JP2001113133A - Waste gas cleaning method - Google Patents

Waste gas cleaning method

Info

Publication number
JP2001113133A
JP2001113133A JP29785299A JP29785299A JP2001113133A JP 2001113133 A JP2001113133 A JP 2001113133A JP 29785299 A JP29785299 A JP 29785299A JP 29785299 A JP29785299 A JP 29785299A JP 2001113133 A JP2001113133 A JP 2001113133A
Authority
JP
Japan
Prior art keywords
catalyst
oxidizable
exhaust gas
component
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29785299A
Other languages
Japanese (ja)
Other versions
JP3761139B2 (en
Inventor
Atsushi Okamura
淳志 岡村
Kunio Sano
邦夫 佐野
Mitsuaki Ikeda
光明 池田
Kazunori Yoshino
和徳 吉野
Toshikatsu Ikenoue
敏勝 池之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP29785299A priority Critical patent/JP3761139B2/en
Publication of JP2001113133A publication Critical patent/JP2001113133A/en
Application granted granted Critical
Publication of JP3761139B2 publication Critical patent/JP3761139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste gas cleaning method capable of almost completely and efficiently treating an oxidizable nitrogen compound and an oxidizable organic compound and also capable of suppressing the production of nitrogen oxide regardless of the condition change of the waste gas or treating condition change in the treatment of the waste gas containing the oxidizable nitrogen compound or the oxidizable nitrogen compound and an oxidizable organic compound. SOLUTION: A noble metal based oxidizing catalyst is arranged at the rearmost part of a reactor in which the catalyst is filled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排ガスの浄化方法、
詳しくは被酸化性窒素化合物、または被酸化性窒素化合
物と被酸化性有機化合物とを含有する排ガスを酸化的に
浄化する方法に関する。
TECHNICAL FIELD The present invention relates to a method for purifying exhaust gas,
More specifically, the present invention relates to a method for oxidatively purifying an oxidizable nitrogen compound or an exhaust gas containing an oxidizable nitrogen compound and an oxidizable organic compound.

【0002】[0002]

【従来の技術】排ガスに含有される有害成分・悪臭成分
を処理する方法としては、高温下での燃焼処理法、活性
炭やゼオライトなどの吸着剤を用いる吸着法、あるいは
触媒による酸化分解法などがある。燃焼処理では、排ガ
ス中に被酸化性窒素化合物が含有される場合、窒素酸化
物の発生を低く抑えることは困難であり、燃焼処理後に
窒素酸化物を除去するための後処理設備が必要となるこ
とから、処理設備自体が大きく、かつその建設費が高く
なるという問題がある。吸着法は、排ガス中に含まれる
有害成分・悪臭成分を吸着剤により吸着し、排ガス中よ
りそれら成分を除去するものである。ここでは吸着剤に
より有害成分・悪臭成分を無害化するわけでないため、
吸着剤に吸着された、それら成分は脱離後、別途処理す
る必要がある。この際、吸着剤は再生されて再利用可能
となるが、排ガス中に含まれる被吸着成分濃度が高い場
合、吸着剤の破過時間が短くなり、再生頻度が高くなる
ため再生処理に要するコストが高くなるという欠点があ
る。
2. Description of the Related Art Methods for treating harmful and odorous components contained in exhaust gas include a combustion treatment method at high temperatures, an adsorption method using an adsorbent such as activated carbon and zeolite, and an oxidative decomposition method using a catalyst. is there. In the combustion treatment, when the oxidizable nitrogen compound is contained in the exhaust gas, it is difficult to suppress the generation of the nitrogen oxides, and a post-treatment facility for removing the nitrogen oxides after the combustion treatment is required. Therefore, there is a problem that the processing equipment itself is large and the construction cost is high. In the adsorption method, harmful components and odorous components contained in exhaust gas are adsorbed by an adsorbent, and those components are removed from the exhaust gas. Here, harmful components and odor components are not made harmless by the adsorbent,
These components adsorbed on the adsorbent must be separately treated after desorption. At this time, the adsorbent is regenerated and can be reused. However, when the concentration of the component to be adsorbed contained in the exhaust gas is high, the breakthrough time of the adsorbent is shortened and the frequency of regeneration is increased, so that the cost required for the regeneration process is increased. However, there is a disadvantage that the cost is high.

【0003】触媒による酸化分解法は燃焼法に比べ低い
温度で処理可能であり、比較的高濃度まで処理できるた
め上記処理法に比べ経済的かつ効率的な処理法といえ
る。触媒としては、白金やパラジウムなどの貴金属をア
ルミナなどの酸化物担体上に担持した貴金属系酸化触媒
を用いて有害成分・悪臭成分を酸化処理する方法が広く
採用されている。しかし、貴金属系酸化触媒は酸化活性
が高いという優れた特徴を有するものの、排ガス中に被
酸化性窒素化合物が含有される場合、多量の窒素酸化物
を生成するという問題がある。
[0003] The oxidative decomposition method using a catalyst can be treated at a lower temperature than the combustion method, and can be treated to a relatively high concentration. As a catalyst, a method of oxidizing harmful components and malodorous components using a noble metal-based oxidation catalyst in which a noble metal such as platinum or palladium is supported on an oxide carrier such as alumina is widely used. However, the noble metal-based oxidation catalyst has an excellent feature of high oxidation activity, but has a problem that when an oxidizable nitrogen compound is contained in exhaust gas, a large amount of nitrogen oxide is generated.

【0004】上記問題に対し、例えば特開平9−234
340号公報には、前段反応器と後段反応器との2つの
反応器を用い、前段反応器からの排出ガス温度を低下さ
せてから後段反応器に導入して排ガス中に含まれるアン
モニアなどの被酸化性窒素化合物を窒素酸化物の生成を
低く抑制しつつ無害化処理する方法が記載されている。
また、特願平11−110927号明細書には、前段反
応器と後段反応器との2つの反応器を用い、後段反応器
に導入する温度を所定の温度に調節してから後段反応器
に導入することで、排ガス中に含まれるアンモニアと水
素および/または易酸化性有機化合物とを窒素酸化物の
生成を低く抑制しつつ無害化する方法が提案されてい
る。
In order to solve the above problem, for example, Japanese Patent Application Laid-Open
No. 340 discloses that two reactors, a first-stage reactor and a second-stage reactor, are used, the temperature of exhaust gas from the first-stage reactor is lowered, and then the second-stage reactor is introduced into the second-stage reactor to remove ammonia and the like contained in exhaust gas. It describes a method of detoxifying an oxidizable nitrogen compound while suppressing generation of nitrogen oxides to a low level.
In Japanese Patent Application No. 11-110927, two reactors, a first-stage reactor and a second-stage reactor, are used, the temperature introduced into the second-stage reactor is adjusted to a predetermined temperature, and then the second-stage reactor is used. A method has been proposed in which ammonia and hydrogen and / or easily oxidizable organic compounds contained in exhaust gas are rendered harmless by introducing them while suppressing generation of nitrogen oxides to a low level.

【0005】[0005]

【発明が解決しようとする課題】前記処理法によれば、
窒素酸化物の生成量を低く抑えつつ、排ガスに含まれる
被酸化性窒素化合物の無害化処理が可能であるが、排ガ
スの条件変動あるいは処理条件変動などにより、短時間
ではあるものの未反応被酸化性窒素化合物が処理後のガ
ス中に残存する場合があった。被酸化性窒素化合物は強
い臭気を有するものが多く、また人体に対して有害であ
ることから処理後、ガス中のそれらが低濃度かつ短時間
であっても残存するという状況が生じるのは好ましくな
い。
According to the above-mentioned processing method,
It is possible to detoxify oxidizable nitrogen compounds contained in exhaust gas while keeping the amount of generated nitrogen oxides low, but due to fluctuations in exhaust gas conditions or processing conditions, etc. In some cases, a nitrogen compound remained in the gas after the treatment. Oxidizable nitrogen compounds often have a strong odor and are harmful to the human body. Therefore, it is preferable that after treatment, a situation in which they remain in the gas even at a low concentration for a short time is preferable. Absent.

【0006】本発明は、上記のような事情に着目してな
されたものであって、その目的は、被酸化性窒素化合
物、または被酸化性窒素化合物と被酸化性有機化合物と
を含有する排ガスを、排ガスの条件変動あるいは処理条
件変動などに際しても、被酸化性窒素化合物および被酸
化性有機化合物をほぼ完全に効率よく処理し、かつ窒素
酸化物の生成量も低く抑えることのできる排ガスの浄化
方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an oxidizable nitrogen compound or an exhaust gas containing an oxidizable nitrogen compound and an oxidizable organic compound. For exhaust gas purification, which can completely and efficiently treat oxidizable nitrogen compounds and oxidizable organic compounds and reduce the production of nitrogen oxides even when exhaust gas conditions or treatment conditions fluctuate. It seeks to provide a way.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
ができる本発明に係わる排ガスの浄化方法とは、被酸化
性窒素化合物、または被酸化性窒素化合物と被酸化性有
機化合物とを含有する排ガスを酸化的に浄化する方法に
おいて、触媒が充填された反応器の最後部に貴金属系酸
化触媒を配置することを特徴とする排ガス浄化方法であ
る。
According to the present invention, there is provided a method for purifying exhaust gas which can solve the above-mentioned problems, comprises an oxidizable nitrogen compound or an oxidizable nitrogen compound and an oxidizable organic compound. An exhaust gas purification method for oxidizing exhaust gas, comprising disposing a noble metal-based oxidation catalyst at the last part of a reactor filled with a catalyst.

【0008】[0008]

【発明の実施の形態】本発明の方法は、被酸化性窒素化
合物、または被酸化性窒素化合物と被酸化性有機化合物
とを含有する排ガスを処理の対象とするものであるが、
排ガス中の被酸化性窒素化合物および被酸化性有機化合
物の濃度がそのまま大気中に放出することが許容される
程度のものであれば、本発明の方法を適用するまでもな
いであろう。
DETAILED DESCRIPTION OF THE INVENTION The method of the present invention is intended for treating an oxidizable nitrogen compound or an exhaust gas containing an oxidizable nitrogen compound and an oxidizable organic compound.
If the concentrations of the oxidizable nitrogen compound and the oxidizable organic compound in the exhaust gas are such that they can be released directly into the atmosphere, the method of the present invention will not be applied.

【0009】本発明の方法は、被酸化性窒素化合物濃度
が窒素換算で3,000〜50,000ppm、好まし
くは5,000〜30,000ppmの範囲であり、ま
た被酸化性有機化合物濃度が0〜8,000ppmC、
好ましくは0〜4,000ppmCの範囲である排ガス
の処理の好適に用いられる。この「ppmC」とは、
(有機化合物の濃度(ppm))×(有機化合物の分子
内に含まれる炭素(C)数)で示されるものである。な
お、被酸化性窒素化合物および被酸化性有機化合物の濃
度が高くなりすぎると反応器内での発熱が大きくなりす
ぎて触媒が高温に曝され、熱的劣化を受けやすくなるの
で、このときは空気などにより排ガスを希釈して反応器
に供給すればよい。
In the method of the present invention, the concentration of the oxidizable nitrogen compound is in the range of 3,000 to 50,000 ppm, preferably 5,000 to 30,000 ppm in terms of nitrogen, and the concentration of the oxidizable organic compound is zero. ~ 8,000 ppmC,
It is preferably used in the treatment of exhaust gas, preferably in the range of 0 to 4,000 ppmC. This "ppmC"
(Concentration of organic compound (ppm)) × (the number of carbon (C) contained in the molecule of the organic compound). If the concentrations of the oxidizable nitrogen compound and the oxidizable organic compound are too high, the heat generation in the reactor becomes too large, and the catalyst is exposed to high temperatures, and is susceptible to thermal deterioration. The exhaust gas may be diluted with air or the like and supplied to the reactor.

【0010】上記被酸化性窒素化合物の代表例として
は、アンモニア;メチルアミン、ジメチルアミン、メチ
ルエチルアミン、ジエチルアミン、トリメチルアミン、
トリエチルアミン、エチレンジアミン、1,2−プロパ
ンアミンなどのアミン類;エチレンイミンなどのイミン
類;アセトニトリル、アクリロニトリルなどのニトリル
類;アセトアミド、アセトイミドなどのアミド・イミド
類などを挙げることができる。
Representative examples of the oxidizable nitrogen compound include ammonia; methylamine, dimethylamine, methylethylamine, diethylamine, trimethylamine,
Amines such as triethylamine, ethylenediamine, and 1,2-propanamine; imines such as ethyleneimine; nitriles such as acetonitrile and acrylonitrile; amides and imides such as acetamide and acetimide.

【0011】上記被酸化性有機化合物の代表例として
は、エチレン、プロピレン、スチレン、アセトン、ホル
ムアルデヒド、アセトアルデヒド、メタノール、エタノ
ール、2−ブタノンなどを挙げることができる。
Representative examples of the oxidizable organic compound include ethylene, propylene, styrene, acetone, formaldehyde, acetaldehyde, methanol, ethanol, 2-butanone and the like.

【0012】本発明で用いる貴金属系酸化触媒とは、白
金、パラジウム、イリジウム、ロジウムおよびルテニウ
ムから選ばれる少なくとも1種の元素の金属または酸化
物を含有する触媒、またはアルミニウム、チタニウム、
シリコン、ジルコニウム、セリウムおよび鉄から選ばれ
る少なくとも1種の金属の酸化物と白金、パラジウム、
イリジウム、ロジウムおよびルテニウムから選ばれる少
なくとも1種の金属またはその酸化物とを含有する触媒
である。これらのうち、A成分として、アルミニウム、
チタニウム、シリコン、ジルコニウム、セリウムおよび
鉄から選ばれる少なくとも1種の金属の酸化物、および
B成分として、白金、パラジウム、イリジウム、ロジウ
ムおよびルテニウムから選ばれる少なくとも1種の金属
またはその酸化物を含有する触媒が好適に用いられる。
とりわけ、触媒A成分90〜99.99重量%、触媒B
成分0.01〜10重量%を含有した触媒が好適に用い
られる。
The noble metal-based oxidation catalyst used in the present invention includes a catalyst containing a metal or oxide of at least one element selected from platinum, palladium, iridium, rhodium and ruthenium, or aluminum, titanium,
Silicon, zirconium, oxide of at least one metal selected from cerium and iron and platinum, palladium,
The catalyst contains at least one metal selected from iridium, rhodium and ruthenium or an oxide thereof. Among these, aluminum,
It contains an oxide of at least one metal selected from titanium, silicon, zirconium, cerium and iron, and as a B component, at least one metal selected from platinum, palladium, iridium, rhodium and ruthenium or an oxide thereof. A catalyst is preferably used.
In particular, catalyst A component 90 to 99.99% by weight, catalyst B
A catalyst containing 0.01 to 10% by weight of the component is preferably used.

【0013】上記触媒は、コージェライト、ムライト、
アルミナ、チタニアおよびシリカのなかから選ばれる結
晶性酸化物の耐熱基材上に1〜30重量%担持させて用
いることもできる。
[0013] The catalyst may be cordierite, mullite,
A crystalline oxide selected from alumina, titania and silica may be supported on a heat-resistant substrate in an amount of 1 to 30% by weight.

【0014】貴金属系酸化触媒の使用量については、処
理すべき排ガスの条件変動あるいは処理条件変動などに
も拘らず、未反応被酸化性窒素化合物の排出を十分低減
できるように適宜選択すればよい。
The amount of the noble metal-based oxidation catalyst to be used may be appropriately selected so that the emission of unreacted oxidizable nitrogen compounds can be sufficiently reduced irrespective of fluctuations in exhaust gas conditions to be treated or fluctuations in treatment conditions. .

【0015】本発明の方法において、貴金属系酸化触媒
層の前に用いる触媒(以下、前触媒という)について
は、下記触媒a、bおよびc成分を含有する触媒が好適
に用いられる。
In the method of the present invention, as a catalyst used before the noble metal-based oxidation catalyst layer (hereinafter referred to as a pre-catalyst), a catalyst containing the following components a, b and c is preferably used.

【0016】触媒a成分:チタニウム酸化物またはチタ
ニウム−ケイ素酸化物。
Catalyst a component: titanium oxide or titanium-silicon oxide.

【0017】触媒b成分:バナジウム、タングステン、
モリブデン、鉄およびセリウムから選ばれる少なくとも
1種の金属の酸化物。
Catalyst b component: vanadium, tungsten,
An oxide of at least one metal selected from molybdenum, iron and cerium.

【0018】触媒c成分:白金、パラジウム、イリジウ
ム、ロジウム、ルテニウム、クロム、マンガンおよび鉄
から選ばれる少なくとも1種の金属またはその酸化物。
Catalyst c component: at least one metal selected from platinum, palladium, iridium, rhodium, ruthenium, chromium, manganese and iron, or an oxide thereof.

【0019】上記前触媒においては、触媒a成分、触媒
b成分および触媒c成分の割合をそれぞれ70〜99重
量%、0.5〜30重量%および0.001〜20重量
%(合計100重量%)とするのが好ましい。
In the above pre-catalyst, the proportions of the catalyst a component, the catalyst b component and the catalyst c component are respectively 70 to 99% by weight, 0.5 to 30% by weight and 0.001 to 20% by weight (total 100% by weight). ) Is preferable.

【0020】触媒c成分のうち、白金、パラジウム、イ
リジウム、ロジウムおよびルテニウムからなる群から選
ばれる少なくとも1種の元素の金属または酸化物をc1
成分とし、クロム、マンガンおよび銅から選ばれる少な
くとも1種の元素の酸化物をc2成分とすると、上記前
触媒はc1成分を0.001〜10重量%、好ましくは
0.01〜10重量%および/またはc2成分を1〜2
0重量%(c1成分とc2成分との合計は0.001〜
20重量%である)含有するのが好ましい。
Among the catalyst c components, a metal or oxide of at least one element selected from the group consisting of platinum, palladium, iridium, rhodium and ruthenium is c1
When the component is an oxide of at least one element selected from chromium, manganese, and copper as the c2 component, the precatalyst includes the c1 component in an amount of 0.001 to 10% by weight, preferably 0.01 to 10% by weight, And / or the c2 component is 1 to 2
0% by weight (the total of component c1 and component c2 is 0.001 to
20% by weight).

【0021】上記前触媒は、触媒a成分、触媒b成分お
よび触媒c成分を同時に混合、成形して調製しても、触
媒a成分を成形し、この成形体に触媒b成分および触媒
c成分を同時に、あるいは別々に担持して調製してもよ
い。
The above-mentioned pre-catalyst is prepared by simultaneously mixing and molding the catalyst a component, the catalyst b component and the catalyst c component, and the catalyst a component is molded, and the catalyst b component and the catalyst c component are added to the molded body. They may be prepared simultaneously or separately.

【0022】[0022]

【発明の効果】本発明の方法によれば、被酸化性窒素化
合物、または被酸化性窒素化合物と被酸化性有機化合物
とを含有する排ガスをNOxの副生を効果的に抑制し
て、ほぼ完全に浄化することができる。
According to the method of the present invention, an oxidizable nitrogen compound or an exhaust gas containing an oxidizable nitrogen compound and an oxidizable organic compound is effectively suppressed by-product NOx, Can be completely purified.

【0023】[0023]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0024】触媒調製例1 チタニアおよびシリカからなる複合酸化物を以下に示す
方法で調製した。
Catalyst Preparation Example 1 A composite oxide composed of titania and silica was prepared by the following method.

【0025】10重量%アンモニア水700リットルに
20重量%シリカゾル35.5kgを加えて撹拌混合し
た後、硫酸チタニルに硫酸水溶液(152g・TiO2
/リットル、0.55g・H2SO4/リットル)300
リットルを撹拌しながら徐々に滴下した。得られたゲル
を熟成し、ろ過水洗した後、150℃で10時間乾燥
し、次いで500℃で6時間焼成した。得られた粉体組
成はTiO2:SiO2=4:1(モル比)であり、BE
T被表面積は200m2/gであった。この粉体20k
gにメタバナジン酸アンモニウム2.00kgおよびパ
ラタングステン酸アンモニウム0.77kgを含む15
%モノエタノールアミン水溶液12kgを加え、成型助
剤としてデンプンを加えてニーダーで混練りした後、押
出成型機により外寸80mm角、目開き2.8mm、肉
厚0.5mm、長さ450mmのハニカム状に成型し
た。これを80℃で乾燥してから、450℃で5時間空
気雰囲気下で焼成した。この成型体を硝酸パラジウム水
溶液に含浸し、150℃で3時間乾燥した後、450℃
で3時間空気雰囲気下で焼成した。得られた触媒の組成
は、Ti−Si複合酸化物:V25:WO3:Pd=8
8.2:6.9:2.9:2(重量比)であり、BET
比表面積は120m2/g、細孔容積は0.45cc/
gであった。
After adding 35.5 kg of 20 wt% silica sol to 700 liters of 10 wt% ammonia water and stirring and mixing, an aqueous sulfuric acid solution (152 g · TiO 2 ) was added to titanyl sulfate.
/ Liter, 0.55 g · H 2 SO 4 / liter) 300
One liter was slowly added dropwise with stirring. The resulting gel was aged, washed with filtered water, dried at 150 ° C. for 10 hours, and then calcined at 500 ° C. for 6 hours. The powder composition obtained was TiO 2 : SiO 2 = 4: 1 (molar ratio) and BE
The T surface area was 200 m 2 / g. This powder 20k
g containing 2.00 kg of ammonium metavanadate and 0.77 kg of ammonium paratungstate 15
After adding 12 kg of an aqueous solution of monoethanolamine, adding starch as a molding aid and kneading with a kneader, a honeycomb having an outer dimension of 80 mm square, an aperture of 2.8 mm, a wall thickness of 0.5 mm and a length of 450 mm is produced by an extruder. It was molded into a shape. This was dried at 80 ° C. and then fired at 450 ° C. for 5 hours in an air atmosphere. The molded body was impregnated with an aqueous solution of palladium nitrate, dried at 150 ° C. for 3 hours, and then dried at 450 ° C.
For 3 hours in an air atmosphere. The composition of the obtained catalyst was as follows: Ti—Si composite oxide: V 2 O 5 : WO 3 : Pd = 8
8.2: 6.9: 2.9: 2 (weight ratio) and BET
The specific surface area is 120 m 2 / g and the pore volume is 0.45 cc /
g.

【0026】触媒調製例2 シュウ酸水溶液に150m2/gの比表面積を有するγ
−アルミナ粉を投入しスラリー化した。これをハニカム
状のコージェライト担体(外寸80mm角、目開き2.
0mm、肉厚0.5mm、長さ200mm)にコーティ
ングし、乾燥、焼成して触媒支持体を調製した。この触
媒支持体のAl23含有率は15重量%であった。これ
を硝酸パラジウムを含む水溶液の含浸し、100℃で乾
燥した後、450℃で3時間空気雰囲気下で焼成した。
この触媒のPd担持率は0.33重量%であった。
Catalyst Preparation Example 2 γ having a specific surface area of 150 m 2 / g in an aqueous oxalic acid solution
-Alumina powder was charged to form a slurry. This was treated with a honeycomb-shaped cordierite carrier (80 mm square, external opening 2.
(0 mm, wall thickness 0.5 mm, length 200 mm), dried and calcined to prepare a catalyst support. The Al 2 O 3 content of this catalyst support was 15% by weight. This was impregnated with an aqueous solution containing palladium nitrate, dried at 100 ° C, and fired at 450 ° C for 3 hours in an air atmosphere.
The Pd loading of this catalyst was 0.33% by weight.

【0027】実施例1 図1に略示する装置を用いて下記の実験を行った。前段
反応器1には触媒調製例1で得た触媒2リットルを充填
し、後段反応器2には触媒調製例1で得た触媒36リッ
トル、貴金属系酸化触媒としては触媒調製例2で得た触
媒を3リットルを後段反応器出口側に設置し、アンモニ
ア、2−ブタノンおよび空気よりなるモデル排ガスを供
給した。ここで前段反応器1に導入する排ガス温度は2
50℃に設定し、また後段反応器2に導入する処理ガス
の温度は360℃に調整した。なお、空気量は3,00
0リットル/分で一定量供給した。はじめに、アンモニ
ア18リットル/分、2−ブタノン1.5リットル/分
および空気3,000リットル/分からなるモデル排ガ
スを供給した。この時、出口ガス中のアンモニアおよび
2−ブタノンの分解率は100%であり、NOxの生成
は10ppmであった。次に、2−ブタノンの供給を停
止した。この時、2−ブタノンの供給停止に伴い、前段
反応器出口ガス温度(後段反応器導入ガス温度)が低下
し、ヒーターにより設定値の360℃まで昇温するのに
若干の時間を要したが、その間も出口ガス中のアンモニ
アおよび2−ブタノンの分解率は100%であり、NO
xの生成は11ppmであった。
Example 1 The following experiment was conducted using the apparatus schematically shown in FIG. The first-stage reactor 1 was charged with 2 liters of the catalyst obtained in Catalyst Preparation Example 1, the second-stage reactor 2 was obtained with 36 liters of the catalyst obtained in Catalyst Preparation Example 1, and the noble metal-based oxidation catalyst was obtained in Catalyst Preparation Example 2. 3 liters of the catalyst were placed at the outlet of the latter reactor, and a model exhaust gas composed of ammonia, 2-butanone and air was supplied. Here, the temperature of the exhaust gas introduced into the first reactor 1 is 2
The temperature was set to 50 ° C., and the temperature of the processing gas introduced into the latter reactor 2 was adjusted to 360 ° C. The air volume is 3,000
A fixed amount was supplied at 0 liter / min. First, a model exhaust gas consisting of 18 liters / minute of ammonia, 1.5 liters / minute of 2-butanone, and 3,000 liters / minute of air was supplied. At this time, the decomposition ratio of ammonia and 2-butanone in the outlet gas was 100%, and the generation of NOx was 10 ppm. Next, the supply of 2-butanone was stopped. At this time, with the stop of the 2-butanone supply, the temperature of the gas at the outlet of the first-stage reactor (the temperature of the gas introduced into the second-stage reactor) decreases, and it takes some time to raise the temperature to 360 ° C. of the set value by the heater. In the meantime, the decomposition rate of ammonia and 2-butanone in the outlet gas is 100%, and NO
The production of x was 11 ppm.

【0028】比較例1 貴金属系酸化触媒を配置せずに実施例1と同様に実験を
行った。はじめにアンモニア18リットル/分、2−ブ
タノン1.5リットル/分および空気3,000リット
ル/分からなるモデル排ガスを供給した。この時、出口
ガス中のアンモニアおよび2−ブタノンの分解率は10
0%であり、NOxの生成は10ppmであった。次い
で、2−ブタノンの供給を停止した。この時、出口ガス
中に未反応アンモニアが5ppm含まれていた。これ
は、2−ブタノンの供給停止に伴い、前段反応器出口温
度(後段反応器導入ガス温度)が低下するが、その急激
な変化にヒーターによる加熱が追随できないためであ
る。未反応アンモニアは後段反応器の導入するガス温度
がヒーターにより設定値の360℃に調整されるに従い
減少した。この間、約10分程度出口ガス中にアンモニ
アが検出された。この時、NOxの生成は2−ブタノン
の供給停止直後、わずかに減少したが、その後増加し1
0ppm程度で安定した。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that no noble metal-based oxidation catalyst was provided. First, a model exhaust gas composed of 18 liters / minute of ammonia, 1.5 liters / minute of 2-butanone, and 3,000 liters / minute of air was supplied. At this time, the decomposition rate of ammonia and 2-butanone in the outlet gas is 10
0% and NOx production was 10 ppm. Next, the supply of 2-butanone was stopped. At this time, 5 ppm of unreacted ammonia was contained in the outlet gas. This is because the temperature at the outlet of the first-stage reactor (the temperature of the gas introduced into the second-stage reactor) decreases as the supply of 2-butanone stops, but the heater cannot follow the rapid change. Unreacted ammonia decreased as the temperature of the gas introduced into the latter reactor was adjusted to the set value of 360 ° C. by the heater. During this time, ammonia was detected in the outlet gas for about 10 minutes. At this time, the production of NOx slightly decreased immediately after the supply of 2-butanone was stopped, but then increased to 1
It was stabilized at about 0 ppm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法の一実施態様を示した系統図であ
る。
FIG. 1 is a system diagram showing one embodiment of the method of the present invention.

フロントページの続き (72)発明者 吉野 和徳 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 (72)発明者 池之上 敏勝 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒内 Fターム(参考) 4D048 AA05 AA08 AA17 AA19 AA20 AA22 AB01 BA03X BA06X BA07X BA08Y BA10X BA19Y BA23X BA27X BA30Y BA31X BA32Y BA33Y BA36Y BA41X BA42X BB02 BB17 CC32 CC44 CC46 CC52 CC54 DA01 DA06 4G069 AA03 AA14 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA13B BA20A BA20B BB02A BB02B BB04A BB06A BB06B BC43A BC50A BC50B BC54B BC60B BC66A BC69A BC70A BC71A BC72A BC72B BC74A BC75A BD05A BD05B CA07 CA11 CA17 EA19 EB14Y EB15Y EC03Y EC06Y EE08(72) Inventor Kazunori Yoshino 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji-shi, Hyogo 1 Inside Nippon Shokubai Co., Ltd. F-term (reference) 4D048 AA05 AA08 AA17 AA19 AA20 AA22 AB01 BA03X BA06X BA07X BA08Y BA10X BA19Y BA23X BA27X BA30Y BA31X BA32Y BA33Y BA36Y BA41X BA42X BB02 BB17 CC32 CC44 CC46 CC52 CC04 DA01 BA03 BA04 BA01 BA02 A BB02A BB02B BB04A BB06A BB06B BC43A BC50A BC50B BC54B BC60B BC66A BC69A BC70A BC71A BC72A BC72B BC74A BC75A BD05A BD05B CA07 CA11 CA17 EA19 EB14Y EB15Y EC03Y EC06Y EE08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被酸化性窒素化合物、または被酸化性窒
素化合物と被酸化性有機化合物とを含有する排ガスを酸
化的に浄化する方法において、触媒が充填された反応器
の最後部に貴金属系酸化触媒を配置することを特徴とす
る排ガスの浄化方法。
In a method for oxidatively purifying an exhaust gas containing an oxidizable nitrogen compound or an oxidizable nitrogen compound and an oxidizable organic compound, a noble metal-based catalyst is provided at the end of a reactor filled with a catalyst. A method for purifying exhaust gas, comprising disposing an oxidation catalyst.
【請求項2】 触媒が充填された反応器が前段および後
段反応器からなる2段の反応器である請求項1記載の方
法。
2. The method according to claim 1, wherein the catalyst-filled reactor is a two-stage reactor comprising a first-stage and a second-stage reactor.
【請求項3】 貴金属系酸化触媒が下記AおよびB成分
を含有するものである請求項1または2記載の方法。触
媒A成分:アルミニウム、チタニウム、シリコン、ジル
コニウム、セリウムおよび鉄から選ばれる少なくとも1
種の金属の酸化物。触媒B成分:白金、パラジウム、イ
リジウム、ロジウムおよびルテニウムから選ばれる少な
くとも1種の金属またはその酸化物。
3. The method according to claim 1, wherein the noble metal-based oxidation catalyst contains the following components A and B. Catalyst A component: at least one selected from aluminum, titanium, silicon, zirconium, cerium and iron
Oxide of the species metal. Catalyst B component: at least one metal selected from platinum, palladium, iridium, rhodium and ruthenium or an oxide thereof.
JP29785299A 1999-10-20 1999-10-20 Exhaust gas purification equipment Expired - Fee Related JP3761139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29785299A JP3761139B2 (en) 1999-10-20 1999-10-20 Exhaust gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29785299A JP3761139B2 (en) 1999-10-20 1999-10-20 Exhaust gas purification equipment

Publications (2)

Publication Number Publication Date
JP2001113133A true JP2001113133A (en) 2001-04-24
JP3761139B2 JP3761139B2 (en) 2006-03-29

Family

ID=17851995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29785299A Expired - Fee Related JP3761139B2 (en) 1999-10-20 1999-10-20 Exhaust gas purification equipment

Country Status (1)

Country Link
JP (1) JP3761139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222750A (en) * 2006-02-22 2007-09-06 Ebara Corp Method and apparatus for treating waste gas containing volatile organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222750A (en) * 2006-02-22 2007-09-06 Ebara Corp Method and apparatus for treating waste gas containing volatile organic compound

Also Published As

Publication number Publication date
JP3761139B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US5430230A (en) Method for disposing of organohalogen compounds by oxidative decomposition
JPS62282623A (en) Purifying method for exhaust gas
JP2001293480A (en) Waste water treating method and waste water treating device using the same
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP3252696B2 (en) Purification method of exhaust gas containing oxidizable nitrogen compound
JP3828308B2 (en) Purification method for exhaust gas containing organic bromine compounds
JP3761139B2 (en) Exhaust gas purification equipment
JP2000300958A (en) Method for cleaning of waste gas
JP2980633B2 (en) Nitrogen oxide removal catalyst
JP3256660B2 (en) Purification method of ammonia-containing exhaust gas
US8048393B2 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and method of removing nitrogen oxides using the same
JP2001009281A (en) Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
JP2005313161A (en) Method for manufacturing denitration catalyst
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPS60212234A (en) Honeycomb shaped deodorizing catalyst
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2916259B2 (en) Method for oxidative decomposition of organic halogen compounds
JP2002079055A (en) Method for treating exhaust gas containing nitrogen- containing organic compound
JP2919541B2 (en) Nitrogen oxide removal catalyst
JPH0824579A (en) Treatment of low concentration nox containing gas
JPH09313935A (en) Catalyst for removing lower aldehyde compound and removing method
JPH08196871A (en) Decomposition of ammonia
JP3760090B2 (en) Organohalogen compound decomposition catalyst and method for treating organohalogen compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees