JP2001115268A - Method for producing semiconductor system - Google Patents

Method for producing semiconductor system

Info

Publication number
JP2001115268A
JP2001115268A JP29822099A JP29822099A JP2001115268A JP 2001115268 A JP2001115268 A JP 2001115268A JP 29822099 A JP29822099 A JP 29822099A JP 29822099 A JP29822099 A JP 29822099A JP 2001115268 A JP2001115268 A JP 2001115268A
Authority
JP
Japan
Prior art keywords
plating
acid
hydrofluoric acid
vol
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29822099A
Other languages
Japanese (ja)
Other versions
JP3975625B2 (en
Inventor
Masami Shibata
正実 柴田
Akira Amano
彰 天野
Hiroaki Furuhata
博明 降旗
Masaki Ichinose
正樹 一ノ瀬
Shigeyuki Nakayama
茂幸 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29822099A priority Critical patent/JP3975625B2/en
Publication of JP2001115268A publication Critical patent/JP2001115268A/en
Application granted granted Critical
Publication of JP3975625B2 publication Critical patent/JP3975625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon semiconductor system deposited with an electroless nickel plating film with high uniformity and tight adhesion. SOLUTION: A silicon wafer is dipped into a pretreating solution containing hydrofluoric acid and an oxidizer, is subjected to surface activation, is water- washed and is immediately applied with electroless nickel plating. As the oxidizer, a ternary solution using hydrogen peroxide aqueous solution and nitric acid, and in which, as a third solution, phosphoric acid, water or acetic acid is added is prepared.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、シリコンウェハ
を用いる半導体装置の製造方法において、基板表面に無
電解ニッケル(以下Niと記す)めっきを施す際の表面
活性化処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device using a silicon wafer, and more particularly to a method for activating the surface of a substrate when electroless nickel (hereinafter referred to as Ni) plating is performed on the substrate surface.

【0002】[0002]

【従来の技術】従来のこの種の表面活性化処理には、物
理的手段と化学的手段とがある。物理的手段としては、
フォーミング処理、すなわち、表面の細かな粗面化によ
り、また化学的手段としては、パラジウム(以下Pdと
記す)塩やシリコーンカップリング剤など、表面に活性
化核になり得る化学種を吸着させて表面活性化がおこな
われている。
2. Description of the Related Art Conventional surface activation treatments of this type include physical means and chemical means. As physical means,
Forming treatment, that is, fine surface roughening, and as a chemical means, a chemical species that can become an activation nucleus such as palladium (hereinafter referred to as Pd) salt or a silicone coupling agent is adsorbed on the surface. Surface activation has been performed.

【0003】[0003]

【発明が解決しようとする課題】物理的手段としてのフ
ォーミング処理には、シリコンカーバイド、シリコンな
どの微粒子を加圧圧送吹きつけをするサンドブラスト
や、回転刃を用いる研削機+砥石仕上げなどによる基板
表面の粗面化がおこなわれている。形成された表面凹凸
によって、アンカー効果がもたらされ、析出が容易で、
密着性の高い無電解Niめっきが得られている。
In the forming process as a physical means, the substrate surface is formed by sandblasting in which fine particles such as silicon carbide and silicon are blown under pressure and pressure, or a grinding machine using a rotary blade and a grinding stone finish. Has been roughened. Due to the formed surface irregularities, an anchor effect is brought about, precipitation is easy,
Electroless Ni plating with high adhesion is obtained.

【0004】しかしこの方法では、表面層に加工歪みや
マイクロクラックなどの加工損傷を生じ、均一、均質な
Ni合金層を形成し難いという問題があった。図8
(a)〜(e)は、サンドブラスト法による表面フォー
ミングをおこなった面へのNiめっき法の概要説明図で
ある。ダイオードウェハ803を回転テーブル804に
真空吸着して回転軸805により回転させる。ノズル8
01よりサンド802を数kg/cm2で圧送して、ダイオー
ドウェハ803表面に吹きつける〔図8(a)〕。この
時、ノズル801は、直径方向に往復運動をして均一な
処理がおこなえるようにする。
However, this method has a problem that processing damage such as processing distortion and micro cracks is generated on the surface layer, and it is difficult to form a uniform and uniform Ni alloy layer. FIG.
(A)-(e) is a schematic explanatory drawing of the Ni plating method to the surface which performed the surface forming by the sandblast method. The diode wafer 803 is vacuum-sucked on the rotating table 804 and rotated by the rotating shaft 805. Nozzle 8
Then, a sand 802 is pumped at a pressure of several kg / cm 2 from 01 and sprayed onto the surface of the diode wafer 803 (FIG. 8A). At this time, the nozzle 801 reciprocates in the diameter direction so that uniform processing can be performed.

【0005】図8(b)は、両面を処理したダイオード
ウェハ803の断面図である。図8(c)はその拡大図
である。両面共に数μm 程度の凹み808をもつ凹凸面
806が得られている。図8(d)は、Niめっきの初
期段階の断面図である。凹み808に析出したNiクラ
スタ809が見られる。これが以後の連続したNi膜形
成の核になる。図8(e)は両面にめっき膜810の形
成が完了した状態の断面図である。
FIG. 8B is a sectional view of a diode wafer 803 having both surfaces processed. FIG. 8C is an enlarged view thereof. An uneven surface 806 having a depression 808 of about several μm on both surfaces is obtained. FIG. 8D is a cross-sectional view of the initial stage of Ni plating. Ni clusters 809 precipitated in the depressions 808 can be seen. This becomes the nucleus of the subsequent Ni film formation. FIG. 8E is a cross-sectional view showing a state where the plating films 810 have been formed on both surfaces.

【0006】Niの酸化還元電位が、シリコン半導体の
バンドギャップのほぼ中間に位置するので、ポテンシャ
ルの高いn型側からは電子の放出を受け易く、一方p型
側のそれは(フェルミ凖位)、放出し難い。従って、両
表面を化学的に処理せず、シリコン生地そのものの場合
n側にはめっきが厚く、p側には薄く付き易い。場合に
よっては50% もn側が厚くなり、両面への均等めっき
には、工程上細かな制御と特別なめっき液が必要にな
る。但し、表面の物理的形状により、アンカー効果が生
じ、膜の密着性は非常に高い。
Since the oxidation-reduction potential of Ni is located almost in the middle of the band gap of the silicon semiconductor, electrons are easily emitted from the n-type side having a higher potential, while that of the p-type side is (Fermi level) Difficult to release. Therefore, both surfaces are not chemically treated, and in the case of the silicon fabric itself, the plating is likely to be thick on the n-side and thin on the p-side. In some cases, the n-side becomes as thick as 50%, and fine plating and special plating solution are required in the process for uniform plating on both sides. However, the anchor effect occurs due to the physical shape of the surface, and the adhesion of the film is very high.

【0007】シリコーンカップリング剤の場合は、被着
される無電解ニッケル膜中に有機物(またはその構成原
子である炭素、水素、酸素、以下それぞれC、H、Oと
記すなど)を巻き込むという問題があった。図9(a)
〜(d)は、シリコーンカップリング剤による化学処理
をおこなった面へのNiめっき法の概要説明図である。
In the case of a silicone coupling agent, there is a problem that an organic substance (or its constituent atoms, such as carbon, hydrogen and oxygen, hereinafter referred to as C, H and O, respectively) is entangled in the electroless nickel film to be deposited. was there. FIG. 9 (a)
(D) is a schematic explanatory view of a Ni plating method on a surface subjected to a chemical treatment with a silicone coupling agent.

【0008】ダイオードウェハ903を回転テーブル9
04に真空吸着させ、回転軸905により回転させなが
らノズル901より、シリコーンカップリング剤902
を適量滴下させる〔図9(a)〕。図9(b)は両面に
塗布乾燥後の状態の断面図である。表面に極く薄いカッ
プリング剤層906が形成されている。
[0008] The rotating table 9
04, and while being rotated by a rotating shaft 905, a silicone coupling agent 902 is
Is dropped in an appropriate amount (FIG. 9A). FIG. 9B is a cross-sectional view showing a state after coating and drying on both surfaces. An extremely thin coupling agent layer 906 is formed on the surface.

【0009】図9(c)は拡大断面図であり、ダイオー
ドウェハ903表面にカップリング剤層906が見られ
る。図中Rは、C、Hよりなる例えばメチル(CH3
基、エチル(C2 5 )基などの有機物の感能基を表し
ている。この処理は、表面にOが弱く負に帯電した活性
サイト(−Oσ- )を形成させるわけであるが、Oの他
にC、H等の有機物構成元素も沢山共存し、特に、Si
とNiめっき膜界面には、数十nmを越すNiクラスタ核
層が存在することになり、以後の熱処理(550℃、3
0分間、窒素N2 /水素H2 =5/95vol%)による合
金化時に、特にCとOとが影響し、均一、均質なシンタ
ー層が得られなくなる。
FIG. 9C is an enlarged sectional view showing a coupling agent layer 906 on the surface of the diode wafer 903. In the figure, R is C and H, for example, methyl (CH 3 )
And an organic sensitive group such as an ethyl (C 2 H 5 ) group. This process, active site O is negatively charged weakly to the surface (-Oσ -) but not to form, addition and C, organic constituent elements of the H or the like of the O also coexist lot, particularly, Si
A Ni cluster core layer exceeding several tens nm exists at the interface between the Ni plating film and the Ni plating film.
At the time of alloying with nitrogen (N 2 / hydrogen H 2 = 5/95 vol%) for 0 minute, C and O are particularly affected, and a uniform and uniform sinter layer cannot be obtained.

【0010】また、もう一つの化学的手段のうち、Pd
塩を用いる方法は、めっき溶液の管理の難しさ、液寿命
の短さ、コスト高などの問題があった。このような状況
に鑑み本発明の目的は、シリコン表面に連続的に均一、
均質で良質な無電解Niめっき膜を形成することにあ
る。
In another chemical means, Pd
The method using a salt has problems such as difficulty in managing the plating solution, short solution life, and high cost. In view of such a situation, an object of the present invention is to continuously and uniformly form a silicon surface,
An object is to form a uniform and high-quality electroless Ni plating film.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め本発明の方法は、ふっ化水素酸(以下HFと記す)を
ベースとし、酸化剤を含む前処理溶液に浸して表面活性
化をおこない、水洗後直ちに無電解ニッケルめっきをお
こなうものとする。酸化剤を含むHF溶液中ではシリコ
ンは、 Si+6HF2 - →SiF6 2- +6HF+4e- (1) Si+Ox →−Si−OH+HF2 - → −Si−F+F- +H2 O(2) (1)式に示す反応で僅かではあるが、直接溶解する。
In order to solve the above-mentioned problems, a method of the present invention is based on hydrofluoric acid (hereinafter referred to as HF), and is immersed in a pretreatment solution containing an oxidizing agent to activate the surface. Perform electroless nickel plating immediately after washing. Silicon is an HF solution containing an oxidizing agent, Si + 6HF 2 - → SiF 6 2- + 6HF + 4e - (1) Si + O x → -Si-OH + HF 2 - → -Si-F + F - + H to 2 O (2) (1) formula It dissolves directly, albeit slightly, in the reaction shown.

【0012】また(2)式に示すように酸化剤により酸
化される。ここでは、水溶液中なのでOH基として表し
た。更に、HFが解離したHF2 - 活性イオン種によ
り、OをFで置換し、実際には なるSiF6 2- として溶解すると考えられている。そし
て実際には(2)式の反応が支配的である。各原子の電
気陰性度を考慮して(2)式の反応基を見直すと、−S
i−OHでは、Si:1.8、O:3.5、H:2.1
であるから、 すなわち、O(酸素)が電子を引きつけて部分的に負に
帯電している。−Si−Fでは、F:4.0であるか
ら、 F(ふっ素)が電子を引きつけて、部分的により負に帯
電している。Ni2+の存在する溶液中では、 のHとの置換は生じ易く、−Si−O−Ni* となる。
一方、 のF部位にも化学的吸着は生じ易く、−Si−F…Ni
* となる。もう少し立体的に考えると、 のような化学構造が考えられる。
Further, as shown in the formula (2), it is oxidized by an oxidizing agent. Here, since it is in an aqueous solution, it is represented as an OH group. Furthermore, HF 2 which HF dissociates - by an active ionic species, and replacing O with F, actually Comprising believed SiF 6 dissolved as 2-. In fact, the reaction of equation (2) is dominant. When the reactive group of the formula (2) is reviewed in consideration of the electronegativity of each atom, -S
In i-OH, Si: 1.8, O: 3.5, H: 2.1
Because That is, O (oxygen) attracts electrons and is partially negatively charged. In -Si-F, since F is 4.0, F (fluorine) attracts electrons and is partially more negatively charged. In a solution in which Ni 2+ is present, Is easily replaced with H, and becomes -Si-O-Ni * .
on the other hand, Is likely to be chemically adsorbed also at the F site of -Si-F ... Ni
* If you think a little more three-dimensional, A chemical structure such as

【0013】すなわち、本発明のHFと酸化剤とを含む
前処理溶液中では、シリコンを酸化しつつ、溶解反応も
少し生じながら、OまたはF原子の電気的活性サイトを
形成する。めっき浴中でその活性サイトにNi2+が引き
つけられ、先ずNi原子クラスタの核を生成し、更に核
生成後は、活性サイトとして無電解Niめっき膜を連続
して生じさせる。
That is, in the pretreatment solution containing HF and the oxidizing agent of the present invention, while oxidizing silicon, a slight dissolution reaction occurs, and an electrically active site of O or F atoms is formed. Ni 2+ is attracted to the active site in the plating bath to first generate nuclei of Ni atom clusters. After the nucleation, an electroless Ni plating film is continuously generated as an active site.

【0014】また、Niの析出は、(2)式の−Si−
OH形成時、その反応が支配的に進むものと考えられ
る。つまり、本発明のポイントは、シリコン表面に極く
薄い酸化膜(実際にはシリコンリッチのサブオキサイ
ド)を制御形成させ、バックグラウンドとほぼ同じO原
子をNi核形成の活性サイトとして活用して、連続的に
均一、均質で良質な無電解Niめっき膜を形成すること
である。実際にESCA(Electron Spectroscopy for
Chemical Analysis )では、数〜数十nmの厚さの酸化膜
が確認されている。
Further, the precipitation of Ni is as follows:
It is considered that the reaction predominates during OH formation. In other words, the point of the present invention is to control and form an extremely thin oxide film (actually, a silicon-rich suboxide) on the silicon surface, and to utilize O atoms substantially the same as the background as active sites for Ni nucleation. The purpose is to continuously form a uniform, homogeneous and high-quality electroless Ni plating film. Actually ESCA (Electron Spectroscopy for
Chemical Analysis) has confirmed an oxide film having a thickness of several to several tens of nm.

【0015】酸化剤としては、例えば、過酸化水素水
(以下H2 2 と記す)、硝酸(以下HNO3 と記す)
が挙げられる。また、酸化速度と、溶解速度とのバラン
スをとるために、燐酸(以下H3 PO4 と記す)、水、
氷酢酸(以下CH3 COOHと記す)等の第三の希釈剤
を加えるものとする。そして綿密な実験の結果、各種三
元系溶液において、基板表面に十分量のNi原子クラス
タ核形成がなされ、均一、均質な無電解Niめっき膜が
容易に形成される、適当な組成を決定した。
As the oxidizing agent, for example, aqueous hydrogen peroxide (hereinafter referred to as H 2 O 2 ), nitric acid (hereinafter referred to as HNO 3 )
Is mentioned. Further, in order to balance the oxidation rate and the dissolution rate, phosphoric acid (hereinafter referred to as H 3 PO 4 ), water,
A third diluent such as glacial acetic acid (hereinafter referred to as CH 3 COOH) shall be added. As a result of a thorough experiment, an appropriate composition was determined so that a sufficient amount of Ni atom cluster nuclei were formed on the substrate surface in various ternary solutions, and a uniform and uniform electroless Ni plating film was easily formed. .

【0016】[0016]

【発明の実施の形態】以下、実施例に基づいて本発明の
実施の形態を述べる。なお、以下では、HF、H
2 2 、H3 PO4 、CH3 COOH、HNO3 は、そ
れぞれ半導体プロセスで最も広く用いられているそれぞ
れ約50% 、31% 、85% 、99.8% 、61% (い
ずれもwt% )の溶液を使用した。それらの混合比は、体
積比(vol%)で示している。
Embodiments of the present invention will be described below based on examples. In the following, HF, H
2 O 2 , H 3 PO 4 , CH 3 COOH, and HNO 3 are respectively about 50%, 31%, 85%, 99.8%, 61% (all are wt%) which are most widely used in the semiconductor process. ) Was used. Their mixing ratio is shown by volume ratio (vol%).

【0017】[実施例1]先ず、HFをベースとし、H
2 2 、H3 PO4 の三元系について説明する。ダイオ
ードウェハは、n型、比抵抗30Ω・cmのシリコンウェ
ハの一面に燐拡散により、表面不純物濃度2×1019cm
-3、拡散深さ30μm のn+ 層を形成し、他面にほう素
拡散により、表面不純物濃度1×1019cm-3、拡散深さ
30μmのp+ 層を形成したウェハである。
[Embodiment 1] First, based on HF, H
The ternary system of 2 O 2 and H 3 PO 4 will be described. The diode wafer has a surface impurity concentration of 2 × 10 19 cm by phosphorus diffusion on one surface of an n-type silicon wafer having a specific resistance of 30 Ω · cm.
-3 , an n + layer having a diffusion depth of 30 μm, and a p + layer having a surface impurity concentration of 1 × 10 19 cm -3 and a diffusion depth of 30 μm formed on the other surface by boron diffusion.

【0018】図7(a)〜(d)は、本発明の活性化処
理をおこなった面へのニッケルめっき法の概要説明図で
ある。HFと酸化剤とを含む所定組成の前処理溶液70
2をいれた処理槽701にダイオードウェハ703を1
分間浸漬させる〔図7(a)〕。すると、その表面には
シリコンリッチな極く薄い(数〜数十nm程度)のサブオ
キサイド707が生じる〔同図(b)〕。
FIGS. 7A to 7D are schematic explanatory views of the nickel plating method on the surface subjected to the activation treatment of the present invention. Pretreatment solution 70 having a predetermined composition containing HF and an oxidizing agent
2 in a processing tank 701 containing 2
(FIG. 7A). Then, a very thin (about several to several tens of nm) silicon-rich suboxide 707 is generated on the surface [FIG.

【0019】作用の項で述べたようにサブオキサイド7
07の−Si−O−Hにおいて、電気陰性度の関係によ
り、O原子は電子を回りに引きつけており、局部的に負
に帯電した活性サイト(−Si−O* σ- )となってい
る。十分に水洗した後、下記のめっき浴に5分間浸漬、
緩やかに揺動しながらめっきする。無電解Niめっき浴
は、アルカリ性浴を用いた。めっき浴組成およびめっき
条件は次の通りである。
As described in the section of operation, the suboxide 7
In -Si-O-H 07, the relationship between electronegativity, O atoms are attracted around the electronic locally charged active sites on the negative - has a (-Si-O * σ) . After washing thoroughly with water, immerse in the following plating bath for 5 minutes,
Plating while gently rocking. As the electroless Ni plating bath, an alkaline bath was used. The plating bath composition and plating conditions are as follows.

【0020】 硫酸ニッケル(NiSO4 ) 0.1M 燐酸二水素ナトリウム(NaH2 PO4 ) 0.35M ビロリン酸ナトリウム(Na2 2 2 7 )0.2M 水酸化アンモニウム(NH4 OH)のPH 9.0 温度 83℃ 析出物 Ni/8% P 図7(c)はNiクラスター核形成過程を示す模式図で
ある。
Nickel sulfate (NiSO 4 ) 0.1 M Sodium dihydrogen phosphate (NaH 2 PO 4 ) 0.35 M Sodium borophosphate (Na 2 H 2 P 2 O 7 ) 0.2 M Ammonium hydroxide (NH 4 OH) PH 9.0 temperature 83 ° C. Precipitate Ni / 8% P FIG. 7 (c) is a schematic diagram showing the Ni cluster nucleation process.

【0021】めっき浴中では、クーロン力によりサブオ
キサイド707の活性サイトにNi 2+イオンが引きつけ
られて化学吸着され、Niクラスター核708が均一に
形成される。更にNiクラスター核708を核にして、
Niの析出が進行し、ダイオードウェハのn、p両面に
ほぼ均一に、均質なNiめっき膜710を被着させるこ
とができる〔図7(d)〕。
In the plating bath, sub-force is generated by Coulomb force.
Ni on the active site of the oxide 707 2+Ions are attracted
And chemically adsorbed, the Ni cluster nucleus 708 becomes uniform
It is formed. Further, with the Ni cluster nucleus 708 as a nucleus,
Ni deposition progresses, on both n and p surfaces of diode wafer
It is possible to apply a uniform Ni plating film 710 almost uniformly.
(FIG. 7D).

【0022】なお、サブオキサイド707中のO原子
は、後工程のシンター時に雰囲気中のHやめっき膜中の
Pと反応するので、めっき膜の特性には悪影響を与えな
い。図1は、本発明第一の実施例で用いたHF、H2
2 、H3 PO4 三元前処理溶液の組成、およびそのめっ
き結果を示す特性図である。丸印はその組成の溶液で前
処理した後、シリコンウェハに無電解Niめっきしたこ
とを示す。単位はvol%である。
The O atoms in the suboxide 707 react with H in the atmosphere and P in the plating film at the time of sintering in a later step, and thus do not adversely affect the characteristics of the plating film. FIG. 1 shows HF and H 2 O used in the first embodiment of the present invention.
2 is a characteristic diagram showing the composition of the ternary pretreatment solution of H 3 PO 4 and the plating results thereof. The circles indicate that the silicon wafer was subjected to electroless Ni plating after pretreatment with a solution of the composition. The unit is vol%.

【0023】白丸印は、つき回り、面状態、密着性、膜
厚分布(±5% )など良好であったことを示す。上記系
では、ほぼ全ての組成点で良好な結果が得られた。HF
と酸化剤の共存する系では、シリコンの溶解とシリコン
の酸化とが競合反応として生じ、先述の如く、シリコン
酸化反応が支配的と考えている。
The white circles indicate that the turning, surface condition, adhesion, and film thickness distribution (± 5%) were good. In the above system, good results were obtained at almost all composition points. HF
In a system in which silicon and an oxidizing agent coexist, dissolution of silicon and oxidation of silicon occur as a competitive reaction, and as described above, the silicon oxidation reaction is considered to be dominant.

【0024】このときH3 PO4 は水素発生の過電圧を
下げ、還元剤としても働き、われわれが望む極く薄い酸
化膜形成の良い制御剤として作用する。この方法による
Niメッキでは、容易に均質、均一なメッキ膜が形成で
きるだけでなく、従来のカップリング剤をもちいた時の
不純物混入の問題も無い。なお、実際の半導体デバイス
の電極形成に適用してもなんら問題無いことも確認し
た。
At this time, H 3 PO 4 lowers the overvoltage of hydrogen generation, acts also as a reducing agent, and acts as a good controlling agent for forming an extremely thin oxide film desired by us. In the Ni plating by this method, not only a uniform and uniform plating film can be easily formed, but also there is no problem of impurity contamination when a conventional coupling agent is used. It was also confirmed that there was no problem when applied to the formation of electrodes in an actual semiconductor device.

【0025】[実施例2]実施例1と同様にして、H
F、H2 2 、水の三元系溶液で処理した後、直ちに無
電解ニッケルめっきをおこなった。図2は、HF、H2
2 、水三元溶液の組成、およびそのメッキ結果を示す
特性図である。丸印は各組成点で、シリコンウェハに無
電解めっきしたことを示す。
[Embodiment 2] In the same manner as in Embodiment 1, H
Immediately after treatment with a ternary solution of F, H 2 O 2 and water, electroless nickel plating was performed. FIG. 2 shows HF, H 2
O 2, the composition of the water ternary solutions, and is a characteristic diagram showing the plating result. The circles indicate that the silicon wafer was electrolessly plated at each composition point.

【0026】白丸印は、つき回り、面状態、密着性、膜
厚(±5% )など良好であったことを示す。黒丸はp、
n両面全くめっきが付かない、p、nの片側だけつい
た、ぼつぼつ小さい穴があいた、剥離したなどの不良部
位を示す。HFと水とを結ぶ軸に沿った領域は概ね良好
であるが、H2 2 が70% 以上の濃い領域では、不良
となつている。これは、酸化膜の溶解速度に比べて、形
成速度が大きいためである。
The white circles indicate that the rotation, surface condition, adhesion, and film thickness (± 5%) were good. The black circle is p,
n indicates defective portions such as no plating on both sides, only one side of p and n, a small hole, and peeling. The area along the axis connecting HF and water is generally good, but the area where H 2 O 2 is 70% or more is poor. This is because the formation rate is higher than the dissolution rate of the oxide film.

【0027】[実施例3]同様にして、HF、H
2 2 、CH3 COOHの三元系溶液で処理した後、直
ちに無電解Niめっきをおこなった。図3は、HF、H
2 2 、CH3 COOHの三元系溶液の組成、およびそ
のめっき結果を示す特性図である。丸印は各組成点で、
シリコンウェハに無電解めっきしたことを示す。
[Embodiment 3] Similarly, HF and H
Immediately after treatment with a ternary solution of 2 O 2 and CH 3 COOH, electroless Ni plating was performed. FIG. 3 shows HF, H
FIG. 3 is a characteristic diagram showing the composition of a ternary solution of 2 O 2 and CH 3 COOH, and the plating results thereof. The circles indicate each composition point.
Indicates that the silicon wafer was electrolessly plated.

【0028】HFが20% 以上と濃い領域は概ね良好で
あるが、HFが10% 以下と薄く、H2 2 が40% 以
上と濃い領域では、不良となつている。これも、酸化膜
の溶解速度が遅く、溶解速度と形成速度とのバランスが
悪いためである。CH3 COOHが80% 以上と濃い領
域でも不良となつている。この領域は、酸化も溶解も十
分に進まないためである。
A region where HF is as high as 20% or more is generally good, but a region where HF is as thin as 10% or less and H 2 O 2 is as high as 40% or more is defective. This is also because the dissolution rate of the oxide film is low and the balance between the dissolution rate and the formation rate is poor. Even in a region where CH 3 COOH is as high as 80% or more, it is defective. This is because neither oxidation nor dissolution proceeds sufficiently in this region.

【0029】[実施例4]酸化剤としてHNO3 を用
い、同様にして、HF、HNO3 、H3 PO4 三元系溶
液で処理した後、直ちに無電解ニッケルめっきをおこな
った。図4は、HF、HNO3 、H3 PO4 の三元系溶
液の組成、およびそのメッキ結果を示す特性図である。
丸印は各組成点で、シリコンウェハに無電解めっきした
ことを示す。
Example 4 Using HNO 3 as an oxidizing agent, similarly, after treating with a ternary solution of HF, HNO 3 and H 3 PO 4 , electroless nickel plating was immediately performed. FIG. 4 is a characteristic diagram showing the composition of a ternary solution of HF, HNO 3 and H 3 PO 4 and the plating results.
The circles indicate that the silicon wafer was electrolessly plated at each composition point.

【0030】HFが30% 以上の濃い領域は概ね良好で
あるが、20% 以下の薄い領域では、不良となつてい
る。H3 PO4 弱い酸化剤として作用するので、酸化膜
の溶解速度が遅く、溶解速度と形成速度とのバランスが
悪いためである。 [実施例5]同様に、HF、HNO3 、水の三元系溶液
で処理した後、直ちに無電解ニッケルめっきをおこなっ
た。
A region with a high HF of 30% or more is generally good, but a region with a low HF of 20% or less is defective. Since H 3 PO 4 acts as a weak oxidizing agent, the dissolution rate of the oxide film is low, and the balance between the dissolution rate and the formation rate is poor. Example 5 Similarly, after treatment with a ternary solution of HF, HNO 3 and water, electroless nickel plating was immediately performed.

【0031】図5は、HF、HNO3 、水の三元溶液の
組成、およびそのメッキ結果を示す特性図である。丸印
は各組成点で、シリコンウェハに無電解めっきしたこと
を示す。HFと水とを結ぶ軸に沿った領域がやや良いだ
けで、HNO3 の多い領域( 60% 以上)、水の多い領
域( 60% 以上)では、不良となつている。これも溶解
速度と形成速度とのバランスが悪いためである。
FIG. 5 is a characteristic diagram showing the composition of a ternary solution of HF, HNO 3 and water, and the plating results. The circles indicate that the silicon wafer was electrolessly plated at each composition point. A region along the axis connecting HF and water is only slightly good, and a region with a large amount of HNO 3 (60% or more) and a region with a large amount of water (60% or more) are defective. This is also because the balance between the dissolution rate and the formation rate is poor.

【0032】[実施例6]同様に、HF、HNO3 、C
3 COOHの三元系溶液で処理した後、直ちに無電解
ニッケルめっきをおこなった。図6は、HF、HN
3 、CH3 COOHの三元系溶液の組成、およびその
メッキ結果を示す特性図である。丸印は各組成点で、シ
リコンウェハに無電解めっきしたことを示す。
Embodiment 6 Similarly, HF, HNO 3 , C
Immediately after the treatment with the ternary solution of H 3 COOH, electroless nickel plating was performed. FIG. 6 shows HF, HN
O 3, CH 3 composition ternary solution of COOH, and it is a characteristic diagram showing the plating result. The circles indicate that the silicon wafer was electrolessly plated at each composition point.

【0033】HFとCH3 COOHとを結ぶ軸に沿った
領域がやや良いだけで、HNO3 が多く( 30% 以
上)、HFの少ない領域( 50% 以下)では、不良とな
つている。これも溶解速度と形成速度とのバランスが悪
いためである。以上の実施例では、仮に膜厚分布が±5
% 以上のものを不良としたが、実際の半導体装置の絶対
的な基準ではないので、図1〜6の良/不良境界は多少
移動する場合がある。
A region along the axis connecting HF and CH 3 COOH is only slightly good, but a large amount of HNO 3 (30% or more) and a small region of HF (50% or less) are defective. This is also because the balance between the dissolution rate and the formation rate is poor. In the above embodiment, if the film thickness distribution is ± 5.
% Or more is regarded as defective, but it is not an absolute reference of an actual semiconductor device, so that the good / defective boundary in FIGS.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、シ
リコンウェハをふっ化水素酸と酸化剤とを含む前処理溶
液に浸して表面活性化をおこない、水洗後直ちに無電解
ニッケルめっきをすることにより、容易に、不純物を含
まず、均一、均質なNiめっき膜をもつ半導体装置を製
造することができる。
As described above, according to the present invention, a silicon wafer is immersed in a pretreatment solution containing hydrofluoric acid and an oxidizing agent to activate the surface, and immediately after washing with water, electroless nickel plating is performed. This makes it possible to easily manufacture a semiconductor device having a uniform and uniform Ni plating film without containing impurities.

【0035】酸化剤としては、過酸化水素水、硝酸を用
い、第三の溶液として燐酸、水、あるいは酢酸を加えた
三元系溶液とすることにより、シリコン表面の酸化層の
生長を制御することが可能となり、プロセスの自由度が
増し、確実に均一なNiめっき膜を形成できる。いずれ
も容易に入手可能な薬品であり、工程も簡易であり、コ
ストも高くならないので、各種半導体装置に広く適用可
能である。
The growth of an oxidized layer on the silicon surface is controlled by using a hydrogen peroxide solution or nitric acid as an oxidizing agent and a ternary solution containing phosphoric acid, water or acetic acid as a third solution. Thus, the degree of freedom of the process is increased, and a uniform Ni plating film can be surely formed. All are easily available chemicals, the process is simple, and the cost is not high, so that they can be widely applied to various semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のHF−H2 2 −H3 PO
4 三元系溶液により前処理をおこなった時の各組成点で
のめっき特性図
FIG. 1 shows HF—H 2 O 2 —H 3 PO of Example 1 of the present invention.
4 Plating characteristics at each composition point when pre-treatment with ternary solution

【図2】実施例2のHF−H2 2 −H2 O三元系溶液
により前処理をおこなった時の各組成点でのめっき特性
FIG. 2 is a plating characteristic diagram at each composition point when pretreatment is performed with an HF-H 2 O 2 —H 2 O ternary solution of Example 2.

【図3】実施例3のHF−H2 2 −CH3 COOH三
元系溶液により前処理をおこなった時の各組成点でのめ
っき特性図
FIG. 3 is a plating characteristic diagram at each composition point when pretreatment is performed with an HF-H 2 O 2 —CH 3 COOH ternary solution of Example 3.

【図4】実施例4のHF−HNO3 −H3 PO4 三元系
溶液により前処理をおこなった時の各組成点でのめっき
特性図
FIG. 4 is a plating characteristic diagram at each composition point when pretreatment is performed with the HF-HNO 3 —H 3 PO 4 ternary solution of Example 4.

【図5】実施例5のHF−HNO3 −H2 O三元系溶液
により前処理をおこなった時の各組成点でのめっき特性
FIG. 5 is a plating characteristic diagram at each composition point when pretreatment is performed with an HF-HNO 3 —H 2 O ternary solution of Example 5.

【図6】実施例6のHF−HNO3 −CH3 COOH三
元系溶液により前処理をおこなった時の各組成点でのめ
っき特性図
FIG. 6 is a plating characteristic diagram at each composition point when pretreatment is performed with a HF-HNO 3 —CH 3 COOH ternary solution of Example 6.

【図7】(a)は本発明実施例の処理溶液浸漬状況の説
明図、(b)は前処理後のダイオードウェハ断面図、
(c)はめっき浴浸漬後の表面模式図、(d)はNiめ
っき後のダイオードウェハ断面図
7A is an explanatory view of a immersion state of a processing solution according to an embodiment of the present invention, FIG. 7B is a sectional view of a diode wafer after pretreatment,
(C) is a schematic view of a surface after immersion in a plating bath, and (d) is a cross-sectional view of a diode wafer after Ni plating.

【図8】(a)は従来法サンドブラスト状況の説明図、
(b)はサンドブラスト後のダイオードウェハ断面図、
(c)は表面拡大断面図、(d)はめっき浴浸漬後の表
面模式図、(e)はNiめっき後のダイオードウェハ断
面図
FIG. 8 (a) is an explanatory view of a conventional sand blast situation,
(B) is a sectional view of the diode wafer after sandblasting,
(C) is an enlarged sectional view of the surface, (d) is a schematic view of the surface after immersion in the plating bath, and (e) is a sectional view of the diode wafer after Ni plating.

【図9】(a)は従来法カップリング剤塗布状況の説明
図、(b)はカップリング剤塗布後のダイオードウェハ
断面図、(c)はめっき浴浸漬後の表面模式図、(d)
はNiめっき後のダイオードウェハ断面図
9A is an explanatory view of a state of application of a conventional coupling agent, FIG. 9B is a cross-sectional view of a diode wafer after application of the coupling agent, FIG. 9C is a schematic surface view after immersion in a plating bath, and FIG.
Is a cross-sectional view of the diode wafer after Ni plating

【符号の説明】[Explanation of symbols]

701 処理槽 702 処理溶液 703、803、903 ダイオードウェハ 707 サブオキサイド 709、809 Niクラスター核 710、810、910 Niめっき膜 801、901 ノズル 802 サンド 804、904 回転テーブル 805、904 回転軸 806 凹凸面 808 凹み 902 カップリング剤 907 カップリング剤層 701 Processing tank 702 Processing solution 703, 803, 903 Diode wafer 707 Suboxide 709, 809 Ni cluster nucleus 710, 810, 910 Ni plating film 801, 901 Nozzle 802 Sand 804, 904 Rotary table 805, 904 Rotating axis 806 Uneven surface 808 Depression 902 Coupling agent 907 Coupling agent layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 一ノ瀬 正樹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 中山 茂幸 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4K022 AA05 BA14 CA04 CA15 CA23 DA01 DB02 DB08 5F043 AA02 BB27 DD02 GG10  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masaki Ichinose 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Shigeyuki Nakayama 1st Tanabe Nitta, Kawasaki-ku, Kawasaki, Kawasaki, Kanagawa No.1 Fuji Electric Co., Ltd. F term (reference) 4K022 AA05 BA14 CA04 CA15 CA23 DA01 DB02 DB08 5F043 AA02 BB27 DD02 GG10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】シリコンウェハをふっ化水素酸と酸化剤と
を含む前処理溶液に浸して表面活性化をおこない、水洗
後直ちに無電解ニッケルめっきをおこなうことを特徴と
する半導体装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising: immersing a silicon wafer in a pretreatment solution containing hydrofluoric acid and an oxidizing agent to activate the surface; and performing electroless nickel plating immediately after washing with water.
【請求項2】ふっ化水素酸(50wt% )、過酸化水素水
(31wt% )、燐酸(85wt% )の混合液からなる前処
理溶液を用いることを特徴とする請求項1に記載の半導
体装置の製造方法。
2. A semiconductor according to claim 1, wherein a pretreatment solution comprising a mixture of hydrofluoric acid (50 wt%), aqueous hydrogen peroxide (31 wt%) and phosphoric acid (85 wt%) is used. Device manufacturing method.
【請求項3】ふっ化水素酸(50wt% )、過酸化水素水
(31wt% )、水の混合液からなる前処理溶液を用い、
過酸化水素水を70vol%未満とすることを特徴とする請
求項1に記載の半導体装置の製造方法。
3. A pretreatment solution comprising a mixture of hydrofluoric acid (50 wt%), aqueous hydrogen peroxide (31 wt%) and water,
2. The method according to claim 1, wherein the amount of hydrogen peroxide is less than 70 vol%.
【請求項4】ふっ化水素酸(50wt% )、過酸化水素水
(31wt% )、氷酢酸(99.8wt% )の混合液からな
る前処理溶液を用い、氷酢酸を80vol%以下とすること
を特徴とする請求項1に記載の半導体装置の製造方法。
4. A pretreatment solution comprising a mixture of hydrofluoric acid (50 wt%), aqueous hydrogen peroxide (31 wt%), and glacial acetic acid (99.8 wt%), and the glacial acetic acid content is reduced to 80 vol% or less. The method for manufacturing a semiconductor device according to claim 1, wherein:
【請求項5】ふっ化水素酸を10vol%以上とすることを
特徴とする請求項4に記載の半導体装置の製造方法。
5. The method according to claim 4, wherein the content of hydrofluoric acid is 10 vol% or more.
【請求項6】ふっ化水素酸(50wt% )、硝酸(61wt
% )、燐酸(85wt% )の混合液からなる前処理溶液を
用い、ふっ化水素酸を30vol%以上とすることを特徴と
する請求項1に記載の半導体装置の製造方法。
6. Hydrofluoric acid (50 wt%), nitric acid (61 wt%)
2. The method according to claim 1, wherein a hydrofluoric acid is used in an amount of 30 vol% or more using a pretreatment solution comprising a mixed solution of phosphoric acid (85 wt%).
【請求項7】ふっ化水素酸(50wt% )、(濃度61wt
% )、水の混合液からなる前処理溶液を用い、ふっ化水
素酸を40vol%以上とすることを特徴とする請求項1に
記載の半導体装置の製造方法。
7. Hydrofluoric acid (50 wt%), (concentration: 61 wt%)
2. The method according to claim 1, wherein a hydrofluoric acid is used in an amount of 40 vol% or more by using a pretreatment solution comprising a mixture of water and water.
【請求項8】水を10vol%以上とすることを特徴とする
請求項7に記載の半導体装置の製造方法。
8. The method according to claim 7, wherein the amount of water is 10 vol% or more.
【請求項9】ふっ化水素酸(50wt% )、硝酸(61wt
% )、氷酢酸(99.8wt% )の混合液からなる前処理
溶液を用い、ふっ化水素酸を50vol%以上とすることを
特徴とする請求項1に記載の半導体装置の製造方法。
9. Hydrofluoric acid (50 wt%), nitric acid (61 wt%)
2. The method according to claim 1, wherein a pretreatment solution comprising a mixture of glacial acetic acid (99.8 wt%) and a hydrofluoric acid content of 50 vol% or more is used.
【請求項10】ふっ化水素酸(50wt% )、硝酸(61
wt% )、氷酢酸(99.8wt% )の混合液からなる前処
理溶液を用い、硝酸を10vol%以下、ふっ化水素酸を2
0vol%以上とすることを特徴とする請求項1に記載の半
導体装置の製造方法。
10. Hydrofluoric acid (50 wt%), nitric acid (61%)
wt%) and glacial acetic acid (99.8 wt%), using a pretreatment solution containing 10 vol% or less of nitric acid and 2 vol. of hydrofluoric acid.
2. The method for manufacturing a semiconductor device according to claim 1, wherein the concentration is 0 vol% or more.
【請求項11】PH9.0のアルカリ性浴を用いて無電
解ニッケルめっきすることを特徴とする請求項1ないし
10のいずれかに記載の半導体装置の製造方法。
11. The method for manufacturing a semiconductor device according to claim 1, wherein electroless nickel plating is performed using an alkaline bath having a pH of 9.0.
JP29822099A 1999-10-20 1999-10-20 Manufacturing method of semiconductor device Expired - Fee Related JP3975625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29822099A JP3975625B2 (en) 1999-10-20 1999-10-20 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29822099A JP3975625B2 (en) 1999-10-20 1999-10-20 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001115268A true JP2001115268A (en) 2001-04-24
JP3975625B2 JP3975625B2 (en) 2007-09-12

Family

ID=17856788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29822099A Expired - Fee Related JP3975625B2 (en) 1999-10-20 1999-10-20 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3975625B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
WO2010021166A1 (en) * 2008-08-19 2010-02-25 独立行政法人科学技術振興機構 Composite material, method for producing the same, and apparatus for producing the same
JP2014019933A (en) * 2012-07-21 2014-02-03 Univ Of Fukui Semiconductor substrate with metallic plating film, and method for manufacturing the same
US8722196B2 (en) 2008-03-07 2014-05-13 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
US8980420B2 (en) 2008-03-05 2015-03-17 Japan Science And Technology Agency Composite material comprising silicon matrix and method of producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206985A (en) * 2005-01-31 2006-08-10 C Uyemura & Co Ltd Electroless nickel-phosphorus plated coating and electroless nickel-phosphorus plating bath
US8980420B2 (en) 2008-03-05 2015-03-17 Japan Science And Technology Agency Composite material comprising silicon matrix and method of producing the same
US8722196B2 (en) 2008-03-07 2014-05-13 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
US9252020B2 (en) 2008-03-07 2016-02-02 Japan Science And Technology Agency Composite material, method of producing the same, and apparatus for producing the same
WO2010021166A1 (en) * 2008-08-19 2010-02-25 独立行政法人科学技術振興機構 Composite material, method for producing the same, and apparatus for producing the same
JP2010047790A (en) * 2008-08-19 2010-03-04 Japan Science & Technology Agency Composite material and method for producing the same, and apparatus for producing the same
US9028982B2 (en) 2008-08-19 2015-05-12 Japan Science And Technology Agency Composite material, method for producing the same, and apparatus for producing the same
JP2014019933A (en) * 2012-07-21 2014-02-03 Univ Of Fukui Semiconductor substrate with metallic plating film, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3975625B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
TWI419995B (en) Method for surface treatment of aluminum or aluminum alloy
US20120325109A1 (en) Formation of A Zinc Passivation Layer on Titanium or Titanium Alloys Used in
CN110724943A (en) Palladium-free activating solution before chemical nickel plating on copper surface, preparation method and nickel plating method
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
JP2005336600A (en) Electroless plating method for silicon substrate and method for forming metallic layer on silicon substrate
Karmalkar et al. A study of immersion processes of activating polished crystalline silicon for autocatalytic electroless deposition of palladium and other metals
JP3975625B2 (en) Manufacturing method of semiconductor device
US20080202922A1 (en) Hybrid electro-deposition of soft magnetic cobalt alloy films
JP3589090B2 (en) Film formation method
KR102116055B1 (en) Electroless nickel strike plating solution
Hasegawa et al. An electrochemical investigation of additive effect in trench-filling of ULSI interconnects by electroless copper deposition
US20040005468A1 (en) Method of providing a metallic contact on a silicon solar cell
CN114012103B (en) Method for preparing silver nanoparticles with controllable size on silicon surface
JP2023008886A (en) Production method for antimicrobial fiber
CN114807918A (en) Metal replacement treatment liquid, and surface treatment method for aluminum or aluminum alloy
KR101179118B1 (en) Heating plate with AlN-hBN composite substrate and manufacturing method of the same
Tong et al. Study of the electroless silver seed formation on silicon surface
KR100445839B1 (en) Fabricating Method of silver Film for Semiconductor Interconnection
KR20190080609A (en) Electroless Ag plating solution and methods of plating using the same
JP2007302967A (en) Electroless plating method
JP2004332036A (en) Electroless plating method
KR20110076448A (en) Carbide ceramic heating plate and the manufacturing of the same
CN114438482B (en) Treatment fluid for rapidly improving thickness of chemical gold leaching and application thereof
JP3377650B2 (en) Method for producing metal-coated rare earth element-containing powder
KR20160045306A (en) Silicon surface etching method and seed layer forming method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees