JP2001108311A - Refrigerant heater - Google Patents

Refrigerant heater

Info

Publication number
JP2001108311A
JP2001108311A JP28112499A JP28112499A JP2001108311A JP 2001108311 A JP2001108311 A JP 2001108311A JP 28112499 A JP28112499 A JP 28112499A JP 28112499 A JP28112499 A JP 28112499A JP 2001108311 A JP2001108311 A JP 2001108311A
Authority
JP
Japan
Prior art keywords
refrigerant
heating
pipe
heat
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28112499A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshimi
敦史 吉見
Tomohiro Yabu
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP28112499A priority Critical patent/JP2001108311A/en
Publication of JP2001108311A publication Critical patent/JP2001108311A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the heat transfer rate to a refrigerant and to improve a heating efficiency in a refrigerant heater for heating the refrigerant flowing through refrigerant piping. SOLUTION: Heating parts 16a, 16b for heating refrigerant piping 20 to transfer a heat from longitudinally disposed refrigerant piping 20 to a refrigerant are provided in the piping 20 to transfer the heat to a liquid refrigerant at an overall periphery of an inner surface of the piping 20. The parts 16a, 16b are formed of a heating part 16a made at least part of the piping 20 in the longitudinal direction and a coil 16b wound on the part 16a. In this case, the part 16b has a high frequency current generating means 16c connected to the coil 16b so as to supply a high-frequency current to the coil 16b to pass an eddy current into the part 16a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒加熱装置に関
し、特に、冷媒配管中を流れる冷媒を加熱するように該
冷媒配管に取り付ける冷媒加熱装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant heating device, and more particularly to a refrigerant heating device attached to a refrigerant pipe so as to heat a refrigerant flowing in the refrigerant pipe.

【0002】[0002]

【従来の技術】従来、例えば特開平5−223194号
公報に、この種の冷媒加熱装置が開示されている。この
冷媒加熱装置は、冷媒回路中、圧縮機の吐出側の配管に
設けられており、暖房運転時の補助ヒータ等として用い
られている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. Hei 5-223194 discloses this type of refrigerant heating device. This refrigerant heating device is provided in a pipe on the discharge side of the compressor in the refrigerant circuit, and is used as an auxiliary heater or the like during a heating operation.

【0003】この冷媒加熱装置は、中空の筒体と、この
筒体に内蔵された螺旋状のヒータ線とから構成され、筒
体の中に冷媒配管が通されるように構成されている。そ
して、ヒータ線に通電したときに、電気抵抗により発熱
する該ヒータ線の熱を冷媒配管を介して冷媒に伝えるよ
うにしている。また、この冷媒加熱装置は、圧縮機と室
内熱交換器の間で、横方向に配設された冷媒配管(以
下、横配管)に組み込まれている。
[0003] This refrigerant heating device is composed of a hollow cylindrical body and a helical heater wire built in the cylindrical body, and is configured such that a refrigerant pipe is passed through the cylindrical body. Then, when electricity is supplied to the heater wire, the heat of the heater wire, which generates heat by electric resistance, is transmitted to the refrigerant via the refrigerant pipe. Further, the refrigerant heating device is incorporated in a refrigerant pipe (hereinafter, horizontal pipe) disposed in a lateral direction between the compressor and the indoor heat exchanger.

【0004】上記冷媒加熱装置は、デフロスト運転中に
冷媒を加熱するのにも用いられている。しかし、該冷媒
加熱装置では、ガス冷媒を加熱するために熱伝達率が低
く、冷媒の加熱を素早く行えないために、デフロスト運
転を効率良く行うことが困難であった。
[0004] The refrigerant heating device is also used to heat the refrigerant during the defrost operation. However, in the refrigerant heating device, the heat transfer coefficient is low to heat the gas refrigerant, and the refrigerant cannot be quickly heated, so that it has been difficult to efficiently perform the defrost operation.

【0005】これに対して、本願出願人は、デフロスト
運転時に気液二相冷媒を加熱することにより加熱効率を
高めることができるものとして、液配管に設ける冷媒加
熱装置を提案し、これを既に出願している(特願平10
−330304号、特願平11−265265号)。
On the other hand, the present applicant has proposed a refrigerant heating device provided in a liquid pipe as a device capable of increasing the heating efficiency by heating a gas-liquid two-phase refrigerant during a defrost operation. Application has been filed (Japanese Patent Application No. 10
-330304, Japanese Patent Application No. 11-265265).

【0006】[0006]

【発明が解決しようとする課題】しかし、このように気
液二相冷媒を加熱する場合でも、上記特開平5−223
194号公報に記載されている配置を適用して、図5に
示すように横配管(50)に冷媒加熱装置(51)を設けると、
冷媒加熱装置(51)の入口付近では液冷媒(L) が横配管(5
0)の下側に溜まり、上側がガス冷媒(G) となるため、横
配管(50)の上側での熱伝達率が悪くなってしまう。この
ため、装置全体として、十分な加熱効率を得ることが困
難であった。
However, even when the gas-liquid two-phase refrigerant is heated as described above, the above-mentioned Japanese Patent Application Laid-Open No. 5-223 is disclosed.
Applying the arrangement described in Japanese Patent No. 194, and providing a refrigerant heating device (51) in the horizontal pipe (50) as shown in FIG.
Near the inlet of the refrigerant heating device (51), the liquid refrigerant (L)
0), which accumulates on the lower side and the upper side becomes the gas refrigerant (G), so that the heat transfer coefficient on the upper side of the horizontal pipe (50) deteriorates. For this reason, it has been difficult to obtain sufficient heating efficiency for the entire apparatus.

【0007】本発明は、このような問題点に鑑みて創案
されたものであり、その目的とするところは、冷媒配管
中を流れる冷媒を加熱する冷媒加熱装置において、冷媒
への熱伝達率をさらに高め、加熱効率をより向上させる
ことである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigerant heating device for heating a refrigerant flowing in a refrigerant pipe, in which a heat transfer coefficient to the refrigerant is reduced. It is to further increase the heating efficiency.

【0008】[0008]

【課題を解決するための手段】本発明は、縦方向に配置
された冷媒配管(縦配管)(20)に冷媒加熱装置(16)を設
けることにより、冷媒配管(20)の内面全周で液冷媒に熱
伝達できるようにしたものである。
According to the present invention, a refrigerant heating device (16) is provided on a refrigerant pipe (longitudinal pipe) (20) arranged in a vertical direction, so that the refrigerant pipe (20) has an entire inner surface. The heat can be transferred to the liquid refrigerant.

【0009】具体的に、本発明が講じた解決手段は、冷
媒配管(20)中を流れる冷媒を加熱する冷媒加熱装置にお
いて、上記冷媒配管(20)から冷媒に熱を伝えるように該
冷媒配管(20)を加熱する加熱部(16a,16b) を設けるとと
もに、該加熱部(16a,16b) を、縦方向に配置された冷媒
配管(20)に設けたものである。
Specifically, a solution taken by the present invention is a refrigerant heating device for heating a refrigerant flowing in a refrigerant pipe (20), wherein the refrigerant pipe (20) transmits heat to the refrigerant. A heating section (16a, 16b) for heating (20) is provided, and the heating section (16a, 16b) is provided in a refrigerant pipe (20) arranged in a vertical direction.

【0010】上記構成において、加熱部(16a,16b) は、
冷媒が下方から上方へ向かって流れる冷媒配管(20)に設
けたり、冷媒が上方から下方へ向かって流れる冷媒配管
(20)に設けたりすることが可能であるが、特に、冷媒が
下方から上方へ向かって流れる冷媒配管(20)に設けるこ
とが好ましい。
In the above configuration, the heating units (16a, 16b)
Refrigerant piping (20) in which refrigerant flows downward from above, or refrigerant piping in which refrigerant flows downward from above
Although it is possible to provide the refrigerant pipe (20), it is particularly preferable to provide the refrigerant pipe (20) through which the refrigerant flows upward from below.

【0011】また、上記構成においては、加熱部(16a,1
6b) を、冷媒配管(20)の長手方向の少なくとも一部を磁
性体にしてなる発熱部(16a) と、該発熱部(16a) に巻き
付けられたコイル(16b) とを備えた構成にするととも
に、該コイル(16b) に高周波電流を供給して発熱部(16
a) に渦電流を流すように該コイル(16b) に接続された
高周波電流発生手段(16c) を設けて、電磁誘導加熱方式
の冷媒加熱装置として構成することが好ましい。
In the above configuration, the heating section (16a, 1
6b) is configured to include a heat generating portion (16a) made of at least a part of the refrigerant pipe (20) in the longitudinal direction as a magnetic material, and a coil (16b) wound around the heat generating portion (16a). At the same time, a high-frequency current is supplied to the coil (16b) to
It is preferable to provide a high-frequency current generating means (16c) connected to the coil (16b) so as to cause an eddy current to flow in (a), so as to constitute an electromagnetic induction heating type refrigerant heating device.

【0012】−作用− 上記解決手段では、冷媒配管(20)が加熱部(16a,16b) に
より加熱され、その冷媒配管(20)の熱が冷媒に伝達され
る。
-Operation- In the above solution, the refrigerant pipe (20) is heated by the heating units (16a, 16b), and the heat of the refrigerant pipe (20) is transmitted to the refrigerant.

【0013】ここで、加熱部(16a,16b) を、冷媒が上方
から下方へ向かって流れる縦方向の冷媒配管(20)に装着
した場合は、冷媒の流れ方向に抗して気泡状のガス冷媒
(G)が上昇しようとするため、冷媒配管(20)内で乱流が
生じる。このため、液冷媒(L) は、冷媒配管(20)の一部
に偏って接触せずに、冷媒配管(20)の内面全体に均一に
接触するので、高い熱伝達率が得られる。
When the heating section (16a, 16b) is mounted on a vertical refrigerant pipe (20) in which the refrigerant flows downward from above, a bubble-like gas flows against the flow direction of the refrigerant. Refrigerant
Since (G) is going to rise, turbulence occurs in the refrigerant pipe (20). For this reason, the liquid refrigerant (L) does not unevenly contact a part of the refrigerant pipe (20) but uniformly contacts the entire inner surface of the refrigerant pipe (20), so that a high heat transfer coefficient can be obtained.

【0014】また、加熱部(16a,16b) を、冷媒が下方か
ら上方へ向かって流れる縦方向の冷媒配管(20)に装着し
た場合は、冷媒が冷媒加熱装置(16)の上部に進むにつれ
てガス冷媒(G) の割合が増加すると、該ガス冷媒(G) が
比較的高速で冷媒配管(20)の中心部を流れるのに対し
て、液冷媒(L) は冷媒配管(20)の内面に接触しながら環
状になって低速で流れる。つまり、冷媒配管(20)の内部
で環状流が生じることになる。したがって、縦方向の冷
媒配管(20)に加熱部(16a,16b) を設けた部分では、液冷
媒(L) が常に冷媒配管(20)の内面全体に接触するので、
冷媒を上方から下方へ流すのに比べて、熱伝達率がさら
に向上する。
When the heating section (16a, 16b) is mounted on a vertical refrigerant pipe (20) in which the refrigerant flows upward from below, as the refrigerant advances to the upper part of the refrigerant heating device (16), When the ratio of the gas refrigerant (G) increases, the gas refrigerant (G) flows at a relatively high speed through the center of the refrigerant pipe (20), while the liquid refrigerant (L) flows inside the refrigerant pipe (20). Flows at low speed in an annular shape while contacting That is, an annular flow is generated inside the refrigerant pipe (20). Therefore, in the portion where the heating section (16a, 16b) is provided in the vertical refrigerant pipe (20), the liquid refrigerant (L) always contacts the entire inner surface of the refrigerant pipe (20).
The heat transfer coefficient is further improved as compared with flowing the refrigerant from above to below.

【0015】[0015]

【発明の効果】このように、上記解決手段によれば、縦
方向に配置した冷媒配管(20)に加熱部(16a,16b) を設け
ることにより、液冷媒(L) が冷媒配管(20)の内面に均一
に接触するようになって熱伝達率が向上するので、より
多くの熱量を冷媒に与えることができ、加熱効率が向上
する。
As described above, according to the above-described means, the provision of the heating portions (16a, 16b) in the vertically arranged refrigerant pipes (20) allows the liquid refrigerant (L) to flow through the refrigerant pipes (20). Since the heat transfer coefficient is improved by uniformly contacting the inner surface of the cooling medium, more heat can be given to the refrigerant, and the heating efficiency is improved.

【0016】また、このことから、加熱部(16a,16b) に
よる冷媒配管(20)の加熱温度を少し低めに設定しても熱
を冷媒に十分に伝えることが可能となり、高い省エネル
ギ効果が得られるとともに、外部への熱の放出量が少な
くなる効果も得られる。
Further, from this, even if the heating temperature of the refrigerant pipe (20) by the heating units (16a, 16b) is set slightly lower, heat can be sufficiently transmitted to the refrigerant, and a high energy saving effect can be obtained. In addition to this, the effect of reducing the amount of heat released to the outside can be obtained.

【0017】また、冷媒加熱装置(16)を電磁誘導加熱方
式に構成した場合には、冷媒配管(20)を瞬時に高温に加
熱できることから、冷媒をより効率的に加熱することが
可能となる。
Further, when the refrigerant heating device (16) is constituted by an electromagnetic induction heating system, the refrigerant pipe (20) can be instantly heated to a high temperature, so that the refrigerant can be more efficiently heated. .

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1に示すように、この冷凍装置(1) は、
室外ユニット(1a)と、室内ユニット(1b)とを備えた空気
調和装置として構成されている。そして、室外ユニット
(1a)内の圧縮機(10)、室外熱交換器(11)及び膨張弁(12)
と、室内ユニット(1b)内の室内熱交換器(13)とが、銅管
などからなる冷媒配管(20)により順に接続され、冷媒回
路(21)が構成されている。
As shown in FIG. 1, this refrigeration system (1)
The air conditioner includes an outdoor unit (1a) and an indoor unit (1b). And the outdoor unit
(1a) Inside compressor (10), outdoor heat exchanger (11) and expansion valve (12)
And an indoor heat exchanger (13) in the indoor unit (1b) are connected in order by a refrigerant pipe (20) made of a copper pipe or the like, thereby forming a refrigerant circuit (21).

【0020】圧縮機(10)と両熱交換器(11,13) は四路切
換弁(22)を介して接続されており、暖房運転と冷房運転
を切り換えられるようになっている。図1は四路切換弁
(22)を暖房運転側に切り換えた状態を示しており、この
とき、室内熱交換器(13)は凝縮器として作用し、室外熱
交換器(11)は蒸発器として作用する。また、室外ユニッ
ト(1a)内には、室外送風機(14)が設けられ、室内ユニッ
ト(1b)内には、室内送風機(15)が設けられている。
The compressor (10) and the two heat exchangers (11, 13) are connected via a four-way switching valve (22) so that a heating operation and a cooling operation can be switched. Figure 1 shows a four-way switching valve
The state where (22) is switched to the heating operation side is shown. At this time, the indoor heat exchanger (13) acts as a condenser, and the outdoor heat exchanger (11) acts as an evaporator. An outdoor blower (14) is provided in the outdoor unit (1a), and an indoor blower (15) is provided in the indoor unit (1b).

【0021】冷媒回路(21)中には、膨張弁(12)と室外熱
交換器(11)との間に、冷媒配管(20)中を流れる冷媒をデ
フロスト運転時に加熱するように、冷媒加熱装置である
ヒータ(16)が配置されている。また、室外熱交換器(11)
には、暖房運転時に該室外熱交換器(11)の着霜を検出す
る着霜センサ(17)が設けられている。
In the refrigerant circuit (21), the refrigerant flowing between the expansion valve (12) and the outdoor heat exchanger (11) is heated so as to heat the refrigerant flowing through the refrigerant pipe (20) during the defrost operation. A heater (16), which is an apparatus, is provided. In addition, outdoor heat exchanger (11)
Is provided with a frost sensor (17) for detecting frost on the outdoor heat exchanger (11) during the heating operation.

【0022】室外送風機(14)、室内送風機(15)、ヒータ
(16)及び着霜センサ(17)は、コントローラ(18)と接続さ
れている。コントローラ(18)は、暖房運転時に着霜セン
サ(17)により室外熱交換器(11)の着霜を検出すると、圧
縮機(10)の運転を正サイクルで継続しながらヒータ(16)
を作動させて、デフロスト運転を行うように構成されて
いる。
Outdoor blower (14), indoor blower (15), heater
(16) and the frost formation sensor (17) are connected to the controller (18). When the controller (18) detects the frost formation of the outdoor heat exchanger (11) by the frost sensor (17) during the heating operation, the heater (16) continues the operation of the compressor (10) in the normal cycle.
Is operated to perform the defrost operation.

【0023】次に、図2を参照してヒータ(16)の構成に
ついて説明する。このヒータ(16)は、電磁誘導加熱方式
のヒータである。具体的に、ヒータ(16)は、冷媒配管(2
0)の一部を磁性体で形成した発熱部(16a) と、該発熱部
(16a) の周囲に断熱材(16c)を介して巻き付けられたコ
イル(16b) とを備えた加熱部(16a,16b) を有し、コイル
(16b) には、高周波電流を供給して発熱部(16a) に誘導
電流を流すように、高周波電流発生手段である高周波電
源(16d) が接続されている。
Next, the configuration of the heater (16) will be described with reference to FIG. This heater (16) is an electromagnetic induction heating type heater. Specifically, the heater (16) is connected to the refrigerant pipe (2
(0) a heating part (16a) formed of a magnetic material;
(16a), and a coil (16b) wound around a heat insulating material (16c).
A high-frequency power supply (16d), which is a high-frequency current generating means, is connected to (16b) so as to supply a high-frequency current and cause an induced current to flow to the heat generating portion (16a).

【0024】この構成において、発熱部(16a) は、強磁
性体の筒体(鉄管など)を冷媒配管(20)の一部に接合し
たり、強磁性材料の薄い板材(鉄箔など)を冷媒配管(2
0)の外周面に巻いたりして構成できる。そして、発熱部
(16a) は、冷媒配管(20)の一部を構成しており、同時
に、ヒータ(16)の構成要素ともなっている。
In this configuration, the heat generating portion (16a) is formed by joining a ferromagnetic cylinder (iron pipe or the like) to a part of the refrigerant pipe (20) or by using a thin ferromagnetic material (iron foil or the like). Refrigerant piping (2
0). And the heating part
(16a) constitutes a part of the refrigerant pipe (20), and at the same time, also serves as a component of the heater (16).

【0025】また、本発明の特徴として、ヒータ(16)
は、冷媒が下方から上方へ向かって流れるように縦方向
に配置された冷媒配管(20)に加熱部(16a,16b) を設ける
構成になっている。この点に関し、図1ではヒータ(16)
が横配管に設けられているように示されているが、この
図1は単なる冷媒回路図であり、冷媒配管(20)の方向性
までを表すものでないことは当然である。
Further, as a feature of the present invention, the heater (16)
The configuration is such that a heating section (16a, 16b) is provided in a refrigerant pipe (20) vertically arranged so that the refrigerant flows upward from below. In this regard, FIG.
Is shown as being provided in the horizontal piping, but FIG. 1 is merely a refrigerant circuit diagram, and naturally does not represent the direction of the refrigerant piping (20).

【0026】なお、この電磁誘導加熱方式のヒータ(16)
で使用する高周波電流は、一般に周波数が高いほど加熱
効率を高められるが、過度の発熱は不要であるので、冷
媒の加熱に必要な熱量と、発熱部(16a) のサイズや材質
などの条件を考慮して、適当な範囲で選定すればよい。
The electromagnetic induction heating type heater (16)
Generally, the higher the frequency of the high-frequency current used, the higher the heating efficiency can be increased.However, excessive heat generation is not required. A suitable range may be selected in consideration of the above.

【0027】−運転動作− 次に、この冷凍装置の運転動作について説明する。-Operation- Next, the operation of the refrigeration system will be described.

【0028】図1に示した暖房運転時には、まず圧縮機
(10)内で冷媒が圧縮される。圧縮機(10)を出た高温高圧
の冷媒は、室内熱交換器(13)に入って室内空気と熱交換
して凝縮し、冷却される。この熱交換によって室内に温
風が供給されて、室内が暖房される。
At the time of the heating operation shown in FIG.
The refrigerant is compressed in (10). The high-temperature and high-pressure refrigerant exiting the compressor (10) enters the indoor heat exchanger (13), exchanges heat with indoor air, condenses, and is cooled. Warm air is supplied into the room by this heat exchange, and the room is heated.

【0029】冷媒は次に膨張弁(12)に入って減圧された
後、室外熱交換器(11)で室外空気と熱交換して蒸発し、
圧縮機に戻る。その後は、以上の暖房サイクルが繰り返
されることになる。
After the refrigerant enters the expansion valve (12) and is decompressed, it exchanges heat with outdoor air in the outdoor heat exchanger (11) and evaporates.
Return to the compressor. Thereafter, the above heating cycle is repeated.

【0030】この暖房運転において、室外熱交換器(11)
に霜が付くと、着霜が着霜センサ(17)により検出され、
コントローラ(18)によりデフロスト運転が開始される。
このとき、ヒータ(16)のコイル(16b) に高周波電流が流
されて、その周りに高周波磁界が生じる。それに伴い、
冷媒配管(20)の発熱部(16a) に渦電流が発生して、該発
熱部(16a) が瞬時に高温に加熱され、さらに発熱部(16
a) の熱が冷媒に伝達される。
In this heating operation, the outdoor heat exchanger (11)
When frost forms, frost formation is detected by the frost formation sensor (17),
The defrost operation is started by the controller (18).
At this time, a high-frequency current flows through the coil (16b) of the heater (16), and a high-frequency magnetic field is generated around the high-frequency current. with this,
An eddy current is generated in the heat generating portion (16a) of the refrigerant pipe (20), and the heat generating portion (16a) is instantly heated to a high temperature.
a) is transferred to the refrigerant.

【0031】デフロスト運転は、暖房サイクルのまま、
圧縮機(10)と室内送風機(15)の動作を継続させ、室外送
風機(14)を停止させて行われる。このため、圧縮機(10)
から吐出された冷媒は、室内熱交換器(13)で凝縮した
後、膨張弁(12)で減圧して気液二相状態でヒータ(16)に
供給される。
In the defrost operation, the heating cycle remains unchanged.
The operation is performed by continuing the operation of the compressor (10) and the indoor blower (15) and stopping the outdoor blower (14). For this reason, the compressor (10)
Is condensed in the indoor heat exchanger (13), and then decompressed by the expansion valve (12) and supplied to the heater (16) in a gas-liquid two-phase state.

【0032】図3には、ヒータ(16)を設けた冷媒配管(2
0)内を流れる冷媒の相状態を概略的に表している。二相
冷媒は、ヒータ(16)への入口部分では、液冷媒(L) に気
泡状のガス冷媒(G) が混ざった状態で、液冷媒(L) が発
熱部(16a) の内面にほぼ均一に接触しながら流れる一
方、ヒータ(16)の出口側(上部側)では、冷媒が発熱部
(16a) からの熱を受けて相変化する過程においてガス冷
媒(G) が高速で冷媒配管(20)の中心部を流れ、液冷媒
(L) が管壁に付着して流れることから、環状流となる。
このため、発熱部(16a) から液冷媒(L) に全体的に熱が
均一に伝達されるので、熱伝達率が向上する。
FIG. 3 shows a refrigerant pipe (2) provided with a heater (16).
0) schematically shows the phase state of the refrigerant flowing inside. At the inlet of the two-phase refrigerant to the heater (16), the liquid refrigerant (L) is substantially mixed with the gaseous refrigerant (G) in the form of a bubble, and the liquid refrigerant (L) is almost in contact with the inner surface of the heat generating portion (16a). At the outlet side (upper side) of the heater (16), the refrigerant flows into the heating section
In the process of receiving the heat from (16a) and undergoing a phase change, the gas refrigerant (G) flows through the center of the refrigerant pipe (20) at high speed, and
(L) adheres to the pipe wall and flows, resulting in an annular flow.
As a result, the heat is uniformly transmitted as a whole from the heat generating portion (16a) to the liquid refrigerant (L), so that the heat transfer coefficient is improved.

【0033】したがって、より多くの熱量が冷媒に与え
られ、このように効率よく加熱された冷媒が室外熱交換
器(11)内に送られて、該冷媒の熱により室外熱交換器(1
1)の霜が除去される。
Therefore, a larger amount of heat is given to the refrigerant, the refrigerant thus efficiently heated is sent into the outdoor heat exchanger (11), and the heat of the refrigerant causes the outdoor heat exchanger (1) to heat the refrigerant.
1) The frost is removed.

【0034】なお、以上の説明では、デフロスト運転時
に室内送風機(15)を作動させることにより暖房を継続し
たまま、室外ユニット(1a)側では室外熱交換器(11)を除
霜するようにしているが、デフロスト運転中は両送風機
(14,15) を停止させてもよい。その場合、冷媒は室内熱
交換器(13)において殆ど冷却されず、ヒータ(16)で素早
く加熱できる。
In the above description, the outdoor unit (1a) defrosts the outdoor heat exchanger (11) while the heating is continued by operating the indoor blower (15) during the defrost operation. However, during defrost operation, both blowers
(14,15) may be stopped. In that case, the refrigerant is hardly cooled in the indoor heat exchanger (13) and can be quickly heated by the heater (16).

【0035】一方、冷房運転をするときは、四路切換弁
(22)が冷房側に切り換えられ、冷媒が圧縮機(10)から室
外熱交換器(11)、膨張弁(12)、室内熱交換器(13)の順に
送られ、室内に冷風を供給できるようになる。
On the other hand, when performing the cooling operation, the four-way switching valve
(22) is switched to the cooling side, and the refrigerant is sent from the compressor (10) to the outdoor heat exchanger (11), the expansion valve (12), and the indoor heat exchanger (13) in this order, so that cold air can be supplied to the room. Become like

【0036】−実施形態の効果− 本実施形態によれば、縦方向に配置されて冷媒が下方か
ら上方に向かって流れる冷媒配管(20)に加熱部(16a,16
b) を設けることにより、液冷媒(L) が冷媒配管(20)の
内面に均一に接触するようになって熱伝達率が向上する
ので、より多くの熱量を冷媒に与えることができ、加熱
効率が向上する。
-Effects of Embodiment- According to the present embodiment, the heating sections (16a, 16a) are provided in the refrigerant pipe (20) which is arranged vertically and in which the refrigerant flows upward from below.
By providing b), the liquid refrigerant (L) comes into uniform contact with the inner surface of the refrigerant pipe (20) and the heat transfer coefficient is improved, so that more heat can be given to the refrigerant and heating can be performed. Efficiency is improved.

【0037】また、冷媒配管(20)の発熱部(16a) の加熱
温度を低めに設定しても熱を冷媒に効率よく伝えて十分
に加熱することが可能となるので、省エネルギ効果が高
く、しかも外部への熱の放出量が少なくなる効果も得ら
れる。
Further, even if the heating temperature of the heat generating portion (16a) of the refrigerant pipe (20) is set lower, heat can be efficiently transmitted to the refrigerant and the refrigerant can be sufficiently heated, so that the energy saving effect is high. Moreover, the effect of reducing the amount of heat released to the outside can be obtained.

【0038】また、本実施形態では冷媒加熱装置として
電磁誘導加熱方式のヒータ(16)を用いたので、冷媒を素
早く強力に加熱でき、冷媒の加熱をより効率的に行うこ
とができる。
Further, in this embodiment, since the heater 16 of the electromagnetic induction heating system is used as the refrigerant heating device, the refrigerant can be quickly and strongly heated, and the refrigerant can be more efficiently heated.

【0039】−実施形態の変形例− 上記実施形態では、冷媒が下方から上方に流れる縦配管
(20)に加熱部(16a,16b) を設けて冷媒加熱装置(16)を構
成しているが、本発明の冷媒加熱装置(16)は、図4に示
すように、冷媒が上方から下方に流れる縦配管(20)に設
けることもできる。
-Modification of Embodiment- In the above embodiment, the vertical pipe through which the refrigerant flows upward from below.
(20) is provided with heating sections (16a, 16b) to constitute a refrigerant heating device (16). The refrigerant heating device (16) of the present invention, as shown in FIG. May be provided in the vertical pipe (20) flowing through the pipe.

【0040】この場合、冷媒の流れ方向に抗して気泡状
のガス冷媒(G) が上昇しようとするため、図4に矢印で
示しているように冷媒配管(20)内で乱流が生じることに
なる。したがって、液冷媒(L) は、冷媒配管(20)の一部
に偏って接触するということはなく、冷媒配管(20)の内
面全体に均一に接触する。そのため、この場合でも横配
管に加熱部を設けていた従来の装置よりも高い熱伝達率
が得られるので、加熱効率が向上する。
In this case, since the gaseous gaseous refrigerant (G) tends to rise against the flow direction of the refrigerant, a turbulent flow occurs in the refrigerant pipe (20) as shown by an arrow in FIG. Will be. Therefore, the liquid refrigerant (L) does not come into contact with a part of the refrigerant pipe (20) in a biased manner, but uniformly contacts the entire inner surface of the refrigerant pipe (20). For this reason, even in this case, a higher heat transfer coefficient can be obtained than in the conventional apparatus in which the heating section is provided in the horizontal pipe, and the heating efficiency is improved.

【0041】[0041]

【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。
Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.

【0042】例えば、上記実施形態では、ヒータ(16)を
膨張弁(12)と室外熱交換器(11)との間に配置して、暖房
運転中に行う室外熱交換器(11)のデフロストの際に冷媒
を加熱するようにしているが、本発明の冷媒加熱装置(1
6)の用途はデフロスト運転用に限るものではない。
For example, in the above embodiment, the heater (16) is disposed between the expansion valve (12) and the outdoor heat exchanger (11), and the defrost of the outdoor heat exchanger (11) performed during the heating operation is performed. At this time, the refrigerant is heated, but the refrigerant heating device (1
The use of 6) is not limited to defrost operation.

【0043】また、上記実施形態では、冷媒加熱装置と
して電磁誘導加熱方式のヒータ(16)を説明したが、抵抗
加熱方式のヒータなど、他の方式のヒータを用いること
も可能である。
In the above embodiment, the electromagnetic induction heating type heater (16) is described as the refrigerant heating device. However, other types of heaters such as a resistance heating type heater may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る冷媒加熱装置を用いた
冷凍装置の概略回路構成図である。
FIG. 1 is a schematic circuit configuration diagram of a refrigeration apparatus using a refrigerant heating device according to an embodiment of the present invention.

【図2】図1の冷媒加熱装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the refrigerant heating device of FIG.

【図3】図2の冷媒加熱装置において、冷媒配管内を流
れる冷媒の相状態を概略的に表す説明図である。
3 is an explanatory diagram schematically showing a phase state of a refrigerant flowing in a refrigerant pipe in the refrigerant heating device of FIG.

【図4】図3の変形例を示す説明図である。FIG. 4 is an explanatory diagram showing a modification of FIG. 3;

【図5】従来の冷媒加熱装置において、冷媒配管内を流
れる冷媒の相状態を概略的に表す説明図である。
FIG. 5 is an explanatory diagram schematically showing a phase state of a refrigerant flowing in a refrigerant pipe in a conventional refrigerant heating device.

【符号の説明】[Explanation of symbols]

(1) 空気調和装置(冷凍装置) (1a) 室外ユニット (1b) 室内ユニット (10) 圧縮機 (11) 室外熱交換器 (12) 膨張弁 (13) 室内熱交換器 (14) 室外送風機 (15) 室内送風機 (16) ヒータ(冷媒加熱装置) (16a) 発熱部(加熱部) (16b) コイル(加熱部) (16c) 断熱材 (16d) 高周波電源(高周波電流発生手段) (17) 着霜センサ (18) コントローラ (20) 冷媒配管 (21) 冷媒回路 (22) 四路切換弁 (1) Air conditioner (refrigerator) (1a) Outdoor unit (1b) Indoor unit (10) Compressor (11) Outdoor heat exchanger (12) Expansion valve (13) Indoor heat exchanger (14) Outdoor blower ( 15) Indoor blower (16) Heater (refrigerant heating device) (16a) Heating part (heating part) (16b) Coil (heating part) (16c) Insulation material (16d) High frequency power supply (high frequency current generating means) (17) Frost sensor (18) Controller (20) Refrigerant piping (21) Refrigerant circuit (22) Four-way switching valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒配管(20)中を流れる冷媒を加熱する
冷媒加熱装置であって、 上記冷媒配管(20)から冷媒に熱を伝えるように該冷媒配
管(20)を加熱する加熱部(16a,16b) を備え、該加熱部(1
6a,16b) が、縦方向に配置された冷媒配管(20)に設けら
れている冷媒加熱装置。
1. A refrigerant heating device for heating a refrigerant flowing through a refrigerant pipe (20), wherein the heating section (20) heats the refrigerant pipe (20) so as to transfer heat from the refrigerant pipe (20) to the refrigerant. 16a, 16b), and the heating section (1
6a, 16b) are refrigerant heating devices provided in refrigerant pipes (20) arranged in the vertical direction.
【請求項2】 加熱部(16a,16b) は、冷媒が下方から上
方へ向かって流れる冷媒配管(20)に設けられている請求
項1記載の冷媒加熱装置。
2. The refrigerant heating apparatus according to claim 1, wherein the heating section is provided in a refrigerant pipe through which the refrigerant flows upward from below.
【請求項3】 加熱部(16a,16b) は、冷媒が上方から下
方へ向かって流れる冷媒配管(20)に設けられている請求
項1記載の冷媒加熱装置。
3. The refrigerant heating device according to claim 1, wherein the heating section is provided in a refrigerant pipe through which the refrigerant flows from above to below.
【請求項4】 加熱部(16a,16b) は、冷媒配管(20)の長
手方向の少なくとも一部を磁性体にしてなる発熱部(16
a) と、該発熱部(16a) に巻き付けられたコイル(16b)
とを備え、 さらに、該コイル(16b) に高周波電流を供給して発熱部
(16a) に渦電流を流すように該コイル(16b) に接続され
た高周波電流発生手段(16c) を備えている請求項1、2
または3記載の冷媒加熱装置。
4. The heating section (16a, 16b) includes a heating section (16) formed by using at least a part of the refrigerant pipe (20) in the longitudinal direction as a magnetic material.
a) and a coil (16b) wound around the heat generating portion (16a).
Further, a high-frequency current is supplied to the coil (16b) to generate a heating portion.
3. A high-frequency current generating means (16c) connected to the coil (16b) so as to flow an eddy current through the coil (16a).
Or the refrigerant heating device according to 3.
JP28112499A 1999-10-01 1999-10-01 Refrigerant heater Pending JP2001108311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28112499A JP2001108311A (en) 1999-10-01 1999-10-01 Refrigerant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28112499A JP2001108311A (en) 1999-10-01 1999-10-01 Refrigerant heater

Publications (1)

Publication Number Publication Date
JP2001108311A true JP2001108311A (en) 2001-04-20

Family

ID=17634708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28112499A Pending JP2001108311A (en) 1999-10-01 1999-10-01 Refrigerant heater

Country Status (1)

Country Link
JP (1) JP2001108311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180869A (en) * 2003-12-22 2005-07-07 Denso Corp Heat pump cycle for hot water supply
JP2010159907A (en) * 2009-01-07 2010-07-22 Daikin Ind Ltd Electromagnetic induction heating unit and air conditioner
JPWO2020065998A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180869A (en) * 2003-12-22 2005-07-07 Denso Corp Heat pump cycle for hot water supply
JP4561093B2 (en) * 2003-12-22 2010-10-13 株式会社デンソー Heat pump cycle for hot water supply
JP2010159907A (en) * 2009-01-07 2010-07-22 Daikin Ind Ltd Electromagnetic induction heating unit and air conditioner
JPWO2020065998A1 (en) * 2018-09-28 2021-08-30 三菱電機株式会社 Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner
JP7196186B2 (en) 2018-09-28 2022-12-26 三菱電機株式会社 Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner

Similar Documents

Publication Publication Date Title
KR100997284B1 (en) Air conditioner and control method thereof
JP2007255736A (en) Refrigerant heating device and heating control method
JP2007212036A (en) Refrigerant heating device and its heating capacity control method
WO2007091566A1 (en) Refrigerant heating device
WO2006114983A1 (en) Refrigeration cycle device
KR100929192B1 (en) Air conditioner
JP2002372320A (en) Refrigerating device
TWI461640B (en) Air conditioning apparatus and control method thereof
JP4016546B2 (en) Fluid heating device
JP2001108311A (en) Refrigerant heater
JPH09269154A (en) Condenser
JP2000220912A (en) Refrigerant heater
JP2001255025A (en) Heat pump apparatus
JP2001091111A (en) Refrigerant heating device
JP2001108332A (en) Refrigerant heater
JP2001091065A (en) Refrigerant heater
JP4164960B2 (en) Refrigeration equipment
JP5413594B2 (en) Heat pump type water heater
JP2010210103A (en) Heat exchanger for heat pump and heat pump device using the same
JPH08128762A (en) Defrosting device for outdoor unit
TWI360633B (en)
JP2004028503A (en) Vehicle-transporting freezing device
JP2007247948A (en) Refrigerant heating device and heating capacity control method
WO2024069757A1 (en) Heating device, and temperature adjusting device provided with same
KR100493692B1 (en) The defrost heater of using refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113