JP2001110783A - Apparatus and method for plasma treatment - Google Patents

Apparatus and method for plasma treatment

Info

Publication number
JP2001110783A
JP2001110783A JP28914699A JP28914699A JP2001110783A JP 2001110783 A JP2001110783 A JP 2001110783A JP 28914699 A JP28914699 A JP 28914699A JP 28914699 A JP28914699 A JP 28914699A JP 2001110783 A JP2001110783 A JP 2001110783A
Authority
JP
Japan
Prior art keywords
plasma processing
processing apparatus
plasma
magnetic field
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28914699A
Other languages
Japanese (ja)
Other versions
JP2001110783A5 (en
Inventor
Katanobu Yokogawa
賢悦 横川
Nobuyuki Negishi
伸幸 根岸
Masaru Izawa
勝 伊澤
Yoshinori Momoi
義典 桃井
Shinichi Taji
新一 田地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28914699A priority Critical patent/JP2001110783A/en
Publication of JP2001110783A publication Critical patent/JP2001110783A/en
Publication of JP2001110783A5 publication Critical patent/JP2001110783A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment device, realizing high density plasma generation, working a sample with a large aperture at high speed and an activated species control function required for work selectivity and shape controllability, and realizing high speed and highly accurate etching. SOLUTION: A UHF band electromagnetic wave from 300 to 1,000 MHz is supplied from a plate facing a wafer, and a plasma is formed by a mutual operation with a magnetic field. The formation of the magnetic field controls an electron cyclotron resonance magnetic field face near a plate face and controls the distribution of a plasma. The component in a direction parallel to the plate face is given to the magnetic field, and the magnetic field is changed stepwise. Thus, highly efficient discharge and uniform plasma generation are realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造フ゜
ロセス、特にリソク゛ラフィイ技術によりハ゜ターニンク゛された半導体基板
上の材料をハ゜ターニンク゛形状に沿って精密に浸食するエッチンク゛
技術に関わり、その中でも特にフ゜ラス゛マを用いたト゛ライエッチンク
゛技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for manufacturing a semiconductor device, and more particularly to an etching technique for precisely eroding a material on a semiconductor substrate which has been patterned by a lithography technique, in accordance with the pattern of the pattern. It is related to the technology of the training.

【0002】[0002]

【従来の技術】従来の半導体装置の製造工程で用いられ
るフ゜ラス゛マ処理装置は、例えば、エッチンク゛については「日立評
論、Vol.76、No.7、(1994)、55〜58頁」に記載されている有
磁場マイクロ波フ゜ラス゛マエッチンク゛装置がある。有磁場マイクロ波フ゜ラス
゛マエッチンク゛装置は空心コイルで発生させた磁場と立体回路を
介して真空容器内に導入されるマイクロ波領域の電磁波で気
体をフ゜ラス゛マ化している。この従来装置では、低カ゛ス圧で高
いフ゜ラス゛マ密度が得られることから、高精度かつ高速で試
料の加工を行うことができる。さらに、例えば、「Appl.Ph
ys.Lett.、Vol.62、No.13、(1993)、1469ー1471頁」には永久
磁石による局所磁場を用いる有磁場マイクロ波フ゜ラス゛マエッチンク゛
装置が報告されている。この装置では磁場を永久磁石に
より形成するため装置コスト及び消費電力共に上記従来装
置に比べ格段に低くすることができる。また、特開平3ー1
22294号公報には100MHzから1GHzの高周波にによりフ゜ラス゛
マを生成市、ミラー磁場を用いて効率よくエッチンク゛することに
ついて開示されている。さらに、特開平6ー224155号公報
には、櫛状アンテナから100から500MHzの高周波をかけてフ゜ラス
゛マを生成し、大口径チャンハ゛内で均一なフ゜ラス゛マを形成するこ
とが示されている。
2. Description of the Related Art A conventional plasma processing apparatus used in a manufacturing process of a semiconductor device is described, for example, in "Hitachi Review, Vol. 76, No. 7, (1994), pp. 55-58" for etching. There is a magnetic field microwave plasma machinking device. The magnetic field microwave plasma etching device converts a gas into a plasma using a magnetic field generated by an air-core coil and an electromagnetic wave in a microwave region introduced into a vacuum vessel through a three-dimensional circuit. In this conventional apparatus, since a high plasma density can be obtained at a low gas pressure, the sample can be processed with high accuracy and at high speed. Further, for example, "Appl.Ph
ys. Lett., Vol. 62, No. 13, (1993), pp. pp. 1469-1471 ", reports a magnetic field microwave plasma machining apparatus using a local magnetic field by a permanent magnet. In this device, since the magnetic field is formed by the permanent magnet, both the device cost and the power consumption can be significantly reduced as compared with the above-mentioned conventional device. In addition, JP-A-3-3-1
Japanese Patent No. 22294 discloses that a plasma is generated at a high frequency of 100 MHz to 1 GHz, and that etching is efficiently performed using a mirror magnetic field. Further, Japanese Patent Application Laid-Open No. 6-224155 discloses that a plasma is generated by applying a high frequency of 100 to 500 MHz from a comb antenna to form a uniform plasma within a large-diameter chamber.

【0003】また特にシリコン酸化膜加工用としては狭電極
平行平板型(以下「狭電極型」という)の装置が実用化され
ている。狭電極型装置は1.5cmから3cm程度の間隔の平行
平板間に十数から数十MHzの高周波を印加し、フ゜ラス゛マを形
成している。狭電極型装置は原料カ゛ス圧力が数十mTorr領
域で用いられる。この狭電極型は比較的安定な酸化膜エッ
チンク゛特性が長期にわたって得られるという特徴をもって
いる。
In particular, a narrow electrode parallel plate type (hereinafter referred to as "narrow electrode type") apparatus has been put to practical use for processing a silicon oxide film. In the narrow electrode type device, a high frequency of tens to several tens of MHz is applied between parallel flat plates having an interval of about 1.5 cm to 3 cm to form a plasma. The narrow electrode type apparatus is used when the source gas pressure is in the range of several tens mTorr. This narrow electrode type has a feature that relatively stable oxide film etching characteristics can be obtained for a long period of time.

【0004】また、特開平7ー307200号公報には、導入波長
の1/4の長さを有する放射状のアンテナから300MHz程度高周
波をかけることについて記載されている。
Japanese Patent Application Laid-Open No. 7-307200 describes that a high frequency of about 300 MHz is applied from a radial antenna having a length of 1/4 of the introduced wavelength.

【0005】[0005]

【発明が解決しようとする課題】上記永久磁石による局
所磁場を用いる有磁場マイクロ波エッチンク゛装置では、小型の永
久磁石を複数使用している為磁場領域フ゜ラス゛マが主に生成
されている領域でのフ゜ラス゛マの均一性が悪く、従って被加
工試料をフ゜ラス゛マ生成領域から離した位置に設置仕手、拡
散によってフ゜ラス゛マを均一化して使用している。このた
め、被加工試料位置では十分なフ゜ラス゛マ密度が得られず、十
分な加工速度が得られないという問題ある。
In the magnetic field microwave etching apparatus using the local magnetic field generated by the permanent magnet, since a plurality of small permanent magnets are used, the magnetic field plasma is generated mainly in a region where the magnetic field region plasma is mainly generated. Therefore, the sample to be processed is set at a position away from the plasma generation region, and the plasma is uniformly used by diffusion and diffusion. Therefore, there is a problem that a sufficient plasma density cannot be obtained at the position of the sample to be processed, and a sufficient processing speed cannot be obtained.

【0006】また、特開平3-122294号公報や特開平6-224
155号公報に記載のようなECR型の装置では、有磁場マイクロ
波フ゜ラス゛マ源には試料に対面する位置から電磁波を導入す
るため、試料対面位置には絶縁体しか設置できない。従
って、被加工試料に高周波ハ゛イアスを印加する場合等に必要
なアース電極を理想的な位置である被加工試料と対面する
位置設置できず、ハ゛イアスの不均一が生じるという問題もあ
った。被加工試料の加工特性にはフ゜ラス゛マ中の活性種が重
要な影響を与える。この活性種は真空容器壁の材質とに
影響される特に被加工試料に対面する位置の壁材とその
距離は被加工試料の加工性能に大きく影響する。言い換
えれば被加工試料に対向する位置の材料とその距離で活
性種を制御できることになる。しかし、従来ECR型は被加
工試料に対面する位置に絶縁体(現実には石英あるいは
酸化アルミニュウム)しか配置できないため、活性種を理想的な
状態に制御できない。
Further, Japanese Patent Application Laid-Open Nos. Hei 3-122294 and Hei 6-224
In an ECR-type apparatus as described in Japanese Patent Publication No. 155, an electromagnetic wave is introduced into a magnetic field microwave plasma source from a position facing the sample, so that only an insulator can be installed at the position facing the sample. Therefore, a ground electrode required for applying a high-frequency bias to a sample to be processed cannot be placed at a position facing the sample to be processed, which is an ideal position. The active species in the plasma greatly affects the processing characteristics of the sample to be processed. This active species is affected by the material of the vacuum vessel wall, and particularly the wall material at a position facing the sample to be processed and its distance greatly affect the processing performance of the sample to be processed. In other words, the active species can be controlled by the material at the position facing the sample to be processed and its distance. However, in the conventional ECR type, since only an insulator (actually, quartz or aluminum oxide) can be arranged at a position facing the sample to be processed, the active species cannot be controlled to an ideal state.

【0007】狭電極型装置では、先のECR型に比べ被加工
試料の対向部に電極がある為、被加工試料のハ゛イアスに体す
るアース電極の問題および対向部材質により活性種を制御
できない問題が解決される。しかし、狭電極型は比較的
使用カ゛ス圧力が高いため、被加工試料に入射するイオンの指
向性が不均一になり、微細加工性が悪く、また電極間隔が
30mm程度以下のため、高流量カ゛ス導入時に被加工試料面内
で圧力差が大きくなってしまう問題を有する。この問題
は被加工試料径の拡大に伴い顕著となり、次世代の300mm
ウエハ以上の加工では本質的な課題となる。
[0007] In the narrow electrode type apparatus, there is an electrode at the opposed portion of the sample to be processed, as compared with the ECR type described above. Is resolved. However, the narrow electrode type uses a relatively high gas pressure, so that the directivity of ions incident on the sample to be processed is not uniform, the fine processability is poor, and the electrode spacing is small.
Since it is about 30 mm or less, there is a problem that the pressure difference becomes large in the surface of the sample to be processed when introducing a high flow rate gas. This problem becomes remarkable with the increase in the diameter of the sample to be processed.
This is an essential issue in processing over wafers.

【0008】また特開平6ー224155号公報に記載のような
櫛状アンテナや特開平7ー307200号公報に記載のような放射状
のアンテナでは、アンテナを利用していない場合に比べればフ゜ラス゛
マの均一性が上がるが、それでも十分な均一性を得ること
ができない。
In a comb antenna as disclosed in JP-A-6-224155 or a radial antenna as described in JP-A-7-307200, the uniformity of the plasma is greater than when no antenna is used. However, sufficient uniformity cannot be obtained.

【0009】本発明の目的は、低消費電力で、被加工試料
の加工面積が大きい場合にも均一性の高い有磁場フ゜ラス゛マ
を発生させ、かつ微細加工性に優れ、高選択比、高アスヘ゜クト
比の加工が可能で、かつ高速度の加工処理ができるフ゜ラス゛
マ処理装置を提供することにある。特にフ゜ラス゛マ内の活性
種をフ゜ラス゛マ生成条件とは独立に制御し、高精度な活性種
制御を実現することで高い表面処理性能を実現すると同
時に、磁場の制御によりフ゜ラス゛マ分布を制御しフ゜ロセス条件に
あった最適フ゜ラス゛マ状態を実現する装置および方法を提供
する。
SUMMARY OF THE INVENTION It is an object of the present invention to generate a magnetic field plasma with high power uniformity even when a processing area of a sample to be processed is large, and to have excellent fine workability, a high selectivity and a high aspect ratio. It is an object of the present invention to provide a plasma processing apparatus which can perform high-speed processing at high speed. In particular, the active species in the plasma are controlled independently of the plasma generation conditions, and high-precision active species control is achieved to achieve high surface treatment performance, and at the same time, the distribution of the plasma is controlled by controlling the magnetic field to meet the process conditions. An apparatus and a method for realizing an optimum plasma state are provided.

【0010】[0010]

【課題を解決するための手段】被加工試料に対面する位
置にフ゜ラス゛マ励起用電磁波を導入する平面板を設置し、か
つ該平面板に第2高周波を印可し、さらに平面板と被加工
試料間の距離を30mmから被加工試料径の1/2とする構造
とした。フ゜ラス゛マ励起には300から1000MHzの電磁波を用
い、第2周波数には50kHzから30MHzを用いる。またフ゜ラス゛マ
の生成を平面板から導入する電磁波と磁場形成手段で形
成する磁場の相互作用により形成し、電子サイクロトロン共鳴磁
場面を平面板近傍で制御できる構造とした。また平面板
近傍での電子サイクロトロン共鳴磁場分布の制御法(詳細は「発
明の実施の形態」に記載)を確立したことにより、フ゜ラス゛マ
分布を任意にコントロールできフ゜ロセス条件に合わせた最適フ゜ラス゛
マ生成を実現することができる。
[Means for Solving the Problems] A flat plate for introducing an electromagnetic wave for exciting a plasma is installed at a position facing a sample to be processed, and a second high frequency is applied to the flat plate. Was set to a distance from 30 mm to 1/2 of the diameter of the sample to be processed. Electromagnetic waves of 300 to 1000 MHz are used for plasma excitation, and 50 kHz to 30 MHz are used for the second frequency. In addition, the generation of the plasma is formed by the interaction between the electromagnetic wave introduced from the plane plate and the magnetic field formed by the magnetic field forming means, so that the structure of the electron cyclotron resonance magnetic field can be controlled near the plane plate. In addition, by establishing a method for controlling the electron cyclotron resonance magnetic field distribution near the plane plate (details are described in the "Embodiments of the Invention"), it is possible to control the plasma distribution arbitrarily and realize the optimal plasma generation according to the process conditions. can do.

【0011】また平面板の面に対して平行方向の磁場成
分を用いることで平面板から導入する電磁波と磁場の相
互作用効率をたかめ、より高効率なフ゜ラス゛マ生成を可能と
し、高密度なフ゜ラス゛マなフ゜ラス゛マを生成することで高速なフ゜
ラス゛マ処理を実現する。この時、平面板の面に平行方向の
磁場成分を時間的に変化せさることで均一化も同時に達
成する。
Further, by using a magnetic field component in a direction parallel to the plane of the plane plate, the interaction efficiency between the electromagnetic wave introduced from the plane plate and the magnetic field is enhanced, and a more efficient plasma generator can be generated, and a high-density plasma generator can be obtained. A high-speed plasma processing is realized by generating a plasma. At this time, uniformity is also achieved by changing the magnetic field component in the direction parallel to the plane of the flat plate with time.

【0012】以上の構成により、低磁場低ランニンク゛コストで高
密度フ゜ラス゛マを形成でき、高速で微細な加工が可能とな
る。さらにフ゜ラス゛マの生成に用いる磁場を平面板の近傍で
制御することでフ゜ラス゛マ分布を精密に制御でき、大口径な
被加工試料に対しても最適なフ゜ラス゛マ分布を形成できる。
また平面板に第2の周波数を付加し、平面板と被加工試料
の間隔を被加工試料または平面板のいずれか小さい方の
径の1/2以下とすることで、フ゜ラス゛マ内の活性種を制御で
き、被加工試料面上での反応を高精度に制御することで
高選択比と微細加工性を両立したフ゜ラス゛マ処理装置が可能
となる。
With the above configuration, a high-density plasma can be formed at a low magnetic field and a low running cost, and fine processing can be performed at high speed. Further, by controlling the magnetic field used for generating the plasma near the flat plate, the distribution of the plasma can be precisely controlled, and the optimum plasma distribution can be formed even for a large-diameter work piece.
Also, by adding a second frequency to the flat plate and setting the distance between the flat plate and the sample to be processed to be 1/2 or less of the smaller diameter of the sample to be processed or the flat plate, active species in the plasma are reduced. By controlling the reaction on the surface of the sample to be processed with high precision, a plasma processing apparatus that achieves both high selectivity and fine workability can be realized.

【0013】[0013]

【発明の実施の形態】本発明による実施の形態を以下で
説明する。
Embodiments of the present invention will be described below.

【0014】本発明による実施の形態を図1に示す。図1
の実施の形態は本発明における装置の基本的構成であ
り、カ゛ス導入手段1と真空排気手段を有する真空容器2に電
磁石3が配置されており、同軸ケーフ゛ル4により平面板5に導
入される電磁波と該電磁石3による磁場の相互作用で真
空容器2内に導入されたカ゛スをフ゜ラス゛マ化し、被加工試料6を
処理する。ここで電磁波放射に用いる平面板5は、特願平
8-300039、特願平10-176926または特願平11-066018に記
されている平面板と同等である。本実施の形態における
平面板5にはフ゜ラス゛マ形成用の450MHz電源7と、フイルタ8を介
し、13.56MHz電源9の2つの周波数が印可されている。磁
場の大きさは、平面板5と被加工試料6間のフ゜ラス゛マ生成領
域で、電子サイクロトロン共鳴を満足する大きさが必要であり、
図1の実施の形態では450MHzの電磁波を用いているため、
100-200カ゛ウスの磁場強度である。被加工試料6は8インチ径で
あり、該被加工試料と平面板5の間隔は7cmとなってい
る。平面板5の表面はシリコン10で形成されており、また該シリ
コン10の表面に形成した複数の孔から原料カ゛スが真空容器2
内に導入される構成となっている。本実施の形態では平
面板5の径を330mmとした。13.56MHz電源9の電磁波は平
面板5に配置されたシリコン10の表面とフ゜ラス゛マの間で形成さ
れる電位を調節する機能を持つ。該13.56MHz電源9の出
力を調節することでシリコン表面の電位が任意に調節でき、シ
リコン10とフ゜ラス゛マ内活性種の反応が制御できる。また本発
明では平面板5上に配置されたシリコン10と被加工試料6の間
隔を被加工試料径の1/2以下である100から30mmで調節で
きる構造となっている。該間隔の制御は被加工試料台11
の上下により行う。
FIG. 1 shows an embodiment according to the present invention. Figure 1
The embodiment is a basic configuration of the apparatus according to the present invention, in which an electromagnet 3 is arranged in a vacuum vessel 2 having a gas introducing means 1 and a vacuum exhaust means, and an electromagnetic wave introduced into a plane plate 5 by a coaxial cable 4. The gas introduced into the vacuum vessel 2 is converted into a plasma by the interaction of the magnetic field generated by the electromagnet 3 and the sample 6 is processed. Here, the flat plate 5 used for electromagnetic wave radiation
This is equivalent to the flat plate described in Japanese Patent Application No. 10-176926 or Japanese Patent Application No. 11-066018. Two frequencies of a 450 MHz power supply 7 for forming a plasma wave and a 13.56 MHz power supply 9 are applied to the plane plate 5 via a filter 8 in the present embodiment. The magnitude of the magnetic field must be large enough to satisfy electron cyclotron resonance in the plasma generation region between the plane plate 5 and the sample 6 to be processed.
Since the embodiment of FIG. 1 uses an electromagnetic wave of 450 MHz,
100-200 gauss field strength. The sample 6 to be processed has an 8-inch diameter, and the distance between the sample to be processed and the flat plate 5 is 7 cm. The surface of the flat plate 5 is formed of silicon 10, and the raw material gas is supplied from a plurality of holes formed in the surface of the silicon 10 to the vacuum vessel 2.
It is configured to be introduced inside. In the present embodiment, the diameter of the flat plate 5 is set to 330 mm. The electromagnetic wave of the 13.56 MHz power supply 9 has a function of adjusting the potential formed between the surface of the silicon 10 arranged on the flat plate 5 and the plasma. By adjusting the output of the 13.56 MHz power supply 9, the potential of the silicon surface can be arbitrarily adjusted, and the reaction between the silicon 10 and the active species in the plasma can be controlled. Further, the present invention has a structure in which the distance between the silicon 10 arranged on the flat plate 5 and the sample 6 to be processed can be adjusted from 100 to 30 mm, which is 1/2 or less of the diameter of the sample to be processed. The interval is controlled by the sample
Up and down.

【0015】図2に本実施の形態における磁場の制御方
法についての説明を記す。図2では平面板5の被加工試料
に対面する面を基準として電子サイクロトロン共鳴磁場の等磁
場面分布を示している。電子サイクロトロン共鳴磁場はフ゜ラス゛マ
形成用電磁波の周波数に比例し、本実施の形態ではフ゜ラス゛
マ形成用電磁波に450MHzを用いているので電子サイクロトロン共
鳴磁場は約160カ゛ウスである。図2に示すように平面板5の
被加工試料に対面する面を基準面とし、また平面板5の中
央部を原点としてx軸とy軸を定義する。図3に図2におけ
る平面板中央部での電子サイクロトロン共鳴磁場のy軸上での動
きに対するフ゜ラス゛マ分布の変化を示す。図3に示すように
電子サイクロトロン共鳴磁場をy軸上で原点より-側(被加工試料
側)から+側(平面板上部側)に移動するとフ゜ラス゛マ分布が凹
分布から凸分布に変化する。図2より電子サイクロトロン共鳴磁
場の平面板5に対する相対的位置でフ゜ラス゛マ分布制御が可
能であることが示される。このとき電子サイクロトロン共鳴磁
場のx軸上での分布は、x軸に対して平行からx軸に対して
下方向に凸および上方向に凸の範囲で湾曲状でも同様の
効果がある。その湾曲面の大きさが、y軸上での電子サイクロ
トロン共鳴磁場位置と平面板の中心部からx軸方向に150mm
の位置での電子サイクロトロン共鳴磁場面のy軸上での差が50mm
以内である場合に特にフ゜ラス゛マ分布の制御効果がある。す
なわち電子サイクロトロン共鳴磁場面の湾曲度合いを前記の範
囲とし、図3に示す電子サイクロトロン共鳴磁場面の平面板5面
に対するy軸上での位置を制御することでフ゜ラス゛マ分布を
任意に制御できる。この磁場制御には図1中の電磁石3に
示すように平面板5の上部に平面板5の直径以下の内径を
もつ空心コイルを用いることで達成される。また図1に示す
ように前記の平面板5上部図の電磁石以外に平面板の直
径以上の空心コイルを同時に配置することで、前記記載の
電子サイクロトロン共鳴磁場面の湾曲度合いとそのy軸上での位
置を独立に制御でき、精度の高いフ゜ラス゛マ分布制御が可能
となる。また図1の実施の形態では電磁石のみを用いて
磁場を形成したが、永久磁石および電磁石と永久磁石の
複合で磁場を形成しても前記のような電子サイクロトロン共鳴
磁場面の制御ができれば同様の効果があることはいうま
でもない。
FIG. 2 shows a description of a method for controlling a magnetic field in the present embodiment. FIG. 2 shows the uniform magnetic field distribution of the electron cyclotron resonance magnetic field with reference to the surface of the flat plate 5 facing the sample to be processed. The electron cyclotron resonance magnetic field is proportional to the frequency of the plasma wave forming electromagnetic wave. In the present embodiment, 450 MHz is used for the plasma wave forming electromagnetic wave, so the electron cyclotron resonance magnetic field is about 160 gauss. As shown in FIG. 2, an x-axis and a y-axis are defined with the plane of the flat plate 5 facing the sample to be processed as a reference plane, and the center of the flat plate 5 as an origin. FIG. 3 shows a change in the plasma distribution with respect to the movement on the y-axis of the electron cyclotron resonance magnetic field at the center of the plane plate in FIG. As shown in FIG. 3, when the electron cyclotron resonance magnetic field is moved from the origin on the y-axis from the minus side (the sample side) to the plus side (the upper side of the flat plate), the plasma distribution changes from a concave distribution to a convex distribution. FIG. 2 shows that the plasma distribution can be controlled by the relative position of the electron cyclotron resonance magnetic field to the flat plate 5. At this time, the same effect can be obtained even when the distribution of the electron cyclotron resonance magnetic field on the x-axis is curved in a range from parallel to the x-axis to downwardly convex and upwardly convex to the x-axis. The size of the curved surface is 150 mm in the x-axis direction from the position of the electron cyclotron resonance magnetic field on the y-axis and the center of the flat plate.
The difference on the y-axis of the electron cyclotron resonance magnetic field plane at the position
In particular, there is an effect of controlling the plasma distribution. That is, the curvature degree of the electron cyclotron resonance magnetic field surface is set in the above-mentioned range, and the position of the electron cyclotron resonance magnetic field surface on the y-axis with respect to the plane plate 5 shown in FIG. 3 can be controlled arbitrarily. This magnetic field control is achieved by using an air-core coil having an inner diameter equal to or less than the diameter of the flat plate 5 above the flat plate 5 as shown by the electromagnet 3 in FIG. Also, as shown in FIG. 1, by simultaneously arranging an air-core coil having a diameter equal to or larger than the plane plate in addition to the electromagnets in the top view of the plane plate 5, the degree of curvature of the electron cyclotron resonance magnetic field surface described above and its y-axis Can be controlled independently, and highly accurate plasma distribution control can be performed. In the embodiment of FIG. 1, the magnetic field is formed by using only the electromagnets. However, even if the magnetic field is formed by the combination of the permanent magnet and the electromagnet and the permanent magnet, the same applies if the electron cyclotron resonance magnetic field surface can be controlled as described above. It goes without saying that it is effective.

【0016】図4に本発明の第2の実施の形態を示す。図
1の実施の形態では、磁場の向きがおおむね平面板5の面
に対して垂直かそれに近い角度である。平面板5近傍の
電磁波電界ベクトルは平面板面にほぼ垂直であるため、
図1の実施の形態では磁場と電磁波の相互作用効率が低
いという問題がある。図4の実施の形態はこの図1の実施
の形態に対する問題を解決する構成である。図4の実施
の形態では、磁場発生手段として図5に詳細を示す電磁
石を用いた。図4をよび図5の実施の形態における動作を
説明する。図5の電磁石には星型のヨークにコイル12、13、14が
3個設置されている。各コイル12,13、14が設置されているヨー
クは120度づつの角度で放射状に配置されている。各コイル
には交流電流がそれぞれに供給され、かつそれぞれの交
流電流は位相が120度づつずれている。すなわち3相交流
電流の各相の電流が図5に示すコイル12、13,14にそれぞれ供
給される構成である。この電磁石により発生する磁場の
概略を図6に示す。各コイル12、13、14によるそれぞれの磁場
は図6に示す中央部で合成され、交流電流の周波数で回
転する回転磁場となる。この回転磁場を平面板5の近傍
で生成する。またこの回転磁場の磁場ベクトルは平面板
5の面に並行方向となる。これにより平面板面に対し磁
場が平行方向となり、電磁波との相互作用効率を高める
ことができる。平面板面に平行な磁場の場合、磁力線方
向にフ゜ラス゛マが拡散してしまい、被加工試料6上で均一なフ
゜ラス゛マが得られない場合があるが、図4の実施の形態では
平面板面に平行な磁場ベクトルが高速で回転するため被
加工試料6上では均一化なフ゜ラス゛マを得ることができる。
図4の実施の形態では平面板5近傍での回転磁場形成に3
相交流電流による電磁石を用いたが、図7に示すように9
0度の間隔で真空容器周辺に配置された2極の電磁石にそ
れぞれ位相が90度異なる交流電流を流して得られる合成
磁場でも同様の回転磁場が得られ、同様の効果がある。
また電磁石を用いずに永久磁石により平面板面に対する
平行な磁場を形成し、かつ機械的に該永久磁石を移動さ
せることでも前記の回転磁界と同様の効果を低コストで得
ることができる。ただし、機械的に永久磁石を移動する
場合は前記の回転磁界と異なり、その変化速度が遅いた
め、ある一定の不均一な状態の時間が比較的長くなるた
め被加工試料に電気的損傷を誘起する場合が有りうる。
FIG. 4 shows a second embodiment of the present invention. Figure
In the first embodiment, the direction of the magnetic field is substantially perpendicular to or close to the plane of the flat plate 5. Since the electromagnetic wave electric field vector near the plane plate 5 is almost perpendicular to the plane plate surface,
The embodiment of FIG. 1 has a problem that the interaction efficiency between the magnetic field and the electromagnetic wave is low. The embodiment of FIG. 4 is a configuration that solves the problem of the embodiment of FIG. In the embodiment of FIG. 4, an electromagnet whose details are shown in FIG. 5 is used as the magnetic field generating means. The operation in the embodiment of FIG. 5 will be described with reference to FIG. The electromagnet of FIG. 5 has coils 12, 13, and 14 in a star-shaped yoke.
Three are installed. The yokes on which the coils 12, 13, and 14 are installed are arranged radially at an angle of 120 degrees. An alternating current is supplied to each coil, and the phases of the respective alternating currents are shifted by 120 degrees. That is, the current of each phase of the three-phase alternating current is supplied to the coils 12, 13, and 14 shown in FIG. FIG. 6 shows an outline of the magnetic field generated by this electromagnet. The respective magnetic fields generated by the coils 12, 13, and 14 are combined at the center shown in FIG. 6, and become a rotating magnetic field that rotates at the frequency of the alternating current. This rotating magnetic field is generated near the plane plate 5. The magnetic field vector of this rotating magnetic field is a flat plate
It is parallel to the surface of 5. As a result, the magnetic field becomes parallel to the flat plate surface, and the efficiency of interaction with the electromagnetic wave can be increased. In the case of a magnetic field parallel to the plane plate surface, the plasma is diffused in the direction of the magnetic force lines, and a uniform plasma may not be obtained on the workpiece 6 to be processed.In the embodiment of FIG. Since the magnetic field vector rotates at a high speed, a uniform plasma can be obtained on the sample 6 to be processed.
In the embodiment shown in FIG.
Although an electromagnet using phase alternating current was used, as shown in FIG.
A similar rotating magnetic field can be obtained even with a synthetic magnetic field obtained by passing alternating currents having phases different by 90 degrees from each other to two-pole electromagnets arranged around the vacuum vessel at intervals of 0 degree, and have the same effect.
Alternatively, the same effect as the above-described rotating magnetic field can be obtained at a low cost by forming a magnetic field parallel to the flat plate surface using a permanent magnet without using an electromagnet and mechanically moving the permanent magnet. However, when the permanent magnet is moved mechanically, unlike the above-mentioned rotating magnetic field, the rate of change is slow, and the time of a certain non-uniform state is relatively long, so that electrical damage is induced on the sample to be processed. May be done.

【0017】図8に実施の形態3を示す。図4の実施の形
態では平面板5面に対し、磁場ベクトルを平行とするこ
とで電磁波と磁場の相互作用効率を高めることができ
る。ただし、平面板5面に完全に平行な磁場ベクトルの
場合には、フ゜ラス゛マが主にその磁場ベクトル方向に拡散す
るため、被加工試料へのフ゜ラス゛マの到達効率が悪い場合が
ある。特に平面板5と被加工試料6の間隔が比較的広い場
合にはその損失は大きい。その問題を解決するための実
施の形態が図8である。図8の実施の形態では図1の電磁
石(平面板5の上部に配置した電磁石)と図4の回転磁界を
形成する3相電流の電磁石を同時に用いている。この磁
場構成により、アンテナ中心部での合成磁場ベクトルは平面
板5面に対して平行だけでなく被加工試料方向の成分を
持って回転磁場を作ることになり、図4の実施の形態に
おけるのと同等な電磁波と磁場の相互作用効率を得るこ
とができるのと同時に、被加工試料方向へのフ゜ラス゛マの輸
送を効率化できる。よって図8の実施の形態により、高
いイオン密度を被加工試料上で実現でき、高速な加工を達
成することができる。
FIG. 8 shows a third embodiment. In the embodiment of FIG. 4, the interaction efficiency between the electromagnetic wave and the magnetic field can be increased by making the magnetic field vector parallel to the plane of the flat plate 5. However, in the case of a magnetic field vector completely parallel to the plane surface of the flat plate 5, since the plasma mainly diffuses in the direction of the magnetic field vector, the arrival efficiency of the plasma to the workpiece may be poor. In particular, when the distance between the flat plate 5 and the workpiece 6 is relatively large, the loss is large. FIG. 8 shows an embodiment for solving the problem. In the embodiment of FIG. 8, the electromagnet of FIG. 1 (the electromagnet disposed above the flat plate 5) and the electromagnet of the three-phase current forming the rotating magnetic field of FIG. 4 are used simultaneously. Due to this magnetic field configuration, the resultant magnetic field vector at the center of the antenna creates a rotating magnetic field not only in parallel to the plane of the flat plate 5 but also with a component in the direction of the sample to be processed. The same efficiency of interaction between electromagnetic waves and magnetic fields can be obtained, and the efficiency of transport of the plasma toward the sample to be processed can be improved. Therefore, according to the embodiment of FIG. 8, a high ion density can be realized on a sample to be processed, and high-speed processing can be achieved.

【0018】次に図1から図8の実施の形態におけるフ゜ラス
゛マでの実際の被加工試料処理についての効果を説明す
る。フ゜ラス゛マ中の活性粒子と被加工試料6または平面板5上
のシリコン10での反応で生成される反応生成物は真空容器内
に拡散する。しかし、被加工試料6またはシリコン10の表面付
近は反応生成物が気相中分子と衝突することによりだだ
よい、実質的に表面反応の影響を非常に強く受けた気相
状態となる。その領域は図9に示すように、反応する面の
大きさに依存し、ほぼ反応する面の半径となる。よって
被加工試料6とその対面する位置に相当するシリコン10の間
隔を被加工試料6の半径以下とすることで、互いの面での
反応を強く反映させることができる。たとえば原料カ゛ス
にフロン系カ゛スを用いシリコン酸化膜のエッチンク゛処理を行う場合、フ
ロン系カ゛スの解離種であるフッ素ラシ゛カルがエッチンク゛の特性(特にエ
ッチンク゛選択性)を低下させる。しかし、本発明の構成とす
ることで、シリコン10でフッ素を反応させ消費することで被加
工試料6に入射するフッ素ラシ゛カルを大幅に低減できる。シリコン
10と被加工試料6の間隔を被加工試料6の半径以上にする
とこのフッ素ラシ゛カルの低減効果が小さくなり、効果は急激に
低下する。また該間隔を小さくすることはシリコン10と被加
工試料6に囲まれたフ゜ラス゛マのホ゛リュウムを小さくすることに
なる。先のフロン系カ゛スのフ゜ラス゛マによるフッ素ラシ゛カルの発生絶
対量はフ゜ラス゛マのホ゛リュウムに比例するのに対し、シリコン10でのフ
ッ素の消費はシリン10の面積および該シリコン10に印可されるハ゛
イアス条件にのみ依存する。よって間隔を小さくするとフッ
素の発生絶対量は抑制されるのに対し、シリコン10での消費
量は不変とすることができる。結果として被加工試料6
に入射するフッ素ラシ゛カルを低減できる。この効果も間隔を
被加工試料径の1/2以下とすることによる、フッ素ラシ゛カルの
低減効果につながる。以上の活性種制御機能は間隔と平
面板5に重畳する13.56MHzの電力で決まり、フ゜ラス゛マ生成条
件(例えば放電電力、カ゛ス圧力、流量等)と独立に制御でき
るのでフ゜ロセスの制御範囲を大幅に広げることが可能とな
る。また平面板5と被加工試料の間隔を30mm以下とする
と平面板5表面から供給するカ゛スの被加工試料面内圧力分
布が劣化してしまう。この劣化は被加工試料径の拡大と
共に無視できなくなり、次世代の300mmウエハの加工では本
質的な問題となる。よって平面板5と被加工試料6との間
隔は30mmから被加工試料径の1/2以下(φ200ウエハであれば
100mm、φ300ウエハであれば150mm)で良好な特性が得られ
る。シリコン酸化膜エッチンク゛では深く微細な孔を高速でかつ高
エッチンク゛選択比で加工しなければならない。この深孔での
微細性とエッチンク゛選択比は気相内ラシ゛カル種と入射イオン密度に
より特性が支配され、トレート゛オフの関係にある。よってフ゜ラス
゛マの生成条件と独立に高精度な活性種制御が可能な本発
明は従来にないシリコン酸化膜エッチンク゛特性を実現できる。ま
た平面板5には温度制御機能16が設置されており、シリコン10
の表面反応の時間的変動を低減している。
Next, the effect of the plasma processing in the embodiment shown in FIGS. 1 to 8 on the actual processing of the sample to be processed will be described. The reaction product generated by the reaction between the active particles in the plasma and the silicon 10 on the workpiece 6 or the flat plate 5 diffuses into the vacuum vessel. However, the vicinity of the surface of the sample 6 to be processed or the silicon 10 is brought into a gaseous state substantially affected by the surface reaction, which may be caused by the reaction product colliding with molecules in the gaseous phase. As shown in FIG. 9, the area depends on the size of the reacting surface and is almost the radius of the reacting surface. Therefore, by setting the distance between the sample 6 to be processed and the silicon 10 corresponding to the position facing the sample 6 to be equal to or smaller than the radius of the sample 6 to be processed, it is possible to strongly reflect the reaction between the surfaces. For example, when etching a silicon oxide film using a fluorocarbon gas as a raw material gas, fluorine radicals, which are dissociated species of the fluorocarbon gas, degrade the etching characteristics (particularly, etching selectivity). However, with the configuration of the present invention, fluorine radicals incident on the sample 6 to be processed can be significantly reduced by reacting and consuming fluorine in the silicon 10. silicon
If the distance between 10 and the sample 6 to be processed is greater than the radius of the sample 6 to be processed, the effect of reducing fluorine radicals is reduced, and the effect is sharply reduced. Reducing the distance also reduces the volume of the plasma surrounded by the silicon 10 and the sample 6 to be processed. While the absolute amount of fluorine radicals generated by the fluorocarbon precursor is proportional to the boron of the fluorocarbon, the consumption of fluorine in the silicon 10 depends only on the area of the syringe 10 and the bias conditions applied to the silicon 10. I do. Therefore, when the interval is reduced, the absolute amount of generated fluorine is suppressed, while the consumption of silicon 10 can be kept unchanged. As a result, sample 6
Fluorine radicals incident on the substrate can be reduced. This effect also leads to an effect of reducing fluorine radical by setting the interval to be equal to or less than 1/2 of the diameter of the sample to be processed. The above-mentioned active species control function is determined by the interval and the 13.56 MHz power superimposed on the flat plate 5 and can be controlled independently of the plasma generation conditions (for example, discharge power, gas pressure, flow rate, etc.), thereby greatly expanding the process control range. It becomes possible. If the distance between the flat plate 5 and the sample to be processed is set to 30 mm or less, the pressure distribution in the plane of the sample to be processed of the gas supplied from the surface of the flat plate 5 is deteriorated. This deterioration cannot be ignored with an increase in the diameter of the sample to be processed, and becomes an essential problem in processing a next-generation 300 mm wafer. Therefore, the distance between the flat plate 5 and the sample 6 to be processed is 30 mm to 1/2 or less of the diameter of the sample to be processed (for a φ200 wafer,
Good characteristics can be obtained at 100 mm and 150 mm for a φ300 wafer. In the silicon oxide film etching, deep and fine holes must be formed at high speed and with a high etching ratio. The characteristics of the fineness and etching selectivity in the deep hole are governed by the radioactive species in the gas phase and the incident ion density, and have a relationship of trate-off. Therefore, the present invention, in which active species control can be performed with high accuracy independently of the plasma generation conditions, can realize a silicon oxide film etching characteristic which has not existed conventionally. A temperature control function 16 is installed on the flat plate 5, and the silicon 10
The time variation of the surface reaction is reduced.

【0019】本発明では図1に示中に示す円環状の部材1
2を被加工試料6の周囲に配置している。円環状の部材15
のフ゜ラス゛マに接する面はシリコン16で形成されており、また被
加工試料6に印可するハ゛イアスの一部を分割することで、該シ
リコン16にハ゛イアスが印可される構造となっている。また円環
状の部材15の直下に温度制御機能17が設置されており、
該円環状の部材15の温度を一定化できる構造となってい
る。被加工試料6であるシリコンウエハは通常レシ゛ストマスクに覆われ
ている。被加工試料6表面に入射するフ゜ラス゛マ中の活性種
の量はこのレシ゛ストとの反応に影響される。例えばC4F8に
代表されるフロン系カ゛スのフ゜ラス゛マで発生するフッ素ラシ゛カルはレシ゛
ストと反応することで消費される。この反応により被加工
試料6に実行的に入射するフッ素ラシ゛カルの量が決まり、前記
図9の説明と同様な理由で被加工試料6の中心部と周辺部
ではフッ素ラシ゛カルの量に差が生じてしまう。円環状の部材1
5はその表面反応により被加工試料周辺部で過剰となるフ
ッ素ラシ゛カルを消費し、活性種入射の被加工試料6への均一化
をはかることが可能となる。この円環状の部材表面の反
応は先のハ゛イアス印可機能によるハ゛イアスで調整可能である。
円環状の部材15の被加工試料面に水平方向の幅を、平面
板5と被加工試料6間距離と同じ長さとすることで完全に
被加工試料6面内に入射する活性種を均一化できる。た
だし、実質的には20mm以上の幅で十分効果がある。よっ
て円環状の部材15の幅は平面板5と被加工試料6間距離か
ら20mmが有効範囲となる。また円環状の部材15の被加工
試料6に垂直方向の高さは先の幅とも関係あり、幅を大き
く取るほど高さが低くできる。実質的には高さ0から40m
mの範囲内でその高さに最適な幅を前記の範囲から選
ぶ。図1の実施の形態では円環状の部材15表面の材質をシ
リコンとしたが、他にカーホ゛ン、炭化シリコン、石英、酸化アルミ、アルミニュウ
ムでも制御する活性種の種類により、同等の効果がある。
In the present invention, the annular member 1 shown in FIG.
2 is arranged around the sample 6 to be processed. Toroidal member15
The surface in contact with the plasma is formed of silicon 16, and a bias is applied to silicon 16 by dividing a portion of the bias applied to sample 6 to be processed. In addition, a temperature control function 17 is installed immediately below the annular member 15,
The structure is such that the temperature of the annular member 15 can be kept constant. The silicon wafer which is the sample 6 to be processed is usually covered with a resist mask. The amount of active species in the plasma incident on the surface of the workpiece 6 is affected by the reaction with the resist. For example, fluorine radicals generated from a fluorocarbon gas typified by C4F8 are consumed by reacting with the resin. Due to this reaction, the amount of fluorine radicals effectively incident on the sample 6 to be processed is determined. For the same reason as described with reference to FIG. 9, a difference occurs in the amount of fluorine radicals between the central portion and the peripheral portion of the sample 6 to be processed. I will. Annular member 1
5 consumes excess fluorine radical around the sample to be processed due to the surface reaction, and makes it possible to make the active species incident on the sample to be processed 6 uniform. The reaction on the surface of the annular member can be adjusted by the bias by the bias application function.
By making the horizontal width of the annular member 15 on the surface of the sample to be processed equal to the distance between the flat plate 5 and the sample 6 to be processed, active species completely incident on the surface of the sample 6 to be processed are made uniform. it can. However, in practice, a width of 20 mm or more is sufficiently effective. Therefore, the effective range of the width of the annular member 15 is 20 mm from the distance between the flat plate 5 and the sample 6 to be processed. Further, the height of the annular member 15 in the direction perpendicular to the sample 6 to be processed is related to the width, and the larger the width, the lower the height. Virtually 0 to 40m in height
An optimum width for the height within the range of m is selected from the above range. Although the material of the surface of the annular member 15 is silicon in the embodiment of FIG. 1, the same effect can be obtained by controlling the types of active species that can be controlled by carbon, silicon carbide, quartz, aluminum oxide, and aluminum.

【0020】本発明ではフ゜ラス゛マ接する大部分の領域が常
にハ゛イアスが印可されるか、温度制御機能を有しており、真
空容器内部状態の経時変化が少なく長期的な処理性能の
安定化が可能となる。平面板5、円環状の部材15の温度制
御範囲を20から140度の範囲とすることで、吸着活性種の
安定化がはかられ処理特性の時間的変動を低減できる。
In the present invention, most of the area in contact with the plasma is always biased or has a temperature control function, so that the internal state of the vacuum vessel does not change with time and the processing performance can be stabilized for a long time. Become. By setting the temperature control range of the flat plate 5 and the annular member 15 in the range of 20 to 140 degrees, the adsorption active species can be stabilized, and the time variation of the processing characteristics can be reduced.

【0021】図1に示す石英リンク゛18は平面板5あるいはシリ
コン10の周辺電界強度を緩和し、フ゜ラス゛マの均一生成を可能
とする。本実施例では該石英リンク゛のホ゛リュウム(厚み)で熱容
量を制御し、該石英リンク゛18の温度制御をおこなってい
る。図1の実施例では石英リンク゛18を用いたが他の誘電体
材料例えば酸化アルミニュウム、窒化シリコン、ホ゜リイミト゛樹脂であって
も同様の効果があることはいうまでもない。
The quartz link # 18 shown in FIG. 1 relaxes the electric field intensity around the plane plate 5 or the silicon 10, and enables uniform generation of the plasma. In this embodiment, the heat capacity is controlled by the volume (thickness) of the quartz link #, and the temperature of the quartz link # 18 is controlled. Although the quartz link # 18 is used in the embodiment of FIG. 1, it goes without saying that the same effect can be obtained by using other dielectric materials such as aluminum oxide, silicon nitride, and polyimid resin.

【0022】また本実施例では石英リンク゛を平面板5ある
いはシリコン10の円周部にしか配置しなかったが、全面に配
置しても本発明の効果がある。その際図10に示すよう
に、平面板5大気側に配置し、該誘電体(図10では石英を用
いたが、アルミナでも同様の効果があることはいうまでもな
い)で真空を保持することで装置構成が簡単な本発明に
おける装置が実現できる。図10の実施の形態では図1の
実施例におけるシリコン10の表面反応を用いことができない
が、他の機能は十分有するため、被加工試料の対向部の反
応をそれほど必要としない加工応用には装置構成が簡単
となる利点がある。
Further, in this embodiment, the quartz link ゛ is arranged only on the circumferential portion of the flat plate 5 or the silicon 10, but the effect of the present invention can be obtained even if it is arranged on the entire surface. At that time, as shown in FIG. 10, the flat plate 5 is arranged on the atmosphere side, and vacuum is maintained by the dielectric (quartz is used in FIG. 10, but it goes without saying that alumina has the same effect). As a result, an apparatus according to the present invention having a simple apparatus configuration can be realized. Although the surface reaction of the silicon 10 in the embodiment of FIG. 1 cannot be used in the embodiment of FIG. 10, since it has other functions sufficiently, it is suitable for a processing application that does not require much reaction of the facing portion of the sample to be processed. There is an advantage that the device configuration is simplified.

【0023】また図1〜図8および図10の装置構成にかか
わらず、被加工試料とそれに対面する位置に存在する部
材との距離関係を本発明における30mmから被加工試料径
の1/2とすることで、本発明の活性種制御による効果を有
する。その際、前記の円環状の部材を被加工試料周囲に
配置することで、同様の活性種均一化の効果も有するこ
とはいうまでもない。
Further, irrespective of the apparatus configuration shown in FIGS. 1 to 8 and FIG. 10, the distance relationship between the sample to be processed and the member existing at the position facing the sample is from 30 mm in the present invention to 1/2 of the diameter of the sample to be processed. By doing so, there is an effect by controlling the active species of the present invention. At this time, it is needless to say that disposing the annular member around the sample to be processed also has the same effect of uniformizing active species.

【0024】次に図1の実施の形態の具体的被加工試料
表面処理方法を説明する。本実施の形態ではシリコン酸化膜
のエッチンク゛処理を実施する場合を記す。シリコン酸化膜をエッチン
ク゛する場合、本発明では原料カ゛スにアルコ゛ンとC4F8の混合カ゛ス
を用いる。原料カ゛スの圧力は2Paである。また流量はアルコ゛
ンが400sccm、C4F8が15sccmとした。平面板5には450MHz電
源7から800Wの電力を供給し、フ゜ラス゛マを形成した。さらに
平面板5に13.56MHz電源9から300Wの電力を450MHzに重畳
して印可し、平面板5上に配置したシリコン10のとフ゜ラス゛マ間に
形成される電位を調整した。被加工試料6は200mm径のウエ
ハを用いた。被加工試料台11の被加工試料6に接する領域
は-20度の温度に保たれ、被加工試料6の温度を制御して
いる。また被加工試料6には800kHz電源18の電磁波が供
給され、被加工試料6にフ゜ラス゛マから入射するイオンのエネルキ゛ー
を制御している。図4に本動作例によるシリコン酸化膜のエッチ
ンク゛速度およびシリコン酸化膜と窒化シリコン膜のエッチンク゛速度差
(選択比)を示す。図4では被加工試料台11の高さを変え、
シリコン10と被加工試料6の間隔によるエッチンク゛特性を示し
た。図4では本発明の間隔制御による効果を示すため、シリ
コン10と被加工試料6の間隔を被加工試料径の1/2より大き
い、140mmからのエッチンク゛特性を示した。図4の結果よりエッチ
ンク゛速度は間隔にあまり大きく依存しないが、エッチンク゛選択
比は大きく変化することが確認できる。特に被加工試料
径の1/2に相当する100mm以下からのエッチンク゛選択比向上が
顕著であることがわかり、本発明の有用性が確認でき
る。
Next, a specific method for treating the surface of a sample to be processed according to the embodiment shown in FIG. 1 will be described. In the present embodiment, a case where an etching treatment of a silicon oxide film is performed will be described. When etching a silicon oxide film, a mixed gas of an alcohol and C4F8 is used as a raw material gas in the present invention. The pressure of the raw material gas is 2 Pa. The flow rate of the alcohol was 400 sccm and that of C4F8 was 15 sccm. A power of 800 W was supplied to the flat plate 5 from a 450 MHz power supply 7 to form a plasma. Further, a power of 300 W from a 13.56 MHz power supply 9 was applied to the flat plate 5 at a frequency of 450 MHz in a superimposed manner, and the potential formed between the silicon 10 disposed on the flat plate 5 and the plasma was adjusted. The sample 6 to be processed was a 200 mm diameter wafer. The temperature of the region of the work sample table 11 in contact with the work sample 6 is kept at −20 ° C., and the temperature of the work sample 6 is controlled. An electromagnetic wave from an 800 kHz power supply 18 is supplied to the sample 6 to be processed, and the energy of ions incident on the sample 6 to be processed from a plasma is controlled. FIG. 4 shows the etching speed of the silicon oxide film and the difference between the etching speeds of the silicon oxide film and the silicon nitride film according to this operation example.
(Selectivity). In FIG. 4, the height of the sample stage 11 to be processed is changed,
The etching characteristics according to the distance between the silicon 10 and the sample 6 to be processed are shown. In FIG. 4, in order to show the effect of the interval control of the present invention, the etching characteristic from 140 mm where the interval between the silicon 10 and the sample 6 to be processed is larger than 1/2 of the diameter of the sample to be processed is shown. From the results of FIG. 4, it can be confirmed that the etching rate does not depend much on the interval, but the etching selectivity changes greatly. In particular, it has been found that the etching selectivity is significantly improved from 100 mm or less, which corresponds to 1/2 of the sample diameter to be processed, and the usefulness of the present invention can be confirmed.

【0025】本実施の形態ではフ゜ラス゛マ形成用の電磁波と
して450MHzを用いたが300から1000MHzの電磁波であって
も同様の効果がある。周波数を変える場合には同時に磁
場強度も変える必要があり、平面板5と被加工試料6のフ゜ラ
ス゛マ生成領域に電子サイクロトロン共鳴を満足する磁場強度を形
成する。また重畳する13.56MHzの電磁波においおても、5
0kHzから30MHzの電磁波で同様の効果が発揮できる。30M
Hzより高い周波数ではシリコン10に発生するフ゜ラス゛マ間との電
位が小さく、また50kHzより小さい周波数では平面板5上
に設置するシリコン9の表面状態により、フ゜ラス゛マ間とに発生す
る電位差が変動するため適用が困難である。
In the present embodiment, 450 MHz is used as the electromagnetic wave for forming the plasma, but the same effect can be obtained by using an electromagnetic wave of 300 to 1000 MHz. When the frequency is changed, the magnetic field strength must be changed at the same time, and a magnetic field strength that satisfies the electron cyclotron resonance is formed in the plasma generation region of the flat plate 5 and the sample 6 to be processed. Also, in the superposed 13.56 MHz electromagnetic wave, 5
Similar effects can be achieved with electromagnetic waves from 0 kHz to 30 MHz. 30M
At frequencies higher than 1 Hz, the potential between the plasma and the plasma generated on the silicon 10 is small, and at frequencies lower than 50 kHz, the potential difference between the plasma and the plasma varies depending on the surface condition of the silicon 9 installed on the flat plate 5. Is difficult.

【0026】本実施の形態では平面板5上にシリコン10を配
置したが、他にカーホ゛ン、炭化シリコン、石英、酸化アルミ、アルミニュウムを
用いて該材料面での反応を用いることで同様に活性種を
制御することが可能である。
In the present embodiment, the silicon 10 is disposed on the flat plate 5. However, the active species can be similarly formed by using a reaction on the material surface using carbon, silicon carbide, quartz, aluminum oxide, and aluminum. Can be controlled.

【0027】本実施の形態では原料カ゛スにアルコ゛ンとC4F8を
用いたが、混合カ゛スに50から300sccmのCOあるいは0.5から
50sccm酸素あるいは0.5から50sccmのCHF3、CH2F2、CH4、水
素カ゛ス単体またはそれらの混合カ゛スを添加し、シリコン酸化膜
のエッチンク゛処理を実施することが可能であり、該添加カ゛スに
よりフ゜ロセス条件をさらに精度よく制御できる。
In the present embodiment, alcohol and C4F8 are used as raw material gas, but 50 to 300 sccm of CO or 0.5 to 300 sccm is used for mixed gas.
It is possible to add a single gas of 50 sccm oxygen or 0.5 to 50 sccm of CHF3, CH2F2, CH4, hydrogen gas or a mixed gas thereof to carry out an etching treatment of the silicon oxide film, and further improve the process conditions by the added gas. Can control.

【0028】本発明による装置を用い添加カ゛スとしてで
なくC2F6、CHF3、CF4、C3F6O、C3F8、C5F8、C2F4、CF3I、C2F5I、
C3F6のいずれか一種類のカ゛スを主に用いシリコン酸化膜のエッチ
ンク゛を行うことでも同様の効果があることはいうまでも
ない。さらにこれらカ゛スにCOカ゛ス、酸素カ゛スまたはその両方
を添加カ゛スとして用いても同様の効果がある。
Using the apparatus according to the invention, not as additive gas but as C2F6, CHF3, CF4, C3F6O, C3F8, C5F8, C2F4, CF3I, C2F5I,
It is needless to say that the same effect can be obtained by etching the silicon oxide film mainly using any one kind of C3F6 gas. Further, the same effect can be obtained by using a CO gas, an oxygen gas, or both as a gas to be added to these gases.

【0029】本発明による装置を用い、酸素カ゛ス、メタンカ゛ス、
塩素カ゛ス、窒素カ゛ス、水素、CF4、C2F6、CH2F2、C4F8、SF6、NH3、N
F3、CH3OH、C2H5OHのいずれかを成分とする原料カ゛スによ
り、有機物を主体とする材料のエッチンク゛処理を行うことも
可能である。
Using the apparatus according to the invention, oxygen gas, methane gas,
Chlorine gas, nitrogen gas, hydrogen, CF4, C2F6, CH2F2, C4F8, SF6, NH3, N
It is also possible to perform an etching treatment of a material mainly composed of an organic substance with a raw material gas containing any one of F3, CH3OH and C2H5OH as components.

【0030】本実施の形態では、シリコン10表面での反応制
御を重畳して印可する電磁波により実施したが、該電磁
波による制御に加え、該平面板に温度制御機能を付加し、
該温度制御によりシリコン10の反応を制御できる。特にシリコン
10での反応の安定化に有効である。
In the present embodiment, the reaction control on the surface of the silicon 10 is performed by an electromagnetic wave applied in a superimposed manner. In addition to the control by the electromagnetic wave, a temperature control function is added to the flat plate.
The reaction of the silicon 10 can be controlled by the temperature control. Especially silicon
Effective for stabilizing the reaction at 10.

【0031】本実施の形態ではシリコン酸化膜のエッチンク゛を実
施する場合について記したが、他に塩素または塩素を主
とするカ゛スを用いた本発明により、シリコン、タンク゛ステンのエッチンク゛
処理が可能である。
In this embodiment, the case where etching of the silicon oxide film is performed is described. However, according to the present invention using chlorine or a gas mainly containing chlorine, etching of silicon and tank stainless can be performed.

【0032】[0032]

【発明の効果】本発明による磁場制御により、平面板をウ
エハに対面させた位置に配置した低アスヘ゜クトな構造で大口径
かつ高密度なフ゜ラス゛マ形成することができる。これによ
り、大口径ウエハの高速処理が可能となり、さらに被加工
試料に対面する平面板面等の反応により高精度な活性種
制御ができ高い加工選択性および高アスヘ゜クトな深孔の高開
口性を同時に得ることが可能となる。
According to the magnetic field control of the present invention, it is possible to form a large-diameter and high-density plasma with a low aspect structure in which a flat plate is arranged at a position facing a wafer. As a result, high-speed processing of large-diameter wafers becomes possible, and high-precision control of active species can be performed by the reaction of the flat plate surface facing the sample to be processed, thereby achieving high processing selectivity and high opening depth of high-throughput deep holes. It can be obtained at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1を示す図。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】図1の実施の形態における磁場分布の定義を示
す図。
FIG. 2 is a diagram showing a definition of a magnetic field distribution in the embodiment of FIG.

【図3】図1の実施の形態における磁場の制御方法説明
図。
FIG. 3 is an explanatory diagram of a control method of a magnetic field in the embodiment of FIG. 1;

【図4】本発明の実施の形態2を示す図。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】実施の形態2における電磁石部の詳細説明図。FIG. 5 is a detailed explanatory diagram of an electromagnet unit according to the second embodiment.

【図6】実施の形態2における磁場の説明図。FIG. 6 is an explanatory diagram of a magnetic field according to the second embodiment.

【図7】実施の形態2と同様の効果がある別の電磁石の
構成を示す図。
FIG. 7 is a diagram showing a configuration of another electromagnet having the same effect as in the second embodiment.

【図8】実施の形態1および実施の形態2の磁場構成を合
わせた実施の形態3を示す図。
FIG. 8 is a diagram showing a third embodiment in which the magnetic field configurations of the first embodiment and the second embodiment are combined.

【図9】本発明の気相内活性種を効果的に制御する機構
の説明図を示す図。
FIG. 9 is a diagram illustrating a mechanism for effectively controlling active species in a gas phase according to the present invention.

【図10】本発明の実施の形態4を示す図。FIG. 10 is a diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…カ゛ス導入手段、2…真空容器、3…電磁石、4…同軸ケーフ゛ル、
5…平面板、6…被加工試料、7…450MHz電源、8…フィルタ、9…1
3.56MHz電源、10…シリコン、11…被加工試料台、12…交流電流
用コイル、13…交流電流用コイル、14…交流電流用コイル、15…
円環状の部材、16…シリコン、17…温度制御機構、18…石英リンク
゛、19…誘電体、20…ウエハハ゛イアス整合器、21…ウエハハ゛イアス電源、
22…ウエハハ゛イアス電力周波数通過フィルタ、23…ヨーク、24…交流電
流源、25…交流電流用コイル、26…交流電流用コイル、27…石
英、28…磁場ヘ゛クトルの回転軌道、29…平面板中央部直下で
の磁場ヘ゛クトル。
1 ... gas introduction means, 2 ... vacuum vessel, 3 ... electromagnet, 4 ... coaxial cable,
5 ... flat plate, 6 ... sample to be processed, 7 ... 450 MHz power supply, 8 ... filter, 9 ... 1
3.56MHz power supply, 10… Silicon, 11… Workpiece sample stand, 12… AC current coil, 13… AC current coil, 14… AC current coil, 15…
Annular member, 16 silicon, 17 temperature control mechanism, 18 quartz link, 19 dielectric, 20 wafer bias matching device, 21 wafer bias power supply,
22: Wafer bias power frequency pass filter, 23: Yoke, 24: AC current source, 25: AC current coil, 26: AC current coil, 27: Quartz, 28: Rotational orbit of magnetic field vector, 29: Center of flat plate Magnetic field vector just below the head.

フロントページの続き (72)発明者 伊澤 勝 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 桃井 義典 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 田地 新一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 4K057 DA11 DA12 DA13 DA16 DA20 DB05 DB06 DB08 DD01 DE01 DE11 DG08 DM05 DM19 DM20 DM22 DM33 DM37 DM38 DM39 DN01 5F004 AA03 BA07 BA08 BA14 BB07 BB13 BB17 BB18 CA01 CA03 DA00 DA01 DA02 DA03 DA04 DA11 DA15 DA16 DA17 DA18 DA23 DA24 DA25 DA26 DA29 DB01 DB03 DB09 DB10 Continuing on the front page (72) Inventor Masaru Izawa 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Shinichi Taji 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo F-term in Hitachi Central Research Laboratory, Ltd. 4K057 DA11 DA12 DA13 DA16 DA20 DB05 DB06 DB08 DD01 DE01 DE11 DG08 DM05 DM19 DM20 DM22 DM33 DM37 DM38 DM39 DN01 5F004 AA03 BA07 BA08 BA14 BB07 BB13 BB17 BB18 CA01 CA03 DA00 DA01 DA02 DA03 DA04 DA11 DA15 DA16 DA17 DA18 DA23 DA24 DA25 DA26 DA29 DB01 DB03 DB09 DB10

Claims (49)

【特許請求の範囲】[Claims] 【請求項1】真空排気手段とカ゛ス導入手段を有する真空
相内に被加工試料を設置し、該カ゛ス導入手段で導入したカ゛
スをフ゜ラス゛マ化し、該被加工試料の表面処理を行うフ゜ラス゛マ処
理装置において、フ゜ラス゛マの生成を被加工試料に対面する
位置に配置した平面板から導入する電磁波と磁場との相
互作用で生成し、該フ゜ラス゛マの生成を電子サイクロトロン共鳴磁場
面の分布で制御することを特徴とするフ゜ラス゛マ処理装置。
1. A plasma processing apparatus in which a sample to be processed is placed in a vacuum phase having a vacuum evacuation means and a gas introduction means, the gas introduced by the gas introduction means is converted into a plasma, and a surface treatment of the sample is performed. Generating a plasma by an interaction between an electromagnetic wave and a magnetic field introduced from a flat plate disposed at a position facing the sample to be processed, and controlling the generation of the plasma by a distribution of an electron cyclotron resonance magnetic field plane. A plasma processing device.
【請求項2】真空排気手段とカ゛ス導入手段を有する真空
相内に被加工試料を設置し、該カ゛ス導入手段で導入したカ゛
スをフ゜ラス゛マ化し、該被加工試料の表面処理を行うフ゜ラス゛マ処
理装置において、フ゜ラス゛マの生成を被加工試料に対面する
位置に配置した平面板から導入する電磁波と磁場との相
互作用で生成し、該平面板の被加工試料に対面する面を
基準とし、該対面する面より上50mmから下50mmの範囲に
電子サイクロトロン共鳴磁場面を配置し該フ゜ラス゛マの生成を制御
することを特徴とするフ゜ラス゛マ処理装置。
2. A plasma processing apparatus in which a sample to be processed is placed in a vacuum phase having a vacuum evacuation means and a gas introduction means, the gas introduced by the gas introduction means is converted into a plasma, and a surface treatment of the sample is performed. The generation of the plasma is generated by the interaction between an electromagnetic wave and a magnetic field introduced from a plane plate arranged at a position facing the sample to be processed, and the surface of the plane plate facing the sample to be processed is defined as a reference. An apparatus for processing a plasma beam, wherein an electron cyclotron resonance magnetic field surface is arranged in a range of 50 mm above and 50 mm below and the generation of the plasma beam is controlled.
【請求項3】請求項1、2記載のフ゜ラス゛マ処理装置において
平面板の被加工試料に対面する面に対し、電子サイクロトロン共
鳴磁場面を平面板の径方向に分布させ、該電子サイクロトロン共
鳴磁場面を該平面板の被加工試料に対面する面に対し下
方向の湾曲から上方向の湾曲の範囲で制御することを特
徴とするフ゜ラス゛マ処理装置。
3. An electron cyclotron resonance magnetic field surface according to claim 1, wherein an electron cyclotron resonance magnetic field surface is distributed in a radial direction of the plane plate with respect to a surface of the flat plate facing the sample to be processed. Characterized in that the flat plate is controlled in a range from downward bending to upward bending with respect to the surface of the flat plate facing the sample to be processed.
【請求項4】請求項3記載の電子サイクロトロン共鳴磁場面の湾
曲において、平面板の被加工試料に対する面で該面と平
行方向をx軸、該面の中心部でx軸に直角な軸をy軸とした
時に、該湾曲面の大きさがy軸上での電子サイクロトロン共鳴磁
場位置と平面板の中心部からx軸方向に150mmの位置での
電子サイクロトロン共鳴磁場面のy軸上での差が50mm以内である
ことを特徴とするフ゜ラス゛マ処理装置。
4. The curved surface of the electron cyclotron resonance magnetic field according to claim 3, wherein a plane of the flat plate with respect to the sample to be processed has an x-axis in a direction parallel to the plane and an axis perpendicular to the x-axis in a center of the plane. When the y-axis is set, the size of the curved surface is the position of the electron cyclotron resonance magnetic field on the y-axis and the position of the electron cyclotron resonance magnetic field on the y-axis at a position 150 mm in the x-axis direction from the center of the plane plate. A plasma processing apparatus characterized in that the difference is within 50 mm.
【請求項5】真空排気手段とカ゛ス導入手段を有する真空
相内に被加工試料を設置し、該カ゛ス導入手段で導入したカ゛
スをフ゜ラス゛マ化し、該被加工試料の表面処理を行うフ゜ラス゛マ処
理装置において、フ゜ラス゛マの生成を被加工試料に対面する
位置に配置した平面板から導入する電磁波と磁場との相
互作用で生成し、該平面板中央部での該磁場の磁力線の
向きを該平面板の面に対し平行から垂直な範囲すること
を特徴とするフ゜ラス゛マ処理装置。
5. A plasma processing apparatus in which a sample to be processed is placed in a vacuum phase having a vacuum evacuation means and a gas introduction means, the gas introduced by the gas introduction means is converted into a plasma, and a surface treatment is performed on the sample to be processed. The plasma is generated by the interaction between an electromagnetic wave and a magnetic field introduced from a plane plate arranged at a position facing the sample to be processed, and the direction of the magnetic field lines of the magnetic field at the center of the plane plate is determined by the plane of the plane plate. A plasma processing apparatus characterized in that the range is from parallel to perpendicular.
【請求項6】請求項1至乃5記載のフ゜ラス゛マ処理装置におい
て、請求項2至乃5記載の磁場を形成する手段が、請求項
1記載の平面板の上部に配置したソレノイト゛コイルで、該ソレノイト゛
コイルの内径が該平面板の直径以下であることを特徴とす
るフ゜ラス゛マ処理装置。
6. The plasma processing apparatus according to claim 1, wherein the means for forming a magnetic field according to claim 2 is provided.
2. A plasma processing apparatus according to claim 1, wherein the solenoid coil has an inner diameter less than or equal to the diameter of the flat plate.
【請求項7】請求項1、2、3、4、5、6記載のフ゜ラス゛マ処理装置
において、磁場発生手段による磁力線の向きを時間的に
変化させることを特徴とするフ゜ラス゛マ処理装置。
7. The plasma processing apparatus according to claim 1, wherein the direction of the lines of magnetic force by the magnetic field generating means is changed over time.
【請求項8】請求項7記載のフ゜ラス゛マ処理装置において、磁
力線の向きを請求項4記載のy軸中心に回転するように磁
力線の向きを時間的に変化させることを特徴とするフ゜ラス
゛マ処理装置。
8. The plasma processing apparatus according to claim 7, wherein the direction of the magnetic field line is changed with time so that the direction of the magnetic field line rotates about the y-axis.
【請求項9】請求項7,8記載のフ゜ラス゛マ処理装置において、
請求項1記載の真空相外部に設けた3極の磁極にそれぞれ
位相が120度異なる3相交流電流を流して得られる回転磁
場で磁力線の向きを時間的に変化させることを特徴とす
るフ゜ラス゛マ処理装置。
9. The plasma processing apparatus according to claim 7, wherein
A plasma processing, wherein the direction of magnetic field lines is temporally changed by a rotating magnetic field obtained by flowing three-phase alternating currents having phases differing by 120 degrees from each other to three magnetic poles provided outside the vacuum phase according to claim 1. apparatus.
【請求項10】請求項7,8記載のフ゜ラス゛マ処理装置におい
て、請求項1記載の真空相外部に設けた2極の磁極にそれ
ぞれ位相が90度異なる交流電流を流して得られる回転磁
場で磁力線の向きを時間的に変化させることを特徴とす
るフ゜ラス゛マ処理装置。
10. The plasma processing apparatus according to claim 7, wherein the magnetic field lines are formed by rotating magnetic fields obtained by applying alternating currents having phases different by 90 degrees to two magnetic poles provided outside the vacuum phase according to claim 1. A plasma processing apparatus characterized by changing the direction of the object with time.
【請求項11】請求項7,8記載のフ゜ラス゛マ処理装置におい
て、請求項1記載の真空相外部に設けた永久磁石の配置を
時間的に変化させ、磁力線の向きを時間的に変化させる
ことを特徴とするフ゜ラス゛マ処理装置。
11. The plasma processing apparatus according to claim 7, wherein the arrangement of the permanent magnet provided outside the vacuum phase according to claim 1 is changed with time, and the direction of the magnetic force lines is changed with time. Characteristic plasma processing equipment.
【請求項12】請求項1至乃11記載のフ゜ラス゛マ処理装置に
おいて、被加工試料の周辺に円環状の部材を配置するこ
とを特徴とするフ゜ラス゛マ処理装置。
12. The plasma processing apparatus according to claim 1, wherein an annular member is arranged around the sample to be processed.
【請求項13】請求項12記載の円環状の部材のフ゜ラス゛マに
接する部分の材質がシリコン、カーホ゛ン、炭化シリコン、石英、酸化アル
ミ、アルミニュウムの内一種類以上の材質で形成されていること
を特徴とするフ゜ラス゛マ処理装置。
13. A material of a portion of the annular member according to claim 12, which is in contact with the plasma, is formed of at least one material of silicon, carbon, silicon carbide, quartz, aluminum oxide, and aluminum. A plasma processing device.
【請求項14】請求項12記載の円環状の部材において、
該円環状の部材に高周波電力を印加することを特徴とす
るフ゜ラス゛マ処理装置。
14. The annular member according to claim 12,
A plasma processing apparatus for applying high-frequency power to the annular member.
【請求項15】請求項14記載の円環状の部材に高周波電
力を印加する手段が、被加工試料に印加する高周波電力
の一部を分岐し、該円環状の部材に印加する構造である
ことを特徴とするフ゜ラス゛マ処理装置。
15. The means for applying high-frequency power to an annular member according to claim 14 has a structure in which a part of high-frequency power applied to a workpiece is branched and applied to said annular member. A plasma processing apparatus characterized by the above-mentioned.
【請求項16】請求項1至乃15記載のフ゜ラス゛マ処理装置に
おいて、フ゜ラス゛マの生成に用いる電磁波の周波数が300MHz
から1GHzであることを特徴とするフ゜ラス゛マ処理装置。
16. The plasma processing apparatus according to claim 1, wherein the frequency of the electromagnetic wave used to generate the plasma is 300 MHz.
A plasma processing apparatus characterized by a frequency range from 1 GHz to 1 GHz.
【請求項17】請求項1至乃15記載のフ゜ラス゛マ処理装置に
おいて、電子サイクロトロン共鳴磁場の大きさが100カ゛ウスから380
カ゛ウスの範囲であることを特徴とするフ゜ラス゛マ処理装置。
17. The plasma processing apparatus according to claim 1, wherein the magnitude of the electron cyclotron resonance magnetic field is from 100 to 380.
A plasma processing apparatus having a radius of a mouse.
【請求項18】請求項1至乃15記載のフ゜ラス゛マ処理装置に
おいて、電子サイクロトロン共鳴磁場を含む磁場の発生手段がソレ
ノイト゛コイルによることを特徴とするフ゜ラス゛マ処理装置。
18. The plasma processing apparatus according to claim 1, wherein the means for generating a magnetic field including an electron cyclotron resonance magnetic field is a solenoid coil.
【請求項19】請求項1至乃15記載のフ゜ラス゛マ処理装置に
おいて、電子サイクロトロン共鳴磁場を含む磁場の発生手段が永
久磁石によることを特徴とするフ゜ラス゛マ処理装置。
19. The plasma processing apparatus according to claim 1, wherein the means for generating a magnetic field including an electron cyclotron resonance magnetic field is a permanent magnet.
【請求項20】請求項1至乃15記載のフ゜ラス゛マ処理装置に
おいて、電子サイクロトロン共鳴磁場を含む磁場の発生手段がソレ
ノイト゛コイルと永久磁石の複合であることを特徴とするフ゜ラス゛
マ処理装置。
20. The plasma processing apparatus according to claim 1, wherein the means for generating a magnetic field including an electron cyclotron resonance magnetic field is a composite of a solenoid coil and a permanent magnet.
【請求項21】請求項1至乃20記載のフ゜ラス゛マ処理装置に
おいて、平面板に請求項11記載のフ゜ラス゛マ生成用電磁波と
は別に第2の周波数を重畳して印加することを特徴とす
るフ゜ラス゛マ処理装置。
21. A plasma processing apparatus according to claim 1, wherein a second frequency is superimposed and applied to the flat plate in addition to the electromagnetic wave for generating plasma according to claim 11. apparatus.
【請求項22】請求項1至乃20記載のフ゜ラス゛マ処理装置に
おいてい被加工試料に100キロヘルツから15000キロヘルツの電磁波
を印加することを特徴とするフ゜ラス゛マ処理装置。
22. A plasma processing apparatus according to claim 1, wherein an electromagnetic wave of 100 kHz to 15,000 kHz is applied to a sample to be processed.
【請求項23】請求項1至乃22記載のフ゜ラス゛マ処理装置に
おいて、平面板の被加工試料に対面する面の材料をシリコン、
石英、酸化アルミニュウム、アルミニュウム、炭化シリコン、ホ゜リイミト゛、ステンレス、カー
ホ゛ンのうちいずれか一種類の材料で構成されていること
を特徴とするフ゜ラス゛マ処理装置。
23. The plasma processing apparatus according to claim 1, wherein a material of a surface of the flat plate facing the workpiece is silicon,
A plasma processing apparatus comprising a material selected from the group consisting of quartz, aluminum oxide, aluminum, silicon carbide, polyimid, stainless steel, and carbon.
【請求項24】請求項1至乃23記載のフ゜ラス゛マ処理装置に
おいて、電磁波を供給する平面板の被加工試料に対面す
る面からフ゜ラス゛マの原料となるカ゛スを供給することを特徴
とするフ゜ラス゛マ処理装置。
24. The plasma processing apparatus according to claim 1, wherein a gas as a raw material of the plasma is supplied from a surface of the flat plate for supplying the electromagnetic wave, which faces the workpiece. .
【請求項25】請求項21記載の平面板に重畳する第2の
周波数の平面板に印加する電力が平面板の単位面積あた
り0.05から5W/cm2であることを特徴とするフ゜ラス゛マ処理装
置。
25. A plasma processing apparatus according to claim 21, wherein the electric power applied to the plane plate of the second frequency superimposed on the plane plate is 0.05 to 5 W / cm2 per unit area of the plane plate.
【請求項26】請求項1至乃25記載のフ゜ラス゛マ処理装置に
おいて、原料カ゛スを請求項1記載の平面板に形成した複数
の微細孔より供給することを特徴とするフ゜ラス゛マ処理装
置。
26. The plasma processing apparatus according to claim 1, wherein the raw material gas is supplied from a plurality of fine holes formed in the flat plate according to claim 1. Description:
【請求項27】請求項1記載の真空容器内に電磁波を供
給する平面板において、該平面板がアース電位の平板に誘電
体を介して配置され、該平面板とアース電位の平板ではさま
れる誘電体内で、供給した電磁波がTM01モート゛で共振する
構造であることを特徴とするフ゜ラス゛マ処理装置。
27. The flat plate for supplying an electromagnetic wave into the vacuum vessel according to claim 1, wherein the flat plate is disposed on a ground potential flat plate via a dielectric, and is sandwiched between the flat plate and the ground potential flat plate. A plasma processing apparatus having a structure in which a supplied electromagnetic wave resonates at a TM01 mode in a dielectric.
【請求項28】請求項1、27記載の平面板において、該平
面板は円盤状であり、さらに該平面板の中央に接続され
る円錐状の導体を介して電磁波を供給することを特徴と
するフ゜ラス゛マ処理装置。
28. The flat plate according to claim 1, wherein said flat plate has a disk shape, and further supplies an electromagnetic wave through a conical conductor connected to the center of said flat plate. A plasma processing device.
【請求項29】請求項1記載の平面板において、該平面板
のフ゜ラス゛マに接する面の全面または一部を誘電体で被服す
ることを特徴とするフ゜ラス゛マ処理装置。
29. The plasma processing apparatus according to claim 1, wherein the whole surface or a part of the surface of the flat plate which is in contact with the plasma is covered with a dielectric material.
【請求項30】請求項29記載の該平面板のフ゜ラス゛マに接す
る面の全面または一部を被服する誘電体が石英、酸化アルミ
ニュウム、窒化シリコン、ホ゜リイミト゛樹脂のいずれか一種類の材料で
構成されていることを特徴とするフ゜ラス゛マ処理装置。
30. The dielectric covering the entire surface or a part of the surface of the flat plate in contact with the plasma according to claim 29, wherein the dielectric is made of any one material of quartz, aluminum oxide, silicon nitride, and polyimid resin. A plasma processing apparatus.
【請求項31】請求項29、30記載の誘電体の温度を20℃
から250℃の範囲内で一定に制御する手段を有すること
を特長とするフ゜ラス゛マ処理装置。
31. The temperature of the dielectric material according to claim 29, 30 is 20 ° C.
A plasma processing apparatus characterized by having a means for controlling the temperature within a range of from 250 to 250 ° C.
【請求項32】請求項1至乃30記載のフ゜ラス゛マ処理装置に
おいて、平面板に供給する300から500MHzの電磁波を供給
する給電線路に被加工試料に印加する高周波電力をアース
に流入させるフィルタを設置する事を特長とするフ゜ラス゛マ処理
装置。
32. The plasma processing apparatus according to claim 1, wherein a filter is provided on a power supply line for supplying an electromagnetic wave of 300 to 500 MHz to be supplied to the flat plate, so that high-frequency power applied to the sample to be processed flows into the ground. A plasma processing device characterized by the following:
【請求項33】請求項1至乃31記載のフ゜ラス゛マ処理装置に
おいて、被加工試料に100kHzから15MHzの高周波電力を被
加工試料の単位面積あたり0.5から8W/cm2印加し、被加工
試料の表面処理を行うことを特長とするフ゜ラス゛マ処理方
法。
33. The plasma processing apparatus according to claim 1, wherein a high frequency power of 100 kHz to 15 MHz is applied to the sample to be processed in a range of 0.5 to 8 W / cm2 per unit area of the sample to be processed. A plasma processing method characterized by performing:
【請求項34】請求項1記載のフ゜ラス゛マ処理装置において、
真空容器上部を石英、酸化アルミのいずれかの一方の絶縁材
料で構成し、該絶縁材料の大気側に請求項1,23,24記載の
アース電位導体に誘電体を介し配置される平面板を設置し、
該平面板に請求項3記載の電磁波を供給し、該電磁波と磁
場の相互作用により、該真空容器内にフ゜ラス゛マを形成する
ことを特徴とするフ゜ラス゛マ処理装置。
34. The plasma processing apparatus according to claim 1,
The upper portion of the vacuum container is made of one of insulating materials of quartz and aluminum oxide, and a flat plate disposed on the atmosphere side of the insulating material via a dielectric on the ground potential conductor according to claim 1,23,24. Install,
4. A plasma processing apparatus, wherein the electromagnetic wave according to claim 3 is supplied to the flat plate, and a plasma is formed in the vacuum vessel by an interaction between the electromagnetic wave and a magnetic field.
【請求項35】請求項1至乃34記載のフ゜ラス゛マ処理装置に
いて、被加工試料と被加工試料試料に対面する位置に配
置された平面板との距離が30mmから該被加工試料径の1/
2であることを特徴とするフ゜ラス゛マ処理装置。
35. The plasma processing apparatus according to claim 1, wherein a distance between the sample to be processed and a flat plate disposed at a position facing the sample to be processed is 30 mm to 1 mm of the diameter of the sample to be processed. /
2. A plasma processing apparatus, wherein
【請求項36】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて、原料カ゛スにアルコ゛ンとC4F8の混合カ゛スを用い、アルコ゛ン流
量が0から2000sccm、C4F8流量が0.5から50sccmで、該混合
カ゛スの圧力が0.01から6Paの条件でシリコン酸化膜のエッチンク゛処
理を行うフ゜ラス゛マ処理方法。
36. A mixed gas of alcohol and C4F8 as a raw material gas using the plasma processing apparatus according to claim 1 to 35, wherein the flow rate of the alcohol is 0 to 2000 sccm, the flow rate of C4F8 is 0.5 to 50 sccm, and the mixed gas is used. A plasma treatment method in which a silicon oxide film is etched under a condition in which the pressure is 0.01 to 6 Pa.
【請求項37】請求項36、53のフ゜ラス゛マ処理方法において、
50から300sccmのCOカ゛スを添加し、シリコン酸化膜のエッチンク゛処
理を行うフ゜ラス゛マ処理方法。
37. The plasma processing method according to claim 36,53,
A plasma treatment method in which a CO gas of 50 to 300 sccm is added and the silicon oxide film is etched.
【請求項38】請求項36、40、53記載のフ゜ラス゛マ処理方法に
おいて、0.5から50sccmの酸素カ゛スを添加し、シリコン酸化膜の
エッチンク゛処理を行うフ゜ラス゛マ処理方法。
38. The plasma processing method according to claim 36, 40 or 53, wherein an oxygen gas of 0.5 to 50 sccm is added and the silicon oxide film is etched.
【請求項39】請求項36、40、53記載のフ゜ラス゛マ処理方法に
おいて、0.5から50sccmのCHF3、CH2F2、CH4、CH3F,水素カ゛ス
のいずれか一つまたは混合カ゛スを添加しシリコン酸化膜のエッチ
ンク゛処理を行うフ゜ラス゛マ処理方法。
39. The plasma processing method according to claim 36, 40 or 53, wherein any one or a mixture of CHF3, CH2F2, CH4, CH3F and hydrogen gas of 0.5 to 50 sccm is added to etch the silicon oxide film. Plasma processing method.
【請求項40】請求項1至乃35記載のフ゜ラス゛マ処理装置に
おいてC2F6、CHF3、C2F4,CF3I,C2F5I,C3F6,CF4、C3F6O、C3F
8、C5F8ののいずれか一種類のカ゛スを用いシリコン酸化膜のエッチ
ンク゛を行う事を特長とするフ゜ラス゛マ処理方法。
40. The plasma processing apparatus according to claim 1, wherein C2F6, CHF3, C2F4, CF3I, C2F5I, C3F6, CF4, C3F6O, C3F
8. A plasma processing method characterized in that etching of a silicon oxide film is performed using one of the gases of C5F8.
【請求項41】請求項40記載のカ゛スにCOカ゛スを添加し、シリコ
ン酸化膜のエッチンク゛を行う事を特長とするフ゜ラス゛マ処理装
置。
41. A plasma processing apparatus according to claim 40, wherein a CO gas is added to the gas according to claim 40 to etch the silicon oxide film.
【請求項42】請求項40、41記載のカ゛スに酸素カ゛スを添加
し、シリコン酸化膜のエッチンク゛を行う事を特長とするフ゜ラス゛マ処
理装置。
42. A plasma processing apparatus characterized in that oxygen gas is added to the gas according to claim 40, and the silicon oxide film is etched.
【請求項43】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて、原料カ゛スにアルコ゛ンとC5F8の混合カ゛スを用い、アルコ゛ン流
量が0から2000sccm、C5F8流量が0.5から50sccmで、該混合
カ゛スの圧力が0.01から6Paの条件でシリコン酸化膜のエッチンク゛処
理を行うフ゜ラス゛マ処理方法。
43. A mixed gas of an alcohol and C5F8 as a raw material gas using the plasma processing apparatus according to claim 1 to 35, wherein the flow rate of the alcohol is 0 to 2000 sccm, the flow rate of C5F8 is 0.5 to 50 sccm, and the mixed gas is used. A plasma treatment method in which a silicon oxide film is etched under a condition in which the pressure is 0.01 to 6 Pa.
【請求項44】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて、原料カ゛スが塩素で圧力0.1から4Paの条件で、シリコン、
アルミニュウム、タンク゛ステンあるいは該シリコン、アルミニュウム、タンク゛ステンを主
成分とする材料のエッチンク゛処理を行うフ゜ラス゛マ処理方法。
44. A raw material gas containing chlorine and a pressure of 0.1 to 4 Pa by using the plasma processing apparatus according to claim 1 to 35.
A plasma treatment method for performing etching treatment of aluminum, tank dust, or a material containing silicon, aluminum, and tank dust as main components.
【請求項45】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて、原料カ゛スがHBrで圧力0.1から4Paの条件で、シリコン、ア
ルミニュウム、タンク゛ステンあるいは該シリコン、アルミニュウム、タンク゛ステンを主成
分とする材料のエッチンク゛処理を行うフ゜ラス゛マ処理方法。
45. Using the plasma processing apparatus according to claim 1 to 35, wherein the raw material gas is HBr and the pressure is 0.1 to 4 Pa, and silicon, aluminum, or tank dust or the silicon, aluminum, or tank dust is a main component. A plasma treatment method that etches materials.
【請求項46】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて、原料カ゛スが塩素とHBrの混合カ゛スで圧力0.1から4Pa
の条件で、シリコン、アルミニュウム、タンク゛ステンあるいは該シリコン、アルミニュウ
ム、タンク゛ステンを主成分とする材料のエッチンク゛処理を行うフ゜ラス゛
マ処理方法。
46. The raw material gas is a mixed gas of chlorine and HBr, and the pressure is 0.1 to 4 Pa, using the plasma processing apparatus according to claim 1 to 35.
Under the above conditions, a plasma treatment method for performing etching treatment of silicon, aluminum, tank dust or a material containing silicon, aluminum, and tank dust as main components.
【請求項47】請求項44、45、46記載のフ゜ラス゛マ処理方法
で、酸素カ゛スを添加し、シリコン、アルミニュウム、タンク゛ステンあるいは該シ
リコン、アルミニュウム、タンク゛ステンを主成分とする材料のエッチンク゛処理
を行うフ゜ラス゛マ処理方法。
47. The plasma treatment method according to claim 44, 45 or 46, wherein oxygen gas is added to perform etching treatment of silicon, aluminum, tank dust or a material containing silicon, aluminum and tank dust as main components. Method.
【請求項48】請求項1至乃35記載のフ゜ラス゛マ処理装置に
おいて、酸素カ゛ス、メタンカ゛ス、塩素カ゛ス、窒素カ゛ス、水素、NH3、NF
3、CH3OH、C2H5OH、CF4、C2F6、CH2F2、C4F8、SF6のいずれかを
成分とする原料カ゛スにより、有機物を主体とする材料のエッ
チンク゛処理を行うことを特徴とするフ゜ラス゛マ処理装置。
48. The plasma processing apparatus according to claim 1, wherein the oxygen gas, methane gas, chlorine gas, nitrogen gas, hydrogen, NH3, NF
3. A plasma processing apparatus characterized in that an etching treatment of a material mainly composed of an organic substance is performed by a raw material gas containing any one of CH3OH, C2H5OH, CF4, C2F6, CH2F2, C4F8, and SF6.
【請求項49】請求項1至乃35記載のフ゜ラス゛マ処理装置を
用いて塩素とBCl3、塩素とBCl3とCH4、塩素とBCl3とCH4と
Ar、塩素とBCl3とCHF3、塩素とBCl3とCH2F2、塩素とBCl3と
HCl、塩素とBCl3とCH4とAr、塩素とBCl3とN2、塩素とBCl3
とN2とHCl、塩素とBCl3とHCl、塩素とBCl3とHClとCH4とA
r、塩素とBCl3とN2、塩素とBCl3とN2とHCl、塩素とBCl3とC
HCl3の混合カ゛スで圧力0.1〜2Paの条件でシリコン、アルミニュウム、タン
ク゛ステンあるいはシリコン、アルミニュウム、タンク゛ステンを主成分とする材
料のエッチンク゛処理を行うフ゜ラス゛マ処理方法。
49. The plasma processing apparatus according to claim 1 to 35, wherein chlorine and BCl3, chlorine and BCl3 and CH4, chlorine and BCl3 and CH4 are used.
Ar, chlorine and BCl3 and CHF3, chlorine and BCl3 and CH2F2, chlorine and BCl3
HCl, chlorine and BCl3 and CH4 and Ar, chlorine and BCl3 and N2, chlorine and BCl3
And N2 and HCl, chlorine and BCl3 and HCl, chlorine and BCl3 and HCl, CH4 and A
r, chlorine and BCl3 and N2, chlorine and BCl3 and N2 and HCl, chlorine and BCl3 and C
A plasma treatment method in which a mixture of HCl3 and a pressure of 0.1 to 2 Pa are used to etch the silicon, aluminum, and tank stainless steel or a material mainly containing silicon, aluminum, and tank stainless steel.
JP28914699A 1999-10-12 1999-10-12 Apparatus and method for plasma treatment Pending JP2001110783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28914699A JP2001110783A (en) 1999-10-12 1999-10-12 Apparatus and method for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28914699A JP2001110783A (en) 1999-10-12 1999-10-12 Apparatus and method for plasma treatment

Publications (2)

Publication Number Publication Date
JP2001110783A true JP2001110783A (en) 2001-04-20
JP2001110783A5 JP2001110783A5 (en) 2005-02-17

Family

ID=17739362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28914699A Pending JP2001110783A (en) 1999-10-12 1999-10-12 Apparatus and method for plasma treatment

Country Status (1)

Country Link
JP (1) JP2001110783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091726A1 (en) * 2006-02-10 2007-08-16 Kyushu Dentsu Co., Ltd. Method for removing surface layer of silicon wafer
US7842619B2 (en) 2008-07-30 2010-11-30 Hitachi High-Technologies Corporation Plasma processing method
WO2020100338A1 (en) * 2019-06-21 2020-05-22 株式会社日立ハイテク Plasma processing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091726A1 (en) * 2006-02-10 2007-08-16 Kyushu Dentsu Co., Ltd. Method for removing surface layer of silicon wafer
JP2007243159A (en) * 2006-02-10 2007-09-20 Kyushu Dentsu Kk Method for removing surface layer of silicon wafer
US7842619B2 (en) 2008-07-30 2010-11-30 Hitachi High-Technologies Corporation Plasma processing method
WO2020100338A1 (en) * 2019-06-21 2020-05-22 株式会社日立ハイテク Plasma processing method
KR20200145823A (en) * 2019-06-21 2020-12-30 주식회사 히타치하이테크 Plasma treatment method
JPWO2020100338A1 (en) * 2019-06-21 2021-02-15 株式会社日立ハイテク Plasma processing method
CN112424912A (en) * 2019-06-21 2021-02-26 株式会社日立高新技术 Plasma processing method
JP7000568B2 (en) 2019-06-21 2022-01-19 株式会社日立ハイテク Plasma processing method
US11373875B2 (en) 2019-06-21 2022-06-28 Hitachi High-Tech Corporation Plasma processing method
KR102447235B1 (en) * 2019-06-21 2022-09-27 주식회사 히타치하이테크 Plasma treatment method
CN112424912B (en) * 2019-06-21 2024-01-05 株式会社日立高新技术 Plasma processing method

Similar Documents

Publication Publication Date Title
JP3066007B2 (en) Plasma processing apparatus and plasma processing method
US5824605A (en) Gas dispersion window for plasma apparatus and method of use thereof
KR100725037B1 (en) Apparatus and method for treating semiconductor device with plasma
US5753066A (en) Plasma source for etching
US5851600A (en) Plasma process method and apparatus
US6551445B1 (en) Plasma processing system and method for manufacturing a semiconductor device by using the same
US20070020937A1 (en) Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
JPH02224236A (en) Apparatus for manufacture of integrated circuit device
CN103000511A (en) Dry metal etching method
KR100809889B1 (en) Plasma chamber with externally excited torroidal plasma source
US7604709B2 (en) Plasma processing apparatus
KR20080095790A (en) Methods to eliminate m-shape etch rate profile in inductively coupled plasma reactor
JP3267174B2 (en) Plasma processing equipment
JP2000164583A (en) Method and system for plasma processing
WO2000031787A1 (en) Dry etching device and dry etching method
KR100455350B1 (en) Device for prducing inductively coupled plasma and method
JP2005223367A (en) Plasma treatment device and plasma treatment method
US6674241B2 (en) Plasma processing apparatus and method of controlling chemistry
JP2001110783A (en) Apparatus and method for plasma treatment
JP2000332000A (en) Plasma treating device and method for controlling the same
JP2003274633A (en) Linear induction plasma pump for treating reaction furnace
JP2000208496A (en) Dry etching apparatus and fabrication of semiconductor device
JP2001015297A (en) Plasma device
KR101139829B1 (en) Apparatus for multi supplying gas and plasma reactor with apparatus for multi supplying gas
JP2001077090A (en) Plasma processing device and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114