WO2019132333A1 - Method for producing oriented electrical steel sheet with ultra-low iron loss - Google Patents

Method for producing oriented electrical steel sheet with ultra-low iron loss Download PDF

Info

Publication number
WO2019132333A1
WO2019132333A1 PCT/KR2018/015801 KR2018015801W WO2019132333A1 WO 2019132333 A1 WO2019132333 A1 WO 2019132333A1 KR 2018015801 W KR2018015801 W KR 2018015801W WO 2019132333 A1 WO2019132333 A1 WO 2019132333A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
coating layer
ceramic
gas
ceramic coating
Prior art date
Application number
PCT/KR2018/015801
Other languages
French (fr)
Korean (ko)
Inventor
이상원
권민석
배진수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180154473A external-priority patent/KR102218446B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2020535182A priority Critical patent/JP7308836B2/en
Priority to US16/957,502 priority patent/US11773490B2/en
Priority to CN201880084511.2A priority patent/CN111556907A/en
Publication of WO2019132333A1 publication Critical patent/WO2019132333A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Definitions

  • the present invention relates to a method for producing a directional electric steel sheet.
  • a grain-oriented electrical steel sheet is a steel sheet containing a Si component of about 3.1%, and has a texture in which the grain orientations are aligned in ⁇ 100 ⁇ ⁇ 001 > And the like. Obtaining such ⁇ 100 ⁇ ⁇ 001 > aggregate structure is possible by a combination of various manufacturing processes, and in particular, it is possible to obtain the steel slab composition, including the components thereof, by heating, hot rolling, hot strip annealing, primary recrystallization annealing, The process of the system must be controlled very strictly.
  • the grain-oriented electrical steel sheet is formed by a secondary recrystallization structure obtained by suppressing the growth of the primary recrystallized grains and selectively growing crystal grains oriented in the ⁇ 100 ⁇ ⁇ 001 >
  • the growth inhibitor of the primary recrystallization is more important.
  • MnS, AlN, and MnSe are growth inhibitors of the primary crystal grains that can satisfy the above-mentioned conditions and are widely used industrially at present.
  • MnS, AlN, MnSe and the like contained in the steel slab are reheated at a high temperature for a long time to be solidified and then hot-rolled, and the above components having appropriate sizes and distributions in the subsequent cooling process are used as the growth inhibitor It can be.
  • this has a problem that the steel slab must be heated to a high temperature.
  • efforts have recently been made to improve the magnetic properties of the grain-oriented electrical steel sheet by heating the steel slab at a low temperature.
  • a method of adding antimony (Sb) element to the grain oriented electrical steel sheet has been proposed, but it has been pointed out that grain size is uneven after the final high temperature annealing and the noise quality of the coarse transformer is weakened.
  • the insulating film basically has high electrical insulation property and excellent adhesiveness to the material, You should have one color.
  • magnetostriction magnetictostrictive
  • directional electric steel sheets are formed by forming an insulating film on a steel sheet or a Forsterite type base coat and applying a tensile stress to the steel sheet using the difference in thermal expansion coefficient of the insulating film, .
  • a wet coating method is known as a method of reducing a 90 ⁇ magnetic domain of a directional electric steel sheet.
  • the 90 ° magnetic domain refers to a region having magnetization oriented at right angles to the magnetic field application direction. The smaller the amount of such 90 ° magnetic domain, the smaller the magnetostriction.
  • the general wet coating method there is a problem that noise reduction effect by tensile stress application is insufficient and coating thickness is thicker than that of a thick film, which results in a problem that the transformer drop rate and efficiency become poor.
  • a coating method through vacuum vapor deposition such as physical vapor deposition (PVD) and chemical vapor deposition (CVD) is known as a method of imparting high tension characteristics to the surface of the grain-oriented electrical steel sheet.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a coating method is difficult to produce commercially, and a directional electric steel sheet produced by this method has a problem in that it has an insulating property.
  • An object of the present invention is to provide a method of manufacturing a grain-oriented electrical steel sheet in which a ceramic coating layer is formed on a part or all of one surface or both surfaces of a steel sheet subjected to primary recrystallization annealing by an APP-CVD method.
  • a method for producing a grain-oriented electrical steel sheet comprising a step of reheating a steel slab, hot rolling, annealing a hot-rolled steel sheet, cold rolling, primary recrystallization annealing and secondary recrystallization annealing,
  • a gaseous ceramic precursor is brought into contact with a ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the primary recrystallization annealed steel sheet to form a ceramic coating layer,
  • APP-CVD atmospheric pressure plasma CVD process
  • a ceramic coating layer by contacting and reacting a gaseous ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the steel sheet;
  • APP-CVD atmospheric pressure plasma CVD process
  • the ceramic coating layer is formed by mixing a first gas composed of at least one of Ar, He, and N 2 with a gaseous ceramic precursor in a state where an electric field is formed on the surface of the steel sheet using a high- And then subjecting it to contact with the surface of the steel sheet.
  • the ceramic coating layer may be formed by additionally mixing a second gas composed of one of H 2 , O 2, and H 2 O to the first gas and the ceramic precursor, and then reacting the mixed gas with the surface of the steel sheet.
  • the first gas and the second gas are preferably heated to a temperature equal to or higher than the vaporization point of the ceramic precursor.
  • TTIP Titanium Isopropoxide, Ti ⁇ OCH (CH 3 ) 2 ⁇ 4 or TiCl 4 can be used as the ceramic precursor.
  • the primary recrystallization annealing step may be a step of obtaining a steel sheet which has been decarburized and annealed by immersing the steel sheet at the same time as decarburization, decanting after decarburization, and annealing.
  • the secondary recrystallization annealing step may be a high temperature annealing step in which the steel sheet on which the ceramic coating layer is formed is heated in two stages and then cracked.
  • a step of forming an insulating coating on the surface of the grain-oriented electrical steel sheet on which the ceramic coating layer is formed may be further included.
  • the steel sheet may be composed of 2.6 to 4.5% of silicon (Si), 0.020 to 0.040% of aluminum (Al), 0.01 to 0.20% of manganese (Mn), and the balance of Fe and other unavoidable impurities have.
  • a ceramic coating layer is formed to serve as an annealing separator, whereby primary cracks in the subsequent secondary recrystallization step It is possible to omit the process, thereby improving the productivity.
  • the ceramic coating layer of the present invention is a high-strength coating layer which does not need to be removed unlike conventional MgO annealing separators, and effectively provides a grain-oriented electrical steel sheet excellent in iron loss due to high tensile strength.
  • FIG. 1 is a view showing a typical directional electrical steel sheet manufacturing process.
  • FIG. 2 is a view illustrating a manufacturing process of the directional electrical steel sheet of the present invention.
  • Fig. 3 (a-b) is a graph showing the annealing heat treatment process in the secondary recrystallization annealing step, wherein (a) shows the conventional example, and (a) shows the present invention.
  • FIG. 4 is a schematic view showing a mechanism in which a ceramic coating layer is formed on the surface of a steel sheet subjected to primary recrystallization annealing using the APP-CVD process of the present invention.
  • TTIP which is an example of a ceramic precursor
  • FIG. 1 is a view showing a typical directional electrical steel sheet manufacturing process.
  • annealing & pickling line removes the heat plate, secures the cold rolling property, and plays a role of precipitating and dispersing the Inhibitor (AlN) do. Then, it performs rolling by the cold rolling process (SendZimir Rolling Mill) to the final product thickness required by the customer and secures the crystal orientation favorable to magnetism. Then, the material [C] is removed by a decarburizing and nitriding line (DNL), which is a first recrystallization annealing process, and a primary recrystallization is formed through a nitriding reaction at an appropriate temperature.
  • DNL decarburizing and nitriding line
  • a ground coating (Mg 2 SiO 4 ) layer is formed by a high temperature annealing process (COF), which is a secondary recrystallization annealing process, and secondary recrystallization is formed.
  • COF high temperature annealing process
  • the prior art has a step of applying annealing separator MgO after the decarburization treatment in the primary recrystallization step.
  • the primary heat treatment is performed after the primary heat treatment, and the secondary heat treatment is then performed to perform the secondary heat treatment.
  • FIG. 2 is a view illustrating a manufacturing process of the directional electrical steel sheet of the present invention.
  • a ceramic coating layer is formed by using an APP-CVD process instead of applying an annealing separator to a steel sheet.
  • a subsequent secondary recrystallization annealing process is followed by a two-stage heating and then a primary cracking process.
  • Fig. 3 (a-b) is a graph showing the annealing heat treatment process in the secondary recrystallization annealing step, wherein (a) shows the conventional example, and Fig. 3 (b) shows the present invention.
  • FIG. 3 in the present invention, it is possible to omit the process of primary cracking unlike the prior art, and it is understood that productivity can be improved. Further, unlike the prior art, the present invention does not need to remove the annealing separator in the above-described HCL process.
  • the directional electrical steel sheet manufacturing process of the present invention is substantially the same as the prior art processes in the processes before the primary recrystallization annealing process.
  • the above-mentioned primary recrystallization annealing step may be a step of obtaining a steel sheet which has been decarburized and annealed by immersing the steel sheet at the same time as decarburization, decanting after decarburization, and annealing.
  • a gaseous ceramic precursor is contact-reacted with plasma in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the steel sheet subjected to the primary recrystallization annealing, .
  • APP-CVD atmospheric pressure plasma CVD process
  • a high-temperature annealing process is used in which the steel sheet on which the ceramic coating layer is formed is heated in two stages, cracked once, and then cooled.
  • a cold-rolled steel sheet for producing an oriented electrical steel sheet subjected to primary recrystallization annealing is prepared.
  • the steel sheet contains 2.6 to 4.5% of silicon (Si), 0.020 to 0.040% of aluminum (Al), 0.01 to 0.20% of manganese (Mn) and the balance of Fe and other unavoidable impurities, Lt; / RTI >
  • Si silicon
  • Al aluminum
  • Mn manganese
  • Si Silicon
  • Si increases the resistivity of the steel to reduce iron loss.
  • the content of Si is too small, the resistivity of the steel becomes small and the iron loss characteristic deteriorates.
  • the content of Si can be controlled within the above-mentioned range. More specifically, Si may be contained in an amount of 2.6 to 4.5% by weight.
  • Aluminum (Al) is finally a component that acts as an inhibitor by being made of nitride of (Al, Si, N), (Al, Si, Mn) N type.
  • nitride of (Al, Si, N), (Al, Si, Mn) N type When the content of Al is too small, it is difficult to expect a sufficient effect as an inhibitor.
  • the content of Al is too large, the nitride of the Al system precipitates and grows too much, so that the effect as an inhibitor may become insufficient. Therefore, the content of Al can be controlled within the above-mentioned range.
  • Mn has the effect of increasing the resistivity and decreasing the iron loss by the same way as Si and reacting with the nitrogen introduced by the nitriding treatment together with Si to form precipitates of N (Al, Si, Mn), whereby the growth of the primary recrystallized grains And it is an important element for causing secondary recrystallization.
  • the content of Mn is too large, it accelerates the austenite phase transformation during hot rolling so that the size of the primary recrystallized grains is reduced to make the secondary recrystallization unstable.
  • the content of Mn When the content of Mn is too small, the effect of increasing the austenite fraction during hot-rolling reheating as the austenite forming element to increase the amount of precipitates and thus to make the primary recrystallization through MnS formation not too much It can occur insufficiently. Therefore, the content of Mn can be controlled within the above-mentioned range.
  • a gaseous ceramic precursor is contact-reacted in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the primary recrystallization annealed steel sheet to form a ceramic coating layer do.
  • APP-CVD atmospheric pressure plasma CVD process
  • the process used to form the ceramic coating layer in the present invention is hereinafter referred to as an atmospheric pressure plasma enhanced chemical vapor deposition (APP-CVD) process.
  • APP-CVD atmospheric pressure plasma enhanced chemical vapor deposition
  • APP-CVD has a higher deposition rate than conventional CVD, LPCVD (Low Pressure CVD), APCVD (Atmospheric Pressure CVD) and PECVD (Plasma Enhanced CVD) due to its higher density of radicals.
  • LPCVD Low Pressure CVD
  • APCVD Atmospheric Pressure CVD
  • PECVD Pasma Enhanced CVD due to its higher density of radicals.
  • there is no need for a high-vacuum or low-vacuum vacuum facility which has the advantage of low equipment cost. That is, since there is no vacuum facility, the operation of the equipment is relatively easy and the deposition performance is excellent.
  • the primary gas consisting of Ar, one or more of He, and N 2 of the first gas And a vapor-phase ceramic precursor are mixed and then supplied to a reaction furnace to react with the surface of the steel sheet.
  • FIG. 4 is a schematic view showing a mechanism in which a ceramic coating layer is formed on the surface of a steel sheet using the APP-CVD process of the present invention.
  • the APP-CVD process forms an electric field on one side or both sides of a steel sheet using a high-density radio frequency (eg, 13.56 MHz) under an atmospheric pressure condition.
  • a high-density radio frequency eg, 13.56 MHz
  • a hole, a line, or a surface nozzle is sprayed on a first gas (such as Ar, He or N 2 ), electrons are separated under an electric field to become polarized.
  • a first gas such as Ar, He or N 2
  • a plurality of line sources or 2D squared sources may be used as the RF plasma source.
  • the type of source can be different.
  • a gas phase ceramic precursor for example, TTIP: Titanium Isopropoxide, Ti ⁇ OCH ((R)) is mixed with the first gas while the Ar radical is reciprocated in the reaction furnace under an AC power of 50 to 60 Hz between the RF power source and the steel sheet. CH 3 ) 2 ⁇ 4 ) to dissociate the precursor and form a radical of the precursor.
  • TTIP Titanium Isopropoxide, Ti ⁇ OCH ((R)
  • the ceramic precursor such as TTIP is mixed with a primary gas composed of at least one of Ar, He and N 2 , then passed through an RF power source, passed through a gas injection nozzle, do.
  • ceramic precursors such as TTIP are stored in a liquid state and are vaporized through a heating process at 50 to 100 ° C.
  • the first gas passes through the TTIP, the first gas and the ceramic precursor are mixed and passed through the RF power source through the gas injection nozzle and into the reaction furnace.
  • the ceramic precursor of the present invention can be of various kinds as long as it can be easily vaporized when heated to a relatively low temperature in a liquid state.
  • TTIP Trioxide, Ti ⁇ OCH (CH 3 ) 2 ⁇ 4 or TiCl 4 can be used as the ceramic precursor.
  • a second gas which is a secondary gas composed of one of O 2 , H 2 and H 2 O, is added together with the first gas, if necessary, The purity can be improved. That is, a second gas may be introduced to improve the quality of the coating lamination, and an unwanted coating layer may be removed through reaction with the gas.
  • whether or not the second gas is input may be determined depending on various conditions such as whether the substrate layer is heated or not.
  • the ceramic precursor in a liquid state is heated to a temperature equal to or higher than the vaporization point through a heater, and the first gas and the second gas are previously heated through a steam heater or an electric heater to a temperature equal to or higher than the vaporization point of the ceramic precursor And then mixed with the ceramic precursor and fed into the reactor in a gaseous state, whereby the vaporized ceramic precursor gas can be supplied to the plasma source.
  • the ceramic coating layer is formed using the first gas, the second gas, and the ceramic precursor in an amount of 100 to 10,000 SLM, 0 to 1,000 SCCM, and 10 to 1,000 SLM, respectively.
  • a radically collapsed directional electric steel sheet having electrical ground or negative electrodes collides with each other to form a ceramic coating layer (for example, TiO 2 ) on the surface.
  • electrons are accelerated under an electric field applied by a high-density RF power source, and collide with neutrals such as atoms and molecules to generate ionization, excitation, and dissociation .
  • activated species and radicals formed through excitation and dissociation can react to form the final desired ceramic coating layer.
  • the ceramic TiO 2 laminating mechanism will be simplified. It can be explained that the ceramic precursor, TTIP, is decomposed by the plasma under the electric field as follows and laminated on the surface of the substrate layer.
  • TTIP which is an example of a ceramic precursor
  • an RF power source may require about 500 kW to 10 MW in order to laminate a steel sheet having a width of 1 m at a speed of 100 mpm to a thickness of 0.05 to 0.5 um using APP-CVD. And one or more RF Power Sources can keep the electric field stable by Power Matching System.
  • a high temperature annealing step is performed in which the steel sheet on which the ceramic coating layer is formed is heated in two stages and then cracked once in the secondary recrystallization annealing step.
  • the present invention may further include a step of calibrating the shape of the steel sheet in the HCL process, and then forming an insulating film on the surface on which the ceramic coating layer is formed.
  • an insulating coating layer containing a metal phosphate may be further formed on the ceramic coating layer.
  • the insulating property can be improved.
  • the metal phosphate may include at least one selected from Mg, Ca, Ba, Sr, Zn, Al and Mn.
  • Metal phosphates can be composed of compounds by chemical reaction of metal hydroxides and phosphoric acid (H3PO4).
  • the metal phosphate is formed by a chemical reaction of a metal hydroxide and a phosphoric acid (H3PO4), and the metal hydroxide is a compound of Sr (OH) 2, Al (OH) Ca (OH) 2, and the like.
  • the steel slab was heated at 1150 DEG C for 220 minutes and hot-rolled to a thickness of 2.3 mm to prepare a hot-rolled steel sheet.
  • the hot rolled sheet was heated to 1120 ⁇ ⁇ , held at 920 ⁇ ⁇ for 95 seconds, quenched in water and pickled, and cold rolled to a thickness of 0.23 mm to prepare cold rolled sheets.
  • the cold-rolled sheets were put into a furnace maintained at 850 ° C., and subjected to primary recrystallization annealing in which dew point temperature and oxidizing ability were controlled, and decarburization and soaking were performed simultaneously in hydrogen, nitrogen, and ammonia mixed gas atmosphere , And decarburized annealed steel sheets were prepared.
  • a ceramic coating layer was formed using the APP-CVD process without applying the annealing separator on the surfaces of the steel sheets subjected to the first recrystallization annealing as described above.
  • the directional electrical steel sheet was indirectly heated to a temperature of 200 ° C, and then a steel sheet was introduced into the APP-CVD reactor.
  • the APP-CVD process formed an electric field on one side or both sides of the oriented electrical steel sheet using the radio frequency of 13.56 MHz under the atmospheric pressure condition, and Ar gas was introduced into the reaction furnace.
  • TTIP which is a liquid precursor, is heated and vaporized under an AC power of 50 to 60 Hz between the RF power source and the steel sheet.
  • the mixture is mixed with Ar gas and H 2 gas and is introduced into the reactor, TiO 2 to form a ceramic coating layer, respectively.
  • the steel sheet on which the ceramic coating layer was formed was finally annealed.
  • the cracking temperature during the final annealing was set to 1200 ° C, and the temperature was set to 15 ° C / hr in the temperature rising period.
  • a mixed gas atmosphere of 50% by volume of nitrogen and 50% by volume of hydrogen was set. After reaching 1200 ° C., the mixture was maintained in a hydrogen gas atmosphere of 100% by volume for 15 hours and then furnace-cooled.
  • W17 / 50 means the power loss when a magnetic field of frequency 50 Hz is magnetized to AC up to 1.7 Tesla.
  • Tesla is a unit of magnetic flux density, which means flux per unit area.
  • B8 shows the magnetic flux density value flowing through the electric steel sheet when a current of 800 A / m is applied to the coil wound around the electric steel sheet.
  • Example 1-5 in which a TiO 2 coating film was formed using the APP-CVD process showed better iron loss characteristics can confirm.
  • Comparative Example 1-2 in Table 1 MgO as the annealing separator is applied to the surface of the steel sheet subjected to the primary recrystallization annealing, and the other manufacturing conditions are substantially the same as those of Inventive Example 1-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Provided is a method for producing an oriented electrical steel sheet with an ultra-low iron loss. The method for producing an oriented electrical steel sheet according to the present invention is a method for producing an oriented electrical steel sheet comprising the processes of performing reheating, hot rolling, hot-rolled sheet annealing, cold rolling, primary recrystallization annealing and secondary recrystallization annealing on a steel slab, whereby a ceramic coating layer is formed by subjecting a gas-phase ceramic precursor to a contact reaction in a plasma state using the atmospheric pressure plasma CVD (APP-CVD) process, on a part of or the entire one or both surfaces of a steel sheet which has been subjected to the primary recrystallization annealing, and then secondary recrystallization annealing is performed thereon.

Description

초저철손 방향성 전기강판 제조방법Method for manufacturing ultra-low iron loss directional electric steel sheet
본 발명은 방향성 전기강판 제조 방법에 관한 것이다. The present invention relates to a method for producing a directional electric steel sheet.
일반적으로 방향성 전기강판이란 강판에 3.1% 전후의 Si성분을 함유한 것으로서, 결정립의 방위가 {100}<001>[0002] 방향으로 정렬된 집합 조직을 가지고 있어, 압연방향으로 극히 우수한 자기적 특성을 가진 전기강판을 말한다. 이러한 {100}<001> 집합조직을 얻는 것은 여러 제조 공정의 조합에 의해서 가능하며, 특히 강 슬라브의 성분을 비롯하여, 이를 가열, 열간 압연, 열연판 소둔, 1차 재결정 소둔, 및 최종 소둔하는 일련의 과정이 매우 엄밀하게 제어되어야 한다. 구체적으로, 방향성 전기강판은 1차 재결정립의 성장을 억제시키고, 성장이 억제된 결정립 중에서 {100}<001> 방위의 결정립을 선택적으로 성장시켜 얻어진 2차 재결정 조직에 의해 우수한 자기특성을 나타내도록 하는 것이므로, 1차 재결정립의 성장 억제제가 보다 중요하다. 그리고 최종 소둔 공정에서는, 성장이 억제된 결정립 중에서 안정적으로 {100}<001> 방위의 집합 조직을 갖는 결정립들이 우선적으로 성장할 수 있도록 하는 것이 방향성전기강판 제조기술에서 주요한 사항 중에 하나이다. 상술한 조건이 충족할 수 있고 현재 공업적으로 널리 이용되고 있는 1차 결정립의 성장 억제제로는 MnS, AlN, 및 MnSe 등이 있다. 구체적으로, 강 슬라브에 함유된 MnS, AlN, 및 MnSe 등을 고온에서 장시간 재가열하여 고용시킨 뒤 열간 압연하고, 이후의 냉각 과정에서 적정한 크기와 분포를 가지는 상기 성분이 석출물로 만들어져 상기 성장 억제제로 이용될 수 있는 것이다. 그러나, 이는 반드시 강 슬라브를 고온으로 가열해야 되는 문제점이 있다. 이와 관련하여, 최근에는 강 슬라브를 저온에서 가열하는 방법으로 방향성 전기강판의 자기적 특성을 개선하기 위한 노력이 있었다. 이를 위해, 방향성 전기강판에 안티몬(Sb) 원소를 첨가하는 방법이 제시되었으나, 최종 고온 소둔 후 결정립 크기가 불균일하고 조대하여 변압기 소음 품질이 열위해지는 문제점이 지적되었다.Generally, a grain-oriented electrical steel sheet is a steel sheet containing a Si component of about 3.1%, and has a texture in which the grain orientations are aligned in {100} < 001 > And the like. Obtaining such {100} < 001 > aggregate structure is possible by a combination of various manufacturing processes, and in particular, it is possible to obtain the steel slab composition, including the components thereof, by heating, hot rolling, hot strip annealing, primary recrystallization annealing, The process of the system must be controlled very strictly. Specifically, the grain-oriented electrical steel sheet is formed by a secondary recrystallization structure obtained by suppressing the growth of the primary recrystallized grains and selectively growing crystal grains oriented in the {100} < 001 > The growth inhibitor of the primary recrystallization is more important. In the final annealing step, it is one of the major issues in the directional electric steel sheet manufacturing technology to stably grow crystal grains having a texture structure of {100} < 001 > orientation among the crystal grains whose growth is suppressed. MnS, AlN, and MnSe are growth inhibitors of the primary crystal grains that can satisfy the above-mentioned conditions and are widely used industrially at present. Specifically, MnS, AlN, MnSe and the like contained in the steel slab are reheated at a high temperature for a long time to be solidified and then hot-rolled, and the above components having appropriate sizes and distributions in the subsequent cooling process are used as the growth inhibitor It can be. However, this has a problem that the steel slab must be heated to a high temperature. In this regard, efforts have recently been made to improve the magnetic properties of the grain-oriented electrical steel sheet by heating the steel slab at a low temperature. To this end, a method of adding antimony (Sb) element to the grain oriented electrical steel sheet has been proposed, but it has been pointed out that grain size is uneven after the final high temperature annealing and the noise quality of the coarse transformer is weakened.
한편, 방향성 전기강판의 전력 손실을 최소화하기 위하여, 그 표면에 절연피막을 형성하는 것이 일반적이며, 이때 절연피막은 기본적으로 전기 절연성이 높고 소재와의 접착성이 우수하며, 외관에 결함이 없는 균일한 색상을가져야 한다. 이와 더불어, 최근 변압기 소음에 대한 국제규격 강화 및 관련 업계의 경쟁 심화로 인하여, 방향성 전기강판의 절연피막을 소음을 저감하기 위해, 자기 변형(자왜) 현상에 대한 연구가 필요한 실정이다. 구체적으로, 변압기 철심으로 사용되는 전기강판에 자기장이 인가되면 수축과 팽창을 반복하여 떨림 현상이 유발되며, 이러한 떨림으로 인해 변압기에서 진동과 소음이 야기된다. 일반적으로 알려진 방향성 전기강판의 경우, 강판 및 포스테라이트(Forsterite)계 바탕 피막 위에 절연피막을 형성하고 이러한 절연피막의 열팽창계수 차이를 이용하여 강판에 인장 응력을 부여함으로써, 철손을 개선하고 자기 변형에 기인한 소음 감소 효과를 도모하고 있지만, 최근 요구되고 있는 고급 방향성 전기강판에서의 소음수준을 만족시키기에는 한계가 있다. 한편, 방향성 전기강판의 90° 자구를 감소시키는 방법으로 습식코팅 방식이 알려져 있다. 여기서 90° 자구란, [0010]자계 인가 방향에 대하여 직각으로 향하고 있는 자화를 가지는 영역을 말하며, 이러한 90° 자구의 양이 적을수록 자기 변형이 작아진다. 그러나, 일반적인 습식코팅 방식으로는 인장응력 부여에 의한 소음 개선 효과가 부족하고, 코팅 두께가 두꺼운 후막으로 코팅해야 되는 단점이 있어, 변압기 점적율과 효율이 나빠지는 문제점이 있다.On the other hand, in order to minimize the power loss of the grain-oriented electrical steel sheet, it is common to form an insulating film on the surface thereof. In this case, the insulating film basically has high electrical insulation property and excellent adhesiveness to the material, You should have one color. In addition, due to recent intensification of international standards for transformer noise and intensifying competition in the related industry, researches on magnetostriction (magnetostrictive) phenomenon are required to reduce the noise of the insulating coating of a directional electrical steel sheet. Specifically, when a magnetic field is applied to an electric steel sheet used as an iron core of a transformer, the shrinkage and expansion are repeated to cause a trembling phenomenon, which causes vibration and noise in the transformer. Generally known directional electric steel sheets are formed by forming an insulating film on a steel sheet or a Forsterite type base coat and applying a tensile stress to the steel sheet using the difference in thermal expansion coefficient of the insulating film, , But there is a limit to satisfy the noise level in the advanced directional electric steel sheet which is recently required. On the other hand, a wet coating method is known as a method of reducing a 90 占 magnetic domain of a directional electric steel sheet. Here, the 90 ° magnetic domain refers to a region having magnetization oriented at right angles to the magnetic field application direction. The smaller the amount of such 90 ° magnetic domain, the smaller the magnetostriction. However, in the general wet coating method, there is a problem that noise reduction effect by tensile stress application is insufficient and coating thickness is thicker than that of a thick film, which results in a problem that the transformer drop rate and efficiency become poor.
이 밖에, 방향성 전기강판의 표면에 고장력 특성을 부여하는 방법으로 물리적 증기 증착법(Physical Vapor Deposition, PVD) 및 화학적 증기 증착법(Chemical Vapor Deposition, CVD) 등의 진공 증착을 통한 코팅 방식이 알려져 있다. 그러나 이러한 코팅방식은 상업적 생산이 어렵고, 이 방법에 의해 제조된 방향성 전기강판은 절연특성이 열위한 문제점이 있다.In addition, a coating method through vacuum vapor deposition such as physical vapor deposition (PVD) and chemical vapor deposition (CVD) is known as a method of imparting high tension characteristics to the surface of the grain-oriented electrical steel sheet. However, such a coating method is difficult to produce commercially, and a directional electric steel sheet produced by this method has a problem in that it has an insulating property.
본 발명은 APP-CVD법으로 1차 재결정소둔처리된 강판의 일면 내지 양면의 일부 또는 전부에 세라믹코팅층을 형성하는 방향성 전기강판 제조방법을 제공함을 목적으로 한다. An object of the present invention is to provide a method of manufacturing a grain-oriented electrical steel sheet in which a ceramic coating layer is formed on a part or all of one surface or both surfaces of a steel sheet subjected to primary recrystallization annealing by an APP-CVD method.
또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Further, the technical problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems which are not mentioned can be understood from the following description in order to clearly understand those skilled in the art to which the present invention belongs .
본 발명의 일실시예에 따른 방향성 전기강판의 제조방법은, A method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention includes:
강 슬라브를 재가열, 열간압연, 열연판 소둔, 냉간압연, 1차 재결정 소둔 및 2차 재결정 소둔하는 공정을 포함하는 방향성 전기강판 제조방법에 있어서, A method for producing a grain-oriented electrical steel sheet comprising a step of reheating a steel slab, hot rolling, annealing a hot-rolled steel sheet, cold rolling, primary recrystallization annealing and secondary recrystallization annealing,
상기 1차 재결정 소둔처리된 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성한 후 2차 재결정소둔하는 방향성 전기강판 제조방법에 관한 것이다.A gaseous ceramic precursor is brought into contact with a ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the primary recrystallization annealed steel sheet to form a ceramic coating layer, To a method for producing a grain-oriented electrical steel sheet.
또한 본 발명은Also,
1차 재결정 소둔처리된 방향성 전기강판 제조용 강판을 준비하는 단계;Preparing a steel sheet for producing a grain-oriented electrical steel sheet subjected to primary recrystallization annealing;
상기 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성하는 단계; 및 Forming a ceramic coating layer by contacting and reacting a gaseous ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the steel sheet; And
상기 세라믹코팅층이 형성된 강판을 2차 재결정소둔하는 단계;를 포함하는 방향성 전기강판 제조방법에 관한 것이다. And subjecting the steel sheet having the ceramic coating layer to secondary recrystallization annealing.
상기 세라믹코팅층은, 대기압 조건에서 고밀도 무선주파수를 이용하여 강판 표면에 전기장을 형성하여 플라즈마를 발생시킨 상태에서, Ar, He 및 N2 중 1종 이상으로 이루어진 제 1가스와 기상의 세라믹전구체를 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성될 수 있다. The ceramic coating layer is formed by mixing a first gas composed of at least one of Ar, He, and N 2 with a gaseous ceramic precursor in a state where an electric field is formed on the surface of the steel sheet using a high- And then subjecting it to contact with the surface of the steel sheet.
상기 세라믹코팅층은, H2, O2 및 H2O 중 1종으로 이루어진 제 2가스를 상기 제 1가스 및 세라믹 전구체에 추가적으로 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성될 수 있다. The ceramic coating layer may be formed by additionally mixing a second gas composed of one of H 2 , O 2, and H 2 O to the first gas and the ceramic precursor, and then reacting the mixed gas with the surface of the steel sheet.
상기 제 1 가스와 제 2가스는 상기 세라믹 전구체의 기화점 이상의 온도로 가열되어 있는 것이 바람직하다. The first gas and the second gas are preferably heated to a temperature equal to or higher than the vaporization point of the ceramic precursor.
상기 세라믹코팅층이 TiO2일 때 상기 세라믹 전구체로서 TTIP(Titanium Isopropoxide, Ti{OCH(CH3)2}4 또는 TiCl4를 이용할 수 있다. When the ceramic coating layer is TiO 2 , TTIP (Titanium Isopropoxide, Ti {OCH (CH 3 ) 2 } 4 or TiCl 4 can be used as the ceramic precursor.
상기 1차 재결정소둔하는 공정은, 상기 강판을 탈탄과 동시에 침질하거나, 탈탄 이후 침질하고, 소둔하여 탈탄 소둔된 강판을 얻는 공정일 수 있다. The primary recrystallization annealing step may be a step of obtaining a steel sheet which has been decarburized and annealed by immersing the steel sheet at the same time as decarburization, decanting after decarburization, and annealing.
상기 2차 재결정소둔하는 공정은 상기 세라믹코팅층이 형성된 강판을 2단 가열한 후 균열처리하는 고온소둔공정일 수 있다. The secondary recrystallization annealing step may be a high temperature annealing step in which the steel sheet on which the ceramic coating layer is formed is heated in two stages and then cracked.
상기 2차 재결정소둔 공정 이후, 세라믹코팅층이 형성되어 있는 방향성 전기강판의 표면에 절연피막을 형성하는 공정을 추가로 포함할 수 있다. After the secondary recrystallization annealing step, a step of forming an insulating coating on the surface of the grain-oriented electrical steel sheet on which the ceramic coating layer is formed may be further included.
기 강판은 중량%로, 실리콘(Si): 2.6~4.5%, 알루미늄(Al): 0.020~ 0.040%, 망간(Mn): 0.01~0.20%, 잔부는 Fe 및 기타 불가피한 불순물을 포함하여 조성될 수 있다. The steel sheet may be composed of 2.6 to 4.5% of silicon (Si), 0.020 to 0.040% of aluminum (Al), 0.01 to 0.20% of manganese (Mn), and the balance of Fe and other unavoidable impurities have.
상술한 구성의 본 발명에 따르면, 1차 재결정소둔공정에서 소둔분리제를 강판 표면에 도포하는 대신에, 세라믹코팅층을 형성하여 소둔분리제 역할을 하도록 함으로써 후속하는 2차재결정공정에서의 1차 균열공정 생략이 가능하여 생산성을 제고할 수 있다. According to the present invention having the above-described constitution, in place of applying the annealing separator to the surface of the steel sheet in the primary recrystallization annealing step, a ceramic coating layer is formed to serve as an annealing separator, whereby primary cracks in the subsequent secondary recrystallization step It is possible to omit the process, thereby improving the productivity.
또한 본발명의 세라믹코팅층은 고장력의 피막층으로 통상의 MgO 소둔분리제와는 달리 그 제거가 필요 없으며, 고장력에 기인하여 철손이 우수한 방향성 전기강판을 효과적으로 제공할 수 있다.In addition, the ceramic coating layer of the present invention is a high-strength coating layer which does not need to be removed unlike conventional MgO annealing separators, and effectively provides a grain-oriented electrical steel sheet excellent in iron loss due to high tensile strength.
도 1은 통상의 방향성 전기강판 제조 공정을 도시한 그림이다. 1 is a view showing a typical directional electrical steel sheet manufacturing process.
도 2는 본 발명의 방향성 전기강판을 제조공정을 도시한 그림이다. 2 is a view illustrating a manufacturing process of the directional electrical steel sheet of the present invention.
도 3(a-b)는 2차 재결정소둔공정에서의 소둔열처리 과정을 나타내는 그래프로서, (a)는 종래예를 (a)는 본 발명예를 나타낸다. Fig. 3 (a-b) is a graph showing the annealing heat treatment process in the secondary recrystallization annealing step, wherein (a) shows the conventional example, and (a) shows the present invention.
도 4는 본 발명의 APP-CVD공정을 이용하여 1차 재결정소둔된 강판 표면에 세라믹코팅층이 형성되는 Mechanism을 나타내는 모시도이다. 4 is a schematic view showing a mechanism in which a ceramic coating layer is formed on the surface of a steel sheet subjected to primary recrystallization annealing using the APP-CVD process of the present invention.
도 5는 본 발명의 APP-CVD 공정에서 RF Power Source에 의해 생성된 플라즈마 영역내에서 세라믹전구체의 일예인 TTIP가 해리된 상태를 도시한 그림이다. 5 is a view showing a state in which TTIP, which is an example of a ceramic precursor, is dissociated in a plasma region generated by an RF power source in the APP-CVD process of the present invention.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
도 1은 통상의 방향성 전기강판 제조 공정을 도시한 그림이다. 1 is a view showing a typical directional electrical steel sheet manufacturing process.
도 1에 나타난 바와 같이, 먼저, 소둔산세공정(APL:Annealing & Pickling Line)으로서 열열판 Scale 제거, 냉간압연성 확보 및 열연판의 Inhibitor (AlN)를 자성에 유리하게 석출, 분산시키는 역할을 수행한다. 이어, 냉간압연공정(SendZimir Rolling Mill)으로 고객사가 요구하는 최종 제품두께로 압연을 하고, 자성에 유리한 결정방위를 확보하는 역할을 한다. 그리고 제1차 재결정소둔공정인 탈탄침질 소둔공정(DNL:Decarburizing & Nitriding Line)으로 소재의 [C]을 제거하고, 적정 온도와 질화반응을 통하여 1차 재결정을 형성한다. 후속하여, 제2차 재결정소둔공정인 고온소둔공정(COF)으로 하지 코팅(Mg2SiO4)층을 형성하고 2차 재결정을 형성한다. 마지막으로, HCL 공정으로 소재 형상을 교정하고, 상기 소둔분리제를 제거한 후 절연피막층을 형성하여 전기강판 표면에 장력을 부여하는 공정이다. As shown in FIG. 1, first, annealing & pickling line (APL) removes the heat plate, secures the cold rolling property, and plays a role of precipitating and dispersing the Inhibitor (AlN) do. Then, it performs rolling by the cold rolling process (SendZimir Rolling Mill) to the final product thickness required by the customer and secures the crystal orientation favorable to magnetism. Then, the material [C] is removed by a decarburizing and nitriding line (DNL), which is a first recrystallization annealing process, and a primary recrystallization is formed through a nitriding reaction at an appropriate temperature. Subsequently, a ground coating (Mg 2 SiO 4 ) layer is formed by a high temperature annealing process (COF), which is a secondary recrystallization annealing process, and secondary recrystallization is formed. Finally, it is a step of calibrating the workpiece shape by the HCL process, removing the annealing separator, and then forming an insulating coating layer to give tension to the surface of the electric steel sheet.
이때, 종래기술에서는 상기 1차 재결정공정에서 탈탄 침질 처리후 소둔분리제 MgO를 도포하는 공정을 가진다. 그리고 이에 따라, 2차 재결정소둔공정에서 1차가열 후 1차 균열처리하고, 이어, 2차 가열후 2차 균열처리하는 공정을 거치게 된다. At this time, the prior art has a step of applying annealing separator MgO after the decarburization treatment in the primary recrystallization step. Thus, in the secondary recrystallization annealing step, the primary heat treatment is performed after the primary heat treatment, and the secondary heat treatment is then performed to perform the secondary heat treatment.
한편 도 2는 본 발명의 방향성 전기강판을 제조공정을 도시한 그림이다. 2 is a view illustrating a manufacturing process of the directional electrical steel sheet of the present invention.
도 2에 나타난 바와 같이, 본 발명은 1차 재결정소둔공정에서 소둔분리제를 강판에 도포하는 대신에 APP-CVD공정을 이용하여 세라믹코팅층를 형성한다. 그리고 이러한 세라믹코팅층의 형성에 따라 후속하는 2차 재결정소둔공정에서 2단 가열후 1차 균열처리하는 프로세스를 거친다. As shown in Fig. 2, in the first recrystallization annealing step, a ceramic coating layer is formed by using an APP-CVD process instead of applying an annealing separator to a steel sheet. In accordance with the formation of such a ceramic coating layer, a subsequent secondary recrystallization annealing process is followed by a two-stage heating and then a primary cracking process.
도 3(a-b)는 2차 재결정소둔공정에서의 소둔열처리 과정을 나타내는 그래프로서, (a)는 종래예를 (b)는 본 발명예를 나타낸다. 도 3에 나타난 바와 같이, 본 발명에서는 종래기술과는 달리 1차 균열처리하는 공정을 생략할 수 있으며, 이에 따라 생산성을 제고할 수 있음을 알 수 있다. 나아가, 본 발명에서는 종래기술과 달리 전술한 HCL 공정에서 소둔분리제를 제거할 필요가 없는 장점도 있다. Fig. 3 (a-b) is a graph showing the annealing heat treatment process in the secondary recrystallization annealing step, wherein (a) shows the conventional example, and Fig. 3 (b) shows the present invention. As shown in FIG. 3, in the present invention, it is possible to omit the process of primary cracking unlike the prior art, and it is understood that productivity can be improved. Further, unlike the prior art, the present invention does not need to remove the annealing separator in the above-described HCL process.
앞서와 같이, 본 발명의 방향성 전기강판 제조공정은 1차 재결정소둔공정 이전 공정들에서는 종래기술과 실질적으로 동일하다. As described above, the directional electrical steel sheet manufacturing process of the present invention is substantially the same as the prior art processes in the processes before the primary recrystallization annealing process.
즉, 본 발명은 방향성 전기강판을 제조함에 있어서, 종래기술과 유사하게 강 슬라브를 재가열, 열간압연, 열연판 소둔, 냉간압연, 1차 재결정 소둔 및 2차 재결정 소둔하는 공정을 일반적인 공정을 이용한다. 여기에서, 상기 상기 1차 재결정소둔하는 공정은, 상기 강판을 탈탄과 동시에 침질하거나, 탈탄 이후 침질하고, 소둔하여 탈탄 소둔된 강판을 얻는 공정일 수가 있다. That is, in producing a grain-oriented electrical steel sheet, a general process is used for reheating a steel slab, hot rolling, hot-rolling annealing, cold rolling, primary recrystallization annealing, and secondary recrystallization annealing. Here, the above-mentioned primary recrystallization annealing step may be a step of obtaining a steel sheet which has been decarburized and annealed by immersing the steel sheet at the same time as decarburization, decanting after decarburization, and annealing.
그러나 종래기술과는 달리, 상기 1차 재결정 소둔처리된 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성한다.However, unlike the prior art, a gaseous ceramic precursor is contact-reacted with plasma in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the steel sheet subjected to the primary recrystallization annealing, .
그리고 2차 재결정소둔공정에서 상기 세라믹코팅층이 형성된 강판을 2단 가열한 후 1회 균열처리한 후 노냉하는 고온소둔공정을 이용한다.In the secondary recrystallization annealing step, a high-temperature annealing process is used in which the steel sheet on which the ceramic coating layer is formed is heated in two stages, cracked once, and then cooled.
먼저, 본발명에서는 1차 재결정소둔된 방향성 전기강판 제조용 냉연 강판을 준비한다. First, in the present invention, a cold-rolled steel sheet for producing an oriented electrical steel sheet subjected to primary recrystallization annealing is prepared.
본 발명에서 상기 강판은 중량%로, 실리콘(Si): 2.6~4.5%, 알루미늄(Al): 0.020~ 0.040%, 망간(Mn): 0.01~0.20%, 잔부는 Fe 및 기타 불가피한 불순물을 포함하여 이루어질 수 있다. 이하, 본 발명에서 상기 강판의 조성 성분 및 함량 제한사유를 설명하면 다음과 같다. In the present invention, the steel sheet contains 2.6 to 4.5% of silicon (Si), 0.020 to 0.040% of aluminum (Al), 0.01 to 0.20% of manganese (Mn) and the balance of Fe and other unavoidable impurities, Lt; / RTI &gt; Hereinafter, the composition of the steel sheet and reasons for limiting the content of the steel sheet will be described below.
Si: 2.6~4.5중량%Si: 2.6 to 4.5 wt%
실리콘(Si)은 강의 비저항을 증가시켜 철손을 감소시키는 역할을 하는데, Si의 함량이 너무 적은 경우에는 강의 비저항이 작게 되어 철손 특성이 열화되고 고온소둔시 상변태구간이 존재하여 2차 재결정이 불안정해지는 문제가 발생할 수 있다. Si의 함량이 너무 많은 경우에는 취성이 커져 냉간압연이 어려워지는 문제가 발생할 수 있다. 따라서, 전술한 범위에서 Si의 함량을 조절할 수 있다. 더욱 구체적으로 Si는 2.6~4.5 중량% 포함될 수 있다.Silicon (Si) increases the resistivity of the steel to reduce iron loss. When the content of Si is too small, the resistivity of the steel becomes small and the iron loss characteristic deteriorates. In the high temperature annealing, Problems can arise. If the content of Si is too large, the brittleness is increased and cold rolling may become difficult. Therefore, the content of Si can be controlled within the above-mentioned range. More specifically, Si may be contained in an amount of 2.6 to 4.5% by weight.
Al: 0.020~0.040중량%Al: 0.020 to 0.040 wt%
알루미늄(Al)은 최종적으로 AlN, (Al,Si)N, (Al,Si,Mn)N 형태의 질화물로 되어 억제제로 작용하는 성분이다. Al의 함량이 너무 적은 경우에는 억제제로서 충분한 효과를 기대하기 어렵다. 또한, Al의 함량이 너무 많은 경우에는 Al계통의 질화물이 너무 조대하게 석출, 성장하므로 억제제로의 효과가 부족해질 수 있다. 따라서, 전술한 범위에서 Al의 함량을 조절할 수 있다.Aluminum (Al) is finally a component that acts as an inhibitor by being made of nitride of (Al, Si, N), (Al, Si, Mn) N type. When the content of Al is too small, it is difficult to expect a sufficient effect as an inhibitor. When the content of Al is too large, the nitride of the Al system precipitates and grows too much, so that the effect as an inhibitor may become insufficient. Therefore, the content of Al can be controlled within the above-mentioned range.
Mn: 0.01~0.20중량%Mn: 0.01 to 0.20 wt%
Mn은 Si과 동일하게 비저항을 증가시켜 철손을 감소시키는 효과가 있으며, Si과 함께 질화처리에 의해서 도입되는 질소와 반응하여 (Al,Si,Mn)N의 석출물을 형성함으로서 1차재결정립의 성장을 억제하여 2차재결정을 일으키는데 중요한 원소이다. 그러나 Mn의 함량이 너무 많은 경우, 열연도중 오스테나이트 상변태를 촉진하므로 1차재결정립의 크기를 감소시켜 2차 재결정을 불안정하게 한다. 또한, Mn의 함량이 너무 적은 경우, 오스테나이트형성 원소로서 열연 재가열시 오스테나이트 분율을 높여 석출물들의 고용량을 많게 하여 재석출시 석출물 미세화와 MnS 형성을 통한 1차 재결정립이 너무 과대하지 않게 하는 효과가 불충분하게 일어날 수 있다. 따라서, 전술한 범위에서 Mn의 함량을 조절할 수 있다.Mn has the effect of increasing the resistivity and decreasing the iron loss by the same way as Si and reacting with the nitrogen introduced by the nitriding treatment together with Si to form precipitates of N (Al, Si, Mn), whereby the growth of the primary recrystallized grains And it is an important element for causing secondary recrystallization. However, when the content of Mn is too large, it accelerates the austenite phase transformation during hot rolling so that the size of the primary recrystallized grains is reduced to make the secondary recrystallization unstable. When the content of Mn is too small, the effect of increasing the austenite fraction during hot-rolling reheating as the austenite forming element to increase the amount of precipitates and thus to make the primary recrystallization through MnS formation not too much It can occur insufficiently. Therefore, the content of Mn can be controlled within the above-mentioned range.
이어, 본 발명에서는 상기 1차 재결정 소둔처리된 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성한다.In the present invention, a gaseous ceramic precursor is contact-reacted in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the primary recrystallization annealed steel sheet to form a ceramic coating layer do.
본 발명에서 세라믹코팅층을 형성함에 이용되는 공정은, 이하, 상압 플라즈마 화학증착공정(APP-CVD :Atmospheric Pressure Plasma enhanced-Chemical Vapor Deposition) 공정으로 명명한다. The process used to form the ceramic coating layer in the present invention is hereinafter referred to as an atmospheric pressure plasma enhanced chemical vapor deposition (APP-CVD) process.
APP-CVD는 기존 CVD, LPCVD(Low Pressure CVD), APCVD(Atmospheric Pressure CVD), PECVD(Plasma Enhanced CVD) 보다 radical의 밀도가 높아 증착율이 높다. 또한 여느 CVD와 달리 고진공 또는 저진공의 진공설비가 필요치 않아, 설비비가 낮은 장점이 있다. 즉, 진공 설비가 없어 설비의 가동이 상대적으로 쉽고, 증착 성능이 우수하다. APP-CVD has a higher deposition rate than conventional CVD, LPCVD (Low Pressure CVD), APCVD (Atmospheric Pressure CVD) and PECVD (Plasma Enhanced CVD) due to its higher density of radicals. In addition, unlike conventional CVD, there is no need for a high-vacuum or low-vacuum vacuum facility, which has the advantage of low equipment cost. That is, since there is no vacuum facility, the operation of the equipment is relatively easy and the deposition performance is excellent.
그리고 본 발명의 APP-CVD공정에서 대기압 조건에서 고밀도 무선주파수를 이용하여 강판 표면에 전기장을 형성하여 플라즈마를 발생시킨 상태에서, Ar, He 및 N2 중 1종 이상으로 이루어진 주가스인 제 1가스와 기상의 세라믹전구체를 혼합한 후, 이를 반응로에 공급하여 강판 표면에 접촉 반응시킨다. And in a state in which plasma is generated to form an electric field on the surface of the steel sheet using a high-density radio-frequency at an ambient pressure condition in the APP-CVD process of the present invention, the primary gas consisting of Ar, one or more of He, and N 2 of the first gas And a vapor-phase ceramic precursor are mixed and then supplied to a reaction furnace to react with the surface of the steel sheet.
도 4는 본 발명의 APP-CVD공정을 이용하여 강판 표면상에 세라믹코팅층이 형성되는 Mechanism을 나타내는 모식도이다. 4 is a schematic view showing a mechanism in which a ceramic coating layer is formed on the surface of a steel sheet using the APP-CVD process of the present invention.
도 4에 나타난 바와 같이, 본 APP-CVD 공정은 대기압하 조건에서 고밀도의 무선주파수(Radio Frequency) (예, 13.56MHz)를 이용하여 강판의 일면 또는 양면에 전기장을 형성한다. 그리고 Ar, He 또는 N2와 같은 제1 가스(Primary Gas)를 hole, Line, 또는 면 Nozzle을 분사시키면 전기장하에서 전자가 분리되어 Radical화가 되어 극성을 띄게 된다. As shown in FIG. 4, the APP-CVD process forms an electric field on one side or both sides of a steel sheet using a high-density radio frequency (eg, 13.56 MHz) under an atmospheric pressure condition. When a hole, a line, or a surface nozzle is sprayed on a first gas (such as Ar, He or N 2 ), electrons are separated under an electric field to become polarized.
본 발명에서 RF Plasma Source는 경우에 따라 다수의 Line Source 또는 2D Squre Source가 사용될 수 있다. 이는 최적화된 코팅속도와 소지층의 진행속도에 따라 Source의 종류도 달리할 수 있다.In the present invention, a plurality of line sources or 2D squared sources may be used as the RF plasma source. Depending on the optimum coating speed and the speed of the substrate, the type of source can be different.
이어, RF Power Source와 강판 간 50~60Hz의 교류 전력하에서 반응로내에서 Ar Radical, 전자가 왕복 운동을 하면서 제 1가스에 혼합된 기상의 세라믹전구체(예컨대, TTIP : Titanium Isopropoxide, Ti{OCH(CH3)2}4)와 충돌하면서 전구체를 해리, 전구체의 Radical을 형성하게 된다. Next, a gas phase ceramic precursor (for example, TTIP: Titanium Isopropoxide, Ti {OCH ((R)) is mixed with the first gas while the Ar radical is reciprocated in the reaction furnace under an AC power of 50 to 60 Hz between the RF power source and the steel sheet. CH 3 ) 2 } 4 ) to dissociate the precursor and form a radical of the precursor.
이때, 본 발명에서 TTIP와 같은 세라믹전구체는 Ar, He 및 N2 중 1종 이상으로 이루어진 제 1가스(Primary Gas)와 혼합된 후, RF Power Source를 지나 Gas 분사 Nozzle을 통과하여 반응로내로 유입된다. At this time, in the present invention, the ceramic precursor such as TTIP is mixed with a primary gas composed of at least one of Ar, He and N 2 , then passed through an RF power source, passed through a gas injection nozzle, do.
한편 TTIP와 같은 세라믹전구체는 Liquid 상태로 보관되며 50~100℃의 가열공정을 통해 기화된다. 그리고 제 1가스가 TTIP가 포함된 곳을 통과하면, 제 1가스와 세라믹전구체는 혼합되어 RF Power Source를 지나 Gas 분사 Nozzle을 통과하여 반응로내에 유입된다. On the other hand, ceramic precursors such as TTIP are stored in a liquid state and are vaporized through a heating process at 50 to 100 ° C. When the first gas passes through the TTIP, the first gas and the ceramic precursor are mixed and passed through the RF power source through the gas injection nozzle and into the reaction furnace.
본 발명의 세라믹 전구체는 전술한 바와 같이, 액체상태로 비교적 높지 않은 온도로 가열시 쉽게 기화될 수 있는 것이라면 다양한 종류의 것을 이용할 수 있다. 예컨데, TTIP, TiCL4, TEOT 등을 이용할 수 있다. 즉, 본 발명에서는 상기 세라믹코팅층이 TiO2일 때 상기 세라믹 전구체로서 TTIP(Titanium Isopropoxide, Ti{OCH(CH3)2}4 또는 TiCl4등을 이용할 수 있다. As described above, the ceramic precursor of the present invention can be of various kinds as long as it can be easily vaporized when heated to a relatively low temperature in a liquid state. For example, TTIP, TiCl 4 , TEOT and the like can be used. That is, in the present invention, when the ceramic coating layer is TiO 2 , TTIP (Titanium Isopropoxide, Ti {OCH (CH 3 ) 2 } 4 or TiCl 4 can be used as the ceramic precursor.
이때, 본 발명에서는 코팅층의 품질을 향상하기 위하여, 필요한 경우 O2, H2 및 H2O 중 1종으로 이루어진 보조가스(secondary gas)인 제2 가스를 상기 제1 가스와 함께 투입하여 코팅층의 순도를 향상시킬 수 있다. 즉, 코팅 적층 품질을 향상하기 위하여 제 2가스를 투입하여, 원하지 않는 코팅층을 가스와의 반응을 통하여 제거할 수 있다. 본 발명에서 제 2가스(Secondary Gas)의 투입여부는 소지층의 Heating 여부등 제반 조건에 따라 투입 또는 무투입이 결정될 수 있다.At this time, in order to improve the quality of the coating layer, a second gas, which is a secondary gas composed of one of O 2 , H 2 and H 2 O, is added together with the first gas, if necessary, The purity can be improved. That is, a second gas may be introduced to improve the quality of the coating lamination, and an unwanted coating layer may be removed through reaction with the gas. In the present invention, whether or not the second gas is input may be determined depending on various conditions such as whether the substrate layer is heated or not.
상술한 바와 같이, 본 발명에서는 액체 상태인 세라믹전구체를 가열기를 통해 기화점 이상으로 가열하고, 제 1가스와 제 2가스는 사전에 스팀 가열기 또는 전기 가열기를 통해 상기 세라믹전구체 기화점 이상의 온도로 가열한 후, 세라믹전구체와 혼합하여 반응로 내부로 가스 상태로 공급함으로써 기화된 세라믹전구체 가스를 Plasma Source로 공급할 수 있는 것이다. As described above, in the present invention, the ceramic precursor in a liquid state is heated to a temperature equal to or higher than the vaporization point through a heater, and the first gas and the second gas are previously heated through a steam heater or an electric heater to a temperature equal to or higher than the vaporization point of the ceramic precursor And then mixed with the ceramic precursor and fed into the reactor in a gaseous state, whereby the vaporized ceramic precursor gas can be supplied to the plasma source.
이때, 제1 가스, 제 2가스 및 세라믹 전구체의 유입량을 각각 100~10,000 SLM, 0~1,000 SCCM, 10~1,000 SLM을 사용하여 세라믹코팅층을 형성함이 바람직하다.In this case, it is preferable that the ceramic coating layer is formed using the first gas, the second gas, and the ceramic precursor in an amount of 100 to 10,000 SLM, 0 to 1,000 SCCM, and 10 to 1,000 SLM, respectively.
그리고 본 발명에서는 전기적으로 ground 또는 (-) 전극을 띄는 방향성 전기강판에 해리된 Radical이 충돌하면서 표면에 세라믹코팅층(예컨대, TiO2)을 형성하게 된다. In the present invention, a radically collapsed directional electric steel sheet having electrical ground or negative electrodes collides with each other to form a ceramic coating layer (for example, TiO 2 ) on the surface.
본 발명에서 플라즈마 발생 원리는 고밀도 RF Power Source에 의해 부여된 전기장하에서 전자가 가속하게 되어 원자, 분자등의 Neutral 입자와 충돌하여 이온화(Ionization), 여기(Excitation), 해리(Dissociation)를 발생하게 된다. 이 중 여기(Excitation)와 해리(Dissociation)를 통해 형성된 활성화된 species와 radical들이 반응하여 최종 원하는 세라믹코팅층을 형성할 수 있는 것이다. In the present invention, electrons are accelerated under an electric field applied by a high-density RF power source, and collide with neutrals such as atoms and molecules to generate ionization, excitation, and dissociation . Among these, activated species and radicals formed through excitation and dissociation can react to form the final desired ceramic coating layer.
정확한 적층 기구는 밝혀져 있지 않지만, 일예로 세라믹 TiO2 적층 기구를 단순화하여 설명하면, 세라믹전구체인 TTIP는 전기장하의 플라즈마에 의해 다음과 같이 분해되어 소지층 표면에 적층됨을 설명할 수 있다.Although a precise lamination mechanism is not disclosed, for example, the ceramic TiO 2 laminating mechanism will be simplified. It can be explained that the ceramic precursor, TTIP, is decomposed by the plasma under the electric field as follows and laminated on the surface of the substrate layer.
Ti(OR)4 →Ti*(OH)x-1(OR)4-x →(HO)x(RO)3-xTi-O-Ti(OH)x-1(OR)4-1 →Ti-O-Ti network Ti (OR) 4 → Ti * (OH) x-1 (OR) 4-x → (HO) x (RO) 3-x Ti-O-Ti (OH) x-1 (OR) 4-1 → Ti -O-Ti network
도 5는 본 발명의 APP-CVD 공정에서 RF Power Source에 의해 생성된 플라즈마 영역내에서 세라믹전구체의 일예인 TTIP가 해리된 상태를 도시한 그림이다. 5 is a view showing a state in which TTIP, which is an example of a ceramic precursor, is dissociated in a plasma region generated by an RF power source in the APP-CVD process of the present invention.
한편 본 발명에서 100mpm의 속도로 진행하는 강판 폭 1m를 APP-CVD를 이용하여 0.05~0.5um의 두께를 적층 하기 위해서는 RF Power Source는 500kW~10MW 정도가 필요할 수 있다. 그리고 하나 또는 다수의 RF Power Source는 Power Matching System에 의해 전기장을 안정적으로 유지할 수 있다.In the present invention, an RF power source may require about 500 kW to 10 MW in order to laminate a steel sheet having a width of 1 m at a speed of 100 mpm to a thickness of 0.05 to 0.5 um using APP-CVD. And one or more RF Power Sources can keep the electric field stable by Power Matching System.
그리고 본 발명에서는 2차 재결정소둔공정에서 상기 세라믹코팅층이 형성된 강판을 2단 가열한 후 1회 균열처리하는 고온소둔공정을 실시한다. 이는 1-2차 균열처리를 행하는 종래기술 대비 1차 균열처리를 생략할 수 있다는 점에 그 기술적 의의가 있다. In the present invention, a high temperature annealing step is performed in which the steel sheet on which the ceramic coating layer is formed is heated in two stages and then cracked once in the secondary recrystallization annealing step. This is of technical significance in that it is possible to omit the primary cracking treatment compared to the prior art which performs the first-order cracking treatment.
이후, 본 발명에서는 HCL 공정에서 강판의 형상을 교정한 후, 세라믹코팅층이 형성된 표면에 절연피막을 형성하는 공정을 추가로 포함할 수 있다. Thereafter, the present invention may further include a step of calibrating the shape of the steel sheet in the HCL process, and then forming an insulating film on the surface on which the ceramic coating layer is formed.
즉, 세라믹코팅층상에는 금속 인산염을 포함하는 절연피막층을 더 형성할 수 있다. 절연피막층이 더 형성됨으로써, 절연 특성을 개선할 수 있다. That is, an insulating coating layer containing a metal phosphate may be further formed on the ceramic coating layer. By further forming the insulating coating layer, the insulating property can be improved.
금속 인산염은 Mg, Ca, Ba, Sr, Zn, Al 및 Mn 중에서 선택되는 적어도 1종을 포함할 수 있다.The metal phosphate may include at least one selected from Mg, Ca, Ba, Sr, Zn, Al and Mn.
금속 인산염은 금속 수산화물 및 인산(H3PO4)의 화학적인 반응에 의한 화합물로 이루어질 수 있다.Metal phosphates can be composed of compounds by chemical reaction of metal hydroxides and phosphoric acid (H3PO4).
금속 인산염은, 금속 수산화물 및 인산(H3PO4)의 화학적인 반응에 의한 화합물로 이루어진 것이고, 금속 수산화물은 Sr(OH)2, Al(OH)3, Mg(OH)2, Zn(OH)2, 및 Ca(OH)2를 포함하는 군으로부터 선택된 적어도 1종 이상일 수 있다.The metal phosphate is formed by a chemical reaction of a metal hydroxide and a phosphoric acid (H3PO4), and the metal hydroxide is a compound of Sr (OH) 2, Al (OH) Ca (OH) 2, and the like.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
(실시예)(Example)
실리콘(Si)을 3.4 중량%, 알루미늄(Al): 0.03 중량%, 망간(Mn): 0.15 중량%, 안티몬(Sb)을 0.05 중량%, 주석(Sn)을 0.06 중량%, 니켈 (Ni) 0.03 중량% 포함하고, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 강 슬라브를 준비하였다.(Sn), 0.06 wt% of tin (Sn), 0.03 wt% of nickel (Ni), 0.03 wt% of aluminum (Al), 0.15 wt% of manganese By weight, and the balance consisting of Fe and other unavoidable impurities.
이어, 강 슬라브를 1150℃ 에서 220분간 가열한 뒤 2.3mm 두께로 열간 압연하여, 열연판을 제조하였다. 그리고 열연판을 1120℃까지 가열한 후 920℃ 에서 95초간 유지한 후, 물에 급냉하여 산세한 다음, 0.23mm 두께로 냉간압연하여, 냉연판들을 제조하였다.Then, the steel slab was heated at 1150 DEG C for 220 minutes and hot-rolled to a thickness of 2.3 mm to prepare a hot-rolled steel sheet. The hot rolled sheet was heated to 1120 占 폚, held at 920 占 폚 for 95 seconds, quenched in water and pickled, and cold rolled to a thickness of 0.23 mm to prepare cold rolled sheets.
상기 냉연판들을 850℃ 로 유지 된 노(Furnace) 속에 투입한 뒤, 이슬점 온도 및 산화능을 조절하고, 수소, 질소, 및 암모니아 혼합 기체 분위기에서 탈탄 및 침질을 동시에 수행하는 1차 재결정 소둔을 수행하여, 탈탄 소둔된 강판들을 제조하였다.The cold-rolled sheets were put into a furnace maintained at 850 ° C., and subjected to primary recrystallization annealing in which dew point temperature and oxidizing ability were controlled, and decarburization and soaking were performed simultaneously in hydrogen, nitrogen, and ammonia mixed gas atmosphere , And decarburized annealed steel sheets were prepared.
이후, 그리고 상기와 같이 제조된 1차 재결정 소둔처리된 강판들의 표면에 소둔분리제를 도포함이 없이 APP-CVD공정을 이용하여 세라믹코팅층을 형성하였다. Thereafter, a ceramic coating layer was formed using the APP-CVD process without applying the annealing separator on the surfaces of the steel sheets subjected to the first recrystallization annealing as described above.
구체적으로, APP-CVD공정에 앞서 방향성 전기강판을 200℃ 온도로 간접 가열한 후, APP-CVD 반응로내로 강판을 투입하였다. Specifically, prior to the APP-CVD process, the directional electrical steel sheet was indirectly heated to a temperature of 200 ° C, and then a steel sheet was introduced into the APP-CVD reactor.
한편 이때, APP-CVD 공정은 대기압하 조건에서 13.56MHz의 무선주파수(Radio Frequency)를 이용하여 방향성 전기강판 일면 또는 양면에 전기장을 형성하였으며, Ar가스를 반응로내에 유입하였다. 그리고 RF Power Source와 강판 간 50~60Hz의 교류 전력하에서 액상인 세라믹전구체인 TTIP를 가열하여 기화시킨 후, Ar 가스와 H2가스와 혼합하여 반응로내에 투입하여 전기강판들 표면에 그 두께를 달리하는 TiO2 세라믹코팅층을 각각 형성하였다. At this time, the APP-CVD process formed an electric field on one side or both sides of the oriented electrical steel sheet using the radio frequency of 13.56 MHz under the atmospheric pressure condition, and Ar gas was introduced into the reaction furnace. Then, TTIP, which is a liquid precursor, is heated and vaporized under an AC power of 50 to 60 Hz between the RF power source and the steel sheet. The mixture is mixed with Ar gas and H 2 gas and is introduced into the reactor, TiO 2 to form a ceramic coating layer, respectively.
그리고 상기 세라믹코팅층이 형성된 강판을 최종 소둔하였다. 이때, 최종 소둔시 균열온도는 1200℃로 하였고, 승온구간의 온도구간에서는 15℃/hr로 하였다. 또한, 1200℃까지는 질소 50 부피% 및 수소 50 부피%의 혼합 기체 분위기로 하였고, 1200℃ 도달한 후에는 100 부피%의 수소 기체 분위기에서 15시간 유지한 다음 노냉(furnace cooling)하였다.The steel sheet on which the ceramic coating layer was formed was finally annealed. At this time, the cracking temperature during the final annealing was set to 1200 ° C, and the temperature was set to 15 ° C / hr in the temperature rising period. In addition, up to 1200 ° C, a mixed gas atmosphere of 50% by volume of nitrogen and 50% by volume of hydrogen was set. After reaching 1200 ° C., the mixture was maintained in a hydrogen gas atmosphere of 100% by volume for 15 hours and then furnace-cooled.
상기와 같이 두께를 달리하는 세라믹코팅층이 형성된 전기 강판을 1.7T, 50Hz 조건에서 자기 특성을 평가하여 하기 표 1에 나타내었다. 한편 전기강판의 자기 특성은 통상 W17/50과 B8을 대표치로 사용한다. W17/50은 주파수 50Hz의 자기장을 1.7Tesla까지 교류로 자화시켰을 때 나타나는 전력 손실을 의미한다. 여기서, Tesla 는 단위면적당 자속(flux)를 의미하는 자속밀도의 단위이다. B8은 전기강판 주위를 감은 권선에 800 A/m 크기의 전류량을 흘렸을때, 전기강판에 흐르는 자속 밀도 값을 나타낸다.The electrical properties of the electrical steel sheet with the ceramic coating layer having different thicknesses as described above were evaluated under the conditions of 1.7 T and 50 Hz. On the other hand, magnetic properties of electric steel sheets are usually W17 / 50 and B8 as representative values. W17 / 50 means the power loss when a magnetic field of frequency 50 Hz is magnetized to AC up to 1.7 Tesla. Here, Tesla is a unit of magnetic flux density, which means flux per unit area. B8 shows the magnetic flux density value flowing through the electric steel sheet when a current of 800 A / m is applied to the coil wound around the electric steel sheet.
구분division 코팅물질Coating material 코팅두께(㎛)Coating Thickness (탆) 철손(W17/50, W/kg)Iron loss (W17 / 50, W / kg) 자속밀도(BB, T)Magnetic flux density (BB, T)
비교예1Comparative Example 1 MgOMgO 1.51.5 1.2201.220 1.8901.890
비교예2Comparative Example 2 MgOMgO 3.73.7 0.9570.957 1.9121.912
발명예1Inventory 1 TiO2 TiO 2 0.50.5 0.8920.892 1.9221.922
발명예2 Inventory 2 TiO2 TiO 2 1.21.2 0.8640.864 1.9201.920
발명예3Inventory 3 TiO2 TiO 2 1.51.5 0.8150.815 1.9271.927
발명예4Honorable 4 TiO2 TiO 2 2.72.7 0.7800.780 1.9351.935
발명예5Inventory 5 TiO2 TiO 2 5.75.7 0.7920.792 1.9351.935
상기 표 1에 나타난 바와 같이, 소둔 분리제인 MgO를 도포한 비교예 1 내지 2에 대비하여 , APP-CVD공정을 이용하여 TiO2 피막을 형성한 본 발명예 1-5가 보다 우수한 철손 특성을 보임을 확인할 수 있다. 한편 상기 표 1에서 비교예 1-2는 1차 재결정소둔처리된 강판 표면에 소둔분리제인 MgO를 도포한 경우로서, 기타의 제조조건은 본 발명예 1-5와 실질적으로 동일하다. As shown in Table 1, in comparison with Comparative Examples 1 and 2 in which MgO was applied as an annealing separator, the present invention Example 1-5 in which a TiO 2 coating film was formed using the APP-CVD process showed better iron loss characteristics can confirm. On the other hand, in Comparative Example 1-2 in Table 1, MgO as the annealing separator is applied to the surface of the steel sheet subjected to the primary recrystallization annealing, and the other manufacturing conditions are substantially the same as those of Inventive Example 1-5.
이상에서 본 발명의 실시예 및 발명예 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. And will be apparent to those skilled in the art.

Claims (14)

  1. 강 슬라브를 재가열, 열간압연, 열연판 소둔, 냉간압연, 1차 재결정 소둔 및 2차 재결정 소둔하는 공정을 포함하는 방향성 전기강판 제조방법에 있어서, A method for producing a grain-oriented electrical steel sheet comprising a step of reheating a steel slab, hot rolling, annealing a hot-rolled steel sheet, cold rolling, primary recrystallization annealing and secondary recrystallization annealing,
    상기 1차 재결정 소둔처리된 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성한 후 2차 재결정소둔하는 방향성 전기강판 제조방법. A gaseous ceramic precursor is brought into contact with a ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the primary recrystallization annealed steel sheet to form a ceramic coating layer, A method of producing a directional electric steel sheet by annealing.
  2. 제 1항에 있어서, 상기 세라믹코팅층은, 대기압 조건에서 고밀도 무선주파수를 이용하여 강판 표면에 전기장을 형성하여 플라즈마를 발생시킨 상태에서, Ar, He 및 N2 중 1종 이상으로 이루어진 제 1가스와 기상의 세라믹전구체를 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성되는 것을 특징으로 하는 방향성 전기강판 제조방법. The method according to claim 1, wherein the ceramic coating layer comprises a first gas composed of at least one of Ar, He, and N 2 and a second gas composed of at least one of Ar, He, and N 2 in a state in which an electric field is formed on a surface of a steel sheet using a high- Wherein the ceramic precursor is formed by mixing a gaseous ceramic precursor and then reacting it with the surface of the steel sheet.
  3. 제 2항에 있어서, 상기 세라믹코팅층은, H2, O2 및 H2O 중 1종으로 이루어진 제 2가스를 상기 제 1가스 및 세라믹 전구체에 추가적으로 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성되는 것을 특징으로 하는 방향성 전기강판 제조방법. The ceramic coating according to claim 2, wherein the ceramic coating layer is formed by additionally mixing a second gas composed of one of H 2 , O 2 and H 2 O to the first gas and the ceramic precursor, By weight or less.
  4. 제 3항에 있어서, 상기 제 1 가스와 제 2가스는 상기 세라믹 전구체의 기화점 이상의 온도로 가열되어 있는 것을 특징으로 하는 방향성 전기강판 제조방법.  4. The method according to claim 3, wherein the first gas and the second gas are heated to a temperature equal to or higher than the vaporization point of the ceramic precursor.
  5. 제 1항에 있어서, 상기 세라믹코팅층이 TiO2일 때 상기 세라믹 전구체로서 TTIP(Titanium Isopropoxide, Ti{OCH(CH3)2}4 또는 TiCl4를 이용하는 것을 특징으로 하는 방향성 전기강판 제조방법. The method as claimed in claim 1, wherein TTIP (Titanium Isopropoxide, Ti {OCH (CH 3 ) 2 } 4 or TiCl 4 is used as the ceramic precursor when the ceramic coating layer is TiO 2 .
  6. 제 1항에 있어서, 상기 1차 재결정소둔하는 공정은, 상기 강판을 탈탄과 동시에 침질하거나, 탈탄 이후 침질하고, 소둔하여 탈탄 소둔된 강판을 얻는 공정인 것을 특징으로 하는 방향성 전기강판 제조방법.  The method of manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the primary recrystallization annealing step is a step of obtaining a steel sheet decarburized and annealed by soaking the steel sheet at the same time as decarburization, steeping the steel sheet after decarburization, and annealing.
  7. 제 1항에 있어서, 상기 2차 재결정소둔하는 공정은 상기 세라믹코팅층이 형성된 강판을 2단 가열한 후 균열처리하는 고온소둔공정인 것을 특징으로 하는 방향성 전기강판 제조방법. The method according to claim 1, wherein the secondary recrystallization annealing step is a high temperature annealing step in which the steel sheet on which the ceramic coating layer is formed is heated in two stages and then cracked.
  8. 제 1항에 있어서, 상기 2차 재결정소둔 공정 이후, 세라믹코팅층이 형성되어 있는 방향성 전기강판의 표면에 절연피막을 형성하는 공정을 추가로 포함하는 방향성 전기강판 제조방법. The method as claimed in claim 1, further comprising a step of forming an insulating film on the surface of the directional electrical steel sheet on which the ceramic coating layer is formed after the secondary recrystallization annealing step.
  9. 제 1항에 있어서, 상기 강판은 중량%로, 실리콘(Si): 2.6~4.5%, 알루미늄(Al): 0.020~ 0.040%, 망간(Mn): 0.01~0.20%, 잔부는 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 방향성 전기강판 제조방법. The steel sheet according to claim 1, wherein the steel sheet contains 2.6 to 4.5% of silicon (Si), 0.020 to 0.040% of aluminum (Al), 0.01 to 0.20% of manganese (Mn), and the balance of Fe and other unavoidable impurities The method of manufacturing a directional electrical steel sheet according to claim 1,
  10. 1차 재결정 소둔처리된 방향성 전기강판 제조용 강판을 준비하는 단계;Preparing a steel sheet for producing a grain-oriented electrical steel sheet subjected to primary recrystallization annealing;
    상기 강판의 일면 또는 양면의 일부 또는 전부에, 상압 플라즈마 CVD공정(APP-CVD)을 이용하여 플라즈마 상태에서 기상의 세라믹 전구체를 접촉 반응시킴으로써 세라믹코팅층을 형성하는 단계; 및 Forming a ceramic coating layer by contacting and reacting a gaseous ceramic precursor in a plasma state using an atmospheric pressure plasma CVD process (APP-CVD) on one or both surfaces of one or both surfaces of the steel sheet; And
    상기 세라믹코팅층이 형성된 강판을 2차 재결정소둔하는 단계;를 포함하는 방향성 전기강판 제조방법.And annealing the steel sheet on which the ceramic coating layer is formed by secondary recrystallization annealing.
  11. 제 10항에 있어서, 상기 세라믹코팅층은, 대기압 조건에서 고밀도 무선주파수를 이용하여 강판 표면에 전기장을 형성하여 플라즈마를 발생시킨 상태에서, Ar, He 및 N2 중 1종 이상으로 이루어진 제 1가스와 기상의 세라믹전구체를 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성되는 것을 특징으로 하는 방향성 전기강판 제조방법. The method according to claim 10, wherein the ceramic coating layer is formed by forming an electric field on a surface of a steel sheet using a high density radio frequency under atmospheric pressure to generate a first gas composed of at least one of Ar, He, and N 2 Wherein the ceramic precursor is formed by mixing a gaseous ceramic precursor and then reacting it with the surface of the steel sheet.
  12. 제 11항에 있어서, 상기 세라믹코팅층은, H2, O2 및 H2O 중 1종으로 이루어진 제 2가스를 상기 제 1가스 및 세라믹 전구체에 추가적으로 혼합한 후, 이를 강판 표면에 접촉 반응시킴으로써 형성되는 것을 특징으로 하는 방향성 전기강판 제조방법. The method of claim 11, wherein the ceramic coating layer is formed by additionally mixing a second gas composed of one of H 2 , O 2, and H 2 O to the first gas and the ceramic precursor, By weight or less.
  13. 제 12항에 있어서, 상기 제 1 가스와 제 2가스는 상기 세라믹 전구체의 기화점 이상의 온도로 가열되어 있는 것을 특징으로 하는 방향성 전기강판 제조방법.  13. The method of claim 12, wherein the first gas and the second gas are heated to a temperature equal to or higher than a vaporization point of the ceramic precursor.
  14. 제 10항에 있어서, 상기 세라믹코팅층이 TiO2일 때 상기 세라믹 전구체로서 TTIP(Titanium Isopropoxide, Ti{OCH(CH3)2}4 또는 TiCl4를 이용하는 것을 특징으로 하는 방향성 전기강판 제조방법. The method of claim 10, wherein TTIP (Titanium Isopropoxide, Ti {OCH (CH 3 ) 2 } 4 or TiCl 4 is used as the ceramic precursor when the ceramic coating layer is TiO 2 .
PCT/KR2018/015801 2017-12-26 2018-12-13 Method for producing oriented electrical steel sheet with ultra-low iron loss WO2019132333A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020535182A JP7308836B2 (en) 2017-12-26 2018-12-13 Manufacturing method of grain-oriented electrical steel sheet
US16/957,502 US11773490B2 (en) 2017-12-26 2018-12-13 Method for producing oriented electrical steel sheet with ultra-low iron loss
CN201880084511.2A CN111556907A (en) 2017-12-26 2018-12-13 Method for manufacturing ultra-low iron loss oriented electrical steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0179514 2017-12-26
KR20170179514 2017-12-26
KR10-2018-0154473 2018-12-04
KR1020180154473A KR102218446B1 (en) 2017-12-26 2018-12-04 Method for manufacutring a grain oriented electrical steel sheet having low core loss

Publications (1)

Publication Number Publication Date
WO2019132333A1 true WO2019132333A1 (en) 2019-07-04

Family

ID=67063931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015801 WO2019132333A1 (en) 2017-12-26 2018-12-13 Method for producing oriented electrical steel sheet with ultra-low iron loss

Country Status (1)

Country Link
WO (1) WO2019132333A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867874A (en) * 2019-12-20 2022-08-05 Posco公司 Oriented electrical steel sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107146A (en) * 1999-10-08 2001-04-17 Kawasaki Steel Corp Grain-oriented silicon steel sheet extremely small in core loss and its producing method
JP2006249495A (en) * 2005-03-10 2006-09-21 Jfe Steel Kk Method for producing grain-oriented silicon steel sheet strip with ceramics film in excellent in steel sheet shape
KR20140110156A (en) * 2013-03-04 2014-09-17 한국기계연구원 Plasma deposition apparatus and method of forming electrical steel sheet using the same
KR20170074475A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR20170116130A (en) * 2015-03-27 2017-10-18 제이에프이 스틸 가부시키가이샤 Insulating-coated oriented magnetic steel sheet and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107146A (en) * 1999-10-08 2001-04-17 Kawasaki Steel Corp Grain-oriented silicon steel sheet extremely small in core loss and its producing method
JP2006249495A (en) * 2005-03-10 2006-09-21 Jfe Steel Kk Method for producing grain-oriented silicon steel sheet strip with ceramics film in excellent in steel sheet shape
KR20140110156A (en) * 2013-03-04 2014-09-17 한국기계연구원 Plasma deposition apparatus and method of forming electrical steel sheet using the same
KR20170116130A (en) * 2015-03-27 2017-10-18 제이에프이 스틸 가부시키가이샤 Insulating-coated oriented magnetic steel sheet and method for manufacturing same
KR20170074475A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867874A (en) * 2019-12-20 2022-08-05 Posco公司 Oriented electrical steel sheet and method for manufacturing the same
EP4079871A4 (en) * 2019-12-20 2023-04-05 Posco Grain-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101762339B1 (en) Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
KR101736627B1 (en) Grain oriented electrical steel sheet having low core loss and excellent insulation property, and method for manufacturing the same
WO2021125864A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
WO2019132333A1 (en) Method for producing oriented electrical steel sheet with ultra-low iron loss
WO2019132295A1 (en) Method for producing oriented electrical steel sheet with ultra-low iron loss
WO2021125728A2 (en) Grain-oriented electrical steel sheet and method for manufacturing same
KR20190078491A (en) Method for manufacutring a grain oriented electrical steel sheet having low core loss
KR101908045B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR20150073797A (en) Method for manufacturing the oriented electrical steel sheet
WO2020111740A2 (en) Electrical steel sheet and manufacturing method therefor
JP4259061B2 (en) Method for producing grain-oriented electrical steel sheet
KR102180816B1 (en) Method for manufacutring a grain oriented electrical steel sheet having low core loss
WO2023121273A1 (en) Grain oriented electrical steel sheet and manufacturing method of same
JPH03122226A (en) Decarburization continuous annealing furnace for grain oriented electrical steel sheet
WO2020111738A2 (en) Oriented electrical steel sheet and method for manufacturing same
WO2023121308A1 (en) Non-oriented electrical steel sheet, manufacturing method therefor, and motor core comprising same
WO2021125738A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR101110246B1 (en) Method for manufacturing glassless electrical steel sheet with the appropriate control of the due point
KR20040026042A (en) Method for manufacturing Glassless electrical steel sheet by controlling atomosphere gas
KR20150074912A (en) Oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896295

Country of ref document: EP

Kind code of ref document: A1