JP2001112715A - Eye examination device - Google Patents

Eye examination device

Info

Publication number
JP2001112715A
JP2001112715A JP29995999A JP29995999A JP2001112715A JP 2001112715 A JP2001112715 A JP 2001112715A JP 29995999 A JP29995999 A JP 29995999A JP 29995999 A JP29995999 A JP 29995999A JP 2001112715 A JP2001112715 A JP 2001112715A
Authority
JP
Japan
Prior art keywords
light source
corneal
light
reflection image
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29995999A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29995999A priority Critical patent/JP2001112715A/en
Publication of JP2001112715A publication Critical patent/JP2001112715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance measuring accuracy by facilitating alignment, and preventing errors caused by distance. SOLUTION: Light sources 2, 3 each comprise a plurality of LEDs arranged on a printed circuit board 1 in such a manner as to form a plurality of concentric rings with different diameters, with the LEDs of each ring being approximately equally spaced apart in such a manner that the radial spacing therebetween is greater than the circumferential spacing therebetween. A ring- shaped light conducting member is positioned near the circumference of the printed circuit board 1. Light source images 2', 3', 5' produced by illuminating light coming from the light sources 2, 3 and the light conducting member 5 are formed on an area sensor 25 and displayed on a display monitor 25. Four analysis of the shape of a cornea, the position of each LED is recognized and the circumferential curvature of the cornea is determined from the spacing between the images on the same ring. The LED images on the same ring are recognized as rings, and the radial curvature of the cornea is determined from the radial distance between the rings. The circumferential and radial curvatures are averaged to determine the curvature of each part of the cornea.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼科病院や眼鏡店
において使用する検眼装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optometric apparatus used in an ophthalmic hospital or an optician.

【0002】[0002]

【従来の技術】従来より、多数の点状光源像を撮像して
角膜形状を測定する角膜形状測定装置があり、また平行
光で光束を投影したり平行な反射光で測定を行うための
特殊な光学系を配設した角膜形状測定装置が知られてい
る。
2. Description of the Related Art Conventionally, there is a corneal shape measuring device for measuring a corneal shape by imaging a large number of point-like light source images, and a special device for projecting a light beam with parallel light or performing measurement with parallel reflected light. A corneal shape measuring apparatus provided with a simple optical system is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例の検眼装置は、離れた位置に配置した光源により視
標を照明しているために、光軸方向のスペースを必要と
し、また距離による誤差が生じないように、距離を正確
に合わせてから測定するので、操作が煩雑であるという
問題点がある。
However, the above-mentioned conventional optometry apparatus requires a space in the optical axis direction because the optotype is illuminated by a light source arranged at a distant position. Since the measurement is performed after the distance is accurately adjusted so as not to cause the problem, there is a problem that the operation is complicated.

【0004】本発明の目的は、上述の問題点を解消し、
簡便に位置合わせが可能であり、距離による誤差が生じ
ないようにして測定精度を向上した検眼装置を提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide an optometry apparatus which can easily perform positioning and has improved measurement accuracy by preventing errors due to distance.

【0005】本発明の他の目的は、特殊な光学系を使用
しない簡素な構成で、角膜の放射方向に加えて円周方向
の曲率を測定できる検眼装置を提供することにある。
It is another object of the present invention to provide an optometric apparatus which can measure a curvature in a circumferential direction in addition to a radiation direction of a cornea with a simple configuration without using a special optical system.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る検眼装置は、角膜に光束を投影する光源
と、該光源による角膜反射像を撮像する撮像手段とを有
し、前記角膜反射像を用いて角膜形状を測定する検眼装
置において、測定光軸の周囲に点状の複数の光源を設
け、装置毎にこれらの光源の位置を記憶し、記憶した位
置情報を使用して角膜形状を測定することを特徴とす
る。
An optometry apparatus according to the present invention for achieving the above object has a light source for projecting a light beam on a cornea, and an imaging means for imaging a corneal reflection image by the light source. In an optometry apparatus that measures a corneal shape using a corneal reflection image, a plurality of point-like light sources are provided around the measurement optical axis, the positions of these light sources are stored for each device, and the stored position information is used. The corneal shape is measured.

【0007】また、本発明に係る検眼装置は、角膜に光
束を投影する光源と、該光源による角膜反射像を撮像す
る撮像手段とを有し、前記角膜反射像を用いて角膜形状
を測定する検眼装置において、測定光軸の周囲に設けた
点状の複数の光源と、これらの光源に近接して各光源に
対応する光透過部を有するマスク部材とを設けたことを
特徴とする。
An optometry apparatus according to the present invention has a light source for projecting a light beam on the cornea, and an imaging means for imaging a corneal reflection image by the light source, and measures a corneal shape using the corneal reflection image. The optometry apparatus is characterized in that a plurality of point-like light sources provided around the measurement optical axis and a mask member having a light transmitting portion corresponding to each light source are provided in the vicinity of these light sources.

【0008】本発明に係る検眼装置は、角膜に光束を投
影する光源と、該光源による角膜反射像を撮像する撮像
手段とを有し、前記角膜反射像を用いて角膜形状を測定
する検眼装置において、測定光学系の周囲に設けた角膜
形状測定用光源と、該角膜形状測定用光源とは波長の異
なる位置測定用光源と、前記角膜形状測定用光源からの
光束は透過せず前記位置測定用光源からの光束を透過す
る2つの光路を介して、前記位置測定用光源の角膜反射
像を前記角膜形状測定用光源の角膜反射像の中心部に分
離して結像し、これら両光源の角膜反射像を共に前記撮
像手段に映出し、これらの映像信号を記憶して演算する
ことによって角膜形状測定を行うことを特徴とする。
An optometry apparatus according to the present invention includes a light source for projecting a light beam onto the cornea, and an imaging unit for capturing a corneal reflection image by the light source, and measures a corneal shape using the corneal reflection image. A corneal shape measurement light source provided around the measurement optical system, a corneal shape measurement light source having a different wavelength from the corneal shape measurement light source, and a luminous flux from the corneal shape measurement light source is not transmitted and the position measurement is performed. A corneal reflection image of the position measurement light source is separated and formed into a central portion of a corneal reflection image of the corneal shape measurement light source through two optical paths that transmit a light flux from the light source for the two. A corneal shape is measured by projecting a corneal reflection image together with the image pickup means, storing and calculating these video signals.

【0009】本発明に係る検眼装置は、光源の光束を角
膜に投影する光源と、該光源による角膜反射像を検出す
るエリアアレイセンサとを有し、前記角膜反射像を用い
て角膜形状を測定する検眼装置において、前記光源は複
数個の点状光源を大きさの異なる同心の複数の円周状に
配列し、該光源の角膜反射像の各円周の径方向の間隔を
隣接する列の円周上の光源像の間隔よりも広くしたこと
を特徴とする。
An optometry apparatus according to the present invention includes a light source for projecting a light beam from a light source onto a cornea, and an area array sensor for detecting a corneal reflection image from the light source, and measures a corneal shape using the corneal reflection image. In the optometry apparatus, the light source is configured by arranging a plurality of point-like light sources in a plurality of concentric circles having different sizes, and setting a radial interval of each circumference of a corneal reflection image of the light source to an adjacent row. It is characterized in that it is wider than the interval between the light source images on the circumference.

【0010】[0010]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は実施例の検眼装置の構成図を示
し、オートレフラクトメータとオートケラトメータ及び
角膜形状測定機能を具備する装置である。装置の被検眼
E側には角膜照明光学系が配置されており、この角膜照
明光学系は円板形状のプリント基板1上に、図2に示す
ように前眼部照明用光源を兼ねる角膜曲率半径測定用の
複数個の赤色光LED光源2、3が取り付けられ、前面
にこれら光源2、3の光束を透過させる円板状のカバー
部材4、このカバー部材4を囲む円筒形から成るリング
状導光部材5が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows a configuration diagram of an optometry apparatus according to an embodiment, which is an apparatus having an auto-refractometer, an auto-keratometer, and a corneal shape measurement function. A corneal illumination optical system is arranged on the eye E side of the apparatus, and the corneal illumination optical system is provided on a disc-shaped printed circuit board 1 as shown in FIG. A plurality of red LED light sources 2 and 3 for radius measurement are attached, and a disk-shaped cover member 4 for transmitting the light flux of these light sources 2 and 3 on the front surface, and a cylindrical ring surrounding the cover member 4 The light guide member 5 is arranged.

【0011】角膜照明光学系のプリント基板1には、中
心に測定光束が通過する円形開口6と、その両側に位置
検出光束が通過する2個の弧状の開口7とが設けられて
いる。光源2と3は開口6の周囲に多重の同心円状、例
えば6列のリング列に配設され、内側から1列、2列、
4列、5列、6列目は光源2とされ、3列目は角膜曲率
径測定用の光源3である。これらの光源2、3はリング
状の角膜反射像が略等間隔に生成するように、複数のL
EDが同心の複数の大きさが異なる径のリング状に被検
眼Eの角膜方向に向けて配置されており、各リングのL
EDの間隔はほぼ等しく、径方向の間隔は隣接する列の
円周方向の間隔より大きい間隔で配列されている。そし
て、最も外側の光源2からの光束は、角膜を直接に照明
すると共に導光部材5を介して角膜を照明するようにさ
れている。
The printed board 1 of the corneal illumination optical system is provided with a circular opening 6 at the center through which a measurement light beam passes, and two arcuate openings 7 at both sides through which a position detection light beam passes. The light sources 2 and 3 are arranged around the aperture 6 in multiple concentric circles, for example, in six rows of rings, and one row, two rows,
The fourth, fifth, and sixth rows are light sources 2, and the third row is a light source 3 for measuring a corneal curvature diameter. These light sources 2 and 3 are provided with a plurality of light sources such that ring-shaped corneal reflection images are generated at substantially equal intervals.
A plurality of concentric EDs are arranged in a ring shape having different diameters toward the cornea of the eye E to be examined.
The intervals between the EDs are substantially equal, and the intervals in the radial direction are arranged to be larger than the intervals in the circumferential direction of the adjacent rows. The luminous flux from the outermost light source 2 directly illuminates the cornea and illuminates the cornea via the light guide member 5.

【0012】導光部材5はカバー部材4の外周に沿って
設けられ、例えばアクリル樹脂などの光を透過する短円
筒形状の部材から成り、導光部材5の光源2側の端面か
ら入射した光束が、内面で反射して被検眼E側の端面に
導光されるようになっている。そして、この被検眼E側
の端面には反射面が形成されており、導光された光束は
この反射面で反射して角膜に投影される視標となり、角
膜からの反射像はリング像として表示されるようになっ
ている。
The light guide member 5 is provided along the outer periphery of the cover member 4 and is made of a short-cylindrical member such as an acrylic resin that transmits light, and a light beam incident from an end face of the light guide member 5 on the light source 2 side. Are reflected on the inner surface and guided to the end surface on the eye E side. A reflection surface is formed on the end surface on the side of the subject's eye E, and the guided light flux is reflected by the reflection surface to become a target projected on the cornea, and the reflection image from the cornea is formed as a ring image. It is displayed.

【0013】被検眼Eの前方の測定光路O1上には、角
膜照明光学系の開口6の背後に、光分割部材8、レンズ
9、光分割部材10、レンズ9と共に被検眼Eの前眼部
を結像するレンズ11、ビデオカメラである撮像手段1
2が順次に配列されている。光分割部材10の入射方向
の光路O3上には、ミラー13、光路方向に可動の視度
可変レンズ14、固視視標15が配列されている。
On the measurement optical path O1 in front of the eye E, behind the opening 6 of the corneal illumination optical system, the light splitting member 8, the lens 9, the light splitting member 10, and the lens 9 together with the anterior segment of the eye E. Lens 11 for imaging an image, imaging means 1 as a video camera
2 are sequentially arranged. On the optical path O3 in the incident direction of the light splitting member 10, a mirror 13, a diopter variable lens 14 movable in the optical path direction, and a fixation target 15 are arranged.

【0014】光分割部材8の入射方向の屈折測定光路の
光路O2上には、レンズ9よりも径の小さいレンズ1
6、ミラー17、孔あきミラー18、瞳孔に共役な中心
開口絞り19、レンズ20、屈折測定と被検眼Eの位置
測定に使用するための、光源3とは異なる波長の正視眼
底に共役な赤外LED光源21が配列されている。孔あ
きミラー18の反射方向には、瞳孔に共役な周辺開口絞
り22、光束を光路外に偏向する光偏向部材23、レン
ズ24、正視眼底に共役なCCDなどのエリアアレイセ
ンサ25が配列されている。そして、撮像手段12、エ
リアセンサ25の出力は演算手段26、表示モニタ27
にそれぞれ接続されている。
A lens 1 having a smaller diameter than the lens 9 is placed on the optical path O2 of the refraction measuring optical path in the incident direction of the light splitting member 8.
6, a mirror 17, a perforated mirror 18, a central aperture stop 19 conjugated to the pupil, a lens 20, a red conjugated to the ocular fundus of a different wavelength from the light source 3 for use in refraction measurement and position measurement of the eye E to be examined. Outside LED light sources 21 are arranged. In the reflection direction of the perforated mirror 18, there are arranged a peripheral aperture stop 22 conjugate to the pupil, a light deflecting member 23 for deflecting the light beam out of the optical path, a lens 24, and an area array sensor 25 such as a CCD conjugate to the ocular fundus. I have. The outputs of the imaging unit 12 and the area sensor 25 are calculated by the arithmetic unit 26 and the display monitor 27.
Connected to each other.

【0015】図3は光分割部材8の正面図を示し、光分
割部材8の中心部8aには、光源21の波長光を反射し
光源2、3の波長光を透過する薄膜が施されている。こ
の中心部8aの大きさは、プリント基板1の中心開口6
を通る光束をカバーする大きさとされ、その両脇には楔
ガラス8bが接着されている。楔ガラス8bには光源2
1の波長光を透過し、光源2、3の波長光を透過しない
光学薄膜が施されており、この楔ガラス8bをプリント
基板1の開口7を通る光束が通過するようになってい
る。
FIG. 3 is a front view of the light splitting member 8. A thin film that reflects light of the wavelength of the light source 21 and transmits light of the wavelengths of the light sources 2 and 3 is provided on a central portion 8 a of the light splitting member 8. I have. The size of the central portion 8a is determined by the size of the central opening 6 of the printed circuit board 1.
, And a wedge glass 8b is adhered to both sides thereof. Light source 2 for wedge glass 8b
An optical thin film that transmits light of one wavelength and does not transmit light of wavelengths of the light sources 2 and 3 is provided. A light beam passing through the opening 7 of the printed circuit board 1 passes through the wedge glass 8b.

【0016】このような構成により、固視視標15は視
度可変レンズ14を介して被検眼Eに投影される。位置
合わせ時には、撮像手段12で映した前眼部動画像が表
示モニタ27に表示されて位置合わせが行われる。角膜
測定時には、撮像手段12の映像信号が演算手段26に
取り込まれて角膜形状が演算される。また、屈折測定時
には、エリアアレイセンサ25の信号が演算手段26に
取り込まれて屈折値が演算される。
With such a configuration, the fixation target 15 is projected onto the eye E through the diopter variable lens 14. At the time of positioning, the anterior segment moving image projected by the imaging means 12 is displayed on the display monitor 27, and positioning is performed. At the time of corneal measurement, the video signal of the imaging means 12 is taken into the calculating means 26 and the corneal shape is calculated. Further, at the time of refraction measurement, the signal of the area array sensor 25 is taken into the calculating means 26 and the refraction value is calculated.

【0017】角膜形状測定の位置合わせ時と測定時に
は、光源2、3と共に光源21を点灯する。表示モニタ
27には図1に示すように前眼部像E'とこれらの光源
の光源像2’、3’、5'、21’が映出される。光源
2、3の角膜反射による像は開口6、光分割部材8の中
心部8aを通り、レンズ9、11を介して撮像手段12
に結像し、その映像は図1に示すように表示モニタ27
に表示される。ほぼ等間隔なリング形状に各光源像
2’、3’、5’が形成され、光源21は光路O1の延
長上にあるために、角膜中心に反射像21’を形成す
る。
At the time of positioning and measurement of the corneal shape measurement, the light source 21 is turned on together with the light sources 2 and 3. As shown in FIG. 1, an anterior segment image E ′ and light source images 2 ′, 3 ′, 5 ′, and 21 ′ of these light sources are displayed on the display monitor 27. The images of the light sources 2 and 3 due to corneal reflection pass through the aperture 6 and the central portion 8a of the light splitting member 8 and pass through the lenses 9 and 11 to the imaging means 12
The image is formed on the display monitor 27 as shown in FIG.
Will be displayed. The light source images 2 ', 3', and 5 'are formed in substantially equally-spaced ring shapes. Since the light source 21 is on the extension of the optical path O1, a reflection image 21' is formed at the center of the cornea.

【0018】この角膜反射像21’は2つの開口7と光
分割部材8の楔ガラス8bを通って偏向され、2つの開
口7を結ぶ方向と垂直な方向に上下に少し分離した2つ
の角膜反射像21’が光源像2’の中心部に結像する。
この2つの角膜反射像21’が横方向で同じ位置とな
り、かつ上下方向に並ぶように被検眼Eまでの距離を合
わせる。
The corneal reflection image 21 ′ is deflected through the two apertures 7 and the wedge glass 8 b of the light splitting member 8, and is slightly separated vertically in a direction perpendicular to the direction connecting the two apertures 7. An image 21 'is formed at the center of the light source image 2'.
The distance to the eye E is adjusted so that the two corneal reflection images 21 'are located at the same position in the horizontal direction and are arranged vertically.

【0019】測定時には光源像2’、3’、5’と共
に、角膜反射像21’が映った映像を演算手段26に取
り込み、測定時の距離を記録する。2つの角膜反射像2
1’の横ずれ量を基に、装置から被検眼E中の光源21
の角膜反射の虚像までの距離が分かるので、光源3の光
源像3’を使用して角膜中心部約3mm径の角膜曲率を
球面と仮定し、数値計算を行って角膜反射像21’まで
の距離から角膜曲率半径を測定する。初めに、曲率半径
を平均的な値である7.8mmと仮定すると、これから
角膜頂点までの距離L1が仮定できるので、この距離と
光源像3’の大きさを使って曲率半径r1を計算する。
次に、7.8mmに代えてこの曲率半径r1を使って角
膜頂点までの距離L2を仮定し、曲率半径r2を求め
る。この計算を繰り返してゆくと、徐々に真の曲率半径
rと真の頂点距離Lに近付いてゆく。ただし、実用上は
2、3回の繰り返しで十分な精度を得ることができる。
At the time of measurement, the image showing the corneal reflection image 21 'together with the light source images 2', 3 'and 5' is taken into the calculating means 26, and the distance at the time of measurement is recorded. Two corneal reflection images 2
The light source 21 in the eye E to be inspected from the apparatus based on the lateral displacement amount 1 ′
Since the distance to the virtual image of corneal reflection is known, the corneal curvature having a diameter of about 3 mm at the central part of the cornea is assumed to be spherical using the light source image 3 ′ of the light source 3, and numerical calculation is performed to calculate the corneal reflection image 21 ′. The corneal curvature radius is measured from the distance. First, assuming that the radius of curvature is 7.8 mm, which is an average value, the distance L1 to the corneal vertex can be assumed from this. Therefore, the radius of curvature r1 is calculated using this distance and the size of the light source image 3 ′. .
Next, the radius of curvature r2 is determined by assuming the distance L2 to the corneal vertex using the radius of curvature r1 instead of 7.8 mm. As this calculation is repeated, the radius of curvature gradually approaches the true radius of curvature r and the true vertex distance L. However, in practice, a sufficient accuracy can be obtained by repeating a few times.

【0020】このように計算した曲率半径と頂点距離、
及び撮像した光源像2’、3’、5’の位置とこれら相
互の距離から、他の角膜部分の形状を計算する。距離測
定用の角膜反射像21’は角膜中心部分の形状の情報を
有し角膜中心に生ずるために、その位置情報、例えば2
つの角膜反射像21’の中間点は正常な角膜では光源像
2’の中心にくるが、角膜頂点が偏心していると中心か
らずれるなどの情報を使用して、角膜中心部分の形状解
析を行う。
The radius of curvature and the vertex distance calculated as described above,
The shape of another corneal part is calculated from the positions of the captured light source images 2 ′, 3 ′, and 5 ′ and their mutual distances. The corneal reflection image 21 'for distance measurement has information on the shape of the central portion of the cornea and is generated at the center of the cornea.
The midpoint of the two corneal reflection images 21 ′ is at the center of the light source image 2 ′ in a normal cornea, but the shape of the central portion of the cornea is analyzed using information such as deviation from the center when the corneal vertex is decentered. .

【0021】製造時には、装置毎に所定位置に配置した
基準球面による撮像手段12の映像を使用して、光源
2、3の各LEDの位置を求めて演算手段26に記憶し
ておく。角膜の測定においては、この記憶された校正値
を使って測定演算を行う。これによって、各LEDの取
り付け時のばらつきにも拘らず正確な測定ができ、また
製造時に各LED位置の調整を厳密に行う必要がなくな
り省力化が可能となる。
At the time of manufacture, the position of each LED of the light sources 2 and 3 is obtained using the image of the image pickup means 12 based on the reference sphere arranged at a predetermined position for each device and stored in the arithmetic means 26. In the measurement of the cornea, a measurement calculation is performed using the stored calibration values. As a result, accurate measurement can be performed irrespective of variations at the time of mounting each LED, and it is not necessary to strictly adjust the position of each LED at the time of manufacturing, thereby enabling labor saving.

【0022】角膜曲率半径は屈折測定と同時に行うこと
が多いので、その場合の角膜測定光源3は屈折測定に影
響しないように赤外光で行うことが好ましい。その場合
には、光源2を消灯し光源3を点灯して行い、位置検知
と屈折測定は光源21を使用する。角膜曲率測定時には
撮像手段12に映った像3’、21’を同時に記憶し、
これらから曲率を演算する。屈折測定時には撮像手段1
2に映った像3’、21’と、エリアアレイセンサ25
に映った光源21の眼底反射光を同時に演算手段26に
記憶し、角膜反射像21’までの距離を使って正確な屈
折値を求める。
Since the corneal curvature radius is often measured simultaneously with the refraction measurement, the corneal measurement light source 3 in this case is preferably measured with infrared light so as not to affect the refraction measurement. In this case, the light source 2 is turned off and the light source 3 is turned on, and the light source 21 is used for position detection and refraction measurement. At the time of corneal curvature measurement, the images 3 'and 21' reflected on the imaging means 12 are simultaneously stored,
The curvature is calculated from these. Imaging means 1 for refraction measurement
2 'and 3', 21 'and area array sensor 25
The reflected fundus of the light source 21 reflected by the light source 21 is simultaneously stored in the calculating means 26, and an accurate refraction value is obtained using the distance to the corneal reflection image 21 '.

【0023】可視光の虹彩反射率は比較的低いので、光
源2を可視光にすると光源像2’のコントラストが高く
なり、正確な検出を行うことができる。一方、角膜形状
測定時や屈折測定時には瞳孔を確認する必要があり、光
源3を虹彩の反射が強い赤外光とすることにより瞳孔の
認識が容易になる。
Since the iris reflectance of visible light is relatively low, when the light source 2 is made to be visible light, the contrast of the light source image 2 'is increased, and accurate detection can be performed. On the other hand, it is necessary to confirm the pupil at the time of corneal shape measurement or refraction measurement, and the pupil can be easily recognized by setting the light source 3 to infrared light that reflects the iris strongly.

【0024】異なる径のリング状光源2、3は、各リン
グのLEDの間隔がほぼ等しく、径方向の間隔を隣接す
る列の円周方向の間隔よりも大きい間隔で配列すること
により、LED像はリング像として明確に認識すること
ができ、他のリング列のLED像と混同することはな
い。
The ring-shaped light sources 2 and 3 having different diameters are arranged such that the LED spacing of each ring is substantially equal and the radial spacing is greater than the circumferential spacing of the adjacent rows, so that the LED image is formed. Can be clearly recognized as a ring image and will not be confused with the LED images of other ring arrays.

【0025】角膜形状の解析においては、各LEDの位
置を認識して同じリング列の像間隔から角膜その部分の
円周方向の曲率を求める。また、同じリング上のLED
像をリングとして認識し、各リング間の放射方向距離か
ら角膜の放射方向の曲率を求める。そして、円周方向と
放射方向の曲率を平均して角膜各部分の曲率を求める。
In the analysis of the corneal shape, the position of each LED is recognized, and the circumferential curvature of that portion of the cornea is determined from the image interval of the same ring row. LED on the same ring
The image is recognized as rings, and the radial curvature of the cornea is determined from the radial distance between the rings. Then, the curvature in each part of the cornea is obtained by averaging the curvatures in the circumferential direction and the radial direction.

【0026】図4は他の実施例の角膜照明光学系の側面
図を示し、図1のカバー部材4は拡散板28とマスク部
材29で置き換えられている。拡散板28にはプリント
基板1の開口7に相当する部分に同じ形状の開口が設け
られており、マスク部材29は光源2、3の各LEDに
対応する部分に円形の光透過部と、開口7に相当する部
分に同じ形状の光透過部が設けられている。そして、拡
散部材27とマスク部材29は光源2、3に近接して配
置されている。
FIG. 4 is a side view of a corneal illumination optical system according to another embodiment. The cover member 4 in FIG. 1 is replaced by a diffusion plate 28 and a mask member 29. The diffuser plate 28 is provided with an opening of the same shape at a portion corresponding to the opening 7 of the printed circuit board 1, and the mask member 29 has a circular light transmitting portion at the portion corresponding to each LED of the light sources 2 and 3, and an opening. A light transmitting portion having the same shape is provided in a portion corresponding to 7. Then, the diffusion member 27 and the mask member 29 are arranged close to the light sources 2 and 3.

【0027】[0027]

【発明の効果】以上説明したように本発明に係る検眼装
置は、測定光路の周囲に点状の複数の光源を設け、装置
毎にそれらの位置を記憶し、その記憶した位置情報を使
って角膜の形状を測定することにより、視標投影光学系
を光路方向で短縮しかつ構成を簡素化することができ、
同時に円周方向の角膜曲率も測定可能となり、測定精度
を向上することができる。
As described above, in the optometry apparatus according to the present invention, a plurality of point-like light sources are provided around the measuring optical path, their positions are stored for each apparatus, and the stored position information is used. By measuring the shape of the cornea, the target projection optical system can be shortened in the optical path direction and the configuration can be simplified,
At the same time, the corneal curvature in the circumferential direction can be measured, and the measurement accuracy can be improved.

【0028】また、本発明に係る検眼装置は、測定光路
の周囲に設けた点状の複数の光源と、それらの光源に近
接してそれらの光源のそれぞれに対応する光透過部を備
えたマスク部材とを設けることにより、視標投影光学系
を光路方向で短縮しかつ構成を簡素化することができ、
同時に円周方向の角膜曲率も測定可能となり、測定精度
を向上することができる。
An optometry apparatus according to the present invention provides a mask including a plurality of point-like light sources provided around a measurement optical path, and a light transmitting portion corresponding to each of the light sources in proximity to the light sources. By providing the member, the target projection optical system can be shortened in the optical path direction and the configuration can be simplified,
At the same time, the corneal curvature in the circumferential direction can be measured, and the measurement accuracy can be improved.

【0029】本発明に係る検眼装置は、角膜形状測定光
を透過せず位置測定光を透過する2つの光路を介して、
位置光源の角膜反射像を角膜形状測定用光源の角膜反射
像の中心部に分離して結像し、これら両光源の角膜反射
像が共に映った撮像手段の映像信号を記憶して演算によ
り角膜形状を測定することにより、平行光を投影し平行
な反射光で測定するための特殊な光学系を使用しないの
で、構成を簡素化にでき、同時に簡便な位置合わせが可
能で距離による誤差が生ずることはない。
The optometry apparatus according to the present invention has two optical paths that transmit the position measurement light without transmitting the corneal shape measurement light.
The corneal reflection image of the position light source is separated and formed at the center of the corneal reflection image of the corneal shape measurement light source, and the corneal reflection image of both light sources is stored, and the image signal of the imaging means is stored and the corneal reflection is calculated. By measuring the shape, a special optical system for projecting parallel light and measuring with parallel reflected light is not used, so that the configuration can be simplified, and at the same time, simple positioning is possible and errors due to distances occur. Never.

【0030】本発明に係る検眼装置は、光源は点状光源
を大きさの異なる同心の複数の円周上に配列し、これら
光源の角膜反射像の各円周の径方向の間隔を隣接する円
周上の点状光源像の間隔よりも広くすることにより、角
膜の放射方向に加えて円周方向の曲率を測定することが
可能となる。
In the optometry apparatus according to the present invention, the light sources are arranged such that point-like light sources are arranged on a plurality of concentric circles having different sizes, and the circumferential intervals of the corneal reflection images of these light sources are adjacent to each other. By making the interval between the point light source images on the circumference wider, it becomes possible to measure the curvature in the circumferential direction in addition to the radiation direction of the cornea.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の検眼装置の構成図である。FIG. 1 is a configuration diagram of an optometry apparatus according to an embodiment.

【図2】角膜照明光学系の正面図である。FIG. 2 is a front view of a corneal illumination optical system.

【図3】光分割部材の正面図である。FIG. 3 is a front view of a light splitting member.

【図4】他の角膜照明光学系の側面図である。FIG. 4 is a side view of another corneal illumination optical system.

【符号の説明】[Explanation of symbols]

1 プリント基板 2、3、21 赤外LED光源 4 カバー部材 5 導光部材 8、10 光分割部材 12 撮像手段 15 固視視標 18 孔あきミラー 19 中心開口絞り 22 周辺開口絞り 23 光偏向部材 25 エリアアレイセンサ 26 演算手段 27 表示モニタ 28 拡散板 29 マスク部材 DESCRIPTION OF SYMBOLS 1 Printed circuit board 2, 3, 21 Infrared LED light source 4 Cover member 5 Light guide member 8, 10 Light division member 12 Imaging means 15 Fixation target 18 Perforated mirror 19 Center aperture stop 22 Peripheral aperture stop 23 Light deflection member 25 Area array sensor 26 Calculation means 27 Display monitor 28 Diffuser 29 Mask member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 角膜に光束を投影する光源と、該光源に
よる角膜反射像を撮像する撮像手段とを有し、前記角膜
反射像を用いて角膜形状を測定する検眼装置において、
測定光軸の周囲に点状の複数の光源を設け、装置毎にこ
れらの光源の位置を記憶し、記憶した位置情報を使用し
て角膜形状を測定することを特徴とする検眼装置。
1. An optometric apparatus, comprising: a light source that projects a light beam onto a cornea; and an imaging unit that captures a corneal reflection image by the light source, wherein the corneal shape is measured using the corneal reflection image.
An optometry apparatus comprising: a plurality of point-like light sources provided around a measurement optical axis; the positions of these light sources are stored for each device; and the corneal shape is measured using the stored position information.
【請求項2】 角膜に光束を投影する光源と、該光源に
よる角膜反射像を撮像する撮像手段とを有し、前記角膜
反射像を用いて角膜形状を測定する検眼装置において、
測定光軸の周囲に設けた点状の複数の光源と、これらの
光源に近接して各光源に対応する光透過部を有するマス
ク部材とを設けたことを特徴とする検眼装置。
2. An optometric apparatus comprising: a light source for projecting a light beam onto a cornea; and an imaging unit for imaging a corneal reflection image by the light source, wherein an corneal shape is measured using the corneal reflection image.
An optometric apparatus, comprising: a plurality of point-like light sources provided around a measurement optical axis; and a mask member having a light transmitting portion corresponding to each light source in close proximity to these light sources.
【請求項3】 角膜に光束を投影する光源と、該光源に
よる角膜反射像を撮像する撮像手段とを有し、前記角膜
反射像を用いて角膜形状を測定する検眼装置において、
測定光学系の周囲に設けた角膜形状測定用光源と、該角
膜形状測定用光源とは波長の異なる位置測定用光源と、
前記角膜形状測定用光源からの光束は透過せず前記位置
測定用光源からの光束を透過する2つの光路を介して、
前記位置測定用光源の角膜反射像を前記角膜形状測定用
光源の角膜反射像の中心部に分離して結像し、これら両
光源の角膜反射像を共に前記撮像手段に映出し、これら
の映像信号を記憶して演算することによって角膜形状測
定を行うことを特徴とする検眼装置。
3. An optometric apparatus comprising: a light source for projecting a light beam onto a cornea; and an imaging unit for capturing a corneal reflection image by the light source, wherein the corneal shape is measured using the corneal reflection image.
A corneal shape measurement light source provided around the measurement optical system, and a corneal shape measurement light source and a position measurement light source having a different wavelength,
Through two optical paths that do not transmit the light beam from the corneal shape measurement light source but transmit the light beam from the position measurement light source,
The corneal reflection image of the position measurement light source is separated and formed at the center of the corneal reflection image of the corneal shape measurement light source, and both the corneal reflection images of the light sources are projected on the imaging means, and these images are displayed. An optometric apparatus characterized in that a corneal shape is measured by storing and calculating a signal.
【請求項4】 光源の光束を角膜に投影する光源と、該
光源による角膜反射像を検出するエリアアレイセンサと
を有し、前記角膜反射像を用いて角膜形状を測定する検
眼装置において、前記光源は複数個の点状光源を大きさ
の異なる同心の複数の円周状に配列し、該光源の角膜反
射像の各円周の径方向の間隔を隣接する列の円周上の光
源像の間隔よりも広くしたことを特徴とする検眼装置。
4. An optometric apparatus, comprising: a light source for projecting a light beam of a light source onto a cornea; and an area array sensor for detecting a corneal reflection image by the light source, wherein the corneal shape is measured using the corneal reflection image. The light source is composed of a plurality of point light sources arranged in a plurality of concentric circles of different sizes, and a light source image on the circumference of a row adjacent to the corneal reflection image of the light source at a radial interval of each circumference. An optometric apparatus characterized in that the interval is wider than the interval between the two.
JP29995999A 1999-10-21 1999-10-21 Eye examination device Pending JP2001112715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29995999A JP2001112715A (en) 1999-10-21 1999-10-21 Eye examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29995999A JP2001112715A (en) 1999-10-21 1999-10-21 Eye examination device

Publications (1)

Publication Number Publication Date
JP2001112715A true JP2001112715A (en) 2001-04-24

Family

ID=17879045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29995999A Pending JP2001112715A (en) 1999-10-21 1999-10-21 Eye examination device

Country Status (1)

Country Link
JP (1) JP2001112715A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013813A1 (en) * 2003-07-23 2005-02-17 Technovision Gmbh Gesellschaft Für Die Entwicklung Medizinischer Technologien Videokeratoscope
JP2005211631A (en) * 2004-01-29 2005-08-11 Tomey Corporation Timing to start measurement in ophthalmologic apparatus
JP2005266868A (en) * 2004-03-16 2005-09-29 National Univ Corp Shizuoka Univ Method for detecting direction of head part using pupil and nostril
US7874701B2 (en) 2001-09-07 2011-01-25 Litepanels, LLC Lighting apparatus with adjustable lenses or filters
JP2011517347A (en) * 2007-11-27 2011-06-02 ウェイヴフロント・バイオメトリック・テクノロジーズ・ピーティーワイ・リミテッド Biometric authentication using eyes
US7972022B2 (en) 2001-09-07 2011-07-05 Litepanels Ltd. Stand-mounted light panel for natural illumination in film, television or video
CN107569371A (en) * 2017-10-19 2018-01-12 石家庄王明昌视觉科技有限公司 A kind of trainer of vision, vestibular sensation and proprioceptive sensation
JP2020011088A (en) * 2012-09-28 2020-01-23 カール ツアイス メディテック アクチエンゲゼルシャフト Device for reliably determining biometric measurement variables of whole eye
JP2021520280A (en) * 2018-04-04 2021-08-19 アストン ビジョン サイエンシーズ リミテッド Ophthalmic equipment
JP7446115B2 (en) 2019-01-21 2024-03-08 オクルス オプティクゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of testing eyes and vision testing system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025417B2 (en) 2001-09-07 2011-09-27 Litepanels Llc Camera-mounted dimmable lighting apparatus
US8506125B2 (en) 2001-09-07 2013-08-13 Litepanels, LLC Lighting apparatus with adjustable lenses or filters
US8540383B2 (en) 2001-09-07 2013-09-24 Litepanels Ltd. Flexible strip with light elements for providing illumination suitable for image capture
US7874701B2 (en) 2001-09-07 2011-01-25 Litepanels, LLC Lighting apparatus with adjustable lenses or filters
US9097957B2 (en) 2001-09-07 2015-08-04 Litepanels, Ltd Versatile lighting apparatus and associated kit
US7972022B2 (en) 2001-09-07 2011-07-05 Litepanels Ltd. Stand-mounted light panel for natural illumination in film, television or video
WO2005013813A1 (en) * 2003-07-23 2005-02-17 Technovision Gmbh Gesellschaft Für Die Entwicklung Medizinischer Technologien Videokeratoscope
JP2005211631A (en) * 2004-01-29 2005-08-11 Tomey Corporation Timing to start measurement in ophthalmologic apparatus
JP2005266868A (en) * 2004-03-16 2005-09-29 National Univ Corp Shizuoka Univ Method for detecting direction of head part using pupil and nostril
JP2011517347A (en) * 2007-11-27 2011-06-02 ウェイヴフロント・バイオメトリック・テクノロジーズ・ピーティーワイ・リミテッド Biometric authentication using eyes
JP2020011088A (en) * 2012-09-28 2020-01-23 カール ツアイス メディテック アクチエンゲゼルシャフト Device for reliably determining biometric measurement variables of whole eye
CN107569371A (en) * 2017-10-19 2018-01-12 石家庄王明昌视觉科技有限公司 A kind of trainer of vision, vestibular sensation and proprioceptive sensation
JP2021520280A (en) * 2018-04-04 2021-08-19 アストン ビジョン サイエンシーズ リミテッド Ophthalmic equipment
JP7446115B2 (en) 2019-01-21 2024-03-08 オクルス オプティクゲレーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of testing eyes and vision testing system

Similar Documents

Publication Publication Date Title
EP2166923B1 (en) System and method for measuring corneal topography
US6116738A (en) Corneal topographer with central and peripheral measurement capability
US7677727B2 (en) Eye refractive power measurement apparatus
JPH11137520A (en) Ophthalmologic measuring instrument
JP3630884B2 (en) Ophthalmic examination equipment
JP5301908B2 (en) Eye refractive power measuring device
JP2002051982A (en) Ophthalmologic instrument
JPH11104082A (en) Ophthalmic device
JP2001112715A (en) Eye examination device
JP5601614B2 (en) Eye refractive power measuring device
JP3870079B2 (en) Perimeter
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JP3206936B2 (en) Eye refractometer
JP2614324B2 (en) Corneal shape measuring device
JPH06121773A (en) Ophthalmology refractometer
JPH01242029A (en) Positioning apparatus of ophthalmic machines
JP2003038442A (en) Cornea shape measuring device
JP2001231753A (en) Opthalmometer
JPH09276224A (en) Ophthalmic device
JPH0898802A (en) Cornea shape measuring instrument
JPH0975306A (en) Cornea form measuring instrument
JP2001238853A (en) Ophthalmoscopy device
JPH06335453A (en) Ocular refractometer
JP2001258841A (en) Ophthalmoscopic instrument
JPH0554326B2 (en)