JP2001114556A - Method for producing glass ceramic substrate - Google Patents
Method for producing glass ceramic substrateInfo
- Publication number
- JP2001114556A JP2001114556A JP29759199A JP29759199A JP2001114556A JP 2001114556 A JP2001114556 A JP 2001114556A JP 29759199 A JP29759199 A JP 29759199A JP 29759199 A JP29759199 A JP 29759199A JP 2001114556 A JP2001114556 A JP 2001114556A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- ceramic
- glass
- crystallization temperature
- ceramic raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、硼珪酸系ガラス粉
末とアルミナ粉末とを含むセラミック原料を用いてガラ
スセラミック基板を製造する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass ceramic substrate using a ceramic raw material containing a borosilicate glass powder and an alumina powder.
【0002】[0002]
【従来の技術】ガラスセラミック基板は、1000℃以
下で焼成できるため、基板と同時焼成する配線導体とし
て導通抵抗の小さいAg系導体、Cu等の低融点金属を
用いることが可能となると共に、アルミナ基板と比較し
て、基板の誘電率が低く、信号処理の高速化が可能であ
り、更に、基板の熱膨張係数もアルミナ基板よりも小さ
く、半導体チップ(シリコン)の熱膨張係数と整合させ
ることも可能である等の利点があるため、近年の高速、
高性能チップの搭載用基板として、ガラスセラミック基
板の需要が益々増大しつつある。2. Description of the Related Art Since a glass ceramic substrate can be fired at a temperature of 1000 ° C. or less, it is possible to use a low-melting-point metal such as an Ag-based conductor or Cu as a wiring conductor which is co-fired with the substrate, as well as alumina. Compared to the substrate, the dielectric constant of the substrate is lower, the signal processing can be performed at a higher speed, and the thermal expansion coefficient of the substrate is smaller than that of the alumina substrate, so that it matches the thermal expansion coefficient of the semiconductor chip (silicon). Is also possible.
The demand for glass ceramic substrates as mounting substrates for high performance chips is increasing.
【0003】このガラスセラミック基板の代表的なもの
として、硼珪酸系ガラスとアルミナとを含む硼珪酸系の
ガラスセラミック基板がある。この硼珪酸系のガラスセ
ラミック基板は、焼成過程でガラスとアルミナの界面に
アノーサイト等の結晶が析出し、基板が緻密化される。
この結晶化温度(結晶析出による発熱ピーク温度)が低
くなり過ぎると、ガラス相の軟化・流動による緻密化が
起こる前に、結晶が析出するため、基板が緻密化せず、
空孔の多いポーラスな基板となる欠点がある。その反対
に、結晶化温度が高くなり過ぎると、ガラス相が流動し
やすくなるため、基板の変形量が大きくなり、焼成寸法
のコントロールが困難になる欠点がある。従って、硼珪
酸系のガラスセラミック基板では、結晶化温度を適正範
囲(940〜950℃)にコントロールすることが重要
な技術的課題となっている。A typical example of this glass ceramic substrate is a borosilicate glass ceramic substrate containing borosilicate glass and alumina. In the borosilicate glass ceramic substrate, crystals such as anorthite precipitate at the interface between glass and alumina during the firing process, and the substrate is densified.
If the crystallization temperature (exothermic peak temperature due to crystal precipitation) is too low, the crystals are deposited before densification due to softening and flowing of the glass phase, so that the substrate is not densified.
There is a disadvantage that the substrate becomes a porous substrate having many holes. Conversely, if the crystallization temperature is too high, the glass phase is likely to flow, so that the amount of deformation of the substrate increases, and it is difficult to control the firing size. Therefore, in a borosilicate glass ceramic substrate, controlling the crystallization temperature to an appropriate range (940 to 950 ° C.) is an important technical problem.
【0004】従来の硼珪酸系のガラスセラミックは、示
差熱分析計(DSC:differentialscanning calorimet
er )で測定される結晶化温度が970℃前後である。
この結晶化温度は、適正温度(940〜950℃)より
もかなり高く、基板の変形量が大きくなる欠点があっ
た。A conventional borosilicate glass ceramic is provided by a differential scanning calorimeter (DSC).
er) is around 970 ° C.
This crystallization temperature is considerably higher than the proper temperature (940 to 950 ° C.), and there is a disadvantage that the amount of deformation of the substrate is increased.
【0005】[0005]
【発明が解決しようとする課題】従来の硼珪酸系のガラ
スセラミックの原料は、結晶析出の駆動力となる結晶核
が存在しないため、結晶化温度が高くなると考えられる
ことから、近年、硼珪酸系のガラスセラミックの原料
に、結晶核となるアノーサイト粉末を添加することで、
結晶化温度を下げることが提案されている。本発明者ら
は、アノーサイト粉末の添加量と結晶化温度との関係を
考察する試験を行ったので、その試験結果を次の表1及
び図3に示す。The conventional raw materials for borosilicate glass ceramics are thought to have a high crystallization temperature because there are no crystal nuclei that serve as driving forces for crystal precipitation. By adding anorthite powder that becomes crystal nuclei to the raw material of the system glass ceramic,
It has been proposed to lower the crystallization temperature. The present inventors conducted a test for examining the relationship between the amount of anorthite powder added and the crystallization temperature, and the test results are shown in the following Table 1 and FIG.
【0006】[0006]
【表1】 [Table 1]
【0007】この試験に用いたガラスセラミック原料
は、CaO−Al2 O3 −SiO2 −B2 O3 系ガラス
粉末:60重量%とアルミナ粉末:40重量%との混合
物である。[0007] Glass ceramic materials used in this study, CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder: 60 wt% alumina powder: a mixture of 40 wt%.
【0008】この試験結果から明らかなように、アノー
サイト粉末の添加量を0.005重量%にすると、結晶
化温度が938〜946℃となり、適正温度(940〜
950℃)付近にすることが可能であるが、結晶化温度
の変動幅が8℃もあり、結晶化温度のばらつきが大き
い。従って、アノーサイト粉末の添加量を0.005重
量%にしても、結晶化温度が適正温度を下回ってしまう
ことがあり、品質を安定させることができない。この原
因は、(1) 添加するアノーサイト粉末の結晶性が製造ロ
ットにより変化することと、(2) アノーサイト粉末の添
加量が微量であるため、セラミック原料中にアノーサイ
ト粉末が十分に分散せず、焼成時の結晶成長が不均一に
なるためと考えられる。As is apparent from the test results, when the amount of the anorthite powder added is 0.005% by weight, the crystallization temperature becomes 938 to 946 ° C. and the appropriate temperature (940 to 940 ° C.)
(950 ° C.), but the variation range of the crystallization temperature is as large as 8 ° C., and the crystallization temperature varies greatly. Therefore, even if the amount of the anorthite powder is 0.005% by weight, the crystallization temperature may be lower than the appropriate temperature, and the quality cannot be stabilized. This is because (1) the crystallinity of the added anorthite powder varies depending on the production lot, and (2) the anorthite powder is sufficiently dispersed in the ceramic raw material because the amount of the anorthite powder added is very small. This is considered to be because the crystal growth during firing becomes non-uniform.
【0009】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、セラミック原料の結
晶化温度を適正温度に安定して調整することができ、品
質の良いガラスセラミック基板を焼成することができる
ガラスセラミック基板の製造方法を提供することにあ
る。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and therefore has as its object to stably adjust the crystallization temperature of a ceramic raw material to an appropriate temperature, and to provide a high quality glass ceramic substrate. It is an object of the present invention to provide a method for producing a glass-ceramic substrate capable of firing a glass ceramic substrate.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1のガラスセラミック基板の製造方
法は、硼珪酸系ガラス粉末とアルミナ粉末とを含むセラ
ミック原料を用いてガラスセラミック基板を焼成する際
に、結晶化温度が異なる複数種類のセラミック原料を混
合し、その混合割合を調整することで、混合原料の結晶
化温度を調整するようにしたものである。つまり、本発
明は、セラミック原料の結晶化温度を調整する際に、セ
ラミック原料に微量のアノーサイト粉末を添加するので
はなく、結晶化温度が異なる複数種類のセラミック原料
を混合し、その混合割合を調整することで、混合原料の
結晶化温度を調整するものである。According to a first aspect of the present invention, there is provided a method of manufacturing a glass-ceramic substrate, comprising the steps of: using a ceramic material containing a borosilicate glass powder and an alumina powder; When the substrate is fired, a plurality of types of ceramic raw materials having different crystallization temperatures are mixed, and the mixing ratio is adjusted to adjust the crystallization temperature of the mixed raw materials. That is, when adjusting the crystallization temperature of the ceramic raw material, the present invention does not add a small amount of anorthite powder to the ceramic raw material, but mixes a plurality of types of ceramic raw materials having different crystallization temperatures, and adjusts the mixing ratio. Is adjusted to adjust the crystallization temperature of the mixed raw material.
【0011】このようにすれば、従来のような製造ロッ
トによるアノーサイト粉末の結晶性のばらつきの影響を
受けず、しかも、添加物(結晶化温度を下げるためのセ
ラミック原料)の添加量を多くすることができるため、
混合原料中に添加物を十分に分散させて焼成時の結晶成
長を均一化することができ、混合原料の結晶化温度を適
正温度に調整しながら、結晶化温度のばらつきを小さく
することができる。In this way, there is no influence of the variation in the crystallinity of the anorthite powder depending on the production lot as in the prior art, and the amount of the additive (ceramic raw material for lowering the crystallization temperature) is increased. Because you can
The additives can be sufficiently dispersed in the mixed raw material to make the crystal growth during firing uniform, and the crystallization temperature of the mixed raw material can be adjusted to an appropriate temperature while the crystallization temperature variation can be reduced. .
【0012】この場合、請求項2のように、硼珪酸系ガ
ラス粉末とアルミナ粉末とを含むセラミック原料を80
0〜1000℃で仮焼成し、これを粉砕して得られた原
料(以下「仮焼成原料」という)を、仮焼成しない元の
セラミック原料に添加することで、元のセラミック原料
よりも結晶化温度を低下させたセラミック原料を作り、
このセラミック原料を、仮焼成原料を添加しない元のセ
ラミック原料と混合し、その混合割合を調整すること
で、混合原料の結晶化温度を調整するようにしても良
い。In this case, a ceramic raw material containing a borosilicate glass powder and an alumina powder is used as the second material.
By calcining at 0 to 1000 ° C. and adding a raw material obtained by pulverizing the raw material (hereinafter referred to as “temporary calcined raw material”) to the original ceramic raw material that is not calcined, it is more crystallized than the original ceramic raw material. Make ceramic raw material with reduced temperature,
The crystallization temperature of the mixed raw material may be adjusted by mixing this ceramic raw material with the original ceramic raw material to which the calcined raw material is not added, and adjusting the mixing ratio.
【0013】つまり、硼珪酸系のガラスセラミック原料
を800〜1000℃で仮焼成すると、ガラスとアルミ
ナの界面にアノーサイトの結晶が析出するため、これを
粉砕して得られた仮焼成原料には、アノーサイトが確実
に含まれる。従って、仮焼成原料を添加したセラミック
原料と、仮焼成原料を添加しない元のセラミック原料と
を混合し、その混合割合を調整すれば、混合原料中のア
ノーサイトの量を調整することができ、混合原料の結晶
化温度を調整することができる。しかも、元のセラミッ
ク原料と仮焼成原料とは、焼成後の組成が同じであるた
め、混合原料の混合割合を変化させても、混合原料の焼
成後の組成は元のセラミック原料の焼成後の組成と同じ
になる。これにより、ガラスセラミック基板の電気的、
機械的特性を変えることなく、結晶化温度を調整するこ
とが可能となる。That is, when the borosilicate glass ceramic raw material is calcined at 800 to 1000 ° C., anorthite crystals are precipitated at the interface between glass and alumina. , Anorthite is definitely included. Therefore, by mixing the ceramic raw material to which the calcined raw material is added and the original ceramic raw material to which the calcined raw material is not added, and adjusting the mixing ratio, it is possible to adjust the amount of anorthite in the mixed raw material, The crystallization temperature of the mixed raw material can be adjusted. Moreover, since the original ceramic raw material and the pre-fired raw material have the same composition after firing, even if the mixing ratio of the mixed raw material is changed, the fired composition of the mixed raw material is the same as that of the original ceramic raw material after firing. It becomes the same as the composition. As a result, the electrical properties of the glass ceramic substrate,
The crystallization temperature can be adjusted without changing the mechanical properties.
【0014】更に、請求項3のように、セラミック原料
は、CaO−Al2 O3 −SiO2−B2 O3 系ガラス
粉末とアルミナ粉末との混合物を用い、混合原料の結晶
化温度を940〜950℃の範囲に調整すると良い。つ
まり、CaO−Al2 O3 −SiO2 −B2 O3 系ガラ
スは、それ自体熱処理しても、結晶化が全く起こらない
が、アルミナを混合することで、比較的短時間の仮焼成
でガラスとアルミナの界面にアノーサイトの結晶を多量
に析出させることができる。しかも、混合原料(CaO
−Al2 O3 −SiO2 −B2 O3 系のガラスセラミッ
クの原料)の結晶化温度を940〜950℃の範囲に調
整すれば、混合原料の結晶化温度が適正温度となり、焼
成するガラスセラミック基板を緻密化できると共に、ガ
ラス相の流動性を適度に保つことができ、焼成寸法のコ
ントロールを比較的容易に行うことができる。Furthermore, as according to claim 3, the ceramic raw material, CaO-Al 2 O 3 -SiO 2 -B 2 O 3 system with a mixture of glass powder and alumina powder, the crystallization temperature of the mixed raw material 940 It is advisable to adjust the temperature to the range of 950 ° C. That, CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass, be itself heat treatment, but crystallization does not occur at all, by mixing the alumina, in a relatively short period of time of calcination A large amount of anorthite crystals can be precipitated at the interface between glass and alumina. Moreover, the mixed raw material (CaO
-Al 2 O 3 -SiO 2 -B 2 O 3 -based glass ceramic raw material), the crystallization temperature of the mixed raw material is adjusted to an appropriate temperature by adjusting the crystallization temperature to a range of 940 to 950 ° C. The ceramic substrate can be densified, the fluidity of the glass phase can be maintained at an appropriate level, and the firing size can be controlled relatively easily.
【0015】この場合、請求項4のように、CaO−A
l2 O3 −SiO2 −B2 O3 系ガラス粉末とアルミナ
粉末との混合物(セラミック原料)を875〜925℃
で仮焼成し、これを粉砕して仮焼成原料を作るようにす
ると良い。つまり、CaO−Al2 O3 −SiO2 −B
2 O3 系のガラスセラミックの原料は、900℃前後で
アノーサイトの結晶が多量に析出する特性があるので、
875〜925℃で仮焼成すれば、比較的短時間の仮焼
成で結晶核となるアノーサイトの結晶を多量に含む仮焼
成原料を作ることができる。In this case, CaO-A
l 2 O 3 -SiO 2 -B 2 O 3 based mixture of the glass powder and the alumina powder (ceramic material) eight hundred seventy-five to nine hundred twenty-five ° C.
And then pulverize to produce a pre-fired raw material. That is, CaO—Al 2 O 3 —SiO 2 —B
The raw material of 2 O 3 glass ceramics has the property that a large amount of anorthite crystals precipitate at around 900 ° C.
By pre-baking at 875 to 925 ° C., a pre-baking material containing a large amount of anorthite crystals serving as crystal nuclei can be produced by pre-baking in a relatively short time.
【0016】[0016]
【発明の実施の形態】以下、本発明をCaO−Al2 O
3 −SiO2 −B2 O3 系のガラスセラミック基板の製
造方法に適用した一実施形態を説明する。本実施形態で
は、図1に示すように、次の(1)〜(8)の工程を経
てガラスセラミック基板を製造する。以下、各工程を説
明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described with reference to CaO-Al 2 O
3 illustrating the -SiO 2 -B 2 O 3 system embodiment is applied to a process for producing a glass ceramic substrate. In this embodiment, as shown in FIG. 1, a glass ceramic substrate is manufactured through the following steps (1) to (8). Hereinafter, each step will be described.
【0017】(1)ベース原料となるセラミック原料A
の作製 まず、CaO:10〜55重量%、SiO2 :45〜7
0重量%、Al2 O3:0〜30重量%、B2 O3 :5
〜20重量%を含む混合物を例えば1450℃で溶融し
てガラス化した後、水中で急冷し、これを粉砕して、平
均粒径が例えば3〜4μmのCaO−Al2 O3 −Si
O2 −B2 O3 系ガラス粉末を作製する。このガラス粉
末:50〜65重量%(好ましくは60重量%)と、平
均粒径が例えば1〜2μmのアルミナ粉末:50〜35
重量%(好ましくは40重量%)とを混合して、ベース
原料となるセラミック原料Aを作製する。(1) Ceramic material A as base material
First, CaO: 10 to 55% by weight, SiO 2 : 45 to 7
0 wt%, Al 2 O 3: 0~30 wt%, B 2 O 3: 5
A mixture containing -20% by weight is melted and vitrified at, for example, 1450 ° C., quenched in water, crushed, and crushed into CaO—Al 2 O 3 —Si having an average particle size of, for example, 3-4 μm.
O 2 -B making 2 O 3 based glass powder. This glass powder: 50 to 65% by weight (preferably 60% by weight) and alumina powder having an average particle diameter of, for example, 1 to 2 μm: 50 to 35%
% (Preferably 40% by weight) to prepare a ceramic raw material A as a base raw material.
【0018】(2)セラミック原料Aのグリーンシート
の作製 セラミック原料Aに溶剤(例えばトルエン、キシレ
ン)、有機バインダー(例えばアクリル樹脂)及び可塑
剤(例えばDOA)を加え、充分混練してスラリーを作
製し、通常のドクターブレード法を用いて例えば厚み
0.3mmのグリーンシートを作製する。(2) Preparation of Green Sheet of Ceramic Raw Material A A solvent (for example, toluene and xylene), an organic binder (for example, acrylic resin) and a plasticizer (for example, DOA) are added to ceramic raw material A, and the mixture is sufficiently kneaded to prepare a slurry. Then, a green sheet having a thickness of, for example, 0.3 mm is manufactured by using a normal doctor blade method.
【0019】(3)仮焼成 セラミック原料Aのグリーンシートを切断し、これを8
00〜1000℃、好ましくは875〜925℃で仮焼
成して、セラミック原料Aの仮焼成物を作製する。この
仮焼成過程で、仮焼成物中のガラスとアルミナの界面に
アノーサイトの結晶が析出する。CaO−Al2 O3 −
SiO2 −B2 O3 系のガラスセラミックの原料Aは、
900℃前後でアノーサイトの結晶が多量に析出する特
性があるため、セラミック原料Aのグリーンシートを8
75〜925℃で仮焼成すれば、比較的短時間の仮焼成
で結晶核となるアノーサイトの結晶を多量に析出させる
ことができる。(3) Preliminary firing The green sheet of the ceramic raw material A is cut, and
Pre-fired at 00 to 1000 ° C., preferably 875 to 925 ° C., to prepare a pre-fired ceramic material A. In the pre-baking process, anorthite crystals precipitate at the interface between the glass and alumina in the pre-baked product. CaO-Al2 O 3 −
The raw material A glass ceramic SiO 2 -B 2 O 3 -based,
At around 900 ° C., a large amount of anorthite crystals are deposited.
By pre-baking at 75 to 925 ° C., a large amount of anorthite crystals serving as crystal nuclei can be precipitated by relatively short-time pre-baking.
【0020】(4)セラミック原料Aの仮焼成物の粉砕 セラミック原料Aの仮焼成物を粉砕機で粉砕し、平均粒
径が1〜5μm、好ましくは2〜3μmの仮焼成原料を
作製する。このようにして作られた仮焼成原料には、ア
ノーサイトの結晶が多量に含まれている。(4) Pulverization of Preliminarily Fired Product of Ceramic Raw Material A The preliminarily fired material of ceramic raw material A is pulverized by a pulverizer to produce a prefired raw material having an average particle size of 1 to 5 μm, preferably 2 to 3 μm. The calcined raw material thus produced contains a large amount of anorthite crystals.
【0021】(5)セラミック原料Bの作製 仮焼成原料を、仮焼成しない元のセラミック原料Aに添
加して混合することでセラミック原料Bを作製する。こ
の際、仮焼成原料の添加量は、例えば0.04〜0.0
6重量%とすることが好ましい。仮焼成原料を添加した
セラミック原料Bは、添加した仮焼成原料に含まれるア
ノーサイトが結晶析出の駆動力となる結晶核となり、元
のセラミック原料Aよりも結晶化温度が低くなる。(5) Preparation of ceramic raw material B The ceramic raw material B is prepared by adding the pre-fired raw material to the original ceramic raw material A which is not pre-fired and mixing. At this time, the amount of the calcined raw material is, for example, 0.04 to 0.0
Preferably, it is 6% by weight. In the ceramic raw material B to which the calcined raw material is added, anorthite contained in the added calcined raw material becomes a crystal nucleus serving as a driving force for crystal precipitation, and the crystallization temperature is lower than that of the original ceramic raw material A.
【0022】(6)混合原料の作製 仮焼成原料を添加したセラミック原料Bと、仮焼成原料
を添加しない元のセラミック原料Aとを混合して混合原
料を作製する。この混合原料は、仮焼成原料を添加した
セラミック原料Bを混合することで、結晶核となるアノ
ーサイトが含まれるようになるため、混合原料の結晶化
温度は、元のセラミック原料Aよりも低くなる。この
際、仮焼成原料を添加したセラミック原料Bの混合割合
を多くするほど、混合原料中のアノーサイトの量が増え
て、結晶化温度が低下する。(6) Preparation of Mixed Raw Material A mixed raw material is prepared by mixing a ceramic raw material B to which a pre-fired raw material is added and an original ceramic raw material A to which no pre-fired raw material is added. This mixed raw material contains anorthite serving as a crystal nucleus by mixing the ceramic raw material B to which the calcined raw material is added, so that the crystallization temperature of the mixed raw material is lower than that of the original ceramic raw material A. Become. At this time, as the mixing ratio of the ceramic raw material B to which the calcined raw material is added is increased, the amount of anorthite in the mixed raw material is increased, and the crystallization temperature is lowered.
【0023】本発明者らは、仮焼成原料を0.05重量
%添加したセラミック原料Bの混合割合と混合原料の結
晶化温度との関係を考察する試験を行ったので、その試
験結果を次の表2及び図2に示す。The present inventors conducted a test to consider the relationship between the mixing ratio of the ceramic raw material B to which 0.05% by weight of the calcined raw material was added and the crystallization temperature of the mixed raw material. 2 and FIG.
【0024】[0024]
【表2】 [Table 2]
【0025】この試験に用いたセラミック原料A,Bの
組成(焼成後)を次の表3に示す。Table 3 below shows the compositions (after firing) of the ceramic raw materials A and B used in this test.
【0026】[0026]
【表3】 [Table 3]
【0027】仮焼成原料を0.05重量%添加したセラ
ミック原料Bの結晶化温度(結晶析出による発熱ピーク
温度)を示差熱分析計(DSC,DTA)で測定したと
ころ、セラミック原料Bの結晶化温度は921℃±1℃
と安定していた。The crystallization temperature (exothermic peak temperature due to crystal precipitation) of the ceramic raw material B to which 0.05% by weight of the calcined raw material was added was measured by a differential thermal analyzer (DSC, DTA). Temperature is 921 ℃ ± 1 ℃
And was stable.
【0028】一方、元のセラミック原料Aの結晶化温度
の測定値は969℃±5℃であり、適正温度範囲である
940〜950℃よりも高い。このセラミック原料A
に、仮焼成原料を添加したセラミック原料Bを混合する
と、このセラミック原料Bの混合割合が多くなるほど、
混合原料中のアノーサイトの量が増えて、混合原料の結
晶化温度が低くなり、その結果、セラミック原料Bの混
合割合が2〜8重量%で結晶化温度が適正温度範囲であ
る940〜950℃となる。On the other hand, the measured value of the crystallization temperature of the original ceramic raw material A is 969 ° C. ± 5 ° C., which is higher than the proper temperature range of 940-950 ° C. This ceramic raw material A
When the ceramic raw material B to which the calcined raw material is added is mixed, as the mixing ratio of the ceramic raw material B increases,
The amount of anorthite in the mixed raw material is increased, and the crystallization temperature of the mixed raw material is lowered. As a result, the mixing ratio of the ceramic raw material B is 2 to 8% by weight, and the crystallization temperature is in the proper temperature range of 940 to 950. ° C.
【0029】尚、結晶化温度を適正温度範囲に調整する
ためのセラミック原料Bの混合割合の適正範囲は、セラ
ミック原料Bに対する仮焼成原料の添加量によって変化
し、セラミック原料Bに対する仮焼成原料の添加量(ア
ノーサイトの量)が増えるほど、セラミック原料Aに対
するセラミック原料Bの混合割合を少なくする必要があ
る。The proper range of the mixing ratio of the ceramic raw material B for adjusting the crystallization temperature to an appropriate temperature range varies depending on the amount of the calcined raw material added to the ceramic raw material B. As the amount of addition (the amount of anorthite) increases, the mixing ratio of ceramic raw material B to ceramic raw material A needs to be reduced.
【0030】(7)混合原料のグリーンシートの作製 混合原料に溶剤(例えばトルエン、キシレン)、有機バ
インダー(例えばアクリル樹脂)及び可塑剤(例えばD
OA)を加え、充分混練してスラリーを作製し、通常の
ドクターブレード法を用いて例えば厚み0.3mmのグ
リーンシートを作製する。尚、グリーンシートの作製後
は、グリーンシートを所定寸法に切断し、ビアホールの
形成、導体パターンの印刷、グリーンシートの積層等の
工程を経て生基板を作製する。(7) Production of Green Sheet of Mixed Raw Material A solvent (for example, toluene, xylene), an organic binder (for example, acrylic resin) and a plasticizer (for example, D
OA) is added and sufficiently kneaded to prepare a slurry, and a green sheet having a thickness of, for example, 0.3 mm is prepared using a normal doctor blade method. After the production of the green sheet, the green sheet is cut into a predetermined size, and a raw substrate is produced through processes such as formation of via holes, printing of a conductor pattern, and lamination of the green sheets.
【0031】(8)基板焼成 生基板を800〜1000℃(好ましくは900℃前
後)で焼成する。この場合、生基板には、仮焼成原料が
含まれているので、仮焼成原料に含まれるアノーサイト
が結晶析出の駆動力となる結晶核となり、元のセラミッ
ク原料Aよりも結晶化温度が低くなる。前述したよう
に、仮焼成原料を添加したセラミック原料Bの混合割合
を調整することで、生基板の結晶化温度を適正温度範囲
内にコントロールすることができ、焼成するガラスセラ
ミック基板を緻密化できると共に、ガラス相の流動性を
適度に保つことができ、焼成寸法のコントロールが比較
的容易である。(8) Firing the substrate The green substrate is fired at 800 to 1000 ° C (preferably around 900 ° C). In this case, since the raw substrate contains the calcined raw material, the anorthite contained in the calcined raw material becomes a crystal nucleus serving as a driving force for crystal precipitation, and has a lower crystallization temperature than the original ceramic raw material A. Become. As described above, by adjusting the mixing ratio of the ceramic raw material B to which the calcined raw material is added, the crystallization temperature of the green substrate can be controlled within an appropriate temperature range, and the glass ceramic substrate to be fired can be densified. At the same time, the fluidity of the glass phase can be kept at an appropriate level, and the control of the firing size is relatively easy.
【0032】以上説明した本実施形態では、結晶化温度
を調整する際に、セラミック原料に微量のアノーサイト
粉末を添加するのではなく、アノーサイトを析出させた
仮焼成原料を添加したセラミック原料Bと元のセラミッ
ク原料Aとを混合し、その混合割合を調整することで、
結晶化温度を調整するため、従来のような製造ロットに
よるアノーサイト粉末の結晶性のばらつきの影響を受け
ずに済む。しかも、セラミック原料Aに対する添加物
(結晶化温度を下げるためのセラミック原料B)の添加
量を多くすることができるため、添加物(セラミック原
料B)に含まれるアノーサイトを混合原料中に十分に分
散させて焼成時の結晶成長を均一化することができ、結
晶化温度を適正温度に調整しながら、結晶化温度のばら
つきを小さくして結晶化温度を安定させることができ
て、焼成したガラスセラミック基板の品質を安定させる
ことができる。In the present embodiment described above, when adjusting the crystallization temperature, a small amount of anorthite powder is not added to the ceramic raw material, but a ceramic raw material B to which a calcined raw material in which anorthite is precipitated is added. And the original ceramic raw material A, and by adjusting the mixing ratio,
Since the crystallization temperature is adjusted, there is no need to be affected by the variation in the crystallinity of the anorthite powder depending on the production lot as in the related art. Moreover, since the amount of the additive (ceramic raw material B for lowering the crystallization temperature) to the ceramic raw material A can be increased, the anorthite contained in the additive (ceramic raw material B) can be sufficiently contained in the mixed raw material. Dispersed and uniformized crystal growth during firing, adjusted crystallization temperature to an appropriate temperature, reduced crystallization temperature variation, stabilized crystallization temperature, and fired glass The quality of the ceramic substrate can be stabilized.
【0033】しかも、元のセラミック原料Aと仮焼成原
料とは、焼成後の組成が同じであるため、混合原料の混
合割合を変化させても、混合原料の焼成後の組成は元の
セラミック原料Aの焼成後の組成と同じになる。これに
より、ガラスセラミック基板の電気的、機械的特性を変
えることなく、結晶化温度を調整することができる利点
もある。Moreover, since the original ceramic raw material A and the pre-fired raw material have the same composition after firing, even after the mixing ratio of the mixed raw material is changed, the composition of the mixed raw material after firing is the original ceramic raw material. The composition after firing of A is the same. Thereby, there is also an advantage that the crystallization temperature can be adjusted without changing the electrical and mechanical properties of the glass ceramic substrate.
【0034】尚、上記実施形態では、セラミック原料A
の製造に用いる硼珪酸系ガラス粉末として、CaO−A
l2 O3 −SiO2 −B2 O3 系ガラス粉末を用いた
が、例えば、MgO−Al2 O3 −SiO2 −B2 O3
系ガラス粉末、SiO2 −B2O3 系ガラス粉末、Pb
O−SiO2 −B2 O3 系ガラス粉末等のいずれかを用
いても良い。In the above embodiment, the ceramic raw material A
Borosilicate glass powder used for the production of
l 2 O 3 -SiO 2 -B 2 O 3 system was used glass powder, for example, MgO-Al 2 O 3 -SiO 2 -B 2 O 3
Glass powder, SiO 2 —B 2 O 3 glass powder, Pb
O-SiO 2 -B 2 O 3 system may be used either glass powder.
【0035】また、上記実施形態では、仮焼成原料を、
仮焼成しない元のセラミック原料Aに添加することで、
結晶化温度を低下させたセラミック原料Bを作製した
が、セラミック原料の組成を変えることで、結晶化温度
を低下させるようにしても良い。また、結晶化温度が異
なる3種類以上のセラミック原料を混合し、その混合割
合を調整することで、混合原料の結晶化温度を調整する
ようにしても良い。In the above embodiment, the calcined raw material is
By adding to the original ceramic raw material A that is not pre-fired,
Although the ceramic raw material B having a lowered crystallization temperature was produced, the crystallization temperature may be lowered by changing the composition of the ceramic raw material. Alternatively, the crystallization temperature of the mixed raw material may be adjusted by mixing three or more types of ceramic raw materials having different crystallization temperatures and adjusting the mixing ratio.
【0036】[0036]
【発明の効果】以上の説明から明らかなように、本発明
の請求項1によれば、結晶化温度が異なる複数種類のセ
ラミック原料を混合し、その混合割合を調整すること
で、混合原料の結晶化温度を調整するようにしたので、
製造ロットによるアノーサイト粉末の結晶性のばらつき
の影響を受けず、混合原料の結晶化温度を適正温度に安
定して調整することができ、品質の良いガラスセラミッ
ク基板を焼成することができる。As is apparent from the above description, according to the first aspect of the present invention, by mixing a plurality of types of ceramic raw materials having different crystallization temperatures and adjusting the mixing ratio, the mixed raw materials are mixed. Since the crystallization temperature was adjusted,
The crystallization temperature of the mixed raw material can be stably adjusted to an appropriate temperature without being affected by the variation in the crystallinity of the anorthite powder depending on the production lot, and a high-quality glass ceramic substrate can be fired.
【0037】更に、請求項2では、硼珪酸系ガラス粉末
とアルミナ粉末とを含むセラミック原料を仮焼成し、こ
れを粉砕して得られた仮焼成原料を、仮焼成しない元の
セラミック原料に添加するようにしたので、アノーサイ
トを確実に含むセラミック原料を作ることができる。し
かも、元のセラミック原料と仮焼成原料とは、焼成後の
組成が同じであるため、仮焼成原料を添加したセラミッ
ク原料と、仮焼成原料を添加しない元のセラミック原料
とをどの様な混合割合で混合しても、混合原料の焼成後
の組成は元のセラミック原料の焼成後の組成と同じにな
り、ガラスセラミック基板の電気的、機械的特性を変え
ることなく、結晶化温度を調整することができる。Further, in the present invention, the ceramic raw material containing the borosilicate glass powder and the alumina powder is pre-fired, and the pre-fired raw material obtained by pulverizing the powder is added to the original ceramic raw material which is not pre-fired. As a result, a ceramic raw material containing anorthite can be reliably produced. In addition, since the original ceramic raw material and the pre-fired raw material have the same composition after firing, what is the mixing ratio of the ceramic raw material to which the pre-fired raw material is added and the original ceramic raw material to which the pre-fired raw material is not added Even after mixing, the composition of the mixed raw material after firing becomes the same as that of the original ceramic raw material, and the crystallization temperature can be adjusted without changing the electrical and mechanical properties of the glass ceramic substrate. Can be.
【0038】また、請求項3では、セラミック原料とし
て、CaO−Al2 O3 −SiO2−B2 O3 系ガラス
粉末とアルミナ粉末との混合物を用いたので、比較的短
時間の仮焼成でアノーサイトの結晶を多量に析出させる
ことができる。しかも、混合原料の結晶化温度を適正温
度範囲である940〜950℃の範囲に調整するように
したので、緻密なガラスセラミック基板を焼成できると
共に、ガラス相の流動性を適度に保つことができ、焼成
寸法のコントロールを比較的容易に行うことができる。Further, in claim 3, as a ceramic raw material, since with a mixture of CaO-Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder and alumina powder, in a relatively short period of calcination A large amount of anorthite crystals can be precipitated. In addition, since the crystallization temperature of the mixed raw material is adjusted to the appropriate temperature range of 940 to 950 ° C., the dense glass ceramic substrate can be fired, and the fluidity of the glass phase can be kept at an appropriate level. In addition, the firing size can be controlled relatively easily.
【0039】また、請求項4では、CaO−Al2 O3
−SiO2 −B2 O3 系のセラミック原料を875〜9
25℃で仮焼成するようにしたので、比較的短時間の仮
焼成でアノーサイトの結晶を多量に析出させることがで
きて、仮焼成工程を能率良く行うことができる。According to a fourth aspect of the present invention, CaO-Al 2 O 3
A ceramic raw material of -SiO 2 -B 2 O 3 system 875-9
Since calcination is performed at 25 ° C., a large amount of anorthite crystals can be precipitated by calcination in a relatively short time, and the calcination step can be performed efficiently.
【図1】本発明の一実施形態のガラスセラミック基板の
製造方法の概要を説明する工程フローチャートFIG. 1 is a process flowchart illustrating an outline of a method for manufacturing a glass ceramic substrate according to an embodiment of the present invention.
【図2】焼成原料を添加したセラミック原料Bの添加量
と結晶化温度との関係を測定したデータをグラフ化した
図FIG. 2 is a graph of data obtained by measuring the relationship between the amount of ceramic raw material B to which a firing raw material is added and the crystallization temperature.
【図3】アノーサイト粉末の添加量と結晶化温度との関
係を測定したデータをグラフ化した図FIG. 3 is a graph of data obtained by measuring the relationship between the amount of anorthite powder added and the crystallization temperature.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 聡 山口県美祢市大嶺町東分字岩倉2701番1 株式会社住友金属エレクトロデバイス内 Fターム(参考) 4G030 AA08 AA35 AA36 AA37 BA12 GA01 GA04 GA08 GA27 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Satoshi Adachi 2701-1, Iwakura, Omine-cho, Mine-shi, Yamaguchi Pref.
Claims (4)
含むセラミック原料を用いてガラスセラミック基板を製
造する方法において、結晶化温度が異なる複数種類のセ
ラミック原料を混合し、その混合割合を調整すること
で、混合原料の結晶化温度を調整してガラスセラミック
基板を焼成することを特徴とするガラスセラミック基板
の製造方法。1. A method of manufacturing a glass ceramic substrate using a ceramic raw material containing a borosilicate glass powder and an alumina powder, wherein a plurality of types of ceramic raw materials having different crystallization temperatures are mixed and the mixing ratio is adjusted. A method for producing a glass ceramic substrate, comprising: adjusting the crystallization temperature of the mixed raw material and firing the glass ceramic substrate.
含むセラミック原料を800〜1000℃で仮焼成し、
これを粉砕して得られた原料(以下「仮焼成原料」とい
う)を、仮焼成しない元のセラミック原料に添加するこ
とで、元のセラミック原料よりも結晶化温度を低下させ
たセラミック原料を作り、このセラミック原料を、仮焼
成原料を添加しない元のセラミック原料と混合し、その
混合割合を調整することで、混合原料の結晶化温度を調
整することを特徴とする請求項1に記載のガラスセラミ
ック基板の製造方法。2. A ceramic raw material containing borosilicate glass powder and alumina powder is calcined at 800 to 1000 ° C.,
By adding the raw material obtained by pulverizing the raw material (hereinafter referred to as “temporary firing raw material”) to the original ceramic raw material that is not pre-fired, a ceramic raw material whose crystallization temperature is lower than that of the original ceramic raw material is produced. 2. The glass according to claim 1, wherein the crystallization temperature of the mixed raw material is adjusted by mixing the ceramic raw material with an original ceramic raw material to which no calcined raw material is added, and adjusting a mixing ratio thereof. A method for manufacturing a ceramic substrate.
O3 −SiO2 −B2 O3 系ガラス粉末とアルミナ粉末
との混合物を用い、前記混合原料の結晶化温度を940
〜950℃の範囲に調整することを特徴とする請求項1
又は2に記載のガラスセラミック基板の製造方法。3. The ceramic raw material is CaO—Al 2
Using a mixture of an O 3 —SiO 2 —B 2 O 3 glass powder and an alumina powder, the crystallization temperature of the mixed raw material was 940.
The temperature is adjusted within a range of from 950 ° C to 950 ° C.
Or the method for producing a glass ceramic substrate according to item 2.
で仮焼成し、これを粉砕して仮焼成原料を作ることを特
徴とする請求項3に記載のガラスセラミック基板の製造
方法。4. The method according to claim 1, wherein the ceramic raw material is 875-925 ° C.
The method for producing a glass ceramic substrate according to claim 3, wherein the material is calcined, and the material is crushed to produce a calcined raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29759199A JP4432161B2 (en) | 1999-10-20 | 1999-10-20 | Manufacturing method of glass ceramic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29759199A JP4432161B2 (en) | 1999-10-20 | 1999-10-20 | Manufacturing method of glass ceramic substrate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009220020A Division JP5163618B2 (en) | 2009-09-25 | 2009-09-25 | Manufacturing method of glass ceramic substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001114556A true JP2001114556A (en) | 2001-04-24 |
JP4432161B2 JP4432161B2 (en) | 2010-03-17 |
Family
ID=17848549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29759199A Expired - Lifetime JP4432161B2 (en) | 1999-10-20 | 1999-10-20 | Manufacturing method of glass ceramic substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4432161B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010122822A1 (en) * | 2009-04-21 | 2010-10-28 | 株式会社村田製作所 | Process for production of multilayer ceramic substrate |
CN102942304A (en) * | 2011-08-16 | 2013-02-27 | 苏州锦艺新材料科技有限公司 | Soft glass micro-powder and preparation method thereof |
KR101274927B1 (en) | 2010-08-18 | 2013-06-17 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Composition for forming a thick film conductor, the thick film conductor obtained by using the same and the chip resistor using the same |
JP2013122864A (en) * | 2011-12-12 | 2013-06-20 | Sumitomo Metal Mining Co Ltd | Composition for thick film conductor formation, and thick film conductor using the same and manufacturing method thereof |
JPWO2014196348A1 (en) * | 2013-06-05 | 2017-02-23 | 株式会社村田製作所 | Composition for ceramic substrate and ceramic circuit component |
WO2017193598A1 (en) * | 2016-05-11 | 2017-11-16 | 东莞珂洛赫慕电子材料科技有限公司 | Low-temperature sintered thick film paste applied to pi film and method for preparing same |
-
1999
- 1999-10-20 JP JP29759199A patent/JP4432161B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010122822A1 (en) * | 2009-04-21 | 2010-10-28 | 株式会社村田製作所 | Process for production of multilayer ceramic substrate |
US8372227B2 (en) | 2009-04-21 | 2013-02-12 | Murata Manufacturing Co., Ltd. | Method for producing multilayer ceramic substrate |
JP5354011B2 (en) * | 2009-04-21 | 2013-11-27 | 株式会社村田製作所 | Manufacturing method of multilayer ceramic substrate |
KR101274927B1 (en) | 2010-08-18 | 2013-06-17 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Composition for forming a thick film conductor, the thick film conductor obtained by using the same and the chip resistor using the same |
CN102942304A (en) * | 2011-08-16 | 2013-02-27 | 苏州锦艺新材料科技有限公司 | Soft glass micro-powder and preparation method thereof |
JP2013122864A (en) * | 2011-12-12 | 2013-06-20 | Sumitomo Metal Mining Co Ltd | Composition for thick film conductor formation, and thick film conductor using the same and manufacturing method thereof |
JPWO2014196348A1 (en) * | 2013-06-05 | 2017-02-23 | 株式会社村田製作所 | Composition for ceramic substrate and ceramic circuit component |
WO2017193598A1 (en) * | 2016-05-11 | 2017-11-16 | 东莞珂洛赫慕电子材料科技有限公司 | Low-temperature sintered thick film paste applied to pi film and method for preparing same |
Also Published As
Publication number | Publication date |
---|---|
JP4432161B2 (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104774005B (en) | Low-temperature sintered lead-free microwave dielectric ceramic and preparation method thereof | |
JP2007091577A (en) | Inorganic substance powder and composite material using the same | |
JP2011509232A (en) | Low temperature co-fired ceramic powder and special raw materials and their use | |
JPH05262561A (en) | Glass-based and glass-ceramic-based composite | |
JP2001114556A (en) | Method for producing glass ceramic substrate | |
US5001086A (en) | Sintered glass-ceramic body and method | |
JPS63107838A (en) | Glass-ceramic sintered body | |
JP5163618B2 (en) | Manufacturing method of glass ceramic substrate | |
KR100479688B1 (en) | Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic | |
JPH0643258B2 (en) | Dielectric material for circuit boards | |
JPS6350345A (en) | Glass ceramic sintered body | |
JPH01167259A (en) | Glass ceramics board for packaging of electronic parts, method for its manufacture and glass for use therein | |
JP2008100866A (en) | Crystallized glass, electric circuit board material containing crystallized glass, laminated circut board material, low temperature firing board material and high frequnecy circuit board material | |
JPH07242439A (en) | Glass-ceramics substrate burnt at low temperature and production thereof | |
JPH11106252A (en) | Low-temperature baked glass ceramic material | |
JP2014162695A (en) | Material for glass ceramics and glass ceramics | |
JPH06171976A (en) | Composition for low-temperature burnt substrate | |
JPH06100359A (en) | Production of ceramic sintering auxiliary and production of mullite ceramic using the same | |
JP2010132540A (en) | Low-permittivity ceramic dielectric composition for low-temperature burning, and low-permittivity ceramic dielectric body | |
JP2624147B2 (en) | Composition for low-temperature firing substrate | |
JPH08175864A (en) | Production of low-temperature sintered anorthite-gehlenite ceramic | |
KR100278050B1 (en) | Cell Cyan Crystallized Glass Composition | |
JP4457561B2 (en) | Manufacturing method of glass ceramic | |
JPH04293290A (en) | Smooth ceramic substrate and manufacture thereof | |
JPH06171981A (en) | Composition for substrate fired at low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040623 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4432161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130108 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140108 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |