JP2001107146A - Grain-oriented silicon steel sheet extremely small in core loss and its producing method - Google Patents

Grain-oriented silicon steel sheet extremely small in core loss and its producing method

Info

Publication number
JP2001107146A
JP2001107146A JP28765099A JP28765099A JP2001107146A JP 2001107146 A JP2001107146 A JP 2001107146A JP 28765099 A JP28765099 A JP 28765099A JP 28765099 A JP28765099 A JP 28765099A JP 2001107146 A JP2001107146 A JP 2001107146A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28765099A
Other languages
Japanese (ja)
Other versions
JP4192356B2 (en
Inventor
Mineo Muraki
峰男 村木
Hiroshi Yamaguchi
山口  広
Mitsumasa Kurosawa
光正 黒沢
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28765099A priority Critical patent/JP4192356B2/en
Publication of JP2001107146A publication Critical patent/JP2001107146A/en
Application granted granted Critical
Publication of JP4192356B2 publication Critical patent/JP4192356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a grain-oriented silicon steel sheet extremely excellent in core loss on an industrial scale, even in technology in which core loss is reduced by subjecting the surface of a steel sheet to smoothening treatment and crystal orientation emphasizing treatment and moreover depositing a tensile film thereon without damaging the adhesion of the tensile film by applying sufficient tension to the steel sheet. SOLUTION: The surface of a grain-oriented silicon steel sheet with a sheet thickness of <=0.27 mm free from forsterite films is deposited with a coating layer having the average thickness of 0.1 to 10 μm per side by vapor phase deposition in a low oxidizing atmosphere in which the total pressure is controlled to >=0.1 atmospheric pressure, and also, the oxygen partial pressure P (O2) is controlled to <0.1 atm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄芯材料としての用途に供して好適な鉄損が極めて小
さい方向性電磁鋼板およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having an extremely small iron loss suitable for use as an iron core material of a transformer or a generator, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】Siを含有し、 かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は、優れた軟磁気特性を有することか
ら、商用周波数域での各種鉄芯材料として広く用いられ
ている。かかる方向性電磁鋼板に要求される特性として
は、一般に50Hzの周波数で 1.7Tに磁化させた時の損失
であるW17/50(W/kg) で表わされる鉄損が低いことが重
要である。
2. Description of the Related Art Si is contained and the crystal orientation is (110).
Grain-oriented electrical steel sheets oriented in the [001] direction or the (100) [001] direction have excellent soft magnetic properties and are therefore widely used as various iron core materials in the commercial frequency range. As a characteristic required for such a grain-oriented electrical steel sheet, it is generally important that iron loss represented by W 17/50 (W / kg), which is a loss when magnetized to 1.7 T at a frequency of 50 Hz, is low. .

【0003】鉄損を低減するためには、渦電流損を低下
するのに有効な方法として、Siを含有させて電気抵抗を
高める方法、 鋼板板厚を低減する方法および結晶粒径を
低減する方法等があり、他方ヒステリシス損を低下する
のに有効な方法として、結晶方位を揃える方法がある。
In order to reduce iron loss, effective methods for reducing eddy current loss include a method of increasing electric resistance by containing Si, a method of reducing the thickness of a steel sheet, and a method of reducing a crystal grain size. There is a method, etc., on the other hand, as a method effective in reducing the hysteresis loss, there is a method of aligning the crystal orientation.

【0004】このうち、Siを含有させて電気抵抗を高め
る方法は、Siを過度に含有させると飽和磁束密度の低下
を招き鉄芯のサイズ拡大の原因となるので限界があり、
同様に鋼板板厚を低減する方法は、極端な製造コストの
増大をもたらすことから限界があった。また、結晶方位
を揃える方法では、磁束密度B8 にして1.96Tや1.97T
の製品が得られているが、これ以上の改善の余地は小さ
い。
[0004] Among them, the method of increasing the electric resistance by containing Si has a limit because excessive addition of Si causes a decrease in the saturation magnetic flux density and causes an increase in the size of the iron core.
Similarly, the method of reducing the thickness of the steel sheet has a limit because it extremely increases the manufacturing cost. Further, 1.96T and 1.97T in the method of aligning the crystal orientation, and the magnetic flux density B 8
Products have been obtained, but there is little room for further improvement.

【0005】さらに、 近年、 プラズマジェットやレーザ
ー光を照射して鋼板表面に局所的に歪を導入したり、 鋼
板表面に溝を形成する等の方法によって、人工的に磁区
幅を細分化して鉄損を低減する技術が開発され、 大幅な
鉄損低減効果が得られるようになった。 しかしながら、
この技術による鉄損低減効果にも限界があった。
Further, in recent years, the magnetic domain width has been artificially subdivided by a method such as locally introducing strain into the steel sheet surface by irradiating a plasma jet or a laser beam, or forming a groove in the steel sheet surface. Technology for reducing loss has been developed, and a significant iron loss reduction effect has been obtained. However,
There is a limit to the iron loss reduction effect of this technology.

【0006】一方、これらとは別に、 特公昭52−24499
号公報に開示されているように、鋼板金属表面と非金属
被膜との界面の粗度を低減したり、 特公平4−9041号公
報、特公平5−87597 号公報および特公平6−37694 号
公報に開示されているように、 金属表面に特定の結晶方
位の結晶を残存させるいわゆる結晶方位強調処理を施す
ことによって、鉄損を低減する手法が提案されている。
しかしながら、これらの技術によって鉄損を低減するに
は、 鋼板に対して強い張力を付与することが不可欠で、
そのためには鋼板表面に張力被膜を存在させる必要があ
った。すなわち、 張力被膜が存在しない場合には、 鋼板
表面が平滑なため、逆に磁区幅の拡大が促進され、 鉄損
の大幅な劣化を招いていた。
On the other hand, separately from these, Japanese Patent Publication No. 52-24499
As disclosed in Japanese Unexamined Patent Publication (Kokai) No. 6-37694, it is possible to reduce the roughness of the interface between the metal surface of the steel sheet and the non-metallic coating. As disclosed in the gazette, there has been proposed a method for reducing iron loss by performing a so-called crystal orientation emphasis treatment for leaving a crystal having a specific crystal orientation on a metal surface.
However, in order to reduce iron loss with these technologies, it is essential to apply strong tension to the steel sheet.
For that purpose, it was necessary to make a tension coating exist on the steel sheet surface. In other words, in the absence of the tension coating, the steel sheet surface was smooth, and conversely, the expansion of the magnetic domain width was promoted, leading to a significant deterioration of iron loss.

【0007】この問題を解決する手段として、 前述の特
公昭52−24499 号公報では、鋼板表面を化学研磨や電解
研磨によって鏡面化し、さらに鋼板表面に金属薄めっき
を施して鋼板表面の酸化や絶縁被膜を塗布焼き付けた際
の鋼板表面の劣化による磁性不良を抑制する方法を提案
しているが、 金属めっきが張力を有する場合には絶縁被
膜は焼き付け処理によって剥落し易く、 たとえ剥落を免
れたとしても、 絶縁被膜は通常のりん酸塩系の非張力絶
縁被膜であるため、さほどの鉄損低減効果は得られなか
った。他方、 金属めっきが張力効果を有しない場合に
は、 鉄損低減効果は極わずかであり、しかもこの場合、
絶縁被膜としてりん酸塩系の張力絶縁被膜を被成しよう
としても、 良好な被膜密着性が得られないため、 磁気特
性の向上は望み難い。従って、この技術は工業化される
ことはなかった。
As a means for solving this problem, Japanese Patent Publication No. 52-24499 mentioned above discloses a method in which the surface of a steel sheet is mirror-polished by chemical polishing or electrolytic polishing, and the surface of the steel sheet is subjected to thin metal plating to oxidize or insulate the steel sheet surface. We have proposed a method of suppressing magnetic defects due to deterioration of the steel sheet surface when coating and baking the coating.However, if the metal plating has tension, the insulating coating is easily peeled off by baking treatment. However, since the insulating coating was a normal phosphate-based non-tensile insulating coating, the effect of reducing iron loss was not so large. On the other hand, when the metal plating has no tension effect, the iron loss reduction effect is negligible, and in this case,
Even if an attempt is made to form a phosphate-based tension insulating film as the insulating film, it is difficult to improve magnetic properties because good film adhesion cannot be obtained. Therefore, this technology was never industrialized.

【0008】また、 特開昭62−103374号公報には、 研磨
により平滑に仕上げた鋼板表面に、各種の酸化物、 ほう
化物、 けい化物、 りん化物、硫化物と地鉄との混合極薄
層ならびにその上に絶縁性塗布焼き付け層を形成する方
法が開示されているが、 この方法は、鋼板と絶縁層との
密着性には優れているものの、 鋼板の鏡面平滑化効果が
地鉄との混合極薄層の存在によって消失することから、
所期したほど良好な磁気特性改善効果が得られず、やは
り工業化されるまでには至っていない。
[0008] Japanese Patent Application Laid-Open No. 62-103374 discloses that, on the surface of a steel plate which is smoothed by polishing, various mixed oxides, borides, silicides, phosphides, sulfides and ground iron are mixed. Although a method of forming a layer and an insulating coating baking layer thereon is disclosed, this method has excellent adhesion between the steel sheet and the insulating layer, but the mirror-surface smoothing effect of the steel sheet is different from that of ground iron. Disappears due to the presence of the mixed ultrathin layer of
As expected, the effect of improving magnetic properties was not as good as expected, and it has not yet been industrialized.

【0009】さらに、 特公平2−243770号公報には、 ゾ
ル−ゲル法によってセラミックス被膜を被成する方法が
開示されているが、 この方法は、鋼板との密着性が劣る
ため十分な張力付与効果を鋼板に及ぼすことができなか
った。
Further, Japanese Patent Publication No. 2-243770 discloses a method of forming a ceramic film by a sol-gel method. However, this method has a problem that a sufficient tension is applied because of poor adhesion to a steel sheet. No effect could be exerted on the steel sheet.

【0010】その他、特公昭56−4150号公報には、鋼板
表面を化学研磨や電解研磨によって中心線平均粗さRaで
0.4μm 以下の平滑面とし、 さらにその上にセラミック
ス薄膜を形成する方法が開示されているが、 密着性のよ
いセラミックス薄膜の形成方法は化学蒸着、真空蒸着で
あるため、 設備的に大量生産が困難であり、また成膜速
度が遅いこともあって、 工業生産に適合せず、 工業化さ
れるに至ってない。
In addition, Japanese Patent Publication No. 56-4150 discloses that the surface of a steel sheet is subjected to chemical line polishing or electrolytic polishing to obtain a center line average roughness Ra.
A method of forming a ceramic thin film on a smooth surface of 0.4 μm or less and further forming a ceramic thin film thereon is disclosed.However, since the method of forming a ceramic thin film having good adhesion is chemical vapor deposition or vacuum vapor deposition, mass production in equipment is required. It is difficult and the deposition rate is slow, so it is not suitable for industrial production and has not yet been industrialized.

【0011】また、 特開平3−47957 号, 同3−294465
号, 同3−294466号, 同3−294467号, 同3−294468
号, 同3−294469号および同3−294470号各公報には、
平滑化した地鉄表面またはその上の金属めっき面に、低
圧プラズマ溶射法によって酸化物や珪化物の被膜を形成
する方法が、特開平10−245667号公報には、プラズマ溶
射法を用いて酸化物、窒化物または炭化物の張力被膜を
形成する方法がそれぞれ開示されているが、後述するよ
うに、これらの方法では、工業的な成膜速度は確保でき
るものの、 液滴の付着による成膜であるため緻密な膜は
形成不能で、しかも成膜された表面が粗く、摩擦により
容易に剥落し、鋼板またはめっき面とプラズマ溶射酸化
物、珪化物被膜との密着性が十分ではないため、所望の
磁気特性が得られず、 また大規模な減圧設備を必要とす
ることもあって、工業化されるまでには至っていない。
In addition, Japanese Patent Application Laid-Open Nos. 3-47957 and 3-294465.
No. 3-294466, No. 3-294467, No. 3-294468
Nos. 3-294469 and 3-294470,
Japanese Patent Application Laid-Open No. 10-245667 discloses a method of forming a coating of an oxide or a silicide on a smoothed ground iron surface or a metal plating surface thereon by a low-pressure plasma spraying method. Each of these methods discloses a method of forming a tensile film of a material, nitride, or carbide, but as described later, these methods can secure an industrial film forming speed, but can form a film by adhering droplets. Because of this, a dense film cannot be formed, and the formed surface is rough, easily peels off by friction, and the adhesion between the steel plate or plated surface and the plasma sprayed oxide or silicide film is not sufficient. The magnetic properties described above were not obtained, and large-scale decompression equipment was required.

【0012】[0012]

【発明が解決しようとする課題】上述したように、 最近
の方向性電磁鋼板の鉄損低減技術の動向は、鋼板表面を
仕上げ焼鈍中やその後の処理で平滑化したり、 結晶方位
強調処理を施したのち、鋼板表面に張力被膜を被成する
ことが必要不可欠であるが、 張力被膜は鋼表面に強い張
力を付与するため、鋼板面と張力被膜との界面に強い剪
断応力が作用し、容易に被膜が剥落することから、 結果
的に張力付与が達成できず、磁気特性の改善効果は望め
なかった。そこで、 張力被膜の密着性確保のために種々
の工夫がなされてきたが、 密着性が良好な場合には、 鋼
板表面の磁気的な平滑化効果が消失して、やはり磁気特
性の劣化を招くことから、 未だ、このような技術によっ
て工業的に製品化されたものはない。
As described above, recent trends in the technology for reducing iron loss of grain-oriented electrical steel sheets are to smooth the surface of the steel sheet during and after finish annealing or to perform crystal orientation emphasis treatment. After that, it is indispensable to form a tension coating on the steel sheet surface. As a result, the film did not peel off, and as a result, tension could not be applied, and the effect of improving the magnetic properties could not be expected. Therefore, various measures have been taken to ensure the adhesion of the tension coating. However, if the adhesion is good, the magnetic smoothing effect on the steel sheet surface is lost, and the magnetic properties also deteriorate. Therefore, none of them has been industrially commercialized by such technology.

【0013】また、気相による成膜は、真空雰囲気で行
われるのが通例であり、成膜速度が遅いだけでなく、真
空槽の設置が不可欠なことから、大規模な生産設備の工
業化は困難であった。さらに、鋼板表面に結晶方位強調
処理を施す場合には、張力被膜の密着性は平滑化処理の
場合よりも幾分緩和されるが、 それでも本来あるべき密
着性には程遠く、 張力作用が鋼板に十分には伝達しない
ため、満足いくほどの鉄損の低減効果は得られなかっ
た。
[0013] Further, the film formation by the gas phase is usually performed in a vacuum atmosphere, and not only the film formation speed is slow but also the installation of a vacuum chamber is indispensable. It was difficult. Furthermore, when the crystal orientation enhancement treatment is applied to the steel sheet surface, the adhesion of the tension coating is somewhat lessened than in the case of the smoothing treatment, but it is still far from the original adhesion, and the tension action is applied to the steel sheet. Because of insufficient transmission, a satisfactory iron loss reduction effect was not obtained.

【0014】この発明は、上記の問題を有利に解決する
もので、鋼板表面に平滑化処理や結晶方位強調処理を施
し、さらには張力被膜により鋼板に張力を付与して、 鉄
損の大幅な低減を図る場合においても、 張力被膜の密着
性を損なうことなく、 鋼板に十分な張力を作用させるこ
とができる方向性電磁鋼板の有利な製造方法を、この方
法で得られた鉄損が極めて小さい方向性電磁鋼板と共に
提案することを目的とする。
[0014] The present invention advantageously solves the above-mentioned problems, and performs a smoothing process or a crystal orientation emphasizing process on the surface of a steel sheet, and further imparts tension to the steel sheet with a tension coating to greatly reduce iron loss. Even in the case of reducing the strength, an advantageous method of manufacturing a grain-oriented electrical steel sheet that can apply sufficient tension to the steel sheet without impairing the adhesion of the tension coating is extremely small, and the iron loss obtained by this method is extremely small. The purpose is to propose with a grain-oriented electrical steel sheet.

【0015】[0015]

【課題を解決するための手段】以下、 この発明の開発経
緯について鋭明する。さて、発明者らは、前述した低圧
プラズマ溶射材または通常のプラズマ溶射材の剥離原因
について綿密な検討を行ったところ、a)被覆物は緻密
な単一層ではなく、溶射時の液滴に由来する粒状の被覆
物が順次付着して粒間に空隙を有する構造を有してい
る、b)このため、被覆物空隙部分より被膜が破壊した
り、または空隙を通じての鋼板表面の酸化により被膜が
剥落したり、あるいは表面凹凸により上記の粒状被覆物
の剥落が促進されることが解明された。
The development of the present invention will be elucidated below. Now, the present inventors have conducted a thorough study on the cause of peeling of the low-pressure plasma sprayed material or the ordinary plasma sprayed material described above, and found that a) the coating is not a dense single layer but derived from droplets during spraying. Has a structure in which granular coatings are sequentially adhered and have voids between grains. B) Therefore, the coating is broken from the coating voids, or the coating is oxidized on the steel sheet surface through the voids. It has been clarified that the above-mentioned granular coating is promoted due to peeling or surface irregularities.

【0016】個々の粒間に空隙ができるのは、鋼板表面
で半溶融状態の液滴が叩きつけられ順次固着した扁平状
の粒子が積み重なった構造になっているからであり、粒
間ではいわゆるコールドジョイントが形成されることか
ら、強度の低下を招き、また最表面には個々の粒に由来
する凹凸を残存するものと考えられる。さらに、粒間の
空隙を通じての鋼板表面の酸化により、粒子の剥落が加
速されるものと考えられる。この問題を解決するために
は、気相状態で被覆物を蒸着すれば良いと考えられるけ
れども、従来知られている真空蒸着法や気相合成法で
は、大がかりな真空槽を必要とし、また蒸着速度が極め
て小さいなどの欠点を有するために、工業化は極めて難
しい。
The formation of voids between individual grains is due to a structure in which flat particles, which are smashed with semi-molten droplets on the surface of the steel sheet and are sequentially fixed, are piled up. It is considered that the formation of the joint causes a decrease in strength, and that irregularities derived from individual grains remain on the outermost surface. Further, it is considered that the oxidation of the steel sheet surface through the intergranular voids accelerates the peeling of the particles. In order to solve this problem, it is considered sufficient to deposit the coating in a gaseous state.However, the conventionally known vacuum evaporation method and gas phase synthesis method require a large-scale vacuum tank, Industrialization is extremely difficult due to disadvantages such as extremely low speed.

【0017】そこで、上記の知見に鑑み、種々の被膜形
成方法について検討したところ、熱プラズマ蒸着法や熱
プラズマフラッシュ蒸着法は、被覆物を一種の気相状態
であるプラズマ状態で蒸着でき、雰囲気も大気圧やわず
かな減圧雰囲気で繰業が可能である上、蒸着速度も大き
く、しかも気孔率の小さな緻密な被覆層を形成すること
が可能であることから、上記の欠点を有利に克服できる
ことが判明した。
In view of the above findings, various film forming methods were examined. According to the thermal plasma evaporation method and the thermal plasma flash evaporation method, the coating material can be deposited in a plasma state, which is a kind of gaseous state, and the atmosphere can be easily removed. It is possible to work at atmospheric pressure or a slightly reduced pressure atmosphere, and at the same time, it is possible to form a dense coating layer with a high vapor deposition rate and a small porosity, so that the above disadvantages can be advantageously overcome. There was found.

【0018】そこで、本発明者らは、さらに、この蒸着
物を方向性電磁鋼板に適用する研究を行った結果、上記
手段を厚み:0.27mm以下の鋼板に適用し、蒸着厚みを片
面当たり 0.1μm 以上10μm 以下にすると共に、好まし
くは蒸着前または後に磁区細分化処理を施すことによ
り、気孔率が10%以下と緻密でしかも表面が平滑な被覆
層を形成でき、その結果、良好な被膜密着性が得られる
共に大幅な鉄損低減が達成されることの知見を得た。し
かもこの際、蒸着時の電磁鋼素材温度を 200℃以上にし
たり、蒸着後に鋼板に 200℃以上の温度での熱処理を施
すことによって、密着性が一層向上すること、また蒸着
素材として平均粒径が5μm 以下の微粉末を使用するこ
とによって、鋼板表面の凹凸が減少し、密着性のさらな
る向上が期待できることの知見を得た。この発明は、上
記の知見に立脚するものである。
Therefore, the present inventors further conducted research on applying this deposit to grain-oriented electrical steel sheets. As a result, the present inventors applied the above-mentioned means to a steel sheet having a thickness of 0.27 mm or less and reduced the deposition thickness to 0.1% per side. By applying a magnetic domain refining treatment before or after vapor deposition, preferably before or after evaporation, a coating layer having a porosity of 10% or less and having a smooth surface can be formed, and as a result, good coating adhesion can be obtained. It has been found that the iron loss can be obtained and a large reduction in iron loss can be achieved. In addition, at this time, the adhesion is further improved by increasing the temperature of the electromagnetic steel material at the time of vapor deposition to 200 ° C or higher, or by subjecting the steel sheet to a heat treatment at a temperature of 200 ° C or higher after the vapor deposition. It has been found that the use of a fine powder having a particle size of 5 μm or less reduces unevenness on the surface of the steel sheet and can further improve the adhesion. The present invention is based on the above findings.

【0019】すなわち、この発明の要旨構成は次のとお
りである。 1.フォルステライトの生成を抑止するかまたは生成し
たフォルステライトを除去した板厚:0.27mm以下の方向
性電磁鋼板の表面に、全圧が 0.1気圧以上でかつ酸素分
圧P(O2)が 0.1 atm未満の低酸化性雰囲気中での気相蒸
着により、片面当たりの平均厚みが 0.1μm 以上10μm
以下の被覆層を形成することを特徴とする鉄損が極めて
小さい方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows. 1. The thickness of the grain-oriented electrical steel sheet, which suppresses the formation of forsterite or removes the generated forsterite: 0.27 mm or less, has a total pressure of 0.1 atm or more and an oxygen partial pressure P (O 2 ) of 0.1 atm. The average thickness per side is 0.1μm or more and 10μm by vapor deposition in a low oxidizing atmosphere of less than
A method for producing a grain-oriented electrical steel sheet having extremely small iron loss, comprising forming the following coating layer.

【0020】2.気相蒸着が熱プラズマ蒸着であること
を特徴とする上記1記載の方向性電磁鋼板の製造方法。
2. 2. The method for producing a grain-oriented electrical steel sheet according to the above item 1, wherein the vapor phase deposition is thermal plasma deposition.

【0021】3.気相蒸着時における電磁鋼素材の温度
を 200℃以上とすることを特徴とする上記1記載の方向
性電磁鋼板の製造方法。
3. 2. The method for producing a grain-oriented electrical steel sheet according to the above 1, wherein the temperature of the electrical steel material during vapor deposition is set to 200 ° C. or higher.

【0022】4.気相蒸着後、鋼板に対し 200℃以上の
温度での熱処理を施すことを特徴とする上記1記載の方
向性電磁鋼板の製造方法。
4. 2. The method for producing a grain-oriented electrical steel sheet according to the above 1, wherein the steel sheet is subjected to a heat treatment at a temperature of 200 ° C. or higher after the vapor phase deposition.

【0023】5.蒸着素材として、平均粒径が5μm 以
下の微粉末を使用することを特徴とする上記1〜4のい
ずれかに記載の方向性電磁鋼板の製造方法。
5. 5. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 1 to 4, wherein a fine powder having an average particle size of 5 μm or less is used as a vapor deposition material.

【0024】6.気相蒸着前に、鋼板表面に、平滑化処
理または結晶方位強調処理を施すことを特徴とする上記
1〜5のいずれかに記載の方向性電磁鋼板の製造方法。
6. The method for producing a grain-oriented electrical steel sheet according to any one of the above 1 to 5, wherein a surface of the steel sheet is subjected to a smoothing treatment or a crystal orientation emphasis treatment before vapor deposition.

【0025】7.気相蒸着の前または後に、磁区細分化
処理を施すことを特徴とする上記1〜6のいずれかに記
載の方向性電磁鋼板の製造方法。
[7] 7. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 1 to 6, wherein a magnetic domain refining treatment is performed before or after the vapor deposition.

【0026】8.気相蒸着後、さらに張力被膜および/
または絶縁被膜を被成することを特徴とする上記1〜7
のいずれかに記載の方向性電磁鋼板の製造方法。
8. After vapor deposition, a tension coating and / or
Or an insulating film is formed.
The method for producing a grain-oriented electrical steel sheet according to any one of the above.

【0027】9.低酸化性雰囲気が、窒素と水素の混合
雰囲気であることを特徴とする上記1〜8のいずれかに
記載の方向性電磁鋼板の製造方法。
9. 9. The method for producing a grain-oriented electrical steel sheet according to any one of the above items 1 to 8, wherein the low oxidizing atmosphere is a mixed atmosphere of nitrogen and hydrogen.

【0028】10. フォルステライトの生成を抑止するか
または生成したフォルステライトを除去した鋼板の表面
に気相蒸着による被覆層を有する板厚が0.27mm以下の方
向性電磁鋼板であって、該被覆層は、気孔率:10%以下
で、熱膨張率が鉄よりも小さい物質からなり、またその
厚みが片面当たり平均厚みで 0.1μm 以上10μm 以下を
満足し、しかもその表面が中心線平均粗さRaで 0.5μm
未満の平滑な表面を有することを特徴とする鉄損が極め
て小さい方向性電磁鋼板。
10. A grain-oriented electrical steel sheet having a coating thickness of 0.27 mm or less having a coating layer formed by vapor deposition on the surface of a steel sheet from which forsterite has been suppressed or the generated forsterite has been removed. The layer is made of a material having a porosity of 10% or less and a coefficient of thermal expansion smaller than that of iron. The thickness of the layer satisfies an average thickness per side of 0.1 μm or more and 10 μm or less, and the surface has a center line average roughness. 0.5μm with Ra
A grain-oriented electrical steel sheet having extremely small iron loss, characterized by having a smooth surface of less than.

【0029】11. 気相蒸着の前または後に、磁区細分化
処理が施されたものである上記10記載の方向性電磁鋼
板。
11. The grain-oriented electrical steel sheet according to the above item 10, which has been subjected to a magnetic domain refinement treatment before or after the vapor deposition.

【0030】[0030]

【発明の実施の形態】以下、この発明を具体的に説明す
る。フォルステライトの生成を抑止した、またはフォル
ステライトを除去した板厚0.27mm以下の鋼板を用いるこ
とは、大気圧近辺の比較的高圧で得られる気相蒸着(熱
プラズマ蒸着)被覆層の緻密性と張力を活かして低鉄損
を得るために重要である。ここに、用いる方向性電磁鋼
板としては、板厚が0.27mm以下のものに制限したが、こ
の理由は、板厚が0.27mmを超えると、被覆物による張力
付与効果が十分には発揮されないからである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The use of a steel sheet with a thickness of 0.27 mm or less, for which the formation of forsterite has been suppressed or forsterite has been removed, is required to improve the denseness of the vapor deposition (thermal plasma deposition) coating layer obtained at a relatively high pressure near atmospheric pressure. It is important to obtain low iron loss by utilizing the tension. Here, as the grain-oriented electrical steel sheet to be used, the sheet thickness was limited to 0.27 mm or less, but the reason is that when the sheet thickness exceeds 0.27 mm, the effect of applying tension by the coating is not sufficiently exhibited. It is.

【0031】また、雰囲気は、鋼板表面の酸化による密
着性の劣化や鉄損の劣化を防ぐために、不活性ガスや還
元性ガスなどの低酸化性雰囲気とする必要がある。具体
的には、雰囲気中の酸素分圧P(O2)で 0.1 atm未満とす
ることが重要である。かかる雰囲気ガスとしては、炭素
を含まないものが好ましく、工業的には水素を含んだ窒
素ガスが好適である。さらに、圧力に関しては、0.1 気
圧未満とするのは工業的に困難であるため、下限を0.1
気圧とした。より好ましくは 0.8気圧以上が推奨され
る。なお、上限は特に定めないが、大気圧かわずかな加
圧雰囲気が低酸化雰囲気を維持する上で都合が良い。
Further, the atmosphere must be a low oxidizing atmosphere such as an inert gas or a reducing gas in order to prevent deterioration of adhesion and iron loss due to oxidation of the steel sheet surface. Specifically, it is important that the oxygen partial pressure P (O 2 ) in the atmosphere be less than 0.1 atm. As the atmosphere gas, a gas containing no carbon is preferable, and a nitrogen gas containing hydrogen is suitable industrially. Further, regarding the pressure, it is industrially difficult to make the pressure less than 0.1 atm.
Atmospheric pressure. More preferably, 0.8 atm or more is recommended. Note that the upper limit is not particularly defined, but an atmospheric pressure or a slightly pressurized atmosphere is convenient for maintaining a low oxidation atmosphere.

【0032】次に、気相蒸着による被覆層の厚みが 0.1
μm に満たないと十分な張力印加効果が期待できないだ
けでなく、鋼板表面を安定して被覆して絶縁、耐食する
ことが困難となるので、下限を 0.1μm とした。一方、
厚みが10μm を超えると占積率の低下に伴う鉄損の劣
化、被膜の密着性劣化および表面の平滑性劣化を紹くの
で、上限を10μm とした。
Next, the thickness of the coating layer formed by vapor deposition is 0.1
If it is less than μm, not only is it not possible to expect a sufficient effect of applying tension, but also it becomes difficult to stably cover the steel sheet surface for insulation and corrosion resistance, so the lower limit was set to 0.1 μm. on the other hand,
When the thickness exceeds 10 μm, the deterioration of iron loss, deterioration of coating adhesion and deterioration of surface smoothness due to a decrease in space factor are introduced, so the upper limit was set to 10 μm.

【0033】また、かかる気相蒸着時に、電磁鋼素材の
温度を 200℃以上としたり、蒸着後に鋼板を 200℃以上
の温度に加熱することにより、蒸着膜の密着性を高める
ことができる。これはおそらく、鋼板と蒸着層間に僅少
量存在している雰囲気中の不純物を、拡散によって鋼板
中または蒸着層中に取り込む効果によるものと考えられ
る。
Further, the adhesion of the deposited film can be increased by setting the temperature of the electromagnetic steel material to 200 ° C. or higher during the vapor deposition or heating the steel sheet to a temperature of 200 ° C. or higher after the vapor deposition. This is probably due to the effect that impurities in the atmosphere present in a small amount between the steel sheet and the vapor deposition layer are taken into the steel sheet or the vapor deposition layer by diffusion.

【0034】さらに、蒸着出発素材としては、平均粒径
が5μm 以下の粉末を用いることが望ましい。というの
は、これにより、蒸着物を完全な気相状態として安定的
に緻密かつ強固な被覆層として形成でき、得られた被覆
層の気孔率が10%以下で、しかも表面粗さが中心線平均
粗さRaで 0.5μm 未満の平滑な表面として、被覆物の剥
落を効果的に防止することができるからである。ここ
に、被覆層の成分については、特に定めないが、任意の
酸化物を含むカルコゲナイド、珪化物、ほう化物、炭化
物および窒化物等が有利に適合する。
Further, it is desirable to use a powder having an average particle diameter of 5 μm or less as a starting material for vapor deposition. That is, this allows the deposited material to be stably formed in a complete vapor state as a dense and strong coating layer, and the obtained coating layer has a porosity of 10% or less and a surface roughness of a center line. This is because the coating can be effectively prevented from falling off as a smooth surface having an average roughness Ra of less than 0.5 μm. Here, the components of the coating layer are not particularly limited, but chalcogenides, silicides, borides, carbides, nitrides, and the like containing any oxide are advantageously suited.

【0035】なお、気相蒸着前に、鋼板表面に平滑化処
理や結晶方位強調処理を施すことは低鉄損化のために有
利である。また、必要に応じて、蒸着後さらに張力被膜
や絶縁被膜を被成することも可能である。さらに、気相
蒸着の前または後に、磁区細分化処理を施すことが有利
であり、これにより、被膜による張力付与効果がより一
層有効に発揮される。
It is advantageous to perform a smoothing treatment or a crystal orientation emphasis treatment on the surface of the steel sheet before vapor deposition to reduce iron loss. If necessary, a tension film or an insulating film can be further formed after the vapor deposition. Further, it is advantageous to perform a magnetic domain refining treatment before or after the vapor deposition, whereby the effect of imparting tension by the coating is more effectively exerted.

【0036】[0036]

【実施例】実施例1 磁区細分化のために鋼板の幅方向に線状溝の形成を行っ
たのち2次再結晶させた板厚:0.22mmの方向性電磁鋼板
のフォルステライト被膜を酸洗により除去し、さらに硫
酸とクロム酸混液により鋼板表面の平均粗度が0.10μm
程度となるまで平滑化処理を施した。ついで、この鋼板
を 300℃に加熱しながら、0.9 気圧の(窒素75%+水素
25%)の混合雰囲気中で、直流熱プラズマ蒸着法によ
り、出発素材として平均粒径:2μm のAl2O3 を片面当
たり:5μm の被覆厚みになるように気相蒸着した。な
お、この雰囲気中における酸素分圧P(O2)は0.01 atm以
下であった。また、得られた鋼板表面の被覆層の気孔率
(理論密度に対するかさ密度から算出した)は4%、表
面粗さRaは0.22μm であった。
Example 1 A linear groove was formed in the width direction of a steel sheet for subdividing magnetic domains, and then secondary recrystallized. The average roughness of the steel sheet surface is 0.10μm with a mixture of sulfuric acid and chromic acid.
Smoothing processing was performed until the degree reached. Then, while heating the steel sheet to 300 ° C, 0.9 atm (nitrogen 75% + hydrogen)
In a mixed atmosphere of (25%), Al 2 O 3 having an average particle diameter of 2 μm was vapor-phase deposited as a starting material so as to have a coating thickness of 5 μm per side as a starting material. The oxygen partial pressure P (O 2 ) in this atmosphere was 0.01 atm or less. The porosity (calculated from the bulk density with respect to the theoretical density) of the coating layer on the surface of the obtained steel sheet was 4%, and the surface roughness Ra was 0.22 μm.

【0037】かくして得られた鋼板について、張力被膜
の密着性(円筒に鋼板を巻きつけた時に被膜の剥離が認
められない最小の円筒の径:最小曲げ剥離径で示す) お
よび鋼板の磁気特性を調査したところ、最小曲げ剥離径
=20 mm 、 B8 =l.902 T、鉄損W17/50 =0.59 W/kg
であった。
With respect to the steel sheet thus obtained, the adhesion of the tensile coating (the minimum cylinder diameter at which no peeling of the coating is observed when the steel sheet is wound around the cylinder: indicated by the minimum bending peeling diameter) and the magnetic properties of the steel sheet are shown. When checking, minimum bending peel diameter = 20 mm, B 8 = l.902 T, the iron loss W 17/50 = 0.59 W / kg
Met.

【0038】実施例2 焼鈍分離剤として MgOに PbCl2を 0.3wt%含有させた分
離剤を用いて、フォルステライト被膜の形成を抑止しつ
つ、磁区細分化のために、鋼板の幅方向に適当な間隔を
隔てて線状の微細粒を形成させながら2次再結晶させる
ことにより、板厚:0.25mmの方向性電磁鋼板を作製し
た。ついで、この鋼板を、1.05気圧のAr雰囲気中で高周
波+直流ハイブリッド熱プラズマ蒸着法により、出発素
材として平均粒径:1.6 μm のSiO2を片面当たりの被覆
厚みが 0.8μm になるように気相蒸着した。その後、鋼
板表面に、60%のコロイダルシリカと40%のりん酸マグ
ネシウムを主成分とする張力コーティング液を塗布し、
800 ℃で焼き付けた。なお、この雰囲気中における酸素
分圧P(O2)は 0.012 atmであった。また、得られた鋼板
表面の被覆層の気孔率は6%、表面粗さRaは0.35μm で
あった。
Example 2 Using a separating agent containing 0.3 wt% of PbCl 2 in MgO as an annealing separating agent, the formation of a forsterite film was suppressed, and the separation in the width direction of the steel sheet was performed in order to refine the magnetic domains. By performing secondary recrystallization while forming linear fine grains at an appropriate interval, a grain-oriented electrical steel sheet having a thickness of 0.25 mm was produced. Next, this steel sheet was subjected to high-frequency + direct current hybrid thermal plasma evaporation in an Ar atmosphere at 1.05 atm, and SiO 2 having an average particle size of 1.6 μm was used as a starting material in a vapor phase such that the coating thickness per side was 0.8 μm. Evaporated. Then, a tension coating solution containing 60% colloidal silica and 40% magnesium phosphate as the main component is applied to the steel sheet surface,
Baked at 800 ° C. The oxygen partial pressure P (O 2 ) in this atmosphere was 0.012 atm. The porosity of the coating layer on the surface of the obtained steel sheet was 6%, and the surface roughness Ra was 0.35 μm.

【0039】かくして得られた鋼板について、 張力被膜
の密着性および鋼板の磁気特性を調査したところ、最小
曲げ剥離径=25 mm 、B8 =1.920 T 、鉄損W17/50
0.63W/kgであった。
With respect to the steel sheet thus obtained, the adhesion of the tension coating and the magnetic properties of the steel sheet were examined. The minimum bending peel diameter was 25 mm, B 8 = 1.920 T, and the iron loss W 17/50 =
It was 0.63 W / kg.

【0040】比較例1 磁区細分化のために鋼板の幅方向に線状溝の形成を行っ
たのち2次再結晶させた板厚:0.22mmの方向性電磁鋼板
のフォルステライト被膜を酸洗により除去し、さらに硫
酸とクロム酸混液により鋼板表面の平均粗度が0.10μm
程度となるまで平滑化処理を施した。ついで、この鋼板
を 300℃に加熱しながら、0.9 気圧の(窒素75%+水素
25%)の混合雰囲気中で、通常のプラズマ溶射法によ
り、出発素材として平均粒径:7μm のAl2O3 を液滴状
態となし、片面当たり:5μm の被覆厚みとなるように
溶射固着した。
Comparative Example 1 A linear groove was formed in the width direction of the steel sheet for subdividing the magnetic domain, and then the secondary recrystallization was performed. The forsterite film of the grain-oriented electrical steel sheet having a thickness of 0.22 mm was pickled. Removed, and the average roughness of the steel sheet surface is 0.10μm with a mixture of sulfuric acid and chromic acid.
Smoothing processing was performed until the degree reached. Then, while heating the steel plate to 300 ° C, 0.9 atm (nitrogen 75% + hydrogen)
In a mixed atmosphere of 25%), Al 2 O 3 having an average particle size of 7 μm was formed as a starting material in the form of droplets by a usual plasma spraying method, and was thermally sprayed and fixed so as to have a coating thickness of 5 μm per side. .

【0041】かくして得られた鋼板について、 張力被膜
の密着性および鋼板の磁気特性を調査したところ、最小
曲げ剥離径=60 mm 、B8 =1.888 T 、鉄損W17/50
0.77W/kgであった。また、得られた鋼板表面の被覆層の
気孔率は29%、表面粗さRaは 1.4μm であった。
With respect to the steel sheet thus obtained, the adhesion of the tension coating and the magnetic properties of the steel sheet were examined. The minimum peeling diameter = 60 mm, B 8 = 1.888 T, and the iron loss W 17/50 =
It was 0.77 W / kg. The porosity of the coating layer on the surface of the obtained steel sheet was 29%, and the surface roughness Ra was 1.4 μm.

【0042】[0042]

【発明の効果】かくして、この発明によれば、張力被膜
の密着性に優れ、鋼板に対し十分な張力を作用させるこ
とができ、従って従来に比べて鉄損が格段に低減した方
向性電磁鋼板を、工業的な規模で安定して得ることがで
きる。
As described above, according to the present invention, a grain-oriented electrical steel sheet having excellent adhesion of a tension film and capable of applying a sufficient tension to a steel sheet, and thus having significantly reduced iron loss as compared with the prior art. Can be obtained stably on an industrial scale.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K030 BA43 BA44 CA02 DA02 DA08 FA01 JA01 LA26 4K033 AA02 PA01 PA03 PA10 PA12 RA04 TA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Chome (without address) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4K030 BA43 BA44 CA02 DA02 DA08 FA01 JA01 LA26 4K033 AA02 PA01 PA03 PA10 PA12 RA04 TA04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 フォルステライトの生成を抑止するかま
たは生成したフォルステライトを除去した板厚:0.27mm
以下の方向性電磁鋼板の表面に、全圧が 0.1気圧以上で
かつ酸素分圧P(O2)が 0.1 atm未満の低酸化性雰囲気中
での気相蒸着により、片面当たりの平均厚みが 0.1μm
以上10μm 以下の被覆層を形成することを特徴とする鉄
損が極めて小さい方向性電磁鋼板の製造方法。
1. A sheet thickness of 0.27 mm in which forsterite formation is suppressed or generated forsterite is removed.
On the surface of the following grain-oriented electrical steel sheet, the average thickness per side was 0.1% by vapor phase deposition in a low oxidizing atmosphere where the total pressure was 0.1 atm or more and the oxygen partial pressure P (O 2 ) was less than 0.1 atm. μm
A method for producing a grain-oriented electrical steel sheet having extremely small iron loss, comprising forming a coating layer having a thickness of 10 μm or more.
【請求項2】 気相蒸着が熱プラズマ蒸着であることを
特徴とする請求項1記載の方向性電磁鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the vapor phase deposition is thermal plasma deposition.
【請求項3】 気相蒸着時における電磁鋼素材の温度を
200℃以上とすることを特徴とする請求項1記載の方向
性電磁鋼板の製造方法。
3. The temperature of an electromagnetic steel material during vapor deposition
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the temperature is 200 ° C or higher.
【請求項4】 気相蒸着後、鋼板に対し 200℃以上の温
度での熱処理を施すことを特徴とする請求項1記載の方
向性電磁鋼板の製造方法。
4. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein after the vapor deposition, the steel sheet is subjected to a heat treatment at a temperature of 200 ° C. or higher.
【請求項5】 蒸着素材として、平均粒径が5μm 以下
の微粉末を使用することを特徴とする請求項1〜4のい
ずれかに記載の方向性電磁鋼板の製造方法。
5. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a fine powder having an average particle size of 5 μm or less is used as a vapor deposition material.
【請求項6】 気相蒸着前に、鋼板表面に、平滑化処理
または結晶方位強調処理を施すことを特徴とする請求項
1〜5のいずれかに記載の方向性電磁鋼板の製造方法。
6. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the surface of the steel sheet is subjected to a smoothing treatment or a crystal orientation enhancement treatment before the vapor deposition.
【請求項7】 気相蒸着の前または後に、磁区細分化処
理を施すことを特徴とする請求項1〜6のいずれかに記
載の方向性電磁鋼板の製造方法。
7. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a magnetic domain refining treatment is performed before or after the vapor deposition.
【請求項8】 気相蒸着後、さらに張力被膜および/ま
たは絶縁被膜を被成することを特徴とする請求項1〜7
のいずれかに記載の方向性電磁鋼板の製造方法。
8. The method according to claim 1, further comprising forming a tension coating and / or an insulating coating after the vapor deposition.
The method for producing a grain-oriented electrical steel sheet according to any one of the above.
【請求項9】 低酸化性雰囲気が、窒素と水素の混合雰
囲気であることを特徴とする請求項1〜8のいずれかに
記載の方向性電磁鋼板の製造方法。
9. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the low oxidizing atmosphere is a mixed atmosphere of nitrogen and hydrogen.
【請求項10】 フォルステライトの生成を抑止するか
または生成したフォルステライトを除去した鋼板の表面
に気相蒸着による被覆層を有する板厚が0.27mm以下の方
向性電磁鋼板であって、該被覆層は、気孔率:10%以下
で、熱膨張率が鉄よりも小さい物質からなり、またその
厚みが片面当たり平均厚みで 0.1μm 以上10μm 以下を
満足し、しかもその表面が中心線平均粗さRaで 0.5μm
未満の平滑な表面を有することを特徴とする鉄損が極め
て小さい方向性電磁鋼板。
10. A grain-oriented electrical steel sheet having a thickness of 0.27 mm or less having a coating layer formed by vapor deposition on the surface of a steel sheet from which forsterite has been suppressed or the generated forsterite has been removed. The layer is made of a material having a porosity of 10% or less and a coefficient of thermal expansion smaller than that of iron. 0.5μm with Ra
A grain-oriented electrical steel sheet having extremely small iron loss, characterized by having a smooth surface of less than.
【請求項11】 気相蒸着の前または後に、磁区細分化
処理が施されたものである請求項10記載の方向性電磁鋼
板。
11. The grain-oriented electrical steel sheet according to claim 10, which has been subjected to a magnetic domain refining treatment before or after the vapor deposition.
JP28765099A 1999-10-08 1999-10-08 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4192356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28765099A JP4192356B2 (en) 1999-10-08 1999-10-08 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28765099A JP4192356B2 (en) 1999-10-08 1999-10-08 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001107146A true JP2001107146A (en) 2001-04-17
JP4192356B2 JP4192356B2 (en) 2008-12-10

Family

ID=17719963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28765099A Expired - Fee Related JP4192356B2 (en) 1999-10-08 1999-10-08 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4192356B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081765A1 (en) * 2001-04-05 2002-10-17 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
US6758915B2 (en) 2001-04-05 2004-07-06 Jfe Steel Corporation Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
WO2019132333A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for producing oriented electrical steel sheet with ultra-low iron loss
KR20190078491A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for manufacutring a grain oriented electrical steel sheet having low core loss
WO2019132295A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for producing oriented electrical steel sheet with ultra-low iron loss
JP2020111816A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain-oriented electrical steel sheet and method of manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081765A1 (en) * 2001-04-05 2002-10-17 Kawasaki Steel Corporation Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
US6758915B2 (en) 2001-04-05 2004-07-06 Jfe Steel Corporation Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
KR102218446B1 (en) * 2017-12-26 2021-02-22 주식회사 포스코 Method for manufacutring a grain oriented electrical steel sheet having low core loss
JP2021509143A (en) * 2017-12-26 2021-03-18 ポスコPosco Manufacturing method of grain-oriented electrical steel sheet
WO2019132295A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for producing oriented electrical steel sheet with ultra-low iron loss
US11773490B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Method for producing oriented electrical steel sheet with ultra-low iron loss
CN111542646A (en) * 2017-12-26 2020-08-14 Posco公司 Method for manufacturing ultra-low iron loss oriented electrical steel sheet
CN111556907A (en) * 2017-12-26 2020-08-18 Posco公司 Method for manufacturing ultra-low iron loss oriented electrical steel sheet
WO2019132333A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for producing oriented electrical steel sheet with ultra-low iron loss
KR20190078491A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Method for manufacutring a grain oriented electrical steel sheet having low core loss
JP2021509145A (en) * 2017-12-26 2021-03-18 ポスコPosco Manufacturing method of ultra-low iron loss directional electromagnetic steel sheet
KR20210087010A (en) * 2017-12-26 2021-07-09 주식회사 포스코 Method for manufacturing a grain oriented electrical steel sheet having low core loss
KR102359770B1 (en) * 2017-12-26 2022-02-08 주식회사 포스코 Method for manufacturing a grain oriented electrical steel sheet having low core loss
JP7073498B2 (en) 2017-12-26 2022-05-23 ポスコ Manufacturing method of ultra-low iron loss directional electrical steel sheet
JP7308836B2 (en) 2017-12-26 2023-07-14 ポスコ カンパニー リミテッド Manufacturing method of grain-oriented electrical steel sheet
JP7200687B2 (en) 2019-01-16 2023-01-10 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2020111816A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain-oriented electrical steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP4192356B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
RU2288297C2 (en) Electrical textured steel sheet with electrically insulating coating and process for producing electrical textured sheet steel with such coating
CN108495953B (en) Oriented electrical steel sheet and method for manufacturing oriented electrical steel sheet
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JP3552501B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3551517B2 (en) Oriented silicon steel sheet with good magnetic properties and method for producing the same
JP2001107146A (en) Grain-oriented silicon steel sheet extremely small in core loss and its producing method
KR20190044078A (en) METHOD FOR MANUFACTURING ORGANIC ELECTRIC STEEL SHEET
US6758915B2 (en) Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
JP7440639B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2002294345A (en) Manufacturing method for grain oriented silicon steel sheet with very small iron loss after stress relieving annealing
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004027345A (en) Low-iron loss grain oriented silicon steel sheet and method for manufacturing the same
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof
JP4479047B2 (en) Method for producing unidirectional electrical steel sheet with extremely low iron loss
JPH02243754A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
WO2002081765A1 (en) Grain oriented electromagnetic steel sheet exhibiting extremely small watt loss and method for producing the same
CN111542646A (en) Method for manufacturing ultra-low iron loss oriented electrical steel sheet
JP3056895B2 (en) Method for forming forsterite insulating coating on grain-oriented electrical steel sheet
KR20120074562A (en) Oriented electrical steel sheet having ultra-high tension and method for manufacturing thereof
JPH11343579A (en) Extremely low iron loss grain-oriented silicon steel sheet and its production
JP4635347B2 (en) Magnetic steel sheet manufacturing method with excellent magnetic properties and film adhesion after strain relief annealing
JP4725711B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
KR102180816B1 (en) Method for manufacutring a grain oriented electrical steel sheet having low core loss
JP2004027348A (en) Method for manufacturing ultra-low-iron loss grain-oriented silicon steel plate having excellent film adhesion property
JP4042202B2 (en) Unidirectional silicon steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Ref document number: 4192356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees