JP2001108499A - Ultrasonic liquid flow rate detection sensor - Google Patents

Ultrasonic liquid flow rate detection sensor

Info

Publication number
JP2001108499A
JP2001108499A JP29216599A JP29216599A JP2001108499A JP 2001108499 A JP2001108499 A JP 2001108499A JP 29216599 A JP29216599 A JP 29216599A JP 29216599 A JP29216599 A JP 29216599A JP 2001108499 A JP2001108499 A JP 2001108499A
Authority
JP
Japan
Prior art keywords
pipe
flow rate
liquid flow
ultrasonic
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29216599A
Other languages
Japanese (ja)
Other versions
JP3841599B2 (en
Inventor
Masaru Hoshikawa
星川  賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP29216599A priority Critical patent/JP3841599B2/en
Publication of JP2001108499A publication Critical patent/JP2001108499A/en
Application granted granted Critical
Publication of JP3841599B2 publication Critical patent/JP3841599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic liquid flow rate detection sensor that can be installed without cutting existing piping, and at the same time, can make a span larger, and can easily carry out the alignment between ultrasonic vibrations. SOLUTION: In the ultrasonic liquid flow rate detection sensor that is arranged opposite to the front and back or piping being formed of a fluororesin, transmits and receives an ultrasonic wave, and detects the flow rate of fluid flowing inside the piping according to the time difference, a rectangular parallelepiped-shaped recessed part 23b with a quadrilateral-shape section is formed in the longitudinal direction of a back surface, at the same time, an engagement part 23c projection in an outer direction is provided at a part other than the recessed part, a sensor holder 23 with a gear-lock part consisting of the recessed part with the same shape as the engagement part is provided, and a shoe 21 is fitted to one part of the recessed part with the quadrilateral- shaped section of a sensor holder, a where the shoe 21 is formed by the same fluorine plastic as the piping, and forms a part in contact with the piping on the same curved surface as the outer periphery of the piping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定流体の流れ
るフッ素樹脂配管の管外側に取り付けて流量を検出する
クランプオン式の超音波液体流量検出センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clamp-on type ultrasonic liquid flow rate detecting sensor which is attached to the outside of a fluororesin pipe through which a fluid to be measured flows and detects a flow rate.

【0002】[0002]

【従来の技術】配管中に流れる流体を超音波で測定する
方法は、配管の上流側と下流側に超音波液体流量検出セ
ンサをそれぞれ対向するようにクランプして配置し、超
音波パルスを送受信させ、到達時間の差によって流速を
検出することにより流量を測定する方法である。
2. Description of the Related Art A method of measuring a fluid flowing in a pipe by ultrasonic waves is such that ultrasonic liquid flow rate detection sensors are disposed on the upstream and downstream sides of a pipe so as to be opposed to each other and transmit and receive ultrasonic pulses. In this method, the flow rate is measured by detecting the flow rate based on the difference in arrival time.

【0003】従来、この方式の場合、配管に当接する超
音波液体流量検出センサのシューには、アクリル、エポ
キシ等の材料が用いられおり、これを半導体洗浄装置等
に用いられているPFA樹脂の小径配管に取り付けた場
合、シューと配管の材質の相違により、シューからPF
A樹脂配管へ入る音波が配管と直交する方向に屈折する
ため、センサ間の距離(スパン)を大きくとれず、測定
精度を高めることができなかった。
Conventionally, in the case of this system, a material such as acrylic or epoxy has been used for a shoe of an ultrasonic liquid flow detecting sensor which is in contact with a pipe, and the shoe is made of PFA resin used in a semiconductor cleaning device or the like. When attached to a small diameter pipe, due to the difference in the material of the shoe and the pipe, the PF
Since the sound wave entering the A resin pipe is refracted in a direction orthogonal to the pipe, the distance (span) between the sensors cannot be made large, and the measurement accuracy cannot be improved.

【0004】また、従来、配管への超音波液体流量検出
センサの固定にはワイヤバンドなどを用いて固定を行っ
ていたが、この場合はあらゆる配管径に対応することが
できるという利点がある代わりに、その都度位置合わせ
を行わなければならないという問題がある。超音波流量
計では、センサの位置が重要であり、位置合わせが正確
に行われていないと測定精度に大きく影響してくるの
で、位置合わせに大きな労力を費やしていた。
Conventionally, the ultrasonic liquid flow rate detection sensor is fixed to a pipe by using a wire band or the like. In this case, however, there is an advantage that it can be applied to any pipe diameter. However, there is a problem that the alignment must be performed each time. In the ultrasonic flowmeter, the position of the sensor is important, and if the positioning is not performed accurately, the accuracy of measurement is greatly affected.

【0005】そこで、半導体基板の洗浄等の分野のよう
に小流量を超音波で測定する場合、クランプオン式では
なく図8に示すような専用の流量測定器を用いていた。
この測定器は、検出部80の流路81を‘コ’字状にし
たもので、入口81aから流入した液体は90度曲げら
れて測定管81bを通り、再び90度曲げられて出口8
1cから流出するように構成されている。測定管81b
の両端には超音波の発信、受信を行う超音波振動子82
が装着されていて、これら超音波振動子82からの検出
信号に基づいて、管路寸法等から流量を得ている。
Therefore, when a small flow rate is measured by ultrasonic waves as in the field of cleaning a semiconductor substrate, a dedicated flow rate measuring device as shown in FIG. 8 is used instead of the clamp-on type.
In this measuring device, the flow path 81 of the detecting section 80 is formed in a U-shape. The liquid flowing from the inlet 81a is bent by 90 degrees, passes through the measuring pipe 81b, is bent again by 90 degrees, and is bent again by 90 degrees.
1c. Measuring tube 81b
Ultrasonic transducers 82 for transmitting and receiving ultrasonic waves
Is mounted, and the flow rate is obtained from the pipe size and the like based on the detection signal from the ultrasonic transducer 82.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この流
量測定器を用いる場合、既存の配管を切断して検出部を
接続しなければならず、管内に不純物が混入するおそれ
があり、またこの測定管は形状が‘コ’字状をしている
ので、隅の部分に液溜まりが生じ易く、不純物の蓄積、
水溶液の析出などが生じることがあり、問題がある。
However, when this flow rate measuring device is used, an existing pipe must be cut and a detection unit must be connected, and there is a possibility that impurities may be mixed in the pipe, and this measuring pipe may be used. Has a 'U'-shape, so it is easy for liquid to accumulate in the corners, accumulating impurities,
An aqueous solution may be precipitated, which is problematic.

【0007】本発明の課題は、既存の配管を切断するこ
となく設置でき、かつスパンを大きくとることができる
とともに、超音波振動子間の位置あわせが容易な超音波
液体流量検出センサを提供することにある。
An object of the present invention is to provide an ultrasonic liquid flow rate detection sensor which can be installed without cutting existing pipes, can have a large span, and can be easily positioned between ultrasonic transducers. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、次にような手段を採用した。請求項1に
記載の超音波液体流量検出センサは、フッ素樹脂で形成
された配管の表裏に対向して配置され、超音波を送受信
してその時間差から配管の内部に流れる流体の流量を検
出する超音波液体流量検出センサであって、前記配管に
当接する超音波液体流量検出センサのシューが、配管と
同じフッ素樹脂で形成されているとともに、配管と当接
する部分が配管の外周と同じ曲面に形成されていること
を特徴としている。
Means for Solving the Problems In order to solve the above problems, the present invention employs the following means. The ultrasonic liquid flow rate detection sensor according to claim 1 is disposed opposite to the front and back of a pipe formed of a fluororesin, transmits and receives ultrasonic waves, and detects a flow rate of a fluid flowing inside the pipe from a time difference between the ultrasonic waves. An ultrasonic liquid flow rate detection sensor, wherein the shoe of the ultrasonic liquid flow rate detection sensor that contacts the pipe is formed of the same fluororesin as the pipe, and the portion that contacts the pipe has the same curved surface as the outer circumference of the pipe. It is characterized by being formed.

【0009】請求項2に記載の超音波液体流量検出セン
サは、フッ素樹脂で形成された配管の表裏に対向して配
置され、超音波を送受信してその時間差から配管の内部
に流れる流体の流量を検出する超音波液体流量検出セン
サであって、直方体状で、その裏面長手方向に断面四角
形状の凹部が形成され、かつ該凹部以外の部分に外方向
に突出する係合部を有するとともに、該係合部と同一形
状の凹部からなる係止部を有するセンサホルダを備え、
該センサホルダの前記断面四角形状の凹部の一部に、配
管と同じフッ素樹脂で形成され、配管と当接する部分を
配管の外周と同じ曲面に形成されたシューが嵌挿されて
いることを特徴としている。
According to a second aspect of the present invention, there is provided an ultrasonic liquid flow rate detection sensor which is disposed opposite to the front and back of a pipe formed of a fluororesin, transmits and receives ultrasonic waves, and detects a flow rate of a fluid flowing into the pipe based on a time difference. An ultrasonic liquid flow rate detection sensor for detecting a rectangular parallelepiped, a concave portion having a rectangular cross section in the longitudinal direction of the back surface thereof, and having an engaging portion projecting outward in a portion other than the concave portion, A sensor holder having a locking portion composed of a recess having the same shape as the engagement portion,
A shoe formed of the same fluororesin as the pipe and having a portion in contact with the pipe formed on the same curved surface as the outer circumference of the pipe is fitted and inserted into a part of the square-shaped concave portion of the sensor holder. And

【0010】請求項3に記載の超音波液体流量検出セン
サは、請求項1又は2に記載の発明において、シューの
超音波振動子を取り付ける面を、配管面に対して50度
〜58度としたことを特徴としている。
According to a third aspect of the present invention, there is provided an ultrasonic liquid flow rate detection sensor according to the first or second aspect, wherein the surface on which the ultrasonic vibrator of the shoe is attached is set at 50 to 58 degrees with respect to the pipe surface. It is characterized by doing.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して、本発明に
係る超音波液体流量検出センサの第1の実施の形態につ
き説明する。図1は、超音波液体流量検出センサ10を
配管50にクランプオンした状態を原理的に説明する図
で、(a)は側面図、(b)は正面図である。但し、
(b)では下側のセンサ10を省略している。図に示す
ように、配管50は均一な直径を有するもので、半導体
関係の洗浄液を搬送するために耐薬品性のあるフッ素樹
脂(PFA)で形成されている。配管50にクランプオ
ンされている超音波液体流量検出センサ10のシュー1
1は、配管50と同じフッ素樹脂(PTFE)で形成さ
れているとともに、配管50と当接する部分11aは配
管50の外周と同じ曲面、すなわち配管50の外面の曲
率と同じ曲率の曲面に形成されている。このため、シュ
ー11は配管50の外面に密着する。また、シュー11
の側面11bには超音波振動子12が取り付けられてお
り、この側面11bは、配管50の外表面に対して傾斜
角θを持っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of an ultrasonic liquid flow detection sensor according to the present invention will be described below with reference to the drawings. FIGS. 1A and 1B are diagrams for explaining in principle the state in which the ultrasonic liquid flow rate detection sensor 10 is clamped on a pipe 50. FIG. 1A is a side view and FIG. 1B is a front view. However,
In (b), the lower sensor 10 is omitted. As shown in the figure, the pipe 50 has a uniform diameter and is made of a chemical-resistant fluororesin (PFA) for transporting a semiconductor-related cleaning liquid. Shoe 1 of ultrasonic liquid flow rate detection sensor 10 clamped on pipe 50
1 is made of the same fluororesin (PTFE) as the pipe 50, and a portion 11a that comes into contact with the pipe 50 is formed on the same curved surface as the outer periphery of the pipe 50, that is, a curved surface having the same curvature as the outer surface of the pipe 50. ing. Therefore, the shoe 11 comes into close contact with the outer surface of the pipe 50. Also, shoe 11
The ultrasonic vibrator 12 is attached to the side surface 11b, and the side surface 11b has an inclination angle θ with respect to the outer surface of the pipe 50.

【0012】このように、フッ素樹脂(PFA)系の配
管50に対し、同じ材質(PTFE)のシュー11を用
いたので、流量を計測するうえで良好な超音波受波は感
度が得られる。これは、シュー11と配管50の音響特
性が近いか又は同一のため、シュー11と配管50の間
での超音波の反射がほとんど起こらず、効率よく配管5
0内の液体に超音波が入射されることによる。さらに、
フッ素樹脂内を伝播する音速は1300m/S程度と比
較的遅いので、被測定体を水や水溶液などのフッ素樹脂
より伝播速度の早いものに特定した場合、配管50の中
点を伝播する音波経路が最も短時間になるので、流量計
測に用いられるS1のゼログロス点は、他の経路を伝播
した受波によって乱されない。このことから適切な補正
係数を乗じることにより、より精度の高い流量計測が可
能となる。
As described above, since the shoes 11 made of the same material (PTFE) are used for the fluororesin (PFA) -based piping 50, good ultrasonic wave reception can be obtained in measuring the flow rate. This is because the acoustic characteristics of the shoe 11 and the pipe 50 are close to or identical to each other, so that there is almost no reflection of ultrasonic waves between the shoe 11 and the pipe 50, and the pipe 5 is efficiently connected.
This is because the ultrasonic wave is incident on the liquid within 0. further,
Since the speed of sound propagating in the fluororesin is relatively slow at about 1300 m / S, if the object to be measured is specified to have a higher propagation speed than the fluororesin such as water or aqueous solution, the sound wave path propagating through the middle point of the pipe 50 Is the shortest time, and the zero gloss point of S1 used for the flow rate measurement is not disturbed by the received wave propagating through another path. For this reason, by multiplying by an appropriate correction coefficient, more accurate flow rate measurement becomes possible.

【0013】また、このとき超音波の入射角はSnel
lの法則に基づき、配管中心軸に対して、より鋭角にな
るように屈折が起こるので、送受信センサ10の間隔を
広げることができる。このことは、より精度の高い流量
計測につながる。
At this time, the incident angle of the ultrasonic wave is Snel
Based on the law of l, refraction occurs so as to be more acute with respect to the center axis of the pipe, so that the interval between the transmission and reception sensors 10 can be increased. This leads to more accurate flow measurement.

【0014】一例として、シュー11の材質をPTF
E、配管50の材質をPFA、配管50内に水を入れ
て、シュー11の側面11bの傾斜角θと超音波振動子
の受波感度の関係を実験したところ、図2に示す結果を
得た。シュー11の超音波振動子12取付け面の傾斜角
θは、50゜度〜58゜の範囲が安定した受波感度を得
られる。傾斜角が50゜未満では超音波液体流量検出セ
ンサ10間のスパンが取れず、58゜を超えると急激に
感度が下がることが判明した。なお、配管50の直径は
6.35mmである。また、シュー11の配管50と当
接する部分11aを配管50の外周と同じ曲面に形成し
たので、密着することによる受波感度の向上、S/N比
の向上により、精度の高い流量計測が行える。
As an example, the material of the shoe 11 is PTF
E, the material of the pipe 50 was PFA, water was poured into the pipe 50, and the relationship between the inclination angle θ of the side surface 11b of the shoe 11 and the receiving sensitivity of the ultrasonic transducer was tested. The results shown in FIG. 2 were obtained. Was. A stable wave receiving sensitivity can be obtained when the inclination angle θ of the surface of the shoe 11 to which the ultrasonic transducer 12 is attached is in the range of 50 ° to 58 °. It was found that when the inclination angle was less than 50 °, the span between the ultrasonic liquid flow rate detection sensors 10 could not be obtained, and when the inclination angle was more than 58 °, the sensitivity sharply decreased. The diameter of the pipe 50 is 6.35 mm. In addition, since the portion 11a of the shoe 11 that comes into contact with the pipe 50 is formed on the same curved surface as the outer circumference of the pipe 50, high-accuracy flow rate measurement can be performed by improving the receiving sensitivity and the S / N ratio due to the close contact. .

【0015】次に、第2の実施形態について説明する。
この超音波液体流量検出センサは、図3に示すセンサホ
ルダ23と、図4に示す超音波振動子22が取り付けら
れたシュー21とを備えている。なお、図3(a)はセ
ンサホルダ23を底側から見た斜視図、(b)は上側か
ら見た斜視図、図4(a)はシュー21の平面図、
(b)は(a)のB−B線による断面図、(c)は正面
図で、(a)を矢印C方向から見たものである。このセ
ンサホルダ23は、材質は塩化ビニール等のプラスチッ
クで、その形状はほぼ直方体状に構成されており、その
裏面中央部の長手方向両端にわたって少し凹んだ状態の
溝23aが設けられていて、その溝23aの中に断面四
角形状の凹部23bが形成されている。また、裏面の溝
23aの両側の高くなった部分で、かつセンサホルダ2
3の端部近傍には一対の円柱状の係合部23cが設けら
れている。
Next, a second embodiment will be described.
This ultrasonic liquid flow detection sensor includes a sensor holder 23 shown in FIG. 3 and a shoe 21 to which an ultrasonic vibrator 22 shown in FIG. 4 is attached. 3A is a perspective view of the sensor holder 23 as viewed from the bottom, FIG. 3B is a perspective view of the sensor holder 23 as viewed from above, FIG.
(B) is a sectional view taken along line BB of (a), (c) is a front view, and (a) is viewed from the direction of arrow C. The sensor holder 23 is made of plastic such as vinyl chloride, and has a substantially rectangular parallelepiped shape. The sensor holder 23 is provided with a slightly recessed groove 23a over both longitudinal ends of the center of the back surface. A recess 23b having a rectangular cross section is formed in the groove 23a. Also, at the raised portions on both sides of the groove 23a on the back surface and the sensor holder 2
A pair of columnar engaging portions 23c is provided in the vicinity of the end of the third.

【0016】また、同じく裏面の溝23aの両側の高く
なった部分で、かつセンサホルダ23の中央部と端部と
の中間ほどに、前記係合部23cと同一形状の凹部から
なる係止部23dが形成されている。なお、この係止部
23dはセンサホルダ23の表裏に貫通している。さら
に、センサホルダ23は、中央部に円形の貫通孔23e
が設けられており、端部にはネジ溝が形成された円形の
貫通孔23fが設けられているとともに、側面と上面と
の間に貫通する4個の長方形の穴23gが設けられてい
る。
An engaging portion formed of a concave portion having the same shape as the engaging portion 23c is provided at a raised portion on both sides of the groove 23a on the back surface, and near the middle between the center portion and the end portion of the sensor holder 23. 23d are formed. In addition, this locking part 23d penetrates through the front and back of the sensor holder 23. Further, the sensor holder 23 has a circular through hole 23e in the center.
Is provided at the end with a circular through-hole 23f having a thread groove formed therein, and four rectangular holes 23g penetrating between the side surface and the upper surface.

【0017】次に、このセンサホルダ23に嵌め込まれ
るシュー21について説明する。シュー21はフッ素樹
脂で構成されており、図4に示すように、側面視台形状
の主部21aと、主部21aから水平に延びる平板状の
副部21bで構成されている。主部21aの長手方向の
一方の側面21cは垂直に形成されており、他方の側面
21dは底面に対して58゜の傾斜角θを有していて、
そこには超音波振動子22が接着取り付けされている。
また、主部21aの底面部21eは、図4(c)に示す
ように、曲面に形成されており、被測定液体を通す配管
の外表面の曲面とほぼ同一曲率を有する曲面となってい
る。さらに、主部21aの上面にはネジ孔21fが設け
られており、該ネジ孔21fは、シュー21を上記セン
サホルダ23に嵌挿したときに、センサホルダ23の貫
通孔23eからネジを差し込んでこのネジ孔21fに螺
合させ、シュー21をセンサホルダ23に固定させるた
めのものである。
Next, the shoe 21 fitted into the sensor holder 23 will be described. The shoe 21 is made of a fluororesin, and as shown in FIG. 4, is made up of a trapezoidal main portion 21a in a side view and a flat plate-like sub-portion 21b extending horizontally from the main portion 21a. One side surface 21c in the longitudinal direction of the main portion 21a is formed vertically, and the other side surface 21d has an inclination angle θ of 58 ° with respect to the bottom surface,
The ultrasonic vibrator 22 is bonded and attached thereto.
Further, as shown in FIG. 4C, the bottom surface 21e of the main portion 21a is formed in a curved surface, and has a curved surface having substantially the same curvature as the curved surface of the outer surface of the pipe through which the liquid to be measured passes. . Further, a screw hole 21f is provided on the upper surface of the main part 21a, and the screw hole 21f is formed by inserting a screw from a through hole 23e of the sensor holder 23 when the shoe 21 is fitted into the sensor holder 23. The shoe 21 is screwed into the screw hole 21f to fix the shoe 21 to the sensor holder 23.

【0018】図5は、センサホルダ23にシュー21を
嵌挿した状態の超音波液体流量検出センサ20を示すも
ので、(a)は分解図、(b)は完成状態を示す図であ
る。シュー21をセンサホルダ23の凹部23bに嵌挿
して、ネジ24にて固定する。この時、シュー21の副
部21bは、その両側がセンサホルダ23の溝23aの
一部によって支持されている。また、超音波振動子22
に接続された配線25は、センサホルダ23の孔23f
を塞ぐキャップ26の中心部を通って外部に引き出され
ている。
FIGS. 5A and 5B show the ultrasonic liquid flow rate detection sensor 20 with the shoe 21 fitted in the sensor holder 23. FIG. 5A is an exploded view and FIG. 5B is a view showing a completed state. The shoe 21 is inserted into the recess 23 b of the sensor holder 23 and fixed with the screw 24. At this time, the sub part 21 b of the shoe 21 is supported on both sides by a part of the groove 23 a of the sensor holder 23. Also, the ultrasonic transducer 22
Is connected to the hole 23f of the sensor holder 23.
Is drawn out to the outside through the center of the cap 26 closing the cap.

【0019】次に、この超音波液体流量検出センサ20
の使用方法について説明する。図6に示すように、一対
の超音波液体流量検出センサ20を左右を逆にしてひっ
くり返し、配管50挟むようにして、互いの係合部23
cを相手側の係止部23dに差し込む。配管50は、両
側のセンサ20のシュー21の底面部21eによって両
側から挟み込まれた状態になる。このように、上流側と
下流側に対抗して配置される超音波液体流量検出センサ
20の位置決めがワンタッチで簡単に行える。
Next, the ultrasonic liquid flow rate detection sensor 20
How to use will be described. As shown in FIG. 6, the pair of ultrasonic liquid flow rate detection sensors 20 are turned upside down with the right and left reversed, and the engagement portions 23 of the respective
c into the engaging portion 23d on the other side. The pipe 50 is sandwiched from both sides by the bottom surface 21 e of the shoe 21 of the sensor 20 on both sides. As described above, the positioning of the ultrasonic liquid flow rate detection sensor 20 disposed opposite to the upstream side and the downstream side can be easily performed with one touch.

【0020】続いて、2つのセンサ20が外れないよう
に、図7に示すように、センサホルダ23に形成されて
いる穴23gにバンド30を通して締め付ける。このバ
ンド30は、多数の配線を束ねる時に用いるようなもの
でもよく、ロック、アンロックができるようなものであ
れば、流量の測定が終了した時点で外すことができ、さ
らに便利である。
Subsequently, as shown in FIG. 7, the band 30 is tightened through a hole 23g formed in the sensor holder 23 so that the two sensors 20 do not come off. The band 30 may be used for bundling a large number of wires. If the band 30 can be locked and unlocked, it can be removed at the end of the flow rate measurement, which is more convenient.

【0021】このように、配管50へのセンサ20の取
り付けが非常に簡単に行えるとともに、取り付け精度が
向上し、また、センサホルダ23の形状が、上流側、下
流側とも同形状であり互い違いに向かい合わせて取り付
ける構造になっているので、センサホルダ23を形成す
る金型が1種類で済み、コストの軽減を図れる。
As described above, the attachment of the sensor 20 to the pipe 50 can be performed very easily, the attachment accuracy is improved, and the shape of the sensor holder 23 is the same on both the upstream side and the downstream side. Since the structure is such that the sensor holder 23 is mounted facing each other, only one type of mold is required to form the sensor holder 23, and the cost can be reduced.

【0022】[0022]

【発明の効果】以上説明したように、本発明による超音
波液体流量検出センサはクランプオン形式なので、既存
の配管を切断して取り付ける従来の半導体洗浄液量検出
センサに比べて、流量検出作業が容易になるとともに、
シューに配管と同じフッ素樹脂を用いたので、音波の反
射屈折の関係からスパンを大きくとれ精度の高い流量測
定が行える。
As described above, since the ultrasonic liquid flow rate detection sensor according to the present invention is of the clamp-on type, the flow rate detection work is easier than the conventional semiconductor cleaning liquid quantity detection sensor which cuts and attaches the existing pipe. Along with
Since the same fluororesin as the pipe is used for the shoe, the span can be made large from the relationship of reflection and refraction of the sound wave, and the flow rate measurement with high accuracy can be performed.

【0023】また、配管への取り付けが簡単で、かつ位
置合わせ容易なので、作業時間を短縮することができ
る。さらに、1種類の金型から、上流、下流のセンサホ
ルダを作ることができるので、コストを軽減することが
できる。
Further, the work time can be shortened because the attachment to the pipe is easy and the alignment is easy. Further, since the upstream and downstream sensor holders can be made from one type of mold, the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波液体流量検出センサの第1
の実施の形態を配管に対して取り付けた図で、(a)は
側面図、(b)は正面図である。
FIG. 1 is a first view of an ultrasonic liquid flow detection sensor according to the present invention.
FIGS. 2A and 2B are diagrams in which the embodiment of FIG. 1 is attached to a pipe, where FIG.

【図2】シューの超音波振動子取付面の角度と受波感度
との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the angle of the ultrasonic transducer mounting surface of the shoe and the wave receiving sensitivity.

【図3】センサホルダを示し、(a)は底面から見た斜
視図、(a)は上面から見た斜視図である。
3A and 3B show a sensor holder, wherein FIG. 3A is a perspective view seen from a bottom surface, and FIG. 3A is a perspective view seen from a top surface.

【図4】シューの形状を示し、(a)は平面図、(b)
は(a)のB−B線による断面図、(c)は右側面図で
ある。
FIG. 4 shows the shape of the shoe, (a) is a plan view, (b)
3A is a cross-sectional view taken along line BB of FIG. 3A, and FIG. 3C is a right side view.

【図5】シューとセンサホルダの分解図、(b)は組立
完成図である。
FIG. 5 is an exploded view of the shoe and the sensor holder, and (b) is an assembled view.

【図6】図5に示す第2の実施形態の超音波液体流量検
出センサを配管に取り付ける状態を説明するための図で
ある。
FIG. 6 is a diagram for explaining a state in which the ultrasonic liquid flow rate detection sensor according to the second embodiment shown in FIG. 5 is attached to a pipe.

【図7】超音波液体流量検出センサを配管に取り付け
て、バンドで締めた図である。
FIG. 7 is a diagram in which an ultrasonic liquid flow rate detection sensor is attached to a pipe and fastened with a band.

【図8】従来から用いられている、半導体洗浄液の流量
を測定するための検出器の動作原理を示す図である。
FIG. 8 is a diagram illustrating an operation principle of a conventionally used detector for measuring a flow rate of a semiconductor cleaning liquid.

【符号の説明】[Explanation of symbols]

10 超音波液体流量検出センサ 11 シュー 11a 配管と当接する部分 12 超音波振動子 20 超音波液体流量検出センサ 21 シュー 22 超音波振動子 23 センサホルダ 23b 凹部 23c 係合部 23d 係止部 50 配管 DESCRIPTION OF SYMBOLS 10 Ultrasonic liquid flow detection sensor 11 Shoe 11a Portion which contacts pipe 12 Ultrasonic vibrator 20 Ultrasonic liquid flow detection sensor 21 Shoe 22 Ultrasonic vibrator 23 Sensor holder 23b Depression 23c Engagement part 23d Lock part 50 Pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂で形成された配管の表裏に対
向して配置され、超音波を送受信してその時間差から配
管の内部に流れる流体の流量を検出する超音波液体流量
検出センサであって、 前記配管に当接する超音波液体流量検出センサのシュー
が、配管と同じフッ素樹脂で形成されているとともに、
配管と当接する部分が配管の外周と同じ曲面に形成され
ていることを特徴とする超音波液体流量検出センサ。
An ultrasonic liquid flow rate detection sensor disposed opposite to the front and back of a pipe formed of a fluororesin, transmitting and receiving ultrasonic waves, and detecting a flow rate of a fluid flowing inside the pipe from a time difference between the ultrasonic waves. The shoe of the ultrasonic liquid flow detection sensor contacting the pipe is formed of the same fluororesin as the pipe,
An ultrasonic liquid flow rate detection sensor, wherein a portion in contact with a pipe is formed on the same curved surface as an outer circumference of the pipe.
【請求項2】 フッ素樹脂で形成された配管の表裏に対
向して配置され、超音波を送受信してその時間差から配
管の内部に流れる流体の流量を検出する超音波液体流量
検出センサであって、 直方体状で、その裏面長手方向に断面四角形状の凹部が
形成され、かつ該凹部以外の部分に外方向に突出する係
合部を有するとともに、該係合部と同一形状の凹部から
なる係止部を有するセンサホルダを備え、該センサホル
ダの前記断面四角形状の凹部の一部に、配管と同じフッ
素樹脂で形成され、配管と当接する部分を配管の外周と
同じ曲面に形成されたシューが嵌挿されていることを特
徴とする超音波液体流量検出センサ。
2. An ultrasonic liquid flow rate detection sensor disposed opposite to the front and back of a pipe formed of a fluororesin, transmitting and receiving ultrasonic waves and detecting a flow rate of a fluid flowing inside the pipe from a time difference between the ultrasonic waves. A rectangular parallelepiped-shaped recess having a rectangular cross section in the longitudinal direction of the back surface, and having an engaging portion projecting outward in a portion other than the recess, and a recess having the same shape as the engaging portion. A shoe provided with a sensor holder having a stop portion, the sensor holder being formed of the same fluororesin as the pipe in a part of the concave portion having the rectangular cross section, and having a portion in contact with the pipe formed on the same curved surface as the outer circumference of the pipe. The ultrasonic liquid flow rate detection sensor, wherein is inserted.
【請求項3】 前記シューの、超音波振動子を取り付け
る面を、配管面に対して50゜〜58゜としたことを特
徴とする請求項1又は2に記載の超音波液体流量検出セ
ンサ。
3. The ultrasonic liquid flow rate detection sensor according to claim 1, wherein the surface of the shoe on which the ultrasonic vibrator is attached has an angle of 50 ° to 58 ° with respect to a piping surface.
JP29216599A 1999-10-14 1999-10-14 Ultrasonic liquid flow detection sensor Expired - Fee Related JP3841599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29216599A JP3841599B2 (en) 1999-10-14 1999-10-14 Ultrasonic liquid flow detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29216599A JP3841599B2 (en) 1999-10-14 1999-10-14 Ultrasonic liquid flow detection sensor

Publications (2)

Publication Number Publication Date
JP2001108499A true JP2001108499A (en) 2001-04-20
JP3841599B2 JP3841599B2 (en) 2006-11-01

Family

ID=17778403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29216599A Expired - Fee Related JP3841599B2 (en) 1999-10-14 1999-10-14 Ultrasonic liquid flow detection sensor

Country Status (1)

Country Link
JP (1) JP3841599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644021A1 (en) * 2018-10-26 2020-04-29 Ryusok Co., Ltd. Ultrasonic flow measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644021A1 (en) * 2018-10-26 2020-04-29 Ryusok Co., Ltd. Ultrasonic flow measuring apparatus
CN111103021A (en) * 2018-10-26 2020-05-05 株式会社琉Sok Ultrasonic flow measuring device
TWI724589B (en) * 2018-10-26 2021-04-11 日商琉Sok股份有限公司 Ultrasonic flow measuring apparatus
US11181405B2 (en) * 2018-10-26 2021-11-23 Ryusok Co., Ltd. Clamp-type ultrasonic flow measuring apparatus with a mounter for press tight fit of a transmission/reception unit to the measuring pipe

Also Published As

Publication number Publication date
JP3841599B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US8047081B2 (en) Flow monitoring apparatus having an ultrasonic sensor with a coupling adapter having securing mechanism
US9279707B2 (en) Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths
US20140020478A1 (en) Ultrasonic wedge and method for determining the speed of sound in same
US8875587B2 (en) Ultrasonic flow measuring system and method for monitoring fluid flow having measuring tube inlet and outlet axis forming and angle not equal to 90° with the measuring tube axis
US9140594B2 (en) Ultrasonic, flow measuring device
JPH08285647A (en) Detector for ultrasonic flowmeter
JP2002318144A (en) Clamp-on type ultrasonic flow meter
JP3841599B2 (en) Ultrasonic liquid flow detection sensor
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
KR101146518B1 (en) A Clamp-on type Multipath Ultrasonic Flowsensor and Installation Method thereof
JP4368591B2 (en) Ultrasonic flow meter
JP2001317974A (en) Ultrasonic flowmeter
JPH09287990A (en) Ultrasonic flowmeter
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP2003262545A (en) Clamp-on type ultrasonic flowmeter
JP2004045425A (en) Flow rate measuring device
KR102478319B1 (en) Flow slot member
KR101119998B1 (en) Clamp-on type Ultrasonic Transducer using a multi-path
JP2009216496A (en) Ultrasonic flowmeter
JP3021671B2 (en) Vortex flow meter
JP4842728B2 (en) Ultrasonic sound velocity measuring device
Nakano et al. 1Pb2-5 Development of Multi-parallel-path Clamp-on Ultrasonic Flowmeter
JP2685590B2 (en) Ultrasound transceiver
JPH11237263A (en) Ultrasonic flowmeter
JP2000258361A (en) Microwave type densitometer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees