JP2001107723A - Exhaust emission control device for gas engine - Google Patents

Exhaust emission control device for gas engine

Info

Publication number
JP2001107723A
JP2001107723A JP28669699A JP28669699A JP2001107723A JP 2001107723 A JP2001107723 A JP 2001107723A JP 28669699 A JP28669699 A JP 28669699A JP 28669699 A JP28669699 A JP 28669699A JP 2001107723 A JP2001107723 A JP 2001107723A
Authority
JP
Japan
Prior art keywords
exhaust
catalyst device
gas
scr catalyst
gas engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28669699A
Other languages
Japanese (ja)
Inventor
Shogo Matsubayashi
昌吾 松林
Toru Nakazono
徹 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP28669699A priority Critical patent/JP2001107723A/en
Publication of JP2001107723A publication Critical patent/JP2001107723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve NOx removal efficiency in the HC-SCR catalyst device of a multi-cylinder gas engine. SOLUTION: In this gas engine using gas as fuel whose chief ingredient is methane, an exhaust system comprises the turbine section 6a of an exhaust turbine supercharger 6 connected to an exhaust port 5 through an exhaust manifold 3, and an HC-SCR catalyst device 7, which uses hydrocarbon in exhaust gas as reducing agent, connected to the exhaust side upstream of the turbine section 6a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、排気ガス中の窒
素酸化物(NOx)を除去するために用いられるガスエ
ンジンの排気ガス浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for a gas engine used for removing nitrogen oxides (NOx) in exhaust gas.

【0002】[0002]

【従来の技術】従来、窒素酸化物(NOx)を除去する
ためのSCR(選択接触還元式)触媒装置としては、た
とえばゼオライト等に銅等を含浸させた触媒装置があ
り、燃料ガスとしてメタンを主成分とする天然ガスを使
用している場合には、上記SCR触媒装置は比較的低温
(350°〜400°程度)でも触媒作用を発揮でき、
したがってSCR触媒装置の配置位置を、排気ポートか
ら排気下流側に遠く離れた位置、たとえば排気タービン
過給機の排気下流側に配置しても、実際に支障のない脱
硝率が得られている。
2. Description of the Related Art Conventionally, as an SCR (selective catalytic reduction) catalyst device for removing nitrogen oxides (NOx), for example, there is a catalyst device in which zeolite or the like is impregnated with copper or the like, and methane is used as a fuel gas. When using natural gas as a main component, the SCR catalyst device can exhibit a catalytic action even at a relatively low temperature (about 350 ° to 400 °),
Therefore, even if the SCR catalyst device is disposed far away from the exhaust port on the exhaust downstream side, for example, on the exhaust downstream side of the exhaust turbine turbocharger, a denitration ratio that does not actually hinder the operation is obtained.

【0003】しかし、ゼオライト系の触媒装置は耐久性
が低いことが難点である。これに対しAg系のHC−S
CR触媒装置は耐久性があるが、メタンに対しては反応
性が低く、メタンを還元剤として作動しにくい特性を有
している。しかも、高温の条件でないと触媒が有効に働
かないので、上記のように排気タービン過給機の排気下
流側に配置すると、上記のような排気ガス温度(350
°〜400°程度)では、温度が低過ぎて触媒が有効に
働かず、高い脱硝率を得ることができない。
[0003] However, it is a disadvantage that zeolite-based catalyst devices have low durability. In contrast, Ag-based HC-S
Although the CR catalyst device is durable, it has low reactivity with methane and has a characteristic that it is difficult to operate using methane as a reducing agent. In addition, the catalyst does not work effectively unless the temperature is high. Therefore, if the catalyst is disposed downstream of the exhaust gas of the exhaust turbine supercharger as described above, the exhaust gas temperature (350
(About ° -400 °), the temperature is too low, the catalyst does not work effectively, and a high denitration rate cannot be obtained.

【0004】[0004]

【発明の目的】本願発明は、ガスエンジンの排気ガス浄
化装置において、触媒装置の耐久性を維持しつつ、触媒
装置の脱硝率を向上させることを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the denitration rate of a catalytic device in an exhaust gas purifying device for a gas engine while maintaining the durability of the catalytic device.

【0005】[0005]

【課題を解決するための手段】本願請求項1記載の発明
は、ガスエンジンであって、HC−SCR触媒装置を、
排気タービン過給機の排気上流側に接続していることを
特徴とするガスエンジンの排気ガス浄化装置である。
An invention according to claim 1 of the present application is a gas engine, which comprises an HC-SCR catalyst device,
An exhaust gas purifying apparatus for a gas engine, which is connected to an exhaust gas upstream side of an exhaust turbine supercharger.

【0006】請求項2記載の発明は、多気筒ガスエンジ
ンであって、各気筒の排気ポートの出口にそれぞれHC
−SCR触媒装置を接続していることを特徴とするガス
エンジンの排気ガス浄化装置である。
According to a second aspect of the present invention, there is provided a multi-cylinder gas engine, wherein HC is provided at an outlet of an exhaust port of each cylinder.
-An exhaust gas purifying device for a gas engine, wherein the exhaust gas purifying device is connected to an SCR catalyst device.

【0007】[0007]

【発明の実施の形態】図1は、本願請求項1記載の発明
を適用した発電機用定置式多気筒ガスエンジンの正面図
であり、エンジンブロック1とシリンダヘッド2でエン
ジン本体を構成しており、シリンダヘッド2の一側に配
置されたマニホールド3は、各枝管が各気筒用の排気ポ
ート5に接続している。排気マニホールド3の下流側集
合部(出口部)3aと、過給機6のターボ部6aとの間
に、ハイドロカーボンHCを還元剤とする選択接触還元
式触媒装置、すなわちHC−SCR触媒装置7を配置し
ている。HC−SCR触媒装置7の下流側出口部とター
ボ部6aの排気上流側入口20とは排気連絡管11によ
り接続している。ターボ部6aの排気下流側出口21に
は、排気管8,9が順次接続している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a front view of a stationary multi-cylinder gas engine for a generator to which the invention according to claim 1 of the present application is applied. The engine block 1 and a cylinder head 2 constitute an engine body. In the manifold 3 disposed on one side of the cylinder head 2, each branch pipe is connected to an exhaust port 5 for each cylinder. A selective catalytic reduction catalyst device using hydrocarbon HC as a reducing agent, that is, an HC-SCR catalyst device 7 is provided between a downstream collecting portion (exit portion) 3a of the exhaust manifold 3 and a turbo portion 6a of the supercharger 6. Has been arranged. The downstream outlet of the HC-SCR catalyst device 7 and the exhaust upstream inlet 20 of the turbo unit 6a are connected by an exhaust communication pipe 11. Exhaust pipes 8 and 9 are sequentially connected to the exhaust downstream outlet 21 of the turbo section 6a.

【0008】図1のII矢視図である図2において、シリ
ンダヘッド2の他側には給気マニホールド10が配置さ
れ、該給気マニホールド10の各枝管はそれぞれ各気筒
用の給気ポート11に接続している。給気マニホールド
10の給気上流側集合部(入口部)はインタークーラー
13に接続し、インタークーラー13の給気入口は図1
に示すように給気連絡管14を介して過給機6のコンプ
レッサー部6bに接続し、該コンプレッサー部6bの空
気入口は、図示しないが燃料ガスと空気を所定割合で混
合するミキサー等に接続している。インタークーラー1
3には冷却媒体流通用として、冷却水入口管15及び冷
却水出口管16が接続している。
In FIG. 2, which is a view taken in the direction of the arrow II in FIG. 1, an air supply manifold 10 is disposed on the other side of the cylinder head 2, and each branch pipe of the air supply manifold 10 has an air supply port for each cylinder. 11 is connected. The air supply upstream-side gathering portion (entrance portion) of the air supply manifold 10 is connected to the intercooler 13, and the air supply inlet of the intercooler 13 is shown in FIG.
As shown in the figure, the compressor 6b of the supercharger 6 is connected to the compressor 6b through the air supply connection pipe 14. The air inlet of the compressor 6b is connected to a mixer (not shown) for mixing the fuel gas and the air at a predetermined ratio. are doing. Intercooler 1
3, a cooling water inlet pipe 15 and a cooling water outlet pipe 16 are connected for cooling medium distribution.

【0009】かかるガスエンジンにおいて、ガス燃料と
しては、メタンを主成分とするガス燃料を使用してお
り、HC−SCR触媒装置7として、耐久性のあるAg
系のHC−SCR触媒装置7を備えている。
In such a gas engine, a gas fuel containing methane as a main component is used as a gas fuel, and a durable Ag is used as the HC-SCR catalyst device 7.
A system HC-SCR catalyst device 7 is provided.

【0010】[0010]

【作用】図1において、燃料ガスと空気との混合気は、
過給機6のコンプレッサー部6bにより加圧され、給気
連絡管14を介してインタークーラー13に供給され、
所定温度に冷却された後、図2の給気マニホールド10
から各給気ポート11に供給され、給気弁を介して各気
筒の燃焼室に供給される。
In FIG. 1, the mixture of fuel gas and air is:
Pressurized by the compressor section 6b of the supercharger 6, supplied to the intercooler 13 via the air supply communication pipe 14,
After being cooled to a predetermined temperature, the air supply manifold 10 shown in FIG.
Is supplied to each supply port 11 and supplied to the combustion chamber of each cylinder via a supply valve.

【0011】燃焼後、各燃焼室から排気ポート5に排出
される排気ガスは、排気マニホールド3の各枝管から図
1の排気下流側集合部3aに集合し、過給機6のタービ
ン部6aに入る前にHC−SCR触媒装置7に入り、該
HC−SCR触媒装置7において、排気ガス中のハイド
ロカーボンHCを還元剤として、高温高圧のもと、窒素
酸化物(NOx)を分子状窒素に還元する。
After the combustion, the exhaust gas discharged from each combustion chamber to the exhaust port 5 is collected from each branch pipe of the exhaust manifold 3 into the exhaust downstream-side collecting section 3a in FIG. Before entering the HC-SCR catalyst device 7, the HC-SCR catalyst device 7 converts nitrogen oxides (NOx) into molecular nitrogen under high temperature and high pressure using hydrocarbon HC in exhaust gas as a reducing agent. To be reduced to

【0012】図5は反応温度(触媒入口温度)が脱硝率
に及ぼす影響を示すグラフであり、過給機6のタービン
部6aの排気上流側入口20(図1)の温度範囲W2
は、460°〜540°の高温となっており、一方、過
給機6のタービン部6aの排気下流側出口21(図1)
の温度範囲W1は、上記温度範囲W2より80°〜17
0°低く、370°〜380°程度となっている。反応
温度と脱硝率との関係を示す曲線X1と上記各温度範囲
W1,W2との関連を見ると、温度範囲W1では数%程
度の脱硝率しか得られないのに対し、温度範囲W2では
略50%以上の脱硝率が得られ、特に、反応温度500
°前後では脱硝率63%と最も高くなっている。すなわ
ち、過給機6のタービン部6aの排気上流側の方が温度
が高く、脱硝率が高いことを示している。
FIG. 5 is a graph showing the effect of the reaction temperature (catalyst inlet temperature) on the denitration rate. The temperature range W2 of the exhaust upstream inlet 20 (FIG. 1) of the turbine section 6a of the supercharger 6 is shown in FIG.
Has a high temperature of 460 ° to 540 °, while the exhaust downstream side outlet 21 of the turbine unit 6a of the supercharger 6 (FIG. 1)
Is in the range of 80 ° to 17 ° from the temperature range W2.
It is 0 ° lower and about 370 ° to 380 °. Looking at the relationship between the curve X1 showing the relationship between the reaction temperature and the denitration rate and the respective temperature ranges W1 and W2, the denitration rate of only about several% can be obtained in the temperature range W1, whereas the temperature range W2 is almost the same. A denitration rate of 50% or more is obtained.
At around °, the denitration rate is the highest at 63%. That is, the temperature is higher on the exhaust gas upstream side of the turbine section 6a of the turbocharger 6, and the denitration rate is higher.

【0013】また、図8は触媒内圧力と脱硝率との関係
を示しており、触媒内圧力が高くなるに伴い、脱硝率は
高くなるが、図1の過給機6のタービン部6aは、大気
に連通する排気下流側出口21よりも排気上流側出口2
0の方が圧力が高くなっていることにより、脱硝率も高
くなる。
FIG. 8 shows the relationship between the internal pressure of the catalyst and the denitration rate. As the internal pressure of the catalyst increases, the denitration rate increases. However, the turbine section 6a of the supercharger 6 shown in FIG. , An exhaust upstream-side outlet 2 than the exhaust downstream-side outlet 21 communicating with the atmosphere
Since the pressure is higher at 0, the denitration rate is also higher.

【0014】このように、過給機6のタービン部6aの
排気上流側にHC−SCR触媒装置7を配置する構造で
は、排気ポート5からHC−SCR触媒装置7までの距
離が短くなることにより、排気ガスは、触媒が最も有効
に働く温度(範囲W2)を維持した状態で触媒装置7ま
で達し、しかも、触媒内圧力も、大気圧の排気下流側に
比べて高圧となっているので、脱硝率を一層高めること
ができるのである。
As described above, in the structure in which the HC-SCR catalyst device 7 is disposed on the exhaust gas upstream side of the turbine section 6a of the supercharger 6, the distance from the exhaust port 5 to the HC-SCR catalyst device 7 is shortened. Since the exhaust gas reaches the catalyst device 7 while maintaining the temperature (range W2) at which the catalyst works most effectively, and the pressure inside the catalyst is higher than that at the exhaust downstream side of the atmospheric pressure. The denitration rate can be further increased.

【0015】[0015]

【発明の実施の形態2】図3及び図4は、本願請求項2
記載の発明を適用した例であり、図1及び図2と同じ名
称の部品には同じ符号を付してある。
Second Embodiment FIGS. 3 and 4 show a second embodiment of the present invention.
This is an example to which the described invention is applied, and components having the same names as those in FIGS. 1 and 2 are denoted by the same reference numerals.

【0016】図3において、シリンダヘッド2の各気筒
用の排気ポート5にはそれぞれHC−SCR触媒装置7
が直接接続しており、各HC−SCR触媒装置7の排気
下流側出口部には排気マニホールド3の枝管がそれぞれ
接続し、排気マニホールド3の排気下流側集合部(出口
部)3aは、過給機6のタービン部6aの排気上流側入
口20に接続し、タービン部6aの排気下流側出口21
には排気管8,9が順次接続している。
In FIG. 3, an exhaust port 5 for each cylinder of the cylinder head 2 is provided with an HC-SCR catalyst device 7 respectively.
Are connected directly to each other. A branch pipe of the exhaust manifold 3 is connected to an exhaust downstream side outlet of each HC-SCR catalyst device 7, and an exhaust downstream side collecting part (exit part) 3a of the exhaust manifold 3 is It is connected to the exhaust upstream inlet 20 of the turbine section 6a of the feeder 6, and the exhaust downstream outlet 21 of the turbine section 6a.
Are connected to exhaust pipes 8 and 9 sequentially.

【0017】給気系の構造並びにその他の構造は図1及
び図2の構造と同様であり、説明は省略する。
The structure of the air supply system and other structures are the same as the structures shown in FIGS. 1 and 2, and a description thereof will be omitted.

【0018】このような多気筒ガスエンジンにおいて、
ガス燃料としては、メタンを主成分としてガス燃料を使
用しており、各HC−SCR触媒装置7として、耐久性
のあるAg系のHC−SCR触媒装置7を備えている。
In such a multi-cylinder gas engine,
As the gas fuel, a gas fuel containing methane as a main component is used, and a durable Ag-based HC-SCR catalyst device 7 is provided as each HC-SCR catalyst device 7.

【0019】[0019]

【作用】図3において、燃料ガスと空気との混合気は、
過給機6のコンプレッサー部6bにより加圧され、給気
連絡管14を介してインタークーラー13に入り、イン
タークーラー13内で所定温度に冷却された後、図4の
給気マニホールド10から各給気ポート11に供給さ
れ、各気筒の燃焼室に供給される。
In FIG. 3, the mixture of fuel gas and air is:
After being pressurized by the compressor section 6b of the supercharger 6 and entering the intercooler 13 through the air supply communication pipe 14 and cooled to a predetermined temperature in the intercooler 13, each air supply port is supplied from the air supply manifold 10 in FIG. And supplied to the combustion chamber of each cylinder.

【0020】燃焼後、燃焼室から排気ポート5に排出さ
れる排気ガスは、排気弁が閉じた後、次に開くまでの
間、排気ポート5及び触媒装置7内に一旦留まる。この
間に、排気ガス中のハイドロカーボンHCを還元剤とし
て、高温高圧のもと、窒素酸化物(NOx)を分子状窒
素に還元する。このように浄化された後、排気マニホー
ルド3から過給機6のタービン部6aを経て、排気管
8,9から排出される。
After the combustion, the exhaust gas discharged from the combustion chamber to the exhaust port 5 temporarily remains in the exhaust port 5 and the catalyst device 7 until the exhaust valve is closed and then opened. During this time, nitrogen oxides (NOx) are reduced to molecular nitrogen under high temperature and pressure using hydrocarbon HC in the exhaust gas as a reducing agent. After being purified in this manner, the exhaust gas is discharged from the exhaust manifold 3 through the turbine section 6a of the supercharger 6 and the exhaust pipes 8 and 9.

【0021】図6は排気ガス量と排気温度との関係を、
各部位毎に比較したグラフであり、曲線X3で示す排気
ポート5付近の排気ガス温度は、曲線X2で示す過給機
タービン部6aの出口21付近の排気温度に比べると格
段と高くなっており、また、触媒内圧力も高くなってい
る。すなわち、HC−SCR触媒装置7を、排気ポート
5の直後に接続していることにより、排気ガスが触媒に
到達するまでの距離はさらに短くなり、かつ、触媒内圧
力も高圧を保っているので、脱硝率が向上するのであ
る。
FIG. 6 shows the relationship between the exhaust gas amount and the exhaust temperature.
It is a graph comparing each part, and the exhaust gas temperature near the exhaust port 5 indicated by the curve X3 is significantly higher than the exhaust gas temperature near the outlet 21 of the turbocharger turbine section 6a indicated by the curve X2. Also, the internal pressure of the catalyst is high. That is, since the HC-SCR catalyst device 7 is connected immediately after the exhaust port 5, the distance until the exhaust gas reaches the catalyst is further reduced, and the internal pressure of the catalyst is maintained at a high pressure. As a result, the denitration rate is improved.

【0022】また、各気筒の排気ポート5毎にHC−S
CR触媒装置7を配置することによって、排気行程中だ
け排気ガスが触媒に流れることになるが、排気行程中の
ガス組成は均一ではなく、HC−SCR触媒装置7の還
元剤となるハイドロカーボンHCの濃度は、図7に破線
の曲線X4で示すように、排気弁閉前に大幅に高くなる
ことが知られている。しかも、ハイドロカーボンHCの
濃度と脱硝率との相関は、図9に示すように、ハイドロ
カーボンHCの濃度が高くなると脱硝率が向上すること
が分かっている。つまり、各HC−SCR触媒装置7
を、各排気ポート5の直後にそれぞれ接続していること
により、各HC−SCR触媒装置7は高濃度のハイドロ
カーボン(還元剤)を含む排気ガスに接触することにな
り、これによって脱硝率が一層向上するのである。
Further, HC-S is provided for each exhaust port 5 of each cylinder.
By arranging the CR catalyst device 7, the exhaust gas flows to the catalyst only during the exhaust stroke. However, the gas composition during the exhaust stroke is not uniform, and the hydrocarbon HC serving as a reducing agent of the HC-SCR catalyst device 7 is used. Is known to increase significantly before the exhaust valve closes, as shown by the dashed curve X4 in FIG. Moreover, as shown in FIG. 9, the correlation between the concentration of hydrocarbon HC and the denitration rate is found to be higher as the concentration of hydrocarbon HC increases. That is, each HC-SCR catalyst device 7
Is connected immediately after each exhaust port 5, each HC-SCR catalyst device 7 comes into contact with exhaust gas containing a high concentration of hydrocarbon (reducing agent), thereby reducing the denitration rate. It is even better.

【0023】[0023]

【発明の効果】以上説明したように本願請求項1記載の
発明によると、ガスエンジンであって、HC−SCR触
媒装置7を、排気タービン過給機6の排気上流側に接続
しているので、排気ポート5からHC−SCR触媒装置
7までの距離が短くなることにより、排気ガスは、触媒
が最も有効に働く温度範囲W2を維持した状態で触媒装
置7まで達し、しかも、触媒内圧力も、大気圧の排気下
流側に比べて高圧となっているので、十分に高い脱硝率
を得ることができる。また、Ag系のHC−SCR触媒
装置を配置することにより、耐久性も高めることができ
る。
As described above, according to the first aspect of the present invention, since the HC-SCR catalyst device 7 is connected to the exhaust gas upstream side of the exhaust turbine supercharger 6 in the gas engine, Since the distance from the exhaust port 5 to the HC-SCR catalyst device 7 is shortened, the exhaust gas reaches the catalyst device 7 while maintaining the temperature range W2 in which the catalyst works most effectively. Since the pressure is higher than the exhaust pressure downstream of the atmospheric pressure, a sufficiently high denitration rate can be obtained. In addition, by arranging an Ag-based HC-SCR catalyst device, durability can be improved.

【0024】請求項2記載の発明によると、HC−SC
R触媒装置を7、排気ポート5の直後に接続しているこ
とにより、排気ガスが触媒に到達するまでの距離はさら
に短くなり、かつ、触媒内圧力も高圧を保っているの
で、十分に高い脱硝率をえることができる。
According to the second aspect of the present invention, HC-SC
By connecting the R catalyst device 7 immediately after the exhaust port 5, the distance until the exhaust gas reaches the catalyst is further shortened, and the internal pressure of the catalyst is maintained at a high pressure. Denitration rate can be obtained.

【0025】また、各気筒の排気ポート毎にHC−SC
R触媒を備えていることによって、排気ガス中における
HC−SCR触媒装置の還元剤となるハイドロカーボン
の濃度が高くなり、該高濃度のハイドロカーボン(還元
剤)を含む排気ガスに接触することにより、脱硝率が一
層向上するのである。
Also, HC-SC is provided for each exhaust port of each cylinder.
By providing the R catalyst, the concentration of the hydrocarbon serving as the reducing agent of the HC-SCR catalyst device in the exhaust gas increases, and the exhaust gas contacts the exhaust gas containing the high-concentration hydrocarbon (reducing agent). In addition, the denitration rate is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願請求項1記載の発明を適用した多気筒ガ
スエンジンの正面図である。
FIG. 1 is a front view of a multi-cylinder gas engine to which the invention described in claim 1 of the present application is applied.

【図2】 図1のII矢視図である。FIG. 2 is a view taken in the direction of the arrow II in FIG.

【図3】 本願請求項2記載の発明を適用した多気筒ガ
スエンジンの正面図である。
FIG. 3 is a front view of a multi-cylinder gas engine to which the invention described in claim 2 of the present application is applied.

【図4】 図3のIV-IV矢視図である。FIG. 4 is a view taken in the direction of arrows IV-IV in FIG. 3;

【図5】 反応温度と脱硝率との関係をグラフで示す図
である。
FIG. 5 is a graph showing a relationship between a reaction temperature and a denitration rate.

【図6】 排気ガス量と排気温度との関係を、部位毎に
グラフで示す図である。
FIG. 6 is a graph showing a relationship between an exhaust gas amount and an exhaust temperature for each part.

【図7】 クランク角度と、HC濃度及びHC流量との
関係をグラフで示す図である。
FIG. 7 is a graph showing a relationship between a crank angle and HC concentration and HC flow rate.

【図8】 触媒内圧力と脱硝率との相関図である。FIG. 8 is a correlation diagram between a pressure in a catalyst and a denitration rate.

【図9】 HC濃度と脱硝率との相関図である。FIG. 9 is a correlation diagram between HC concentration and denitration rate.

【符号の説明】[Explanation of symbols]

2 シリンダヘッド 3 排気マニホールド 5 排気ポート 6 過給機 6a タービン部 7 HC−SCR触媒装置 2 Cylinder head 3 Exhaust manifold 5 Exhaust port 6 Turbocharger 6a Turbine unit 7 HC-SCR catalyst device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G004 AA06 BA06 3G091 AA06 AA10 AA19 AA28 AB04 BA14 FB16 GB05W HA03 HB06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G004 AA06 BA06 3G091 AA06 AA10 AA19 AA28 AB04 BA14 FB16 GB05W HA03 HB06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスエンジンであって、HC−SCR触
媒装置を、排気タービン過給機の排気上流側に接続して
いることを特徴とするガスエンジンの排気ガス浄化装
置。
1. An exhaust gas purifying apparatus for a gas engine, wherein an HC-SCR catalyst device is connected to an exhaust gas upstream of an exhaust turbine supercharger.
【請求項2】 多気筒ガスエンジンであって、各気筒の
排気ポートの出口にそれぞれHC−SCR触媒装置を接
続していることを特徴とするガスエンジンの排気ガス浄
化装置。
2. An exhaust gas purifying apparatus for a gas engine, comprising a multi-cylinder gas engine, wherein an HC-SCR catalyst device is connected to an outlet of an exhaust port of each cylinder.
JP28669699A 1999-10-07 1999-10-07 Exhaust emission control device for gas engine Pending JP2001107723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28669699A JP2001107723A (en) 1999-10-07 1999-10-07 Exhaust emission control device for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28669699A JP2001107723A (en) 1999-10-07 1999-10-07 Exhaust emission control device for gas engine

Publications (1)

Publication Number Publication Date
JP2001107723A true JP2001107723A (en) 2001-04-17

Family

ID=17707812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28669699A Pending JP2001107723A (en) 1999-10-07 1999-10-07 Exhaust emission control device for gas engine

Country Status (1)

Country Link
JP (1) JP2001107723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070276A1 (en) 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070276A1 (en) 2016-10-13 2018-04-19 川崎重工業株式会社 Gas engine system

Similar Documents

Publication Publication Date Title
KR101787333B1 (en) Exhaust system and method for selective catalytic reduction
US8250857B2 (en) Exhaust aftertreatment system
JP3391587B2 (en) Exhaust denitration equipment for diesel engines
US7552583B2 (en) Exhaust purification with on-board ammonia production
EP1431533A3 (en) Emissions control system for increasing selective catalytic reduction efficiency
ATE225461T1 (en) EMISSION TREATMENT SYSTEM FOR THE EXHAUST GAS OF A DIESEL ENGINE
SE9902491D0 (en) Combustion engine with exhaust gas recirculation
EP2042227A3 (en) Emission treatment system and method using a scr filter
US20080022666A1 (en) Balanced partial two-stroke engine
CN102287250B (en) Closely-coupled exhaust aftertreatment device for a turbocharged internal combustion engine
KR20130064707A (en) A large turbocharged two-stroke diesel engine with exhaust gas purification
EP1550796A1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP2015190467A (en) Emission control in rich burn natural gas engines
US20080209894A1 (en) Method For Regeneration Of An Exhaust Aftertreatment System
JP2001107723A (en) Exhaust emission control device for gas engine
FR3096403B1 (en) Exhaust gas aftertreatment system of an exhaust line of a spark-ignition internal combustion engine
EP1865169A2 (en) Internal combustion engine and method
JP3140570B2 (en) Denitration equipment for internal combustion engines
CN113565619B (en) Engine and air inlet and exhaust system thereof
WO2014115228A1 (en) Exhaust gas purifier
JP3248290B2 (en) Exhaust gas purification device for internal combustion engine
JP7374571B2 (en) internal combustion engine
KR20130119611A (en) Selective catalytic reuction system for internal combustion engine
JP2005090349A (en) Internal combustion engine with supercharger
JPH0979043A (en) Exhaust emission control device for internal combustion engine with supercharger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Effective date: 20040610

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees