【図7】図1に示す海水接触構造物の防汚装置の別の変
形例を示す概略図。
FIG. 7 is a schematic view showing another modification of the antifouling device for the seawater contact structure shown in FIG. 1;

【図8】図1に示す海水接触構造物の防汚装置のさらに
別の変形例を示す概略図。
FIG. 8 is a schematic view showing still another modified example of the antifouling device for the seawater contact structure shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 海水接触構造物の防汚装置 2 熱交換器 2a 管板 2b 伝熱管 3 絶縁性接着剤(絶縁部) 4 陽極側導電体 5 陽極形成部材 6 電気的触媒 7 外部直流電源(外部電源) 7a 正極 7b 負極 7r 照合極 7c 自動電位制御部 8 陰極側導電体 9 電流監視装置 10 判定装置 11 ゴムライニング(絶縁体) 12 照合電極 13 水室 14 コンクリート製取水路(絶縁体) 15 海水 16 接着剤 17 絶縁性接着剤 18 絶縁シート(絶縁部) DESCRIPTION OF SYMBOLS 1 Antifouling apparatus of seawater contact structure 2 Heat exchanger 2a Tube plate 2b Heat transfer tube 3 Insulating adhesive (insulating part) 4 Anode side conductor 5 Anode forming member 6 Electric catalyst 7 External direct current power supply (External power supply) 7a Positive electrode 7b Negative electrode 7r Reference electrode 7c Automatic potential control unit 8 Cathode-side conductor 9 Current monitoring device 10 Judgment device 11 Rubber lining (insulator) 12 Reference electrode 13 Water chamber 14 Concrete intake channel (insulator) 15 Seawater 16 Adhesive 17 Insulating adhesive 18 Insulating sheet (insulating part)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜 田 繁 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 中 島 昌 二 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 永 田 晃 則 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 大 庭 忠 彦 東京都中央区新川二丁目5番2号 株式会 社ナカボーテック内 Fターム(参考) 4D061 DA09 DB03 EA02 EB01 EB04 EB14 EB30 EB31 EB33 EB37 EB39 EB40 GA12 GC11 4K021 AA01 DA13 DC15 4K062 AA10 DA10 EA05 FA01 FA16 FA18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeru Sakurada 2-4-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Works, Toshiba Corporation (72) Inventor Shoji Nakajima Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 2-4-4 Toshiba Keihin Works Co., Ltd. (72) Inventor Akinori Nagata 2-4-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Keihin Works Co., Ltd. (72) Inventor Tadahiko Oba Chuo-ku, Tokyo 2-5-2, Shinkawa F-term in Nakabo Tech Co., Ltd. 4D061 DA09 DB03 EA02 EB01 EB04 EB14 EB30 EB31 EB33 EB37 EB39 EB40 GA12 GC11 4K021 AA01 DA13 DC15 4K062 AA10 DA10 EA05 FA01 FA16 FA18

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】海水接触構造物への海生生物の着生を抑制
する海水接触構造物の防汚装置において、 海水接触構造物の海水側表面上に絶縁部を介して設けら
れた陽極側導電体であって、電気化学的に活性な電気的
触媒を有する陽極側導電体と、 海水中に設けられた陰極側導電体と、 前記陽極側導電体に正極が接続されるとともに前記陰極
側導電体に負極が接続された外部電源であって、前記陽
極側導電体の前記電気的触媒を介して海水中で酸素を発
生させるよう前記正極と前記負極との間の電位を制御す
る外部電源と、 前記陽極側導電体に流れる電流を監視する電流監視装置
と、 前記電流監視装置による監視結果に基づいて前記陽極側
導電体の耐用状態を判定する判定装置とを備えたことを
特徴とする海水接触構造物の防汚装置。
An antifouling device for a seawater contact structure, which suppresses the formation of marine organisms on the seawater contact structure, comprising: an anode provided on a seawater side surface of the seawater contact structure via an insulating portion. A conductor, an anode-side conductor having an electrochemically active electrocatalyst, a cathode-side conductor provided in seawater, and a cathode connected to the anode-side conductor and the cathode-side An external power supply in which a negative electrode is connected to a conductor, wherein the external power supply controls an electric potential between the positive electrode and the negative electrode so as to generate oxygen in seawater via the electric catalyst of the anode-side conductor. A current monitoring device that monitors a current flowing through the anode-side conductor; and a determination device that determines a durable state of the anode-side conductor based on a monitoring result by the current monitoring device. Antifouling equipment for seawater contact structures.
【請求項2】前記陽極側導電体は互いに絶縁された複数
の陽極側導電体要素からなり、前記電流監視装置は前記
各陽極側導電体要素に流れる電流をそれぞれ監視するこ
とを特徴とする請求項1記載の海水接触構造物の防汚装
置。
2. The anode-side conductor comprises a plurality of anode-side conductor elements insulated from each other, and the current monitoring device monitors a current flowing through each of the anode-side conductor elements. Item 2. An antifouling device for a seawater contact structure according to Item 1.
【請求項3】前記判定装置は前記電流監視装置で監視さ
れた積算電流値に基づいて前記陽極側導電体の耐用状態
を判定することを特徴とする請求項1記載の海水接触構
造物の防汚装置。
3. The protection of a seawater contact structure according to claim 1, wherein said judging device judges a durable state of said anode-side conductor based on an integrated current value monitored by said current monitoring device. Dirty equipment.
【請求項4】前記判定装置は前記電流監視装置で監視さ
れた電流値の変化に基づいて前記陽極側導電体の耐用状
態を判定することを特徴とする請求項1記載の海水接触
構造物の防汚装置。
4. The seawater contact structure according to claim 1, wherein the determination device determines a durable state of the anode-side conductor based on a change in a current value monitored by the current monitoring device. Antifouling equipment.
【請求項5】前記判定装置は前記電流監視装置で監視さ
れた電流値の変化を前記各陽極側導電体要素間で相対的
に比較し、その比較結果を考慮しつつ前記各陽極側導電
体要素ごとの電流値の変化に基づいて前記各陽極側導電
体要素の耐用状態を判定することを特徴とする請求項2
記載の海水接触構造物の防汚装置。
5. A method according to claim 1, wherein said determining means relatively compares a change in the current value monitored by said current monitoring device between said anode-side conductor elements, and considers each of said anode-side conductors in consideration of the comparison result. 3. The useful state of each of the anode-side conductor elements is determined based on a change in a current value of each element.
An antifouling device for a seawater contact structure as described in the above.
【請求項6】前記絶縁部は前記海水接触構造物の海水側
表面と前記陽極側導電体とを互いに接着するための絶縁
性接着剤であることを特徴とする請求項1記載の海水接
触構造物の防汚装置。
6. The seawater contact structure according to claim 1, wherein the insulating portion is an insulating adhesive for bonding the seawater surface of the seawater contact structure and the anode-side conductor to each other. Antifouling device for things.
【請求項7】前記絶縁部は前記海水接触構造物の海水側
表面と前記陽極側導電体との間に配置された絶縁シート
であることを特徴とする請求項1記載の海水接触構造物
の防汚装置。
7. The seawater contact structure according to claim 1, wherein the insulating portion is an insulating sheet disposed between the seawater-side surface of the seawater contact structure and the anode-side conductor. Antifouling equipment.
【請求項8】前記絶縁部は前記海水接触構造物の海水側
表面に被覆された絶縁体であることを特徴とする請求項
1記載の海水接触構造物の防汚装置。
8. The antifouling device for a seawater contact structure according to claim 1, wherein the insulating portion is an insulator coated on a seawater side surface of the seawater contact structure.
【請求項9】前記陽極側導電体の前記電気的触媒は白金
系金属、白金系金属酸化物、およびコバルトまたはマン
ガンの酸化物のうちの少なくとも一種を含む単一体、混
晶体または複合体であることを特徴とする請求項1記載
の海水接触構造物の防汚装置。
9. The electrocatalyst of the anode-side conductor is a single body, a mixed crystal or a composite containing at least one of platinum-based metals, platinum-based metal oxides, and oxides of cobalt or manganese. The antifouling device for a seawater contact structure according to claim 1, wherein:
【請求項10】海水接触構造物への海生生物の着生を抑
制する海水接触構造物の防汚装置の性能劣化監視方法に
おいて、 海水接触構造物の海水側表面上に絶縁部を介して設けら
れた陽極側導電体と、海水中に設けられた陰極側導電体
との間に電流を流すことにより、前記陽極側導電体の有
する電気化学的に活性な電気的触媒を介して海水中で酸
素を発生させる工程と、 前記酸素発生工程中に前記陽極側導電体に流れる電流を
監視する工程と、 前記監視工程による監視結果に基づいて前記陽極側導電
体の耐用状態を判定する工程とを含むことを特徴とする
性能劣化監視方法。
10. A method for monitoring deterioration of performance of an antifouling device for a seawater contact structure, which suppresses the formation of marine organisms on the seawater contact structure, the method comprising the steps of: By providing a current between the provided anode-side conductor and the cathode-side conductor provided in seawater, seawater is supplied via an electrochemically active electrocatalyst having the anode-side conductor. Generating oxygen in the step of: monitoring the current flowing through the anode-side conductor during the oxygen generation step; and determining the durable state of the anode-side conductor based on the monitoring result of the monitoring step. A performance deterioration monitoring method, comprising:
【請求項11】前記陽極側導電体は互いに絶縁された複
数の陽極側導電体要素からなり、前記監視工程におい
て、前記各陽極側導電体要素に流れる電流をそれぞれ監
視することを特徴とする請求項10記載の性能劣化監視
方法。
11. The anode-side conductor comprises a plurality of anode-side conductor elements insulated from each other, and in the monitoring step, a current flowing through each of the anode-side conductor elements is monitored. Item 13. The performance deterioration monitoring method according to Item 10.
【請求項12】前記判定工程において、前記監視工程で
監視された積算電流値に基づいて前記陽極側導電体の耐
用状態を判定することを特徴とする請求項10記載の性
能劣化監視方法。
12. The performance deterioration monitoring method according to claim 10, wherein in the determining step, the service life of the anode-side conductor is determined based on the integrated current value monitored in the monitoring step.
【請求項13】前記判定工程において、前記監視工程で
監視された電流値の変化に基づいて前記陽極側導電体の
耐用状態を判定することを特徴とする請求項10記載の
性能劣化監視方法。
13. The performance deterioration monitoring method according to claim 10, wherein in the determining step, the service life of the anode-side conductor is determined based on a change in the current value monitored in the monitoring step.
【請求項14】前記判定工程において、前記監視工程で
電流値の急激な増加が監視されたときに、前記陽極側導
電体に絶縁不良の可能性があると判定することを特徴と
する請求項13記載の性能劣化監視方法。
14. In the determining step, when a rapid increase in the current value is monitored in the monitoring step, it is determined that there is a possibility of insulation failure of the anode-side conductor. 13. The performance deterioration monitoring method according to item 13.
【請求項15】前記判定工程において、前記陽極側導電
体に絶縁不良の可能性があると判定した後、所定時間の
経過を待って前記陽極側導電体の絶縁不良の有無を再度
判定することを特徴とする請求項14記載の性能劣化監
視方法。
15. In the determining step, after determining that there is a possibility of insulation failure of the anode-side conductor, after a predetermined time has passed, it is determined again whether or not the anode-side conductor has insulation failure. The performance degradation monitoring method according to claim 14, wherein:
【請求項16】前記判定工程において、前記陽極側導電
体に絶縁不良の可能性があると判定した後、海水接触構
造物に対する海水の流れ方向を逆向きにした上で前記陽
極側導電体の絶縁不良の有無を再度判定することを特徴
とする請求項14記載の性能劣化監視方法。
16. In the determining step, after it is determined that the anode-side conductor may have insulation failure, the flow direction of seawater to the seawater contact structure is reversed, and 15. The performance deterioration monitoring method according to claim 14, wherein the presence / absence of insulation failure is determined again.
【請求項17】前記判定工程において、前記監視工程で
電流値の急激な減少が検知されたときに、前記陽極側導
電体に剥離または一部破損の可能性があると判定するこ
とを特徴とする請求項13記載の性能劣化監視方法。
17. The method according to claim 17, wherein, when a rapid decrease in the current value is detected in the monitoring step, it is determined that the anode-side conductor may be peeled or partially damaged. 14. The performance degradation monitoring method according to claim 13, wherein
【請求項18】前記判定工程において、前記監視工程で
監視された電流値の変化を前記各陽極側導電体要素間で
相対的に比較し、その比較結果を考慮しつつ前記各陽極
側導電体要素ごとの電流値の変化に基づいて前記各陽極
側導電体要素の耐用状態を判定することを特徴とする請
求項11記載の性能劣化監視方法。
18. In the determining step, a change in the current value monitored in the monitoring step is relatively compared between the respective anode-side conductor elements, and the respective anode-side conductors are considered in consideration of the comparison result. 12. The performance deterioration monitoring method according to claim 11, wherein a service life of each of the anode-side conductor elements is determined based on a change in a current value of each element.
JP29698899A 1999-10-19 1999-10-19 Antifouling device for seawater contact structure and its performance deterioration monitoring method Expired - Fee Related JP3776647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29698899A JP3776647B2 (en) 1999-10-19 1999-10-19 Antifouling device for seawater contact structure and its performance deterioration monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29698899A JP3776647B2 (en) 1999-10-19 1999-10-19 Antifouling device for seawater contact structure and its performance deterioration monitoring method

Publications (2)

Publication Number Publication Date
JP2001115427A true JP2001115427A (en) 2001-04-24
JP3776647B2 JP3776647B2 (en) 2006-05-17

Family

ID=17840808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29698899A Expired - Fee Related JP3776647B2 (en) 1999-10-19 1999-10-19 Antifouling device for seawater contact structure and its performance deterioration monitoring method

Country Status (1)

Country Link
JP (1) JP3776647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305821A (en) * 2003-04-03 2004-11-04 Toshiba Corp Seawater strainer
CN106222691A (en) * 2016-08-22 2016-12-14 中国船舶重工集团公司第七二五研究所 A kind of titanium alloy antifouling electrode of seawaterline integrated high-efficiency and electrolysis anti-soil apparatus
KR20190054216A (en) * 2017-11-13 2019-05-22 박관식 Antifouling apparatus for a boat and vessel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771691A (en) * 1980-10-22 1982-05-04 Toshiba Corp Organism removing device
JPH0663184U (en) * 1993-02-10 1994-09-06 三菱重工業株式会社 Marine organism attachment prevention device for steel structures
JPH08211570A (en) * 1994-11-08 1996-08-20 Konica Corp Method for continuously processing silver halide photographic sensitive material
JPH10249357A (en) * 1997-03-18 1998-09-22 Kenichi Morita Antifouling method
JPH11114571A (en) * 1997-10-15 1999-04-27 Shikishima Kiki Kk Electrochemical water treating device and method therefor
JPH11189402A (en) * 1997-12-26 1999-07-13 Showa Mfg Co Ltd Device for producing hypochlorous acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771691A (en) * 1980-10-22 1982-05-04 Toshiba Corp Organism removing device
JPH0663184U (en) * 1993-02-10 1994-09-06 三菱重工業株式会社 Marine organism attachment prevention device for steel structures
JPH08211570A (en) * 1994-11-08 1996-08-20 Konica Corp Method for continuously processing silver halide photographic sensitive material
JPH10249357A (en) * 1997-03-18 1998-09-22 Kenichi Morita Antifouling method
JPH11114571A (en) * 1997-10-15 1999-04-27 Shikishima Kiki Kk Electrochemical water treating device and method therefor
JPH11189402A (en) * 1997-12-26 1999-07-13 Showa Mfg Co Ltd Device for producing hypochlorous acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305821A (en) * 2003-04-03 2004-11-04 Toshiba Corp Seawater strainer
JP4660072B2 (en) * 2003-04-03 2011-03-30 株式会社東芝 Seawater strainer
CN106222691A (en) * 2016-08-22 2016-12-14 中国船舶重工集团公司第七二五研究所 A kind of titanium alloy antifouling electrode of seawaterline integrated high-efficiency and electrolysis anti-soil apparatus
CN106222691B (en) * 2016-08-22 2018-04-06 中国船舶重工集团公司第七二五研究所 A kind of antifouling electrode of titanium alloy seawaterline integrated high-efficiency and electrolysis anti-soil apparatus
KR20190054216A (en) * 2017-11-13 2019-05-22 박관식 Antifouling apparatus for a boat and vessel
KR101985107B1 (en) * 2017-11-13 2019-05-31 박관식 Antifouling apparatus for a boat and vessel

Also Published As

Publication number Publication date
JP3776647B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP4648389B2 (en) Anode assembly for cathodic protection
KR101980383B1 (en) Electrolytic on-site generator
JP3769394B2 (en) Heat exchange equipment with antifouling device
JP4028169B2 (en) Antifouling equipment for structures and heat exchangers in contact with seawater
CN111041496B (en) Device and method for controlling chloride ion permeation of reinforced concrete
JP3826012B2 (en) Sea life adhesion prevention device and operation method thereof
JP2001115427A (en) Anti-fouling device of structure in contact with sea water, and its performance degradation monitoring method
JP3139938B2 (en) Cathodic protection current monitor and monitoring system using the same
JP2007309052A (en) Device for preventing fouling of structure and method of preventing fouling
KR20130046874A (en) Hybrid type cathode protection system and method using iccp type and sacrificial anode type cathode protection technologies for marine concrete structure
JP2003164881A (en) Electrochemical antifouling apparatus for water contact structure and performance degradation monitoring method
JP2006081449A (en) Apparatus for preventing adhesion of marine organism, composite plate for preventing adhesion of marine organism and method for installing the apparatus
JP2003013264A (en) Antifouling device for structure and heat exchanger contacting with seawater
JP2004339782A (en) Anti-fouling device of structure
JPH11140677A (en) Method for preventing contamination and local corrosion of wire net made of copper or copper alloy and device therefor
JP2005248257A (en) Stain prevention-corrosion prevention apparatus for metal structure and method for energizing stain prevention-corrosion prevention apparatus
JP2017095892A (en) Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method
US3558465A (en) Electrolytic cell
JP4229047B2 (en) Electronic antibacterial device
JPH10306390A (en) Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor
JP4617778B2 (en) Electronic antibacterial device having state notification means
JP2003090694A (en) Marine organism adhesion preventing device for heat exchanger
JP2007177449A (en) Antifouling device of structure
KR100610229B1 (en) An apparatus for monitoring deposits on the electrode of the direct sea water electrolysis system
JP6927812B2 (en) Anticorrosion system and anticorrosion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees