JP2001106690A - Bisisoxazoline derivative, production therefor and metallic complex catalyst therefrom - Google Patents
Bisisoxazoline derivative, production therefor and metallic complex catalyst therefromInfo
- Publication number
- JP2001106690A JP2001106690A JP2000236406A JP2000236406A JP2001106690A JP 2001106690 A JP2001106690 A JP 2001106690A JP 2000236406 A JP2000236406 A JP 2000236406A JP 2000236406 A JP2000236406 A JP 2000236406A JP 2001106690 A JP2001106690 A JP 2001106690A
- Authority
- JP
- Japan
- Prior art keywords
- group
- bisisoxazoline
- derivative
- reaction
- embedded image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pyrane Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、スピロ環骨格を有する
ビスイソオキサゾリン誘導体、その製造法、同ビスイソ
オキサゾリン誘導体に遷移金属を配位してなる錯体、同
錯体または上記ビスイソオキサゾリン誘導体からなる触
媒、該触媒を用いて不斉合成反応を行う方法に関する。The present invention relates to a bisisoxazoline derivative having a spiro ring skeleton, a method for producing the same, a complex in which a transition metal is coordinated to the bisisoxazoline derivative, the complex or the bisisoxazoline derivative. And a method for performing an asymmetric synthesis reaction using the catalyst.
【0002】[0002]
【従来技術および発明の課題】近年、不斉合成反応の触
媒としてC2 対称軸を持つものがさかんに用いられて
いる。その中で、Corey ら(J. Am. Chem. Soc., 113,
728(1991) )、Pfaltzら(Tetrahedron 48, 2143(199
2))、Evans ら(J. Am. Chem. Soc., 113, 726(1991)
)によるビスオキサゾリン誘導体は、触媒能が高く、
多くの不斉合成反応に用いられている。BACKGROUND OF problem of the invention In recent years, those with C 2 symmetry axis as a catalyst for asymmetric synthesis is used extensively. Among them, Corey et al. (J. Am. Chem. Soc., 113,
728 (1991)), Pfaltz et al. (Tetrahedron 48, 2143 (199
2)), Evans et al. (J. Am. Chem. Soc., 113, 726 (1991)
The bisoxazoline derivative according to) has a high catalytic activity,
It is used in many asymmetric synthesis reactions.
【0003】医薬、農薬等の合成中間体として有用な光
学活性化合物を得るために、より高い活性を示す不斉合
成触媒が求められている。[0003] In order to obtain an optically active compound useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals and the like, an asymmetric synthesis catalyst exhibiting higher activity is required.
【0004】[0004]
【課題を解決するための手段】本発明者らは、スピロ環
骨格を有する光学活性ビスイソオキサゾリン誘導体やそ
の遷移金属錯体が不斉合成反応の触媒として有効に働く
ことを見出し、本発明を完成するに至った。Means for Solving the Problems The present inventors have found that an optically active bisisoxazoline derivative having a spiro ring skeleton or a transition metal complex thereof effectively works as a catalyst for asymmetric synthesis, and completed the present invention. I came to.
【0005】本発明は一般式[I]で表される新規なビ
スイソオキサゾリン誘導体に関する。The present invention relates to a novel bisisoxazoline derivative represented by the general formula [I].
【0006】[0006]
【化10】 Embedded image
【0007】(式中、Rは水素原子、低級アルキル基、
低級アルケニル基、置換基を有していてもよいアラルキ
ル基、または、置換基を有していてもよいアリール基で
あり、4つのRはすべて同一であっても少なくとも1つ
異なっていてもよい。R´は単結合または低級アルキレ
ン基である。) 4つのRはすべて水素原子であるかまたは低級アルキル
基、特にメチル基であるビスイソオキサゾリン誘導体が
好ましい。好ましいR´はメチレン基である。また、ビ
スイソオキサゾリン誘導体[I]はラセミ体混合物また
は光学活性体であり得る。Wherein R is a hydrogen atom, a lower alkyl group,
A lower alkenyl group, an optionally substituted aralkyl group, or an optionally substituted aryl group, wherein all four R's may be the same or at least one different . R 'is a single bond or a lower alkylene group. A bisisoxazoline derivative in which all four R's are hydrogen atoms or lower alkyl groups, especially methyl groups, is preferred. Preferred R 'is a methylene group. Further, the bisisoxazoline derivative [I] may be a racemic mixture or an optically active substance.
【0008】本発明によるビスイソオキサゾリンは、堅
固なスピロ環骨格を含み、スピロ環側鎖の付け根上の不
斉に加え、スピロ環骨格由来の軸不斉を有しているとい
う、非常にユニークな構造のものであり、それが不斉合
成反応の触媒として有効に働く理由として考えられる。The bisisoxazolines according to the present invention are very unique in that they contain a rigid spiro ring skeleton and, in addition to the chirality at the base of the spiro ring side chain, have an axial asymmetry derived from the spiro ring skeleton. This is considered to be a reason why it works effectively as a catalyst for an asymmetric synthesis reaction.
【0009】本発明によるビスイソオキサゾリンの構造
について更に詳しい説明をする。The structure of the bisisoxazoline according to the present invention will be described in more detail.
【0010】一般式[I]中のRについて、低級アルキ
ル基としては、メチル基、エチル基、n−プロピル基、
イソプロピル基、n−ブチル基、イソブチル基、sec
−ブチル基、tert−ブチル基等の炭素数1〜4のア
ルキル基が挙げられる。低級アルケニル基としては、ビ
ニル基、イソプロペニル基、アリル基、メタリル基等の
炭素数2〜4のアルケニル基が挙げられる。置換基を有
していてもよいアラルキル基としてはベンジル基、m−
クロロベンジル基、p−ブロモベンジル基、o−メチル
ベンジル基、p−シアノベンジル基等が挙げられる。置
換基を有していてもよいアリール基としては、フェニル
基、m−クロロフェニル基、p−ブロモフェニル基、o
−トリル基、m−トリル基、p−トリル基、p−シアノ
フェニル基、1−ナフチル基、2−ナフチル基、6−ブ
ロモ−1−ナフチル基、6−クロロ−2−ナフチル基、
6−メチル−1−ナフチル基等が挙げられる。Regarding R in the general formula [I], the lower alkyl group includes a methyl group, an ethyl group, an n-propyl group,
Isopropyl group, n-butyl group, isobutyl group, sec
And a C1-C4 alkyl group, such as -butyl group and tert-butyl group. Examples of the lower alkenyl group include alkenyl groups having 2 to 4 carbon atoms, such as a vinyl group, an isopropenyl group, an allyl group, and a methallyl group. The aralkyl group which may have a substituent includes a benzyl group and m-
Examples thereof include a chlorobenzyl group, a p-bromobenzyl group, an o-methylbenzyl group, and a p-cyanobenzyl group. The aryl group which may have a substituent includes a phenyl group, an m-chlorophenyl group, a p-bromophenyl group,
-Tolyl group, m-tolyl group, p-tolyl group, p-cyanophenyl group, 1-naphthyl group, 2-naphthyl group, 6-bromo-1-naphthyl group, 6-chloro-2-naphthyl group,
6-methyl-1-naphthyl group and the like.
【0011】一般式[I]中のR´について、低級アル
キレン基としては、メチレン、エチレン、n−プロピレ
ン等の炭素数1〜3のアルキレン基が挙げられ、特にメ
チレンが好ましい。Regarding R 'in the general formula [I], examples of the lower alkylene group include alkylene groups having 1 to 3 carbon atoms such as methylene, ethylene and n-propylene, and methylene is particularly preferred.
【0012】次に、本発明によるビスイソオキサゾリン
誘導体は、下記の方法によって製造することができる。Next, the bisisoxazoline derivative according to the present invention can be produced by the following method.
【0013】第1工程;一般式[II]で表されるハロゲ
ン化オレフィンをマロン酸ジエステルと塩基存在下で作
用させて、一般式[III ]で表されるジアルケニルマロ
ン酸エステルを得る。First step: A halogenated olefin represented by the general formula [II] is reacted with a malonic acid diester in the presence of a base to obtain a dialkenyl malonic ester represented by the general formula [III].
【0014】第2工程;前工程で得られたジアルケニル
マロン酸エステル[III ]を還元して、一般式[IV]で
表されるジオールを得る。Second step: The dialkenyl malonic ester [III] obtained in the previous step is reduced to obtain a diol represented by the general formula [IV].
【0015】第3工程;前工程で得られたジオール[I
V]を酸化して、一般式[V]で表されるジアルデヒド
を得る。Third step: The diol obtained in the previous step [I
V] to obtain a dialdehyde represented by the general formula [V].
【0016】第4工程;前工程で得られたジアルデヒド
[V]をヒドロキシルアミンと反応させて、一般式[V
I]で表されるジオキシムを得る。Fourth step: The dialdehyde [V] obtained in the preceding step is reacted with hydroxylamine to give a compound of the general formula [V
I] is obtained.
【0017】第5工程;前工程で得られたジオキシム
[VI]を酸化条件下で環化して、ラセミ体混合物である
ビスイソオキサゾリン誘導体[I]を得る。Fifth step: The dioxime [VI] obtained in the previous step is cyclized under oxidizing conditions to obtain a racemic mixture of a bisisoxazoline derivative [I].
【0018】第6工程;前工程で得られたラセミ体混合
物ビスイソオキサゾリン誘導体[I]を必要に応じて光
学分割する。Sixth step: The racemic mixture bisisoxazoline derivative [I] obtained in the previous step is optically resolved as required.
【0019】第2工程で得られるジオール[IV]、第3
工程で得られるジアルデヒド[V]、および、第4工程
で得られるジオキシム[VI]も、いずれも新規化合物で
ある。これら中間体のうち、R´がメチレン基であるも
のが特に好ましい。The diol [IV] obtained in the second step, the third
The dialdehyde [V] obtained in the step and the dioxime [VI] obtained in the fourth step are both novel compounds. Among these intermediates, those in which R 'is a methylene group are particularly preferred.
【0020】本発明によるビスイソオキサゾリン誘導体
の製造法は下記の工程フローで示される。The process for producing the bisisoxazoline derivative according to the present invention is shown by the following process flow.
【0021】[0021]
【化11】 Embedded image
【0022】(式中、RおよびR´は前記定義と同じ意
味を有する。R''低級アルキル基である。Xはハロゲン
原子である。) 本発明によるビスイソオキサゾリン製造法の各工程につ
いて更に詳しい説明をする。(Wherein R and R ′ have the same meaning as defined above. R ″ is a lower alkyl group. X is a halogen atom.) Each step of the process for producing bisisoxazoline according to the present invention is further described. Give a detailed explanation.
【0023】ハロゲン化オレフィン[II]をマロン酸ジ
エステルと塩基存在下で作用させて、ジアルケニルマロ
ン酸エステル[III ]を得る第1工程では、マロン酸ジ
エステルとして、マロン酸ジメチル、マロン酸ジエチ
ル、マロン酸ジtert−ブチル、マロン酸ジベンジル
が好適に用いられる。ハロゲン化オレフィン[II]のR
およびR´は本発明ビスイソオキサゾリン誘導体[I]
のものに対応する。ハロゲン原子Xは好ましくは塩素原
子および臭素原子である。In the first step of reacting a halogenated olefin [II] with a malonic acid diester in the presence of a base to obtain a dialkenylmalonic acid ester [III], dimethyl malonate, diethyl malonate, Ditert-butyl malonate and dibenzyl malonate are preferably used. R of halogenated olefin [II]
And R 'are the bisisoxazoline derivatives of the present invention [I]
Corresponding to Halogen atoms X are preferably chlorine and bromine.
【0024】この工程で用いられる塩基としては、水酸
化ナトリウム、水酸化カリウム等のアルカリ金属水酸化
物;水素化ナトリウム、水素化カリウム、水素化カルシ
ウム等のアルカリ金属またはアルカリ土類金属の水素化
物;ナトリウムメチラート、ナトリウウエチラート、カ
リウムtert−ブトキシド等のアルカリ金属アルコラ
ート類が挙げられ、特に好ましくは水酸化カリウムであ
る。The base used in this step includes alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; and alkali metal or alkaline earth metal hydrides such as sodium hydride, potassium hydride and calcium hydride. Alkali metal alcoholates such as sodium methylate, sodium ureate and potassium tert-butoxide; and particularly preferably potassium hydroxide.
【0025】触媒としてトリフルオロメタンスルホン酸
等を反応系に添加することも好ましい。It is also preferable to add trifluoromethanesulfonic acid or the like as a catalyst to the reaction system.
【0026】この工程の溶媒としては、メタノール、エ
タノール、イソプロパノール、ブタノールなどのアルコ
ール系溶媒;ジエチルエーテル、ジイソプロピルエーテ
ル、t−ブチルメチルエーテル、テトラヒドロフラン、
1,4−ジオキサン、1,2−ジメトキシエタンなどの
エーテル系溶媒;ジクロロメタン、クロロホルム、四塩
化炭素、1,2−ジクロロエタンなどのハロゲン化炭化
水素系溶媒;N,N−ジメチルホルムアミド、ジメチル
スルホキシドなどの非プロトン性極性溶媒が挙げられ、
特にN,N−ジメチルホルムアミド、ジメチルスルホキ
シドなどの非プロトン性極性溶媒が好ましい。As the solvent in this step, alcohol solvents such as methanol, ethanol, isopropanol and butanol; diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran,
Ether solvents such as 1,4-dioxane and 1,2-dimethoxyethane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; N, N-dimethylformamide, dimethyl sulfoxide and the like Aprotic polar solvents, and
Particularly, aprotic polar solvents such as N, N-dimethylformamide and dimethylsulfoxide are preferred.
【0027】この工程の反応温度は好ましくは常温から
溶媒の還流温度である。反応圧力は通常は常圧であるが
加圧下に反応を行うこともできる。The reaction temperature in this step is preferably from room temperature to the reflux temperature of the solvent. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0028】ジアルケニルマロン酸エステル[III ]を
還元してジオール[IV]を得る第2工程において、還元
剤としては、水素化リチウムアルミニウム、水素化ジイ
ソブチルアルミニウム、ビットライド、水素化ホウ素ナ
トリウムが挙げられるが、特に好ましくは水素化リチウ
ムアルミニウムが用いられる。In the second step of reducing the dialkenyl malonic ester [III] to obtain the diol [IV], examples of the reducing agent include lithium aluminum hydride, diisobutylaluminum hydride, bitride and sodium borohydride. In particular, lithium aluminum hydride is preferably used.
【0029】この工程の溶媒としては、ジクロロメタ
ン、クロロホルム、四塩化炭素、1,2−ジクロロエタ
ンなどのハロゲン化炭化水素系溶媒;ジエチルエーテ
ル、ジイソプロピルエーテル、t−ブチルメチルエーテ
ル、テトラヒドロフラン、1,4−ジオキサン、1,2
−ジメトキシエタンなどのエーテル系溶媒;ベンゼン、
トルエン、キシレンなどの芳香族炭化水素系溶媒などが
用いられ、さらに水素化ホウ素ナトリウムの場合にはメ
タノール、エタノール、イソプロパノール、ブタノール
などのアルコール系溶媒も用いられる。As the solvent in this step, halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydrofuran, 1,4- Dioxane, 1,2
Ether solvents such as dimethoxyethane; benzene,
Aromatic hydrocarbon solvents such as toluene and xylene are used. In the case of sodium borohydride, alcohol solvents such as methanol, ethanol, isopropanol and butanol are also used.
【0030】この工程の反応温度は−80℃から溶媒の
還流温度である。反応圧力は通常は常圧であるが加圧下
に反応を行うこともできる。The reaction temperature in this step is from -80 ° C to the reflux temperature of the solvent. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0031】ジオール[IV]を酸化してジアルデヒド
[V]を得る第3工程において、反応条件は1級アルコ
ールをアルデヒドに酸化する通常の条件であればよい。
例えば、蓚酸ジクロライドとジメチルスルホキシドから
調製される試薬とジオール[IV]とをジクロロメタン
中、低温で、トリエチルアミン存在下で反応させる方法
が挙げられる。In the third step of obtaining the dialdehyde [V] by oxidizing the diol [IV], the reaction may be carried out under ordinary conditions for oxidizing a primary alcohol to an aldehyde.
For example, there is a method in which a reagent prepared from oxalic acid dichloride and dimethyl sulfoxide is reacted with diol [IV] in dichloromethane at a low temperature in the presence of triethylamine.
【0032】この工程の反応温度は、一般に低温である
ことが好ましく、例えば蓚酸ジクロライドとジメチルス
ルホキシドを用いた反応の場合、−80℃から−30℃
程度である。反応圧力は通常は常圧であるが加圧下に反
応を行うこともできる。The reaction temperature in this step is generally preferably low. For example, in the case of a reaction using oxalic acid dichloride and dimethyl sulfoxide, the reaction temperature is from -80 ° C to -30 ° C.
It is about. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0033】ジアルデヒド[V]をヒドロキシルアミン
と反応させてジオキシム[VI]を得る第4工程におい
て、反応条件はアルデヒドをヒドロキシルアミンと反応
させる通常の条件であればよい。In the fourth step of reacting dialdehyde [V] with hydroxylamine to obtain dioxime [VI], the reaction may be carried out under ordinary conditions for reacting aldehyde with hydroxylamine.
【0034】この工程の溶媒としては、メタノール、エ
タノール、イソプロパノール、ブタノールなどのアルコ
ール系溶媒;ジクロロメタン、クロロホルム、四塩化炭
素、1,2−ジクロロエタンなどのハロゲン化炭化水素
系溶媒;ジエチルエーテル、ジイソプロピルエーテル、
t−ブチルメチルエーテル、テトラヒドロフラン、1,
4−ジオキサン、1,2−ジメトキシエタンなどのエー
テル系溶媒;ベンゼン、トルエン、キシレンなどの芳香
族炭化水素系溶媒;N,N−ジメチルホルムアミド、ジ
メチルスルホキシドなどの非プロトン性極性溶媒が挙げ
られる。この反応は無溶媒で行うこともできる。反応促
進のためにピリジン、トリエチルアミンなどの有機塩
基;炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム、
酢酸カリウムなどの無機の弱塩基などを添加することも
好ましい。反応温度は−20℃から溶媒の還流温度まで
である。反応圧力は通常は常圧であるが加圧下に反応を
行うこともできる。As the solvent in this step, alcohol solvents such as methanol, ethanol, isopropanol and butanol; halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane; diethyl ether, diisopropyl ether ,
t-butyl methyl ether, tetrahydrofuran, 1,
Ether solvents such as 4-dioxane and 1,2-dimethoxyethane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aprotic polar solvents such as N, N-dimethylformamide and dimethylsulfoxide. This reaction can be performed without a solvent. Organic bases such as pyridine and triethylamine to promote the reaction; sodium carbonate, potassium carbonate, sodium acetate,
It is also preferable to add an inorganic weak base such as potassium acetate. The reaction temperature ranges from -20 ° C to the reflux temperature of the solvent. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0035】ジオキシム[VI]を酸化条件下で環化して
ビスイソオキサゾリン誘導体[I]を得る第5工程で
は、ジオキシムからニトリルオキシドが生成し、2+3
環化付加反応により一気にスピロ環とイソオキサゾリン
環が構築される。In the fifth step of cyclizing the dioxime [VI] under oxidizing conditions to obtain the bisisoxazoline derivative [I], nitrile oxide is formed from the dioxime to give 2 + 3
A spiro ring and an isoxazoline ring are constructed at once by a cycloaddition reaction.
【0036】この工程で用いられる酸化剤は特に制限さ
れないが、例えば、塩素、臭素などのハロゲン;N−ク
ロロコハク酸イミド、N−ブロモコハク酸イミドなどN
−ハロゲン化アミド類;次亜塩素酸ナトリウム、次亜塩
素酸ナトリウムなどの次亜塩素酸塩;過ヨウ素酸ナトリ
ウムなどハロゲン酸塩などが用いられる。The oxidizing agent used in this step is not particularly restricted but includes, for example, halogens such as chlorine and bromine; N-chlorosuccinimide, N-bromosuccinimide and the like.
-Halogenated amides; hypochlorites such as sodium hypochlorite and sodium hypochlorite; halogenates such as sodium periodate and the like are used.
【0037】この工程の溶媒としては、ジクロロメタ
ン、クロロホルム、四塩化炭素、1,2−ジクロロエタ
ンなどのハロゲン化炭化水素溶媒;N,N−ジメチルホ
ルムアミド、ジメチルスルホキシドなどの非プロトン性
極性溶媒などが用いられる。As the solvent in this step, halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride, and 1,2-dichloroethane; aprotic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide; Can be
【0038】この工程の反応温度は好ましくは−50〜
50℃である。反応圧力は通常は常圧であるが加圧下に
反応を行うこともできる。The reaction temperature in this step is preferably from -50 to
50 ° C. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0039】こうして、下記式で示されるジアステレオ
マー、即ち(M,S,S)体とその鏡像体のラセミ混合
物、(M,R,R)体とその鏡像体のラセミ混合物、お
よび、(M,R,S)体とその鏡像体のラセミ混合物が
得られる。Thus, a diastereomer represented by the following formula, ie, a racemic mixture of the (M, S, S) form and its enantiomer, a racemic mixture of the (M, R, R) form and its enantiomer, and ( A racemic mixture of the (M, R, S) form and its enantiomer is obtained.
【0040】[0040]
【化12】 Embedded image
【0041】ラセミ体混合物ビスイソオキサゾリン誘導
体[I]を各鏡像体に光学分割する第6工程は、ラセミ
体を光学分割する通常の方法で行われ得る。例えばキラ
ル固定相カラムを装着した液体クロマトグラフを用いる
方法や、ラセミ体と光学活性スルホン酸やカルボン酸と
の塩を形成してから再結晶によりラセミ体を光学分割す
る方法などが挙げられる。Racemic Mixture The sixth step of optically resolving the bisisoxazoline derivative [I] into each enantiomer can be carried out by a conventional method of optically resolving a racemic body. For example, a method using a liquid chromatograph equipped with a chiral stationary phase column, a method of forming a salt of a racemate with an optically active sulfonic acid or carboxylic acid, and then recrystallizing the racemate to optical resolution are exemplified.
【0042】本発明は、上記ラセミ体もしくは光学活性
体のビスイソオキサゾリン誘導体[I]に金属を配位し
てなる錯体にも関する。錯体を構成するために用いられ
る金属は好ましくは遷移金属であり、より好ましくはC
r、Mn、Fe、Co、Ni、Cu、Zn、Ru、R
h、およびPdからなる群から選ばれる金属であり、さ
らに好ましくはCuである。ビスイソオキサゾリン誘導
体[I]と遷移金属との錯体の例として、下記式(一般
式[I]におけるR=水素原子、R´=メチレン基)で
示される6座配位のCu錯体が挙げられる。The present invention also relates to a complex obtained by coordinating a metal to the racemic or optically active bisisoxazoline derivative [I]. The metal used to form the complex is preferably a transition metal, more preferably C
r, Mn, Fe, Co, Ni, Cu, Zn, Ru, R
h, and a metal selected from the group consisting of Pd, and more preferably Cu. As an example of a complex of the bisisoxazoline derivative [I] and a transition metal, a hexadentate Cu complex represented by the following formula (R in formula [I], R = hydrogen atom, R ′ = methylene group) may be mentioned. .
【0043】[0043]
【化13】 Embedded image
【0044】錯体の合成は、金属塩とビスイソオキサゾ
リン誘導体とを有機溶媒中で混合して行うことができ
る。この合成に用いる溶媒は、次の不斉合成反応に用い
る溶媒であることが好ましいが、不斉合成反応に対し不
活性な溶媒であれば何ら限定されることはない。錯体合
成後、錯体を単離した後、不斉合成反応に用いても良
い。また、金属塩とビスイソオキサゾリン誘導体との混
合溶液に反応基質を添加しても良いし、反応基質の溶液
に金属塩とビスイソオキサゾリン誘導体を添加しても良
い。The complex can be synthesized by mixing a metal salt and a bisisoxazoline derivative in an organic solvent. The solvent used for this synthesis is preferably a solvent used for the next asymmetric synthesis reaction, but is not limited at all if it is a solvent inert to the asymmetric synthesis reaction. After the complex is synthesized, the complex may be isolated and then used for an asymmetric synthesis reaction. Further, the reaction substrate may be added to a mixed solution of the metal salt and the bisisoxazoline derivative, or the metal salt and the bisisoxazoline derivative may be added to the reaction substrate solution.
【0045】本発明は、さらに、上記錯体からなる不斉
合成触媒、および、上記光学活性ビスイソオキサゾリン
誘導体[I]からなる不斉合成反応触媒にも関する。The present invention further relates to an asymmetric synthesis catalyst comprising the above complex and an asymmetric synthesis reaction catalyst comprising the above optically active bisisoxazoline derivative [I].
【0046】上記触媒を用いて不斉合成反応、例えば不
斉求核付加反応を行うことができる。特にその中でも、
上記錯体からなる不斉合成反応触媒を用いて共役エノン
への不斉マイケル付加反応およびオレフィンへの不斉ワ
ッカー反応を行う方法、および、上記光学活性ビスイソ
オキサゾリン誘導体[I]からなる触媒を用いてエポキ
シ化合物の不斉開環反応を行う方法が好ましい。An asymmetric synthesis reaction, for example, an asymmetric nucleophilic addition reaction can be carried out using the above catalyst. Especially in that,
A method for performing an asymmetric Michael addition reaction to a conjugated enone and an asymmetric Wacker reaction to an olefin using an asymmetric synthesis reaction catalyst comprising the above complex, and a catalyst comprising the above optically active bisisoxazoline derivative [I] To carry out an asymmetric ring opening reaction of the epoxy compound.
【0047】共役エノンへの不斉マイケル付加反応およ
びエポキシ化合物の不斉開環反応に用いられる求核剤と
しては、ジメチル亜鉛、ジエチル亜鉛、ジプロピル亜
鉛、ジイソプロピル亜鉛等のジアルキル亜鉛;フェニル
リチウム、n−ブチルリチウム等の有機リチウム試薬;
メチルマグネシウムクロライド、エチルマグネシウムブ
ロマイド、フェニルマグネシウムクロライド、アリルマ
グネシウムブロマイド、ビニルマグネシウムブロマイド
等のグリニャール試薬が挙げられ、好ましくはジエチル
亜鉛およびフェニルリチウムが用いられる。オレフィン
への不斉ワッカー反応に用いられる求核剤としては、脂
肪族アルコール、より好ましくは置換エタノールが挙げ
られ、好ましくは2−アリル−1,3−プロパンジオー
ル誘導体や2,2−ジアリル−2−エタノール誘導体な
どの分子内にオレフィンを有する置換エタノールが用い
られる。The nucleophile used for the asymmetric Michael addition reaction to the conjugated enone and the asymmetric ring opening reaction of the epoxy compound include dialkyl zinc such as dimethyl zinc, diethyl zinc, dipropyl zinc and diisopropyl zinc; phenyl lithium, n An organolithium reagent such as butyllithium;
Grignard reagents such as methylmagnesium chloride, ethylmagnesium bromide, phenylmagnesium chloride, allylmagnesium bromide and vinylmagnesium bromide can be mentioned, and diethyl zinc and phenyllithium are preferably used. Examples of the nucleophile used in the asymmetric Wacker reaction to an olefin include an aliphatic alcohol, more preferably a substituted ethanol, and preferably a 2-allyl-1,3-propanediol derivative or 2,2-diallyl-2 -A substituted ethanol having an olefin in a molecule such as an ethanol derivative is used.
【0048】本発明触媒の使用量は、基質である例えば
共役エノン、エポキシ化合物およびオレフィンに対して
好ましくは0.5〜50mol%、より好ましくは1〜
25mol%である。The amount of the catalyst of the present invention to be used is preferably 0.5 to 50 mol%, more preferably 1 to 50 mol%, based on the substrate such as conjugated enone, epoxy compound and olefin.
25 mol%.
【0049】不斉マイケル付加反応のための共役エノン
は、オレフィンとケトンが共役している骨格を有する化
合物であれば特に制限されないが、例えば3−ペンテン
−2−オン、4−ヘキセン−3−オン、5−メチル−3
−ヘキセン−2−オン、3−ノネン−2−オンなどの脂
肪族不飽和ケトン;4−フェニル−3−ブテン−2−オ
ン、カルコン、4’−メトキシカルコン、4−ニトロカ
ルコンなどの芳香族不飽和ケトン;1−アセチル−1−
シクロヘキセン、2−シクロペンテン−1−オン、2−
メチル−2−シクロペンテン−1−オン、2−シクロヘ
キセン−1−オン、3−メチル−2−シクロヘキセン−
1−オンなどの環式ケトンが挙げられる。The conjugated enone for the asymmetric Michael addition reaction is not particularly limited as long as it has a skeleton in which an olefin and a ketone are conjugated. For example, 3-penten-2-one, 4-hexen-3-one ON, 5-methyl-3
Aliphatic unsaturated ketones such as -hexen-2-one and 3-nonen-2-one; aromatics such as 4-phenyl-3-buten-2-one, chalcone, 4'-methoxychalcone and 4-nitrochalcone Unsaturated ketone; 1-acetyl-1-
Cyclohexene, 2-cyclopenten-1-one, 2-
Methyl-2-cyclopenten-1-one, 2-cyclohexen-1-one, 3-methyl-2-cyclohexene-
And cyclic ketones such as 1-one.
【0050】不斉開環反応のためのエポキシ化合物は、
エポキシ基を有する化合物であれば特に制限されない
が、例えば2,3−エポキシブタン、3,4−エポキシ
ヘキサン、4,5−エポキシオクタン、スチルベンオキ
シドなどの鎖状のエポキシ化合物;シクロペンテンオキ
シド、シクロヘキセンオキシド、シクロオクテンオキシ
ドなどの環式エポキシ化合物が挙げられる。Epoxy compounds for the asymmetric ring opening reaction include:
The compound is not particularly limited as long as it has an epoxy group. For example, chain epoxy compounds such as 2,3-epoxybutane, 3,4-epoxyhexane, 4,5-epoxyoctane, and stilbene oxide; cyclopentene oxide, cyclohexene oxide And cyclic epoxy compounds such as cyclooctene oxide.
【0051】不斉ワッカー反応のためのオレフィンは、
2位に1つまたは2つのアリル基を有するジオールまた
はモノオール誘導体であれば特に制限されないが、例え
ば2−アリル−1,3−プロパンジオール誘導体や2,
2−ジアリル−2−エタノール誘導体などが挙げられ
る。2,2−ジアリル−2−エタノール誘導体のように
分子内にアリル基を2つ有するエタノール誘導体を用い
た場合、一方のアリル基と水酸基が反応した後、形成さ
れた環に他方のアリル基が反応して、籠状の環状エーテ
ルが得られる。The olefin for the asymmetric Wacker reaction is
The diol or monool derivative having one or two allyl groups at the 2-position is not particularly limited. For example, a 2-allyl-1,3-propanediol derivative or 2,2
2-diallyl-2-ethanol derivatives and the like. When an ethanol derivative having two allyl groups in the molecule, such as a 2,2-diallyl-2-ethanol derivative, is used, after one of the allyl groups reacts with the hydroxyl group, the other allyl group is formed on the formed ring. Upon reaction, a cage-like cyclic ether is obtained.
【0052】本発明触媒を用いる不斉合成反応の溶媒と
しては、トルエン、キシレン、メシチレンなどの芳香族
炭化水素系溶媒;ヘキサン、ヘプタン、オクタン、デカ
ン、ウンデカン、ドデカン、シクロヘキサンなどの脂肪
族炭化水素;ジエチルエーテル、ジイソプロピルエーテ
ル、t−ブチルメチルエーテルテトラヒドロフラン、
1,4−ジオキサン、ジメトキシエタン、ジエチレング
リコールジメチルエーテルなどのエーテル系溶媒;ジク
ロロメタン、クロロホルム、1,2−ジクロロエタン、
クロロベンゼンなどのハロゲン化炭化水素系溶媒;なら
びにこれらの混合溶媒が挙げられ、特に共役エノンへの
不斉マイケル付加反応およびエポキシ化合物の不斉開環
反応では、ジエチルエーテル、ジイソプロピルエーテ
ル、t−ブチルメチルエーテル、テトラヒドロフラン、
1,4−ジオキサン、ジメトキシエタン、ジエチレング
リコールジメチルエーテルなどのエーテル系溶媒;トル
エン、キシレン、メシチレンなどの芳香族炭化水素系溶
媒が好ましく、オレフィンへの不斉ワッカー反応では、
ジクロロメタン、クロロホルム、1,2−ジクロロエタ
ン、クロロベンゼンなどのハロゲン化炭化水素系溶媒が
好ましい。Solvents for the asymmetric synthesis reaction using the catalyst of the present invention include aromatic hydrocarbon solvents such as toluene, xylene and mesitylene; aliphatic hydrocarbons such as hexane, heptane, octane, decane, undecane, dodecane and cyclohexane. Diethyl ether, diisopropyl ether, t-butyl methyl ether tetrahydrofuran;
Ether solvents such as 1,4-dioxane, dimethoxyethane, diethylene glycol dimethyl ether; dichloromethane, chloroform, 1,2-dichloroethane,
Halogenated hydrocarbon solvents such as chlorobenzene; and mixed solvents thereof. In particular, in the asymmetric Michael addition reaction to a conjugated enone and the asymmetric ring opening reaction of an epoxy compound, diethyl ether, diisopropyl ether, t-butylmethyl Ether, tetrahydrofuran,
Ether solvents such as 1,4-dioxane, dimethoxyethane and diethylene glycol dimethyl ether; aromatic hydrocarbon solvents such as toluene, xylene and mesitylene are preferred. In the asymmetric Wacker reaction to olefins,
Halogenated hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane and chlorobenzene are preferred.
【0053】オレフィンへの不斉ワッカー反応では、触
媒としてPd錯体を用いるのが好ましいが、これは触媒
量で使用されるために、反応後生じたPd(0)を酸化
剤を用いてPd(II)に酸化する必要がある。この際
用いられる酸化剤はワッカー反応に通常用いられる酸化
剤であれば特に制限されないが、例えば塩化銅(I
I)、塩化鉄(III)、p−ベンゾキノン、分子状酸
素が挙げられ、より好ましくはp−ベンゾキノンが挙げ
られる。In the asymmetric Wacker reaction to an olefin, it is preferable to use a Pd complex as a catalyst. However, since this is used in a catalytic amount, Pd (0) generated after the reaction is converted to Pd (0) using an oxidizing agent. It is necessary to oxidize to II). The oxidizing agent used at this time is not particularly limited as long as it is an oxidizing agent usually used for the Wacker reaction.
I), iron (III) chloride, p-benzoquinone and molecular oxygen, and more preferably p-benzoquinone.
【0054】不斉合成反応の反応温度は好ましくは−1
00℃から溶媒の還流温度、より好ましくは−60℃か
ら室温である。反応圧力は通常は常圧であるが加圧下に
反応を行うこともできる。The reaction temperature of the asymmetric synthesis reaction is preferably -1.
The temperature is from 00 ° C to the reflux temperature of the solvent, more preferably from -60 ° C to room temperature. The reaction pressure is usually normal pressure, but the reaction can be carried out under pressure.
【0055】[0055]
【発明の実施の形態】以下、実施例を挙げて本発明をさ
らに具体的に説明するが、本発明はこれらの実施例に限
定されるものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
【0056】[実施例1] i) 2,2−ビス(1−ブテニル)プロパン−1,3
−ジカルボン酸ジエチルエステルの合成 ジメチルスルホキシド(132ml)と水酸化カリウム
(10.4g,185mmol)の混合物にトリフルオ
ロメタンスルホン酸CF3 SO2 OH(3.0m
l,19.8mmol)を加え、3分後さらに4−ブロ
モ−1−ブテンとマロン酸ジエチル(6.7ml,6
6.0mmol)を室温で添加した。混合液を50℃に
加温し、16時間攪拌した。1N塩酸を加えて反応を終
結させ、反応液をジエチルエーテルで抽出した。有機層
を飽和重炭酸ナトリウム水溶液で洗浄し、無水硫酸ナト
リウムで乾燥し、濾過後、濃縮した。得られた粗生成物
をカラムクロマトグラフィー(シリカゲル;ヘキサン/
アセトン=30/1)で精製した。表記化合物を無色オ
イルとして4.9g、収率92%で得た。Example 1 i) 2,2-bis (1-butenyl) propane-1,3
Synthesis of diethyl ester of dicarboxylic acid Trifluoromethanesulfonic acid CF 3 SO 2 OH (3.0 m) was added to a mixture of dimethyl sulfoxide (132 ml) and potassium hydroxide (10.4 g, 185 mmol).
1,19.8 mmol) and 3 minutes later, further added 4-bromo-1-butene and diethyl malonate (6.7 ml, 6 ml).
6.0 mmol) was added at room temperature. The mixture was warmed to 50 ° C. and stirred for 16 hours. The reaction was terminated by adding 1N hydrochloric acid, and the reaction solution was extracted with diethyl ether. The organic layer was washed with a saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained crude product is subjected to column chromatography (silica gel; hexane /
(Acetone = 30/1). 4.9 g of the title compound was obtained as a colorless oil in a yield of 92%.
【0057】1 H-NMR(270MHz, CDCl3 ): δ1.25(t,
J=7.0Hz, 6H), 1.90-2.05(m, 8H),4.19(q, J=7.0Hz, 4
H), 4.97(d, J=11.0Hz, 2H), 5.04(d, J=17.0Hz, 2H),
5.78(ddt, J=17.0, 11.0 and 5.5Hz, 2H) ; MS: m/z 269 1 H-NMR (270 MHz, CDCl 3 ): δ1.25 (t,
J = 7.0Hz, 6H), 1.90-2.05 (m, 8H), 4.19 (q, J = 7.0Hz, 4
H), 4.97 (d, J = 11.0Hz, 2H), 5.04 (d, J = 17.0Hz, 2H),
5.78 (ddt, J = 17.0, 11.0 and 5.5Hz, 2H); MS: m / z 269
【0058】ii) 2,2−ビス(1−ブテニル)−
1,3−プロパンジオールの合成 2,2−ビス(1−ブテニル)プロパン−1,3−ジカ
ルボン酸ジエチルエステル(31.9g,119mmo
l)のTHF溶液に水素化リチウムアルミニウム(9.
0g,158mmol)を0℃で添加した。混合液を室
温で3.5時間攪拌し、硫酸ナトリウム10水和物で反
応を終結させた。10%硫酸水溶液を加え、反応液を酢
酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾
燥し、濾過後、濃縮した。得られた粗生成物をカラムク
ロマトグラフィー(シリカゲル;ヘキサン/酢酸エチル
=2/1)で精製し、表記化合物を無色結晶として2
0.1g、収率92%で得た。Ii) 2,2-bis (1-butenyl)-
Synthesis of 1,3-propanediol 2,2-bis (1-butenyl) propane-1,3-dicarboxylic acid diethyl ester (31.9 g, 119 mmol)
l) in a THF solution of lithium aluminum hydride (9.
(0 g, 158 mmol) at 0 ° C. The mixture was stirred at room temperature for 3.5 hours and quenched with sodium sulfate decahydrate. A 10% aqueous sulfuric acid solution was added, and the reaction solution was extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained crude product was purified by column chromatography (silica gel; hexane / ethyl acetate = 2/1) to give the title compound as colorless crystals.
0.1 g was obtained in a yield of 92%.
【0059】1 H-NMR(270MHz, CDCl3 ): δ1.97-2.
02(m, 4H), 1.34(t, J=8.5Hz, 2H),1.34(dd, J=7.0 and
5.0Hz, 2H), 2.35(brs, 2H), 3.60(s, 4H), 4.96(dd,
J=10.0 and 2.0Hz, 2H), 5.04(ddd, J=17.0, 2.0 and
1.0Hz, 2H), 5.82(ddt, J=17.0, 10.0 and 7.0Hz, 2H)
; MS: m/z 185 1 H-NMR (270 MHz, CDCl 3 ): δ 1.97-2.
02 (m, 4H), 1.34 (t, J = 8.5Hz, 2H), 1.34 (dd, J = 7.0 and
5.0Hz, 2H), 2.35 (brs, 2H), 3.60 (s, 4H), 4.96 (dd,
J = 10.0 and 2.0Hz, 2H), 5.04 (ddd, J = 17.0, 2.0 and
1.0Hz, 2H), 5.82 (ddt, J = 17.0, 10.0 and 7.0Hz, 2H)
; MS: m / z 185
【0060】iii) 2,2−ビス(1−ブテニル)マ
ロノアルデヒドの合成 ジメチルスルホキシド(20.8ml,294mmo
l)のジクロロメタン(56ml)溶液に、蓚酸ジクロ
ライド(18.3ml,56.5mmol)のジクロロ
メタン(179ml)溶液を−78℃でゆっくり添加
し、そのまま30分間攪拌した。2,2−ビス(1−ブ
テニル)−1,3−プロパンジオール(10.4g,5
6.5mmol)のジクロロメタン溶液を−78℃で加
え、混合液をさらに30分間攪拌した。トリエチルアミ
ン(70.6ml,508mmol)を−78℃で加
え、反応温度を室温まで上昇させた。1.5時間後に飽
和塩化アンモニウム水溶液で反応を終結させ、反応液を
ジクロロメタンで抽出した。有機層を無水硫酸ナトリウ
ムで乾燥し、濾過後、濃縮した。得られた生成物、すな
わち表記化合物は精製することなく次の反応に用いた。Iii) Synthesis of 2,2-bis (1-butenyl) malonaldehyde Dimethyl sulfoxide (20.8 ml, 294 mmol)
To a solution of 1) in dichloromethane (56 ml), a solution of oxalic acid dichloride (18.3 ml, 56.5 mmol) in dichloromethane (179 ml) was slowly added at -78 ° C, and the mixture was stirred as it was for 30 minutes. 2,2-bis (1-butenyl) -1,3-propanediol (10.4 g, 5
6.5 mmol) in dichloromethane at -78 ° C and the mixture was stirred for a further 30 minutes. Triethylamine (70.6 ml, 508 mmol) was added at -78 ° C and the reaction temperature was raised to room temperature. After 1.5 hours, the reaction was terminated with a saturated aqueous solution of ammonium chloride, and the reaction solution was extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained product, ie, the title compound, was used for the next reaction without purification.
【0061】1 H-NMR(270MHz, CDCl3 ): δ1.54-2.
06(m, 8H), 5.00(d, J=10.5Hz, 2H), 5.15(d, J=17.4H
z, 2H), 5.75(ddt, J=17.4, 10.5 and 5.2Hz, 2H), 9.7
5(s,2H) 1 H-NMR (270 MHz, CDCl 3 ): δ1.54-2.
06 (m, 8H), 5.00 (d, J = 10.5Hz, 2H), 5.15 (d, J = 17.4H
z, 2H), 5.75 (ddt, J = 17.4, 10.5 and 5.2Hz, 2H), 9.7
5 (s, 2H)
【0062】iv) 2,2−ビス(1−ブテニル)マロ
ノジオキシムの合成 ヒドロキシルアミン塩酸塩(15.7g,226mmo
l)とピリジン(150ml)の混合物を0℃に冷却
し、工程iii) で得られた未精製2,2−ビス(1−ブ
テニル)マロノアルデヒドを加え、全体を室温で7日間
攪拌した。その間、さらにヒドロキシルアミン塩酸塩
(9.0g,130mmol)を2日毎に加えた。反応
終了後、反応液を酢酸エチルで希釈し、1N塩酸、飽和
重炭酸ナトリウム水溶液、飽和食塩水の順に洗浄し、無
水硫酸ナトリウムで乾燥後、濾過し、濃縮した。得られ
た粗生成物をカラムクロマトグラフィー(シリカゲル;
ヘキサン/酢酸エチル=4/1)で精製した。表記化合
物を無色結晶として、9.93g、収率87%(2工程
で)で得た。Iv) Synthesis of 2,2-bis (1-butenyl) malonodioxime Hydroxylamine hydrochloride (15.7 g, 226 mmol)
A mixture of 1) and pyridine (150 ml) was cooled to 0 ° C., and the crude 2,2-bis (1-butenyl) malonaldehyde obtained in step iii) was added, and the whole was stirred at room temperature for 7 days. Meanwhile, more hydroxylamine hydrochloride (9.0 g, 130 mmol) was added every two days. After completion of the reaction, the reaction solution was diluted with ethyl acetate, washed with 1N hydrochloric acid, a saturated aqueous solution of sodium bicarbonate, and saturated saline in this order, dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained crude product is subjected to column chromatography (silica gel;
Hexane / ethyl acetate = 4/1). 9.93 g of the title compound were obtained as colorless crystals in a yield of 87% (in two steps).
【0063】1 H-NMR(270MHz, CDCl3 ): δ1.66-1.
82(m, 4H), 1.94-2.11(m, 4H), 4.94(dd, J=10.2 and
1.8Hz, 2H), 4.99(dd, J=17.1 and 1.6Hz, 2H), 6.01(d
dt, J=17.1, 10.2 and 6.4Hz, 2H), 7.34(s, 2H), 8.76
(brs, 2H) ; MS: m/z 211 1 H-NMR (270 MHz, CDCl 3 ): δ1.66-1.
82 (m, 4H), 1.94-2.11 (m, 4H), 4.94 (dd, J = 10.2 and
1.8Hz, 2H), 4.99 (dd, J = 17.1 and 1.6Hz, 2H), 6.01 (d
dt, J = 17.1, 10.2 and 6.4Hz, 2H), 7.34 (s, 2H), 8.76
(brs, 2H); MS: m / z 211
【0064】v) スピロビスイソオキサゾリン誘導体
(VII )の合成V) Synthesis of Spirobisisoxazoline Derivative (VII)
【化14】 Embedded image
【0065】2,2−ビス(1−ブテニル)マロノジオ
キシム(4.78g,22.7mmol)のジクロロメ
タン(455ml)溶液に次亜塩素酸ナトリウム水溶液
(ca.5%,34ml)を0℃で加え、2時間攪拌し
た。水を加えて反応を終結させた。反応液をジクロロメ
タンで抽出した。有機層を飽和食塩水で洗浄し、無水硫
酸ナトリウムで乾燥し、濾過後、濃縮した。得られた粗
生成物をカラムクロマトグラフィー(シリカゲル;ヘキ
サン/酢酸エチル=2/1→1/1→1/2)で精製し
た。目的とする表記化合物を無色結晶として3.46
g、収率74%で得た。ジアステレオマーの内訳は、
(M,S,S)体とその鏡像体のラセミ混合物が36
%、(M,R,R)体とその鏡像体のラセミ混合物が1
3%、(M,R,S)体とその鏡像体のラセミ混合物が
25%であった。To a solution of 2,2-bis (1-butenyl) malonodioxime (4.78 g, 22.7 mmol) in dichloromethane (455 ml) was added an aqueous solution of sodium hypochlorite (ca. 5%, 34 ml) at 0 ° C. Stir for 2 hours. The reaction was terminated by adding water. The reaction was extracted with dichloromethane. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The obtained crude product was purified by column chromatography (silica gel; hexane / ethyl acetate = 2/1 → 1/1 → 1/2). The desired title compound was obtained as colorless crystals at 3.46.
g, 74% yield. The breakdown of diastereomers is
The racemic mixture of the (M, S, S) form and its enantiomer is 36
%, A racemic mixture of the (M, R, R) form and its enantiomer is 1%
3%, and 25% of a racemic mixture of the (M, R, S) form and its enantiomer.
【0066】(M,S,S)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.70-1.88(m, 2H),
2.05-2.27(m, 4H), 2.63(dd, J=19.8 and 7.3Hz, 2H),
3.77-4.00(m, 4H), 4.55(m, 2H) ; MS: m/z 207Racemic mixture of (M, S, S) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ1.70-1.88 (m, 2H),
2.05-2.27 (m, 4H), 2.63 (dd, J = 19.8 and 7.3Hz, 2H),
3.77-4.00 (m, 4H), 4.55 (m, 2H); MS: m / z 207
【0067】ラセミ混合物は、ダイセル社製 Chiralpak
AD (EtOH,3.0ml/min)で各鏡像体に分
割され、(+)体の旋光度は[α]D 22+234°(c
0.406, CHCl3 )であった。The racemic mixture was obtained from Daicel Chiralpak.
AD (EtOH, 3.0 ml / min) splits each enantiomer, and the optical rotation of the (+) isomer is [α] D 22 + 234 ° (c
0.406, CHCl 3 ).
【0068】(M,R,R)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.50-1.68(m, 2H),
2.16-2.33(m, 4H), 2.73-2.84(m, 2H), 3.88-4.03(m, 4
H), 4.52-4.66(m, 2H) ; MS: m/z 207Racemic mixture of (M, R, R) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ1.50-1.68 (m, 2H),
2.16-2.33 (m, 4H), 2.73-2.84 (m, 2H), 3.88-4.03 (m, 4
H), 4.52-4.66 (m, 2H); MS: m / z 207
【0069】ラセミ混合物は、ダイセル社製 Chiralpak
AD (EtOH,4.5ml/min)で各鏡像体に分
割され、(+)体の旋光度は[α]D 26+121°(c
0.148, CHCl3 ) であった。The racemic mixture was obtained from Daicel Chiralpak.
AD (EtOH, 4.5 ml / min) splits into each enantiomer, and the optical rotation of the (+) body is [α] D 26 + 121 ° (c
0.148, CHCl 3 ).
【0070】(M,R,S)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.54-1.84(m, 2H),
2.02-2.35(m, 4H), 2.40-2.55(m, 1H), 2.84(dd, J=13.
2 and 7.6Hz, 1H), 3.80-4.00(m, 3H), 4.11-4.22(m, 1
H), 4.50-4.70(m, 2H) ; MS: m/z 207Racemic mixture of (M, R, S) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ1.54-1.84 (m, 2H),
2.02-2.35 (m, 4H), 2.40-2.55 (m, 1H), 2.84 (dd, J = 13.
2 and 7.6Hz, 1H), 3.80-4.00 (m, 3H), 4.11-4.22 (m, 1
H), 4.50-4.70 (m, 2H); MS: m / z 207
【0071】ラセミ混合物は、ダイセル社製 Chiralpak
AD (EtOH,3.0ml/min)で各鏡像体に分
割され、(+)体の旋光度は[α]D 26+133°(c
0.286, CHCl3 ) であった。The racemic mixture was obtained from Daicel Chiralpak.
AD (EtOH, 3.0 ml / min) splits into each enantiomer, and the optical rotation of the (+) body is [α] D 26 + 133 ° (c
0.286, CHCl 3 ).
【0072】[実施例2] i) 2,2−ビス(2−メチル−2−ペンテニル)プ
ロパン−1,3−ジカルボン酸ジエチルエステルの合成 4−ブロモ−1−ブテンの代わりに5−ブロモ−2−メ
チル−2−ペンテンを用いた以外は実施例1の工程i)
と同様の操作で表記化合物を収率98%で得た。Example 2 i) Synthesis of 2,2-bis (2-methyl-2-pentenyl) propane-1,3-dicarboxylic acid diethyl ester 5-bromo-butene instead of 4-bromo-1-butene Step i) of Example 1 except that 2-methyl-2-pentene was used.
The title compound was obtained in a yield of 98% in the same manner as in.
【0073】1 H-NMR(270MHz, CDCl3 ): δ1.25(t,
J=7.0Hz, 6H), 1.58(s, 6H), 1.67(s, 6H), 1.80-1.92
(m, 8H), 4.18(q, J=7.0Hz, 4H), 5.03- 5.15(m, 2H) ; MS: m/z 325 1 H-NMR (270 MHz, CDCl 3 ): δ1.25 (t,
J = 7.0Hz, 6H), 1.58 (s, 6H), 1.67 (s, 6H), 1.80-1.92
(m, 8H), 4.18 (q, J = 7.0Hz, 4H), 5.03- 5.15 (m, 2H); MS: m / z 325
【0074】ii) 2,2−ビス(2−メチル−2−ペ
ンテニル)−1,3−プロパンジオールの合成 2,2−ビス(2−メチル−2−ペンテニル)プロパン
−1,3−ジカルボン酸ジエチルエステルを基質として
用い、実施例1の工程ii)と同様の操作により、表記化
合物を収率94%で得た。Ii) Synthesis of 2,2-bis (2-methyl-2-pentenyl) -1,3-propanediol 2,2-bis (2-methyl-2-pentenyl) propane-1,3-dicarboxylic acid The title compound was obtained in a yield of 94% by the same operation as in step ii) of Example 1 using diethyl ester as a substrate.
【0075】1 H-NMR(270MHz, CDCl3 ): δ1.25-1.
36(m, 4H), 1.61(s, 6H), 1.68(s,6H), 1.85-2.10(m, 4
H), 2.85-3.10(brs, 2H), 3.57(s, 4H), 5.05-5.15(m,
2H); MS: m/z 241 1 H-NMR (270 MHz, CDCl 3 ): δ1.25-1.
36 (m, 4H), 1.61 (s, 6H), 1.68 (s, 6H), 1.85-2.10 (m, 4
H), 2.85-3.10 (brs, 2H), 3.57 (s, 4H), 5.05-5.15 (m,
2H); MS: m / z 241
【0076】iii) 2,2−ビス(2−メチル−2−
ペンテニル)マロノアルデヒドの合成2,2−ビス(2
−メチル−2−ペンテニル)プロパン−1,3−プロパ
ンジオールを基質として用い、実施例1の工程 iii)と
同様の操作により、表記化合物を未精製体として得、そ
のまま次反応に用いた。Iii) 2,2-bis (2-methyl-2-
Synthesis of pentenyl) malonaldehyde 2,2-bis (2
-Methyl-2-pentenyl) propane-1,3-propanediol was used as a substrate, and the title compound was obtained as an unpurified product by the same operation as in step iii) of Example 1 and used as it was in the next reaction.
【0077】1 H-NMR(270MHz, CDCl3 ): δ1.56(s,
6H), 1.67(s, 6H), 1.80-2.03(m, 8H), 4.85-5.12(m,
2H), 9.74(s, 2H) 1 H-NMR (270 MHz, CDCl 3 ): δ1.56 (s,
6H), 1.67 (s, 6H), 1.80-2.03 (m, 8H), 4.85-5.12 (m,
2H), 9.74 (s, 2H)
【0078】iv) 2,2−ビス(2−メチル−2−ペ
ンテニル)マロノジオキシムの合成未精製2,2−ビス
(2−メチル−2−ペンテニル)マロノアルデヒドを基
質として用い、実施例1の工程iv)と同様の操作によ
り、表記化合物を87%(2工程で)の収率で得た。Iv) Synthesis of 2,2-bis (2-methyl-2-pentenyl) malonodioxime Using the crude 2,2-bis (2-methyl-2-pentenyl) malonaldehyde as a substrate, the process of Example 1 By the same operation as in iv), the title compound was obtained in a yield of 87% (in two steps).
【0079】1 H-NMR(270MHz, CDCl3 ): δ1.58(s,
6H), 1.67(s, 6H), 1.55-1.70(m,4H), 1.90-2.10(m, 4
H), 4.98-5.10(m, 2H), 7.42(s, 2H), 8.93(brs, 2H) ; MS: m/z 267 1 H-NMR (270 MHz, CDCl 3 ): δ1.58 (s,
6H), 1.67 (s, 6H), 1.55-1.70 (m, 4H), 1.90-2.10 (m, 4
H), 4.98-5.10 (m, 2H), 7.42 (s, 2H), 8.93 (brs, 2H); MS: m / z 267
【0080】v) スピロビスイソオキサゾリン誘導体
(VIII)の合成V) Synthesis of spirobisisoxazoline derivative (VIII)
【化15】 Embedded image
【0081】2,2−ビス(2−メチル−2−ペンテニ
ル)マロノジオキシムを基質として用い、実施例1の工
程v)と同様の操作により目的とする表記化合物を67
%の収率で得た。ジアステレオマーの内訳は、(M,
S,S)体とその鏡像体のラセミ混合物が36%、
(M,R,R)体とその鏡像体のラセミ混合物が10
%、(M,R,S)体とその鏡像体のラセミ混合物が2
1%であった。Using 2,2-bis (2-methyl-2-pentenyl) malonodioxime as a substrate, the desired title compound was obtained by the same procedure as in step v) of Example 1.
% Yield. The breakdown of diastereomers is (M,
36% of a racemic mixture of (S, S) form and its enantiomer,
The racemic mixture of the (M, R, R) form and its enantiomer is 10
%, A racemic mixture of the (M, R, S) form and its enantiomer is 2%
1%.
【0082】(M,S,S)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.27(s, 6H), 1.54
(s, 6H), 1.74-1.88(m,2H), 1.92(ddd, J=6.4, 11.0 an
d 18.2Hz, 2H), 2.15(ddd, J=6.4, 11.9 and 18.2Hz, 2
H), 2.53(ddd, J=1.6, 6.4 and 11.9Hz, 2H), 3.48(dd,
J=7.3 and 11.0Hz, 2H) ; MS: m/z 262Racemic mixture of (M, S, S) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ 1.27 (s, 6 H), 1.54
(s, 6H), 1.74-1.88 (m, 2H), 1.92 (ddd, J = 6.4, 11.0 an
d 18.2Hz, 2H), 2.15 (ddd, J = 6.4, 11.9 and 18.2Hz, 2
H), 2.53 (ddd, J = 1.6, 6.4 and 11.9Hz, 2H), 3.48 (dd,
J = 7.3 and 11.0Hz, 2H); MS: m / z 262
【0083】(M,R,R)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.23(s, 6H), 1.54
(s, 6H), 1.55-1.72(m,2H), 1.94(dddd, J=3.3, 7.2,
8.7 and 11.9Hz, 2H), 2.19(ddd, J=3.3, 7.9 and 9.7H
z, 2H), 2.69(ddd, J=7.2, 9.5 and 9.7Hz, 2H), 3.62
(dd, J=7.9 and 8.7Hz, 2H) ; MS: m/z(FAB+) 263(M+H)Racemic mixture of (M, R, R) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ1.23 (s, 6H), 1.54
(s, 6H), 1.55-1.72 (m, 2H), 1.94 (dddd, J = 3.3, 7.2,
8.7 and 11.9Hz, 2H), 2.19 (ddd, J = 3.3, 7.9 and 9.7H
z, 2H), 2.69 (ddd, J = 7.2, 9.5 and 9.7Hz, 2H), 3.62
(dd, J = 7.9 and 8.7Hz, 2H); MS: m / z (FAB + ) 263 (M + H)
【0084】(M,R,S)体とその鏡像体のラセミ混
合物:1 H-NMR(270MHz, CDCl3 ): δ1.22(s, 3H), 1.26
(s, 3H), 1.54(s, 3H),1.55(s, 3H), 1.62-1.75(m, 1
H), 1.75-2.05(m, 3H), 2.10-2.25(m, 2H), 2.47(ddd,
J=6.5, 7.9 and 11.1Hz, 1H), 2.74(ddd, J=1.6, 6.3 a
nd 12.7Hz, 1H), 3.52(dd, J=7.9 and 10.8Hz, 1H), 3.
78(dd, J=7.9 and 9.5Hz, 1H) ; MS: m/z 262Racemic mixture of (M, R, S) form and its enantiomer: 1 H-NMR (270 MHz, CDCl 3 ): δ1.22 (s, 3H), 1.26
(s, 3H), 1.54 (s, 3H), 1.55 (s, 3H), 1.62-1.75 (m, 1
H), 1.75-2.05 (m, 3H), 2.10-2.25 (m, 2H), 2.47 (ddd,
J = 6.5, 7.9 and 11.1Hz, 1H), 2.74 (ddd, J = 1.6, 6.3 a
nd 12.7Hz, 1H), 3.52 (dd, J = 7.9 and 10.8Hz, 1H), 3.
78 (dd, J = 7.9 and 9.5Hz, 1H); MS: m / z 262
【0085】ラセミ体混合物を実施例1の工程v)と同
様にダイセル社製 Chiralpak AD を用いて各鏡像体に光
学分割した。The racemic mixture was optically resolved into each enantiomer using Chiralpak AD manufactured by Daicel in the same manner as in step v) of Example 1.
【0086】[実施例3] i) 2,2−ビス(4,4−ジフェニル−3−ブテニ
ル)プロパン−1,3−ジカルボン酸ジエチルエステル
の合成 4−ブロモ−1−ブテンの代わりに4−ブロモ−1,1
−ジフェニル−1−ブテンを用いた以外は実施例1の工
程i)と同様の操作で表記化合物を無色結晶として収率
87%で得た。Example 3 i) Synthesis of 2,2-bis (4,4-diphenyl-3-butenyl) propane-1,3-dicarboxylic acid diethyl ester 4-bromo-1-butene was replaced by 4-bromo-1-butene Bromo-1,1
The title compound was obtained as colorless crystals in a yield of 87% by the same procedure as in step i) of Example 1 except that -diphenyl-1-butene was used.
【0087】IR(KBr): 2970, 1724, 1596, 1493, 1443,
1277, 1177, 1092, 1026, 883, 760, 702cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.08(t, J=7.1Hz, 6
H), 1.88-1.95(m, 8H),3.98(q, J=7.1Hz, 4H), 5.89-
6.00(m, 2H), 7.08-7.40(m, 20H)13 C-NMR(67.5MHz, CDCl3 ): δ13.964, 24.521, 3
2.028, 56.850, 61.045, 126.785, 126.809, 126.933,
127.905, 128.021, 129.529, 139.608, 142.138, 171.0
06 EI-MS m/z(relative intensity): 572(M+ , 40), 527
(20), 366(20), 193(100, bp) EI-HRMS: calcd for C39H40O4 (M+ ), 572.292
7, found 572.2911 Mp: 69-71℃IR (KBr): 2970, 1724, 1596, 1493, 1443,
1277, 1177, 1092, 1026, 883, 760, 702cm -1 1 H-NMR (270MHz, CDCl 3): δ1.08 (t, J = 7.1Hz, 6
H), 1.88-1.95 (m, 8H), 3.98 (q, J = 7.1Hz, 4H), 5.89-
6.00 (m, 2H), 7.08-7.40 (m, 20H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 13.964, 24.521, 3
2.028, 56.850, 61.045, 126.785, 126.809, 126.933,
127.905, 128.021, 129.529, 139.608, 142.138, 171.0
06 EI-MS m / z (relative intensity): 572 (M + , 40), 527
(20), 366 (20), 193 (100, bp) EI-HRMS: calcd for C 39 H 40 O 4 (M + ), 572.292
7, found 572.2911 Mp: 69-71 ℃
【0088】ii) 2,2−ビス(4,4−ジフェニル
−3−ブテニル)−1,3−プロパンジオールの合成 2,2−ビス(4,4−ジフェニル−3−ブテニル)プ
ロパン−1,3−ジカルボン酸ジエチルエステルを基質
として用い、実施例1の工程ii)と同様の操作により、
表記化合物を無色結晶として収率66%で得た。Ii) Synthesis of 2,2-bis (4,4-diphenyl-3-butenyl) -1,3-propanediol 2,2-bis (4,4-diphenyl-3-butenyl) propane-1, Using 3-dicarboxylic acid diethyl ester as a substrate and the same operation as in step ii) of Example 1,
The title compound was obtained as colorless crystals in a yield of 66%.
【0089】IR(KBr): 3275, 2862, 1597, 1493, 1420,
1065, 1030, 760, 702cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.22-1.38(m, 4H),
1.90-2.03(m, 4H), 2.15(s, 2H), 3.41(s, 4H), 5.98
(t, J=7.5Hz, 2H), 7.10-7.40(m, 20H)13 C-NMR(67.5MHz, CDCl3 ): δ23.441, 30.619, 4
1.390, 68.405, 126.768, 126.958, 127.971, 128.136,
129.282, 129.636, 139.863, 141.577, 142.270 EI-MS m/z(relative intensity): 488(M+ , 63), 457
(35), 440(47), 115(100, bp) EI-HRMS: calcd for C35H36O2 (M+ ) 488.271
5, found 488.2704 Mp: 127-128℃IR (KBr): 3275, 2862, 1597, 1493, 1420,
1065, 1030, 760, 702cm -1 1 H-NMR (270MHz, CDCl 3): δ1.22-1.38 (m, 4H),
1.90-2.03 (m, 4H), 2.15 (s, 2H), 3.41 (s, 4H), 5.98
(t, J = 7.5Hz, 2H), 7.10-7.40 (m, 20H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ23.441, 30.619, 4
1.390, 68.405, 126.768, 126.958, 127.971, 128.136,
129.282, 129.636, 139.863, 141.577, 142.270 EI-MS m / z (relative intensity): 488 (M + , 63), 457
(35), 440 (47), 115 (100, bp) EI-HRMS: calcd for C 35 H 36 O 2 (M + ) 488.271
5, found 488.2704 Mp: 127-128 ℃
【0090】iii) 2,2−ビス(4,4−ジフェニ
ル−3−ブテニル)マロノアルデヒドの合成 2,2−ビス(4,4−ジフェニル−3−ブテニル)プ
ロパン−1,3−プロパンジオールを基質として用い、
実施例1の工程iii)と同様の操作により、表記化合物
を未精製体として得、そのまま次反応に用いた。Iii) Synthesis of 2,2-bis (4,4-diphenyl-3-butenyl) malonaldehyde 2,2-bis (4,4-diphenyl-3-butenyl) propane-1,3-propanediol Used as a substrate,
The title compound was obtained as an unpurified compound by the same operation as in step iii) of Example 1 and used as it was in the next reaction.
【0091】1 H-NMR(270MHz, CDCl3 ): δ1.80-
1.92(m, 4H), 1.92-2.05(m, 4H), 5.89(t, J=7.25Hz, 2
H), 7.07-7.42(m, 20H), 9.52(s, 2H) 1 H-NMR (270 MHz, CDCl 3 ): δ1.80-
1.92 (m, 4H), 1.92-2.05 (m, 4H), 5.89 (t, J = 7.25Hz, 2
H), 7.07-7.42 (m, 20H), 9.52 (s, 2H)
【0092】iv) 2,2−ビス(4,4−ジフェニル
−3−ブテニル)マロノジオキシムの合成 2,2−ビス(4,4−ジフェニル−3−ブテニル)マ
ロノアルデヒドの未精製物を基質として用い、実施例1
の工程iv)と同様の操作により、表記化合物を無色結晶
として56%(2工程で)の収率で得た。Iv) Synthesis of 2,2-bis (4,4-diphenyl-3-butenyl) malonodioxime Using unpurified 2,2-bis (4,4-diphenyl-3-butenyl) malonaldehyde as a substrate Example 1
The title compound was obtained as colorless crystals in a yield of 56% (in 2 steps) by the same operation as in step iv).
【0093】IR(KBr): 3356, 3024, 1493, 1443, 1281,
1072, 937, 764, 698cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.62-1.78(m, 4H),
1.90-2.12(m, 4H), 5.82-6.00(m, 2H), 7.08-7.40(m, 2
4H)13 C-NMR(67.5MHz, CDCl3 ): δ24.364, 35.638, 4
5.544, 126.826, 126.925, 127.048, 127.938, 128.02
1, 128.111, 128.260, 129.562, 139.624, 142.212, 14
2.253, 153.469 EI-MS m/z(relative intensity): 514(M+ , 10), 496
(24), 481(47), 452(92), 178(100, bp) EI-HRMS: calcd for C35H34N2 O2 (M+ ) 51
4.6567, found 514.6567 Mp: 50-53℃IR (KBr): 3356, 3024, 1493, 1443, 1281,
1072, 937, 764, 698cm -1 1 H-NMR (270MHz, CDCl 3): δ1.62-1.78 (m, 4H),
1.90-2.12 (m, 4H), 5.82-6.00 (m, 2H), 7.08-7.40 (m, 2
4H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ24.364, 35.638, 4
5.544, 126.826, 126.925, 127.048, 127.938, 128.02
1, 128.111, 128.260, 129.562, 139.624, 142.212, 14
2.253, 153.469 EI-MS m / z (relative intensity): 514 (M + , 10), 496
(24), 481 (47), 452 (92), 178 (100, bp) EI-HRMS: calcd for C 35 H 34 N 2 O 2 (M + ) 51
4.6567, found 514.6567 Mp: 50-53 ℃
【0094】v) スピロビスイソオキサゾリン誘導体
(IX)の合成V) Synthesis of spirobisisoxazoline derivative (IX)
【化16】 Embedded image
【0095】2,2−ビス(4,4−ジフェニル−3−
ブテニル)マロノジオキシムを基質として用い、実施例
1の工程v)と同様の操作により表記化合物を18%の
収率で得た。ジアステレオマーの内訳は、(M,S,
S)体とその鏡像体のラセミ混合物が8%、(M,R,
S)体とその鏡像体のラセミ混合物が11%であった。2,2-bis (4,4-diphenyl-3-
Using butenyl) malonodioxime as a substrate, the title compound was obtained in a yield of 18% by the same procedure as in step v) of Example 1. The breakdown of diastereomers is (M, S,
8% racemic mixture of (S) -isomer and its enantiomer, (M, R,
S) The racemic mixture of the isomer and its enantiomer was 11%.
【0096】(M,R,S)体とその鏡像体のラセミ混
合物: 無色結晶 IR(KBr): 3059, 2928, 1720, 1493, 1447, 1072, 1034,
837cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.18-1.50(m, 2H),
1.76-2.18(m, 4H), 2.38(dt, J=7.2, 12.8Hz, 1H), 2.5
3(dd, J=5.9, 12.8Hz, 1H), 4.47(dd, J=7.6,11.7Hz, 1
H), 4.78(t, J=8.8Hz , 1H), 7.16-7.42(m, 20H)13 C-NMR(67.5MHz, CDCl3 ): δ 22.49, 25.56, 41.
04, 42.16, 42.72, 60.79, 62.77, 95.77, 96.78, 126.
46, 126.87, 127.12, 127.25, 127.46, 127.83, 127.9
5, 128.19, 128.40, 140.02, 140.49, 142.81, 143.11,
171.34, 172.67CI-MS m/z: 511(MH+ )Racemic mixture of (M, R, S) form and its enantiomer: colorless crystal IR (KBr): 3059, 2928, 1720, 1493, 1447, 1072, 1034,
837cm -1 1 H-NMR (270MHz , CDCl 3): δ1.18-1.50 (m, 2H),
1.76-2.18 (m, 4H), 2.38 (dt, J = 7.2, 12.8Hz, 1H), 2.5
3 (dd, J = 5.9, 12.8Hz, 1H), 4.47 (dd, J = 7.6,11.7Hz, 1
H), 4.78 (t, J = 8.8 Hz, 1H), 7.16-7.42 (m, 20H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 22.49, 25.56, 41.
04, 42.16, 42.72, 60.79, 62.77, 95.77, 96.78, 126.
46, 126.87, 127.12, 127.25, 127.46, 127.83, 127.9
5, 128.19, 128.40, 140.02, 140.49, 142.81, 143.11,
171.34, 172.67 CI-MS m / z: 511 (MH + )
【0097】(M,S,S)体とその鏡像体のラセミ混
合物:無色結晶1 H-NMR(270MHz, CDCl3 ): δ1.39(ddd, J=7.0, 1
1.7, 23.6Hz, 2H), 1.85-1.95(m, 2H), 2.10-2.25(m, 2
H), 2.39(dd, J=5.43, 13.2Hz, 2H), 4.38(dd, J=7.6,
11.7Hz, 2H), 7.20-7.45(m, 20H)13 C-NMR(67.5MHz, CDCl3 ):δ 25.27, 41.56, 43.5
6, 62.75, 95.43, 126.87, 127.38, 127.63, 127.96, 1
28.23, 140.05, 143.11, 173.09 CI-MS m/z: 511(MH+ ) Mp(decomposition): 145℃(M,S,S)体Racemic mixture of (M, S, S) form and its enantiomer: colorless crystal 1 H-NMR (270 MHz, CDCl 3 ): δ 1.39 (ddd, J = 7.0, 1
1.7, 23.6Hz, 2H), 1.85-1.95 (m, 2H), 2.10-2.25 (m, 2
H), 2.39 (dd, J = 5.43, 13.2Hz, 2H), 4.38 (dd, J = 7.6,
11.7Hz, 2H), 7.20-7.45 (m , 20H) 13 C-NMR (67.5MHz, CDCl 3): δ 25.27, 41.56, 43.5
6, 62.75, 95.43, 126.87, 127.38, 127.63, 127.96, 1
28.23, 140.05, 143.11, 173.09 CI-MS m / z: 511 (MH + ) Mp (decomposition): 145 ℃ (M, S, S)
【0098】[実施例4] i) 2,2−ビス(4−エチル−3−ヘキセニル)プ
ロパン−1,3−ジカルボン酸ジエチルエステルの合成 4−ブロモ−1−ブテンの代わりに6−ブロモ−3−エ
チル−3−ヘキセンを用いた以外は実施例1の工程i)
と同様の操作で表記化合物を無色液体として収率90%
で得た。Example 4 i) Synthesis of 2,2-bis (4-ethyl-3-hexenyl) propane-1,3-dicarboxylic acid diethyl ester 6-bromo-butene instead of 4-bromo-1-butene Step i) of Example 1 except that 3-ethyl-3-hexene was used.
90% yield of the title compound as a colorless liquid
I got it.
【0099】IR(neat): 2970, 1728, 1458, 1204, 117
3, 1088, 910, 733cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.94(t, J=7.7Hz, 6
H), 0.97(t, J=7.5Hz,6H), 1.25(t, J=7.1Hz, 6H), 1.8
2-2.07(m, 16H), 4.18(q, J=7.1Hz, 4H), 5.00-5.09(m,
2H)13 C-NMR(67.5MHz, CDCl3 ): δ12.63, 13.19, 14.0
2, 22.24, 23.09, 28.99, 32.56, 57.12, 60.82, 121.0
2, 143.21, 171.33IR (neat): 2970, 1728, 1458, 1204, 117
3, 1088, 910, 733cm -1 1 H-NMR (270MHz, CDCl 3): δ0.94 (t, J = 7.7Hz, 6
H), 0.97 (t, J = 7.5Hz, 6H), 1.25 (t, J = 7.1Hz, 6H), 1.8
2-2.07 (m, 16H), 4.18 (q, J = 7.1Hz, 4H), 5.00-5.09 (m,
2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 12.63, 13.19, 14.0
2, 22.24, 23.09, 28.99, 32.56, 57.12, 60.82, 121.0
2, 143.21, 171.33
【0100】ii) 2,2−ビス(4−エチル−3−ヘ
キセニル)−1,3−プロパンジオールの合成 2,2−ビス(4−エチル−3−ヘキセニル)プロパン
−1,3−ジカルボン酸ジエチルエステルを基質として
用い、実施例1の工程ii)と同様の操作で表記化合物を
無色結晶として収率88%で得た。Ii) Synthesis of 2,2-bis (4-ethyl-3-hexenyl) -1,3-propanediol 2,2-bis (4-ethyl-3-hexenyl) propane-1,3-dicarboxylic acid The title compound was obtained as colorless crystals in a yield of 88% by the same operation as in step ii) of Example 1 using diethyl ester as a substrate.
【0101】IR(neat): 3348, 2963, 2955, 2878, 145
8, 1373, 1242, 1049, 849cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.96(t, J=7.6Hz, 6
H), 0.98(t, J=7.3Hz,6H), 1.27-1.40(m, 4H), 1.84(s,
2H), 1.89-2.12(m, 12H), 3.61(s, 4H), 5.06(t, J=7.
0Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ12.84, 13.34, 14.1
9, 21.04, 21.14, 23.23, 29.10, 31.16, 41.17, 68.6
3, 122.43, 142.69 Mp: 31-35℃IR (neat): 3348, 2963, 2955, 2878, 145
8, 1373, 1242, 1049, 849cm -1 1 H-NMR (270MHz, CDCl 3): δ0.96 (t, J = 7.6Hz, 6
H), 0.98 (t, J = 7.3Hz, 6H), 1.27-1.40 (m, 4H), 1.84 (s,
2H), 1.89-2.12 (m, 12H), 3.61 (s, 4H), 5.06 (t, J = 7.
0Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 12.84, 13.34, 14.1
9, 21.04, 21.14, 23.23, 29.10, 31.16, 41.17, 68.6
3, 122.43, 142.69 Mp: 31-35 ℃
【0102】iii) 2,2−ビス(4−エチル−3−
ヘキセニル)マロノアルデヒドの合成 2,2−ビス(4−エチル−3−ヘキセニル)−1,3
−プロパンジオールを基質として用い、実施例1の工程
iii)と同様の操作により、表記化合物を未精製体とし
て得、そのまま次反応に用いた。Iii) 2,2-bis (4-ethyl-3-
Synthesis of hexenyl) malonaldehyde 2,2-bis (4-ethyl-3-hexenyl) -1,3
-The process of Example 1 using propanediol as substrate
By the same operation as in iii), the title compound was obtained as an unpurified product, and used as it was in the next reaction.
【0103】iv) 2,2−ビス(4−エチル−3−ヘ
キセニル)マロノジオキシムの合成 未精製2,2−ビス(4−エチル−3−ヘキセニル)マ
ロノアルデヒドを基質として用い、実施例1の工程iv)
と同様の操作により、表記化合物を無色結晶として81
%(2工程で)の収率で得た。Iv) Synthesis of 2,2-bis (4-ethyl-3-hexenyl) malonodioxime Using the crude 2,2-bis (4-ethyl-3-hexenyl) malonaldehyde as a substrate, the procedure of Example 1 iv)
In the same manner as in the above, the title compound was converted into colorless crystals by 81
% (In two steps).
【0104】IR(neat): 3356, 2967, 2936, 2874, 145
8, 1292, 1080, 941, 760cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.84-1.05(m, 12H),
1.41-1.80(m, 4H), 1.90-2.12(m, 12H), 4.94-5.07(t,
J=7.2Hz, 2H), 7.44(s, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ13.18, 14.14, 22.1
6, 23.19, 29.02, 36.38, 45.77, 121.53, 143.56, 15
4.10 EI-MS m/z(relative intensity): 322(M+ , 13), 278
(14), 195(69), 55(100, bp) EI-HRMS: calcd for C19H34N2 O2 (M+ ) 32
2.2620, found 322.2619 Mp: 32-33℃IR (neat): 3356, 2967, 2936, 2874, 145
8, 1292, 1080, 941, 760cm -1 1 H-NMR (270MHz, CDCl 3): δ0.84-1.05 (m, 12H),
1.41-1.80 (m, 4H), 1.90-2.12 (m, 12H), 4.94-5.07 (t,
J = 7.2Hz, 2H), 7.44 (s, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 13.18, 14.14, 22.1
6, 23.19, 29.02, 36.38, 45.77, 121.53, 143.56, 15
4.10 EI-MS m / z (relative intensity): 322 (M + , 13), 278
(14), 195 (69), 55 (100, bp) EI-HRMS: calcd for C 19 H 34 N 2 O 2 (M + ) 32
2.2620, found 322.2619 Mp: 32-33 ° C
【0105】V) スピロビスイソオキサゾリン(X)
の合成V) Spirobisisoxazoline (X)
Synthesis of
【化17】 Embedded image
【0106】2,2−ビス(4−エチル−3−ヘキセニ
ル)マロノジオキシムを基質として用い、実施例1の工
程V)と同様の操作により目的とする表記化合物を60
%の収率で得た。ジアステレオマーの内訳は、(M,
S,S)体とその鏡像体のラセミ混合物が31%、
(M,R,R)体とその鏡像体のラセミ混合物が7%、
(M,R,S)体とその鏡像体のラセミ混合物が22%
であった。Using 2,2-bis (4-ethyl-3-hexenyl) malonodioxime as a substrate, the desired title compound was obtained by the same operation as in step V) of Example 1.
% Yield. The breakdown of diastereomers is (M,
31% of a racemic mixture of (S, S) form and its enantiomer,
7% of racemic mixture of (M, R, R) form and its enantiomer,
22% racemic mixture of (M, R, S) form and its enantiomer
Met.
【0107】(M,S,S)体とその鏡像体のラセミ混
合物: IR(KBr): 2966, 2870, 1512, 1458, 1350, 1265, 1157,
1072, 980, 903, 833, 748, 548cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.90(t, J=4.6, 7.3H
z, 6H), 0.92(t, J=4.6, 7.5Hz, 6H), 1.38(dq, J=7.3,
14.3Hz, 2H), 1.60-2.05(m, 10H), 2.12(dt,J=5.9, 1
2.3Hz, 2H), 2.50(ddt, J=1.2, 6.1, 12.3Hz, 2H), 3.4
6(dd, J=7.3, 11.8Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ7.46, 9.23, 23.44,
23.62, 28.40, 41.30, 43.27, 61.53, 92.75, 175.79 EI-MS m/z(relative intensity): 318(M+ +1, 47), 2
90(63), 147(22), 91(100, bp) EI-HRMS: calcd for C19H30N2 O2 (M+ ) 31
8.2307, found 318.2322 Mp: 88-92℃ (M,S,S)体Racemic mixture of (M, S, S) form and its enantiomer: IR (KBr): 2966, 2870, 1512, 1458, 1350, 1265, 1157,
1072, 980, 903, 833, 748, 548cm -1 1 H-NMR (270MHz, CDCl 3): δ0.90 (t, J = 4.6, 7.3H
z, 6H), 0.92 (t, J = 4.6, 7.5Hz, 6H), 1.38 (dq, J = 7.3,
14.3Hz, 2H), 1.60-2.05 (m, 10H), 2.12 (dt, J = 5.9, 1
2.3Hz, 2H), 2.50 (ddt, J = 1.2, 6.1, 12.3Hz, 2H), 3.4
6 (dd, J = 7.3, 11.8Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ7.46, 9.23, 23.44,
23.62, 28.40, 41.30, 43.27, 61.53, 92.75, 175.79 EI-MS m / z (relative intensity): 318 (M ++ 1, 47), 2
90 (63), 147 (22), 91 (100, bp) EI-HRMS: calcd for C 19 H 30 N 2 O 2 (M + ) 31
8.2307, found 318.2322 Mp: 88-92 ℃ (M, S, S)
【0108】(M,R,R)体とその鏡像体のラセミ混
合物: IR(CCl4 ): 2963, 2878, 1636, 1458, 1381, 1273, 1
119, 1057cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.83(t, J=7.1Hz, 6
H), 0.86(t, J=7.1Hz,6H), 1.27-1.43(dq, J=7.1, 14.3
Hz, 2H), 1.49-1.73(m, 6H), 1.74-1.90(m, 4H), 2.09
(ddd, J=3.1, 8.1, 13.2Hz, 2H), 2.60(ddd, J=7.4, 9.
7, 13.2Hz, 2H),3.54(dd, J=8.6, 10.4Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ7.78, 8.97, 21.77,
24.62, 29.09, 41.72, 59.82, 93.25, 172.49 EI-MS m/z(relative intensity): 318(M+ , 9), 288
(100, bp), 218(19), 57(97) EI-HRMS: calcd for C19H30N2 O2 (M+ ) 31
8.2307, found 318.2291 Mp: 79-85℃ (M,R,R)体Racemic mixture of (M, R, R) form and its enantiomer: IR (CCl 4 ): 2963, 2878, 1636, 1458, 1381, 1273, 1
119, 1057cm -1 1 H-NMR (270MHz, CDCl 3): δ0.83 (t, J = 7.1Hz, 6
H), 0.86 (t, J = 7.1Hz, 6H), 1.27-1.43 (dq, J = 7.1, 14.3
Hz, 2H), 1.49-1.73 (m, 6H), 1.74-1.90 (m, 4H), 2.09
(ddd, J = 3.1, 8.1, 13.2Hz, 2H), 2.60 (ddd, J = 7.4, 9.
7, 13.2 Hz, 2H), 3.54 (dd, J = 8.6, 10.4 Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 7.78, 8.97, 21.77,
24.62, 29.09, 41.72, 59.82, 93.25, 172.49 EI-MS m / z (relative intensity): 318 (M + , 9), 288
(100, bp), 218 (19), 57 (97) EI-HRMS: calcd for C 19 H 30 N 2 O 2 (M + ) 31
8.2307, found 318.2291 Mp: 79-85 ℃ (M, R, R)
【0109】(M,R,S)体とその鏡像体のラセミ混
合物: IR(KBr): 2970, 2878, 1458, 1381, 1350, 941, 864, 8
33cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.84-1.03(m, 12H),
1.24-1.51(m, 2H), 1.51-2.07(m, 10H), 2.07-2.24(m,
2H), 2.48(dt, J=7.6, 13.0Hz, 1H), 2.70(dd,J=6.0, 1
2.6Hz, 1H), 3.51(dd, J=7.6, 11.6Hz, 1H), 3.70(t, J
=9.2Hz, 1H)13C-NMR(67.5MHz, CDCl3 ): δ7.42,
7.63, 9.08, 9.24, 20.81, 23.49,23.90, 24.19, 28.5
4, 28.97, 41.51, 41.87, 42.44, 59.5, 61.37, 92.92,
93.32, 172.58, 174.42 EI-MS m/z(relative intensity): 318(M+ , 46), 301
(13), 289(100, bp),57(58) EI-HRMS: calcd for C19H30N2 O2 (M+ ) 31
8.2307, found 318.2285 Mp: 89-92℃ (M,R,S)体Racemic mixture of (M, R, S) form and its enantiomer: IR (KBr): 2970, 2878, 1458, 1381, 1350, 941, 864, 8
33cm -1 1 H-NMR (270MHz , CDCl 3): δ0.84-1.03 (m, 12H),
1.24-1.51 (m, 2H), 1.51-2.07 (m, 10H), 2.07-2.24 (m,
2H), 2.48 (dt, J = 7.6, 13.0Hz, 1H), 2.70 (dd, J = 6.0, 1
2.6Hz, 1H), 3.51 (dd, J = 7.6, 11.6Hz, 1H), 3.70 (t, J
= 9.2 Hz, 1H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 7.42,
7.63, 9.08, 9.24, 20.81, 23.49,23.90, 24.19, 28.5
4, 28.97, 41.51, 41.87, 42.44, 59.5, 61.37, 92.92,
93.32, 172.58, 174.42 EI-MS m / z (relative intensity): 318 (M + , 46), 301
(13), 289 (100, bp), 57 (58) EI-HRMS: calcd for C 19 H 30 N 2 O 2 (M + ) 31
8.2307, found 318.2285 Mp: 89-92 ℃ (M, R, S)
【0110】ラセミ体混合物を実施例1の工程v)と同
様にダイセル社製 Chiralpak ADを用いて各鏡像体に光
学分割した。The racemic mixture was optically resolved into each enantiomer using Chiralpak AD manufactured by Daicel in the same manner as in step v) of Example 1.
【0111】[実施例5] i) 2,2−ビス(5−メチル−4−イソプロピル−
3−ヘキセニル)プロパン−1,3−ジカルボン酸ジエ
チルエステルの合成 4−ブロモ−1−ブテンの代わりに1−ブロモ−5−メ
チル−4−イソプロピル−3−ヘキセンを用いた以外は
実施例1の工程i)と同様の操作で表記化合物を収率9
3%で得た。淡黄色液体。Example 5 i) 2,2-bis (5-methyl-4-isopropyl-
Synthesis of diethyl ester of 3-hexenyl) propane-1,3-dicarboxylic acid Example 1 was repeated except that 1-bromo-5-methyl-4-isopropyl-3-hexene was used instead of 4-bromo-1-butene. The title compound was obtained in the same operation as in step i) in a yield of 9
Obtained at 3%. Pale yellow liquid.
【0112】IR(neat): 2963, 2870, 1732, 1462, 136
6, 1261, 1238, 1211, 1180, 1034,864, 664cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.98(d, J=6.9Hz, 24
H), 1.25(t, J=7.1Hz,6H), 1.90(s, 2H), 1.92(s, 2H),
2.26(sept, J=6.9Hz, 2H), 2.72(sept, J=6.9Hz, 2H),
4.19(q, J=7.1Hz, 4H), 5.08(t, J=3.0Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ14.20, 21.30, 22.1
3, 24.56, 28.83, 29.35, 32.79, 57.43, 61.05, 119.6
7, 151.97, 171.62 CI-MS m/z : 437(MH+ ) EI-HRMS: calcd for C27H48O4 (M+ ) 436.355
3, found 436.3542IR (neat): 2963, 2870, 1732, 1462, 136
6, 1261, 1238, 1211, 1180, 1034,864, 664cm -1 1 H-NMR (270MHz, CDCl 3): δ0.98 (d, J = 6.9Hz, 24
H), 1.25 (t, J = 7.1Hz, 6H), 1.90 (s, 2H), 1.92 (s, 2H),
2.26 (sept, J = 6.9Hz, 2H), 2.72 (sept, J = 6.9Hz, 2H),
4.19 (q, J = 7.1Hz, 4H), 5.08 (t, J = 3.0Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 14.20, 21.30, 22.1
3, 24.56, 28.83, 29.35, 32.79, 57.43, 61.05, 119.6
7, 151.97, 171.62 CI-MS m / z: 437 (MH +) EI-HRMS: calcd for C 27 H 48 O 4 (M +) 436.355
3, found 436.3542
【0113】ii) 2,2−ビス(5−メチル−4−イ
ソプロピル−3−ヘキセニル)−1,3−プロパンジオ
ールの合成 2,2−ビス(5−メチル−4−イソプロピル−3−ヘ
キセニル)プロパン−1,3−ジカルボン酸ジエチルエ
ステルを基質として用い、実施例1の工程ii)と同様の
操作で表記化合物を無色結晶として収率91%で得た。Ii) Synthesis of 2,2-bis (5-methyl-4-isopropyl-3-hexenyl) -1,3-propanediol 2,2-bis (5-methyl-4-isopropyl-3-hexenyl) The title compound was obtained as colorless crystals in a yield of 91% in the same manner as in Step ii) of Example 1 using diethyl propane-1,3-dicarboxylate as a substrate.
【0114】IR(KBr): 3287, 2959, 2928, 2870, 1462,
1381, 1362, 1246, 1115, 1050, 1007, 853, 664cm
−1 1 H-NMR(270MHz, CDCl3 ): δ0.99(d, J=6.8Hz, 12
H), 1.01(d, J=6.9Hz,12H), 1.26-1.37(m, 4H), 1.93-
2.06(m, 4H), 2.27(sept, J=6.8Hz, 2H), 2.78(sept, J
=6.9Hz, 2H), 3.61(s, 4H), 5.09(t, J=7.2Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ20.96, 21.34, 24.6
6, 28.62, 29.43, 31.50, 69.28, 120.81, 120.88, 15
1.45 CI-MS m/z : 351(M-1) Mp: 69-72℃IR (KBr): 3287, 2959, 2928, 2870, 1462,
1381, 1362, 1246, 1115, 1050, 1007, 853, 664cm
-1 1 H-NMR (270MHz, CDCl 3): δ0.99 (d, J = 6.8Hz, 12
H), 1.01 (d, J = 6.9Hz, 12H), 1.26-1.37 (m, 4H), 1.93-
2.06 (m, 4H), 2.27 (sept, J = 6.8Hz, 2H), 2.78 (sept, J
= 6.9Hz, 2H), 3.61 ( s, 4H), 5.09 (t, J = 7.2Hz, 2H) 13 C-NMR (67.5MHz, CDCl 3): δ20.96, 21.34, 24.6
6, 28.62, 29.43, 31.50, 69.28, 120.81, 120.88, 15
1.45 CI-MS m / z: 351 (M-1) Mp: 69-72 ℃
【0115】iii) 2,2−ビス(5−メチル−4−
イソプロピル−3−ヘキセニル)マロノジオキシムの合
成 2,2−ビス(5−メチル−4−イソプロピル−3−ヘ
キセニル)−1,3−プロパンジオールを基質として用
い、実施例1の工程 iii)およびiv) と同様の操作によ
り、表記化合物を無色結晶として90%(2工程で)の
収率で得た。Iii) 2,2-bis (5-methyl-4-)
Synthesis of isopropyl-3-hexenyl) malonodioxime Using 2,2-bis (5-methyl-4-isopropyl-3-hexenyl) -1,3-propanediol as a substrate, steps iii) and iv) of Example 1 and By the same operation, the title compound was obtained as colorless crystals in a yield of 90% (in two steps).
【0116】IR(KBr): 3310, 2959, 2928, 2870, 1470,
1362, 1296, 1030, 949, 667cm− 1 1 H-NMR(270MHz, CDCl3 ): δ0.98(d, J=6.9Hz, 12
H), 0.99(d, J=6.9Hz,12H), 1.62-1.75(m, 4H), 1.97-
2.10(m, 4H), 2.26(sept, J=7.0Hz, 2H), 2.73(sept, J
=6.9 H z, 2H), 5.04(t, J=7.1Hz, 2H), 6.89(s, 2H),
7.44(s, 2H) 13C-NMR(67.5MHz, CDCl3 ): δ21.28,
22.02, 24.62, 28.70, 29.44, 36.55, 45.81, 120.01,
151.96, 154.40 EI-MS m/z(relative intensity): 378(M+ , 14), 363
(10), 320(34), 69(100, bp) EI-HRMS: calcd for C23H42N2 O2 (M+ ), 37
8.3246, found 378.3257 Mp: 94-97℃IR (KBr): 3310, 2959, 2928, 2870, 1470,
1362, 1296, 1030, 949, 667cm− 1 1 H-NMR (270MHz, CDCl3 ): δ0.98 (d, J = 6.9Hz, 12
H), 0.99 (d, J = 6.9Hz, 12H), 1.62-1.75 (m, 4H), 1.97-
2.10 (m, 4H), 2.26 (sept, J = 7.0Hz, 2H), 2.73 (sept, J
= 6.9 Hz, 2H), 5.04 (t, J = 7.1Hz, 2H), 6.89 (s, 2H),
7.44 (s, 2H) 13C-NMR (67.5MHz, CDCl3 ): δ21.28,
22.02, 24.62, 28.70, 29.44, 36.55, 45.81, 120.01,
151.96, 154.40 EI-MS m / z (relative intensity): 378 (M+ , 14), 363
(10), 320 (34), 69 (100, bp) EI-HRMS: calcd for C23H42N2 O2 (M+ ), 37
8.3246, found 378.3257 Mp: 94-97 ℃
【0117】iv) スピロビスイソオキサゾリン(XI
)の合成Iv) Spirobisisoxazoline (XI
) Synthesis
【化18】 Embedded image
【0118】2,2−ビス(5−メチル−4−イソプロ
ピル−3−ヘキセニル)マロノジオキシムを基質として
用い、実施例1の工程V)と同様の操作により目的とす
る表記化合物を60%の収率で得た。ジアステレオマー
の内訳は、(M,S,S)体とその鏡像体のラセミ混合
物が31%、(M,R,R)体とその鏡像体のラセミ混
合物が7%、(M,R,S)体とその鏡像体のラセミ混
合物が22%であった。Using 2,2-bis (5-methyl-4-isopropyl-3-hexenyl) malonodioxime as a substrate, the title compound of interest was obtained in a yield of 60% by the same procedure as in step V) of Example 1. I got it. The breakdown of the diastereomer is 31% of a racemic mixture of the (M, S, S) form and its enantiomer, 7% of a racemic mixture of the (M, R, R) form and its enantiomer, (M, R, S) The racemic mixture of the isomer and its enantiomer was 22%.
【0119】(M,S,S)体とその鏡像体のラセミ混
合物: IR( 反射法): 2961, 2933, 2897, 2876, 1466, 1385, 1
373, 1364, 1005, 889, 868, 783, 704cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.91(d, J=6.8Hz, 6
H), 0.94(d, J=7.1Hz,6H), 1.00(d, J=6.8Hz, 6H), 1.0
7(d, J=6.8Hz, 6H), 1.78-1.81(m, 2H), 1.87-2.34(m,
8H), 2.47-2.61(m, 2H), 3.64(dd, J=7.5, 11.4Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ17.94, 18.36, 18.8
3, 18.91, 24.12, 31.19, 31.53, 40.66, 44.60, 56.8
3, 95.49, 172.68 CI-MS m/z : 375(MH+ ) Mp(decomposition): 160℃(M,S,S)体Racemic mixture of (M, S, S) form and its enantiomer: IR (reflection method): 2961, 2933, 2897, 2876, 1466, 1385, 1
373, 1364, 1005, 889, 868, 783, 704cm -1 1 H-NMR (270MHz, CDCl 3): δ0.91 (d, J = 6.8Hz, 6
H), 0.94 (d, J = 7.1Hz, 6H), 1.00 (d, J = 6.8Hz, 6H), 1.0
7 (d, J = 6.8Hz, 6H), 1.78-1.81 (m, 2H), 1.87-2.34 (m,
8H), 2.47-2.61 (m, 2H), 3.64 (dd, J = 7.5, 11.4 Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 17.94, 18.36, 18.8
3, 18.91, 24.12, 31.19, 31.53, 40.66, 44.60, 56.8
3, 95.49, 172.68 CI-MS m / z: 375 (MH + ) Mp (decomposition): 160 ℃ (M, S, S)
【0120】(M,R,R)体とその鏡像体のラセミ混
合物: IR( 反射法): 2961, 2878, 1466, 1385, 1342, 1007, 9
22, 899, 868, 841, 795cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.82-1.04(m, 24H),
1.81-1.98(m, 6H), 2.17-2.34(m, 4H), 2.73(dt, J=8.
4, 13.4Hz, 2H), 3.78(t, J=9.8Hz, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ17.44, 17.99, 18.3
7, 18.88, 21.96, 31.64, 31.85, 41.68, 41.95, 54.5
4, 96.69, 170.88 CI-MS m/z : 375(MH+ )Racemic mixture of (M, R, R) isomer and its enantiomer: IR (reflection method): 2961, 2878, 1466, 1385, 1342, 1007, 9
22, 899, 868, 841, 795cm -1 1 H-NMR (270MHz, CDCl 3): δ0.82-1.04 (m, 24H),
1.81-1.98 (m, 6H), 2.17-2.34 (m, 4H), 2.73 (dt, J = 8.
4, 13.4 Hz, 2H), 3.78 (t, J = 9.8 Hz, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 17.44, 17.99, 18.3
7, 18.88, 21.96, 31.64, 31.85, 41.68, 41.95, 54.5
4, 96.69, 170.88 CI-MS m / z: 375 (MH + )
【0121】(M,R,S)体とその鏡像体のラセミ混
合物: IR( 反射法): 2955, 2932, 1458, 1382, 1340, 995, 89
1, 860, 831, 800cm− 1 1 H-NMR(270MHz, CDCl3 ): δ0.82-1.04(m, 24H),
1.65-1.95(m, 5H), 2.02-2.48(m, 6H), 2.73-2.86(m, 1
H), 3.70(dd, J=7.7, 11.4Hz, 1H), 4.03(t, J=9.4Hz,
1H)13 C-NMR(67.5MHz, CDCl3 ): δ17.00, 17.64, 17.7
6, 17.96, 18.40, 18.55, 18.92, 20.26, 23.74, 31.1
1, 31.55, 31.57, 31.78, 40.15, 40.86, 42.40, 53.0
7, 56.10, 95.73, 96.93, 169.68, 172.19 CI-MS m/z : 375(MH+ )Racemic mixture of (M, R, S) form and its enantiomer: IR (reflection method): 2955, 2932, 1458, 1382, 1340, 995, 89
1, 860, 831, 800cm - 1 1 H-NMR (270MHz, CDCl 3): δ0.82-1.04 (m, 24H),
1.65-1.95 (m, 5H), 2.02-2.48 (m, 6H), 2.73-2.86 (m, 1
H), 3.70 (dd, J = 7.7, 11.4Hz, 1H), 4.03 (t, J = 9.4Hz,
1H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 17.00, 17.64, 17.7
6, 17.96, 18.40, 18.55, 18.92, 20.26, 23.74, 31.1
1, 31.55, 31.57, 31.78, 40.15, 40.86, 42.40, 53.0
7, 56.10, 95.73, 96.93, 169.68, 172.19 CI-MS m / z: 375 (MH + )
【0122】ラセミ体混合物を実施例1の工程v)と同
様にダイセル社製 Chiralpak ADを用いて各鏡像体に光
学分割した。The racemic mixture was optically resolved into each enantiomer using Chiralpak AD manufactured by Daicel in the same manner as in step v) of Example 1.
【0123】[実施例6] 光学活性3−エチルシクロヘキサノンの合成 実施例1で得られた光学活性ビスイソオキサゾリン誘導
体[VII] の(M,S,S)体(7.6mg,0.037
mmol)と銅(II)トリフラート(9.4mg,0.
026mmol)から調製した錯体とシクロヘキセノン
(51μl,0.52mmol)のトルエン溶液(1.
65ml)にジエチル亜鉛(0.68mmol)のトル
エン溶液(0.61ml)を加え、全体を−50℃で
4.5時間攪拌した。反応液に飽和塩化アンモニウム水
溶液を加えて、混合液をエーテルで抽出した。得られた
生成物をシリカゲルカラムクロマトグラフィー(ヘキサ
ン:アセトン=30:1)にて精製し、その光学純度を
ダイセル社製 Chiralpak AS(ヘキサン:イソプロピル
アルコール98: 2)により決定した。収率68%、2
2%ee。Example 6 Synthesis of Optically Active 3-Ethylcyclohexanone (M, S, S) Form (7.6 mg, 0.037) of Optically Active Bisisoxazoline Derivative [VII] Obtained in Example 1
mmol) and copper (II) triflate (9.4 mg, 0.
026 mmol) and a solution of cyclohexenone (51 μl, 0.52 mmol) in toluene (1.
(65 ml) was added with a toluene solution (0.61 ml) of diethyl zinc (0.68 mmol), and the whole was stirred at -50 ° C for 4.5 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ether. The resulting product was purified by silica gel column chromatography (hexane: acetone = 30: 1), and its optical purity was determined by Daicel's Chiralpak AS (hexane: isopropyl alcohol 98: 2). 68% yield, 2
2% ee.
【0124】[実施例7] 光学活性3−エチルシクロヘキサノンの合成 実施例2で得られた光学活性ビスイソオキサゾリン誘導
体[VIII] (9.7mg,0.037mmol)と銅
(II)トリフラート(9.4mg,0.026mmo
l)から調製した錯体とシクロヘキセノン(51μl,
0.52mmol)のトルエン溶液(1.65ml)に
ジエチル亜鉛(0.68mmol)の溶液(0.61m
l)を加え、−50℃で2時間攪拌した。実施例6と同
様に処理して生成物を得、光学純度を求めた。収率92
%、31%ee。Example 7 Synthesis of Optically Active 3-Ethylcyclohexanone The optically active bisisoxazoline derivative [VIII] (9.7 mg, 0.037 mmol) obtained in Example 2 and copper (II) triflate (9. 4mg, 0.026mmo
1) and cyclohexenone (51 μl,
0.52 mmol) in a toluene solution (1.65 ml) of diethylzinc (0.68 mmol) (0.61 m
l) was added and the mixture was stirred at -50 ° C for 2 hours. The product was obtained in the same manner as in Example 6, and the optical purity was determined. Yield 92
%, 31% ee.
【0125】[実施例8] 光学活性3−エチルシクロヘキサノンの合成 実施例1で得られた光学活性ビスイソオキサゾリン誘導
体[VII] の(M,S,S)体(10.3mg,0.05
0mmol)と銅(II)アセチルアセトナート(9.3
mg,0.0356mmol)から調製した錯体とシク
ロヘキセノン(70μl,0.713mmol)のトル
エン溶液(2.3ml)にジエチル亜鉛(0.926m
mol)のトルエン溶液(0.85ml)を加え、−3
0℃で2時間攪拌した。実施例6と同様に処理して生成
物を得、光学純度を求めた。収率79%、45%ee。Example 8 Synthesis of Optically Active 3-Ethylcyclohexanone (M, S, S) Form (10.3 mg, 0.05) of Optically Active Bisisoxazoline Derivative [VII] Obtained in Example 1
0 mmol) and copper (II) acetylacetonate (9.3).
mg, 0.0356 mmol) and diethyl zinc (0.926 m 2) in a toluene solution (2.3 ml) of cyclohexenone (70 μl, 0.713 mmol).
mol) of toluene solution (0.85 ml),
Stirred at 0 ° C. for 2 hours. The product was obtained in the same manner as in Example 6, and the optical purity was determined. Yield 79%, 45% ee.
【0126】[実施例9] 光学活性3−イソプロピルシクロヘキサノンの合成 実施例1で得られた光学活性ビスイソオキサゾリン誘導
体[VII] の(M,S,S)体(6.4mg,0.031
mmol) と銅(II)トリフラート(9.4mg,0.
026mmol)から調製した錯体とシクロヘキセノン
(51μl,0.52mmol)のトルエン溶液(1.
65ml)にジイソプロピル亜鉛(0.68mmol)
のトルエン溶液(0.61ml)を加え、−30℃で4
時間攪拌した。実施例6と同様に処理して生成物を得、
光学純度を求めた。収率79%、49%ee。Example 9 Synthesis of Optically Active 3-Isopropylcyclohexanone (M, S, S) Form (6.4 mg, 0.031) of Optically Active Bisisoxazoline Derivative [VII] Obtained in Example 1
mmol) and copper (II) triflate (9.4 mg, 0.
026 mmol) and a solution of cyclohexenone (51 μl, 0.52 mmol) in toluene (1.
65 ml) in diisopropyl zinc (0.68 mmol)
Of toluene (0.61 ml) was added,
Stirred for hours. The product was obtained by the same treatment as in Example 6,
Optical purity was determined. Yield 79%, 49% ee.
【0127】[実施例10] 光学活性1,3−ジフェニルペンタン−1−オンの合成 実施例1で得られた光学活性ビスイソオキサゾリン誘導
体[VII] の(M,S,S)体(7.4mg,0.035
7mmol)と銅(II)トリフラート(9.2mg,
0.0255mmol)から調製した錯体とカルコン
(107mg,0.51mmol)のトルエン溶液
(2.2ml)にジエチル亜鉛(0.663mmol)
のトルエン溶液(0.6ml)を加え、全体を−30℃
で7時間攪拌した。反応液に飽和塩化アンモニウム水溶
液を加えて、混合液をエーテルで抽出した。得られた生
成物をシリカゲルカラムクロマトグラフィー(ヘキサ
ン:アセトン=30:1)にて精製し、その光学純度を
ダイセル社製 Chiralpak AD (ヘキサン:イソプロピル
アルコール98:2)により決定した。収率69%、3
6%ee。Example 10 Synthesis of Optically Active 1,3-Diphenylpentan-1-one The (M, S, S) form of the optically active bisisoxazoline derivative [VII] obtained in Example 1 (7. 4 mg, 0.035
7 mmol) and copper (II) triflate (9.2 mg,
0.0255 mmol) and diethyl zinc (0.663 mmol) in a toluene solution (2.2 ml) of the complex and chalcone (107 mg, 0.51 mmol).
Of toluene solution (0.6 ml) was added and the whole was -30 ° C.
For 7 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ether. The resulting product was purified by silica gel column chromatography (hexane: acetone = 30: 1), and its optical purity was determined by Daicel's Chiralpak AD (hexane: isopropyl alcohol 98: 2). Yield 69%, 3
6% ee.
【0128】[実施例11] 光学活性trans −トランス−2−フェニルシクロヘキサ
ノールの合成 実施例1で得られた光学活性ビスイソオキサゾリン誘導
体[VII] の(M,S,S)体(14mg,0.07mm
ol)とシクロヘキセンオキシド(0.1ml,1.0
mmol)のジエチルエーテル溶液(2.2ml)にフ
ェニルリチウム(0.86Mヘキサン溶液)の溶液
(3.0ml)を加え、全体を0℃で12時間攪拌し
た。反応液に1N塩酸を加えて反応を停止した後、混合
液を酢酸エチルで抽出した。得られた生成物をシリカゲ
ルカラムクロマトグラフィー(ヘキサン:酢酸エチル=
5:1)にて精製し、その光学純度をダイセル社製 Chi
ralcel OD (ヘキサン:イソプロピルアルコール=9
8:2)により決定した。収率58%、16%ee。Example 11 Synthesis of Optically Active trans-trans-2-phenylcyclohexanol The (M, S, S) form of the optically active bisisoxazoline derivative [VII] obtained in Example 1 (14 mg, 0 .07mm
ol) and cyclohexene oxide (0.1 ml, 1.0 ml
mmol) in diethyl ether (2.2 ml) was added a solution of phenyllithium (0.86 M in hexane) (3.0 ml), and the whole was stirred at 0 ° C. for 12 hours. After the reaction was stopped by adding 1N hydrochloric acid to the reaction mixture, the mixture was extracted with ethyl acetate. The obtained product is subjected to silica gel column chromatography (hexane: ethyl acetate =
5: 1) and the optical purity was determined by Daicel Chi
ralcel OD (hexane: isopropyl alcohol = 9
8: 2). Yield 58%, 16% ee.
【0129】[実施例12] 光学活性3−ヒドロキシメチル−3,6−ジヒドロ−2
H−ピランの合成(一般操作法) 表1にリガンドとして示す、上記実施例で得られた光学
活性スピロビスイソオキサゾリン誘導体(18μmo
l)と、パラジウム(II)トリフラート(15μmol)
とを塩化メチレン(0.40ml)中、室温で2時間攪
拌し、錯体を形成した。この溶液に、表1に示す基R2
を有するオレフィン(a) (0.10mmol)とp−
ベンゾキノン(43mg,0.40mmol)を室温で
加え、攪拌した。表1に示す時間の反応終了後、水を加
えて反応を停止し、酢酸エチルで抽出、食塩水で洗浄
し、Na2SO4で乾燥、濃縮した。残差をシリカゲル
カラムクロマトグラフィー(ヘキサン−酢酸エチル=
7:1〜2:1)にて精製し、表1に示す収率と光学純
度(ee)で環状生成物(b) を得た。光学純度はp−ニ
トロベンゾイルエステルに変換した後ダイセル社製 Chi
ralpak AD (ヘキサン−イソプロピルアルコール)によ
り決定した。これらをまとめて表1に示す。Example 12 Optically active 3-hydroxymethyl-3,6-dihydro-2
Synthesis of H-pyran (General Procedure) The optically active spirobisisoxazoline derivative (18 μmo) shown in Table 1 and obtained as a ligand in the above example.
l) and palladium (II) triflate (15 μmol)
Was stirred in methylene chloride (0.40 ml) at room temperature for 2 hours to form a complex. To this solution was added a group R 2 shown in Table 1.
(A) (0.10 mmol) having
Benzoquinone (43 mg, 0.40 mmol) was added at room temperature and stirred. After completion of the reaction for the time shown in Table 1, the reaction was stopped by adding water, extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and concentrated. The residue was analyzed by silica gel column chromatography (hexane-ethyl acetate =
7: 1 to 2: 1) to obtain a cyclic product (b) with the yield and optical purity (ee) shown in Table 1. The optical purity was determined by converting to p-nitrobenzoyl ester and then
Determined by ralpak AD (hexane-isopropyl alcohol). These are summarized in Table 1.
【0130】[0130]
【化19】 Embedded image
【表1】 [Table 1]
【0131】3−ヒドロキシメチル−3,6,6−トリ
メチル−3,6−ジヒドロ−2H−ピラン:無色液体 IR(neat): 3420, 2972, 2870, 1466, 1360, 1232, 119
0, 1074, 1043, 916, 820, 750cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.90(s, 3H), 1.25
(s, 3H), 1.27(s, 3H),2.20-2.50(bro-s, 1H), 3.50(s,
2H), 3.52(d, J=11.5Hz, 1H), 3.75(dd, J=11.5, 1.2H
z, 1H), 5.47(dd, J=10.2, 1.2Hz, 1H), 5.72(d, J=10.
2, 1H)13 C-NMR(67.5MHz, CDCl3 ): δ20.18, 25.62, 28.6
2, 36.31, 68.38, 69.61, 72.21, 129.08, 135.69 CI-MS m/z : 157(MH+ ), 156(M+ )3-Hydroxymethyl-3,6,6-trimethyl-3,6-dihydro-2H-pyran: colorless liquid IR (neat): 3420, 2972, 2870, 1466, 1360, 1232, 119
0, 1074, 1043, 916, 820, 750cm -1 1 H-NMR (270MHz, CDCl 3): δ0.90 (s, 3H), 1.25
(s, 3H), 1.27 (s, 3H), 2.20-2.50 (bro-s, 1H), 3.50 (s,
2H), 3.52 (d, J = 11.5Hz, 1H), 3.75 (dd, J = 11.5, 1.2H
z, 1H), 5.47 (dd, J = 10.2, 1.2Hz, 1H), 5.72 (d, J = 10.
2, 1H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ20.18, 25.62, 28.6
2, 36.31, 68.38, 69.61, 72.21, 129.08, 135.69 CI-MS m / z: 157 (MH + ), 156 (M + )
【0132】6,6−ジメチル−3−エチル−3−ヒド
ロキシメチル−3,6−ジヒドロ−2H−ピラン:無色
液体 IR(neat): 3421, 2974, 2926, 2878, 1461, 1360, 121
7, 1184, 1074, 984, 746cm−1 1 H-NMR(270MHz, CDCl3 ): δ0.87(t, J=7.6Hz, 3
H), 1.25(s, 3H), 1.26(s, 3H), 1.22-1.40(m, 4H), 3.
50(d, J=10.5Hz, 1H), 3.54(d, J=10.5Hz, 1H),3.63(d,
J=11.6Hz, 1H), 3.72(dd, J=11.6, 1.2Hz, 1H), 5.48
(dd, J=10.2, 1.2Hz, 1H), 5.77(d, J=10.2Hz, 1H)13 C-NMR(67.5MHz, CDCl3 ): δ7.96, 25.72, 26.3
8, 28.53, 39.06, 66.70, 68.15, 72.20, 127.40, 136.
536,6-dimethyl-3-ethyl-3-hydroxymethyl-3,6-dihydro-2H-pyran: colorless liquid IR (neat): 3421, 2974, 2926, 2878, 1461, 1360, 121
7, 1184, 1074, 984, 746cm -1 1 H-NMR (270MHz, CDCl 3): δ0.87 (t, J = 7.6Hz, 3
H), 1.25 (s, 3H), 1.26 (s, 3H), 1.22-1.40 (m, 4H), 3.
50 (d, J = 10.5Hz, 1H), 3.54 (d, J = 10.5Hz, 1H), 3.63 (d,
J = 11.6Hz, 1H), 3.72 (dd, J = 11.6, 1.2Hz, 1H), 5.48
(dd, J = 10.2, 1.2Hz, 1H), 5.77 (d, J = 10.2Hz, 1H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ7.96, 25.72, 26.3
8, 28.53, 39.06, 66.70, 68.15, 72.20, 127.40, 136.
53
【0133】3−ベンジル−6,6−ジメチル−3−ヒ
ドロキシメチル−3,6−ジヒドロ−2H−ピラン:無
色結晶 IR( 反射法): 3410, 2976, 2918, 2898, 1495, 1454, 1
362, 1140, 1055, 1038, 818, 739, 704cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.19(s, 3H), 1.24
(s, 3H), 2.20(bro-s, 1H), 2.62(d, J=13.3Hz, 1H),
2.73(d, J=13.3Hz, 1H), 3.49(s, 2H), 3.64(d, J=11.6
Hz, 1H), 3.72(dd, J=11.6, 0.8Hz, 1H), 5.50(d, J=1
0.3Hz, 1H), 5.72(d, J=10.3Hz, 1H), 7.10-7.35(m, 5
H)13 C-NMR(67.5MHz, CDCl3 ): δ26.25, 27.94, 40.0
4, 40.09, 66.58, 66.73, 72.35, 126.21, 127.22, 12
7.92, 130.30, 136.34, 136.96 [実施例13] 光学活性3−オキサビシクロ[3.2.1]オクタンの
合成(一般操作法) 表2にリガンドとして示す、上記実施例で得られた光学
活性スピロビスイソオキサゾリン誘導体(24μmo
l)と、パラジウム(II)トリフラート(20μmol)
とを塩化メチレン(0.40ml)中、室温で2時間攪
拌し、錯体を形成した。この溶液にジオレフィン(c)
(0.10mmol)とp−ベンゾキノン(43mg,
0.40mmol)を室温で加え、攪拌した。表2に示
す時間の反応終了後、水を加えて反応を停止し、酢酸エ
チルで抽出、食塩水で洗浄し、Na2SO4で乾燥、濃
縮した。残差をシリカゲルカラムクロマトグラフィー
(ヘキサン−酢酸エチル=30:1)にて精製し、表2
に示す収率と光学純度(ee)で籠状生成物(d) および
環状生成物(e)(f)を得た。光学純度はダイセル社製 Chi
ralpak AD (ヘキサン- イソプロピルアルコール)によ
り決定した。これらをまとめて表2に示す。3-Benzyl-6,6-dimethyl-3-hydroxymethyl-3,6-dihydro-2H-pyran: colorless crystal IR (reflection method): 3410, 2976, 2918, 2898, 1495, 1454, 1
362, 1140, 1055, 1038, 818, 739, 704cm -1 1 H-NMR (270MHz, CDCl 3): δ1.19 (s, 3H), 1.24
(s, 3H), 2.20 (bro-s, 1H), 2.62 (d, J = 13.3Hz, 1H),
2.73 (d, J = 13.3Hz, 1H), 3.49 (s, 2H), 3.64 (d, J = 11.6
Hz, 1H), 3.72 (dd, J = 11.6, 0.8Hz, 1H), 5.50 (d, J = 1
0.3Hz, 1H), 5.72 (d, J = 10.3Hz, 1H), 7.10-7.35 (m, 5
H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 26.25, 27.94, 40.0
4, 40.09, 66.58, 66.73, 72.35, 126.21, 127.22, 12
7.92, 130.30, 136.34, 136.96 Example 13 Synthesis of Optically Active 3-Oxabicyclo [3.2.1] octane (General Procedure) The optically active spiro obtained in the above example, shown as a ligand in Table 2, Bisisoxazoline derivative (24 μmo
l) and palladium (II) triflate (20 μmol)
Was stirred in methylene chloride (0.40 ml) at room temperature for 2 hours to form a complex. Diolefin (c)
(0.10 mmol) and p-benzoquinone (43 mg,
0.40 mmol) at room temperature and stirred. After completion of the reaction for the time shown in Table 2, the reaction was stopped by adding water, extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and concentrated. The residue was purified by silica gel column chromatography (hexane-ethyl acetate = 30: 1).
(D) and cyclic products (e) and (f) were obtained with the yield and optical purity (ee) shown in (1). The optical purity is Daicel Chi
Determined by ralpak AD (hexane-isopropyl alcohol). These are summarized in Table 2.
【0134】[0134]
【化20】 Embedded image
【表2】 [Table 2]
【0135】1−ベンゾイルオキシ−4,4−ジメチル
−6−イソプロペニル−3−オキサビシクロ[3.2.
1]オクタン:無色液体 IR(neat): 2939, 2870, 1720, 1450, 1381, 1315, 127
3, 1115, 1069, 887, 714cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.26(s, 3H), 1.27
(s, 3H), 1.50-1.62(m,2H), 1.77(s, 3H), 1.77-1.93
(m, 2H), 2.01(ddd, J=13.0, 10.9, 3.0Hz, 1H),2.85-
2.97(m, 1H), 3.57(dd, J=12.0, 2.4Hz, 1H), 3.75(dd,
J=12.0, 0.98Hz,1H), 4.20(d, J=12.0Hz, 1H), 4.24
(d, J=12.0Hz, 1H), 4.71(s, 1H), 4.74(s,1H), 7.40-
7.50(m, 2H), 7.52-7.60(m, 1H), 8.00-8.06(m, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ22.35, 22.71, 27.4
4, 32.56, 36.01, 44.26, 44.42, 48.90, 68.82, 70.2
9, 74.81, 107.80, 128.40, 129.51, 129.52, 130.11,
133.00, 149.14, 166.43 EI-MS m/z(relative intensity): 314(M+ , 20), 299
(13), 192(82), 105(100, bp) EI-HRMS: calcd for C20H26O3 (M+ ), 314.188
2, found 314.18741-benzoyloxy-4,4-dimethyl-6-isopropenyl-3-oxabicyclo [3.2.
1] Octane: colorless liquid IR (neat): 2939, 2870, 1720, 1450, 1381, 1315, 127
3, 1115, 1069, 887, 714cm -1 1 H-NMR (270MHz, CDCl 3): δ1.26 (s, 3H), 1.27
(s, 3H), 1.50-1.62 (m, 2H), 1.77 (s, 3H), 1.77-1.93
(m, 2H), 2.01 (ddd, J = 13.0, 10.9, 3.0Hz, 1H), 2.85-
2.97 (m, 1H), 3.57 (dd, J = 12.0, 2.4Hz, 1H), 3.75 (dd,
J = 12.0, 0.98Hz, 1H), 4.20 (d, J = 12.0Hz, 1H), 4.24
(d, J = 12.0Hz, 1H), 4.71 (s, 1H), 4.74 (s, 1H), 7.40-
7.50 (m, 2H), 7.52-7.60 (m, 1H), 8.00-8.06 (m, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ22.35, 22.71, 27.4
4, 32.56, 36.01, 44.26, 44.42, 48.90, 68.82, 70.2
9, 74.81, 107.80, 128.40, 129.51, 129.52, 130.11,
133.00, 149.14, 166.43 EI-MS m / z (relative intensity): 314 (M + , 20), 299
(13), 192 (82) , 105 (100, bp) EI-HRMS: calcd for C 20 H 26 O 3 (M +), 314.188
2, found 314.1874
【0136】3−ベンゾイルオキシメチル−6,6−ジ
メチル−3−(3−メチル−3 −ブテニル)−3,6−
ジヒドロ−2H−ピラン:無色液体 IR(neat): 2974, 2931, 1720, 1450, 1377, 1273, 111
5, 1176, 1076, 1026,752, 710cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.27(s, 6H), 1.62
(d, J=8.1Hz, 1H), 1.64(d, J=7.9Hz, 1H), 1.72(s, 3
H), 1.95-2.20(m, 2H), 3.66(d, J=11.5Hz, 1H),3.80
(d, J=11.5Hz, 1H), 4.21(d, J=10.5Hz, 1H), 4.26(d,
J=10.5Hz, 1H), 4.69(s, 2H), 5.58(d, J=10.2Hz, 1H),
5.75(d, J=10.2Hz, 1H), 7.40-7.48(m, 2H), 7.56(tt,
J=7.0, 1.1Hz, 1H), 7.99-8.07(m, 2H)13 C-NMR(67.5MHz, CDCl3 ): δ22.57, 26.48, 27.7
3, 31.79, 32.33, 37.87, 65.39, 67.46, 72.14, 109.8
6, 126.60, 128.40, 129.53, 130.23, 132.96,136.85,
145.86, 166.41 EI-MS m/z(relative intensity): 314(25), 299(98), 2
45(45), 193(98), 79(100, bp) EI-HRMS: calcd for C20H26O3 (M+ ), 314.188
2, found 314.18933-Benzoyloxymethyl-6,6-dimethyl-3- (3-methyl-3-butenyl) -3,6-
Dihydro-2H-pyran: colorless liquid IR (neat): 2974, 2931, 1720, 1450, 1377, 1273, 111
5, 1176, 1076, 1026,752, 710cm -1 1 H-NMR (270MHz, CDCl 3): δ1.27 (s, 6H), 1.62
(d, J = 8.1Hz, 1H), 1.64 (d, J = 7.9Hz, 1H), 1.72 (s, 3
H), 1.95-2.20 (m, 2H), 3.66 (d, J = 11.5Hz, 1H), 3.80
(d, J = 11.5Hz, 1H), 4.21 (d, J = 10.5Hz, 1H), 4.26 (d,
J = 10.5Hz, 1H), 4.69 (s, 2H), 5.58 (d, J = 10.2Hz, 1H),
5.75 (d, J = 10.2Hz, 1H), 7.40-7.48 (m, 2H), 7.56 (tt,
J = 7.0, 1.1Hz, 1H), 7.99-8.07 (m, 2H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ22.57, 26.48, 27.7
3, 31.79, 32.33, 37.87, 65.39, 67.46, 72.14, 109.8
6, 126.60, 128.40, 129.53, 130.23, 132.96,136.85,
145.86, 166.41 EI-MS m / z (relative intensity): 314 (25), 299 (98), 2
45 (45), 193 (98), 79 (100, bp) EI-HRMS: calcd for C 20 H 26 O 3 (M + ), 314.188
2, found 314.1893
【0137】3−ベンゾイルオキシメチル−6,6−ジ
メチル−3−(3−メチル−2−ブテニル)−3,6−
ジヒドロ−2H−ピラン:無色液体 IR(neat): 2974, 2928, 1724, 1450, 1377, 1273, 117
7, 1115, 1027, 1026,752, 710cm−1 1 H-NMR(270MHz, CDCl3 ): δ1.26(s, 6H), 1.58
(s, 3H), 1.70(s, 3H),2.19(d, J=7.6Hz, 2H), 3.60(d,
J=11.5Hz, 1H), 3.77(d, J=11.5Hz, 1H), 4.20(s, 2
H), 5.10-5.22(m, 1H), 5.58(d, J=10.2Hz, 1H), 5.71
(d, J=10.2Hz, 1H),7.44(t, J=7.4Hz, 2H), 7.53-7.59
(m, 2H), 8.30(d, J=7.3Hz, 1H)13 C-NMR(67.5MHz, CDCl3 ): δ17.99, 26.08, 26.5
9, 27.86, 32.44, 38.77, 65.38, 67.23, 72.20, 118.4
7, 126.95, 128.27, 129.41, 130.21, 132.79,134.71,
136.25, 166.24 EI-MS m/z(relative intensity): 314(M+ , 13), 299
(52), 245(17), 229(33), 123(100, bp) EI-HRMS: calcd for C20H26O3 (M+ ), 314.188
2, found 314.18513-benzoyloxymethyl-6,6-dimethyl-3- (3-methyl-2-butenyl) -3,6-
Dihydro-2H-pyran: colorless liquid IR (neat): 2974, 2928, 1724, 1450, 1377, 1273, 117
7, 1115, 1027, 1026,752, 710cm -1 1 H-NMR (270MHz, CDCl 3): δ1.26 (s, 6H), 1.58
(s, 3H), 1.70 (s, 3H), 2.19 (d, J = 7.6Hz, 2H), 3.60 (d,
J = 11.5Hz, 1H), 3.77 (d, J = 11.5Hz, 1H), 4.20 (s, 2
H), 5.10-5.22 (m, 1H), 5.58 (d, J = 10.2Hz, 1H), 5.71
(d, J = 10.2Hz, 1H), 7.44 (t, J = 7.4Hz, 2H), 7.53-7.59
(m, 2H), 8.30 (d, J = 7.3 Hz, 1H) 13 C-NMR (67.5 MHz, CDCl 3 ): δ 17.99, 26.08, 26.5
9, 27.86, 32.44, 38.77, 65.38, 67.23, 72.20, 118.4
7, 126.95, 128.27, 129.41, 130.21, 132.79,134.71,
136.25, 166.24 EI-MS m / z (relative intensity): 314 (M + , 13), 299
(52), 245 (17) , 229 (33), 123 (100, bp) EI-HRMS: calcd for C 20 H 26 O 3 (M +), 314.188
2, found 314.1851
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 33/28 C07C 33/28 35/21 35/21 45/29 45/29 45/69 45/69 47/21 47/21 47/238 47/238 49/403 49/403 E 249/08 249/08 251/40 251/40 C07D 309/24 C07D 309/24 // C07B 61/00 300 C07B 61/00 300 C07D 493/08 C07D 493/08 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C07C 33/28 C07C 33/28 35/21 35/21 45/29 45/29 45/69 45/69 47 / 21 47/21 47/238 47/238 49/403 49/403 E 249/08 249/08 251/40 251/40 C07D 309/24 C07D 309/24 // C07B 61/00 300 C07B 61/00 300 C07D 493/08 C07D 493/08 C
Claims (25)
ゾリン誘導体。 【化1】 (式中、Rは水素原子、低級アルキル基、低級アルケニ
ル基、置換基を有していてもよいアラルキル基、また
は、置換基を有していてもよいアリール基であり、4つ
のRはすべて同一であっても少なくとも1つ異なってい
てもよい。R´は単結合または低級アルキレン基であ
る。)1. A bisisoxazoline derivative represented by the general formula [I]. Embedded image (In the formula, R is a hydrogen atom, a lower alkyl group, a lower alkenyl group, an aralkyl group which may have a substituent, or an aryl group which may have a substituent. It may be the same or at least one different. R 'is a single bond or a lower alkylene group.)
たはメチル基である請求項1に記載のビスイソオキサゾ
リン誘導体。2. The bisisoxazoline derivative according to claim 1, wherein each of the four Rs is a hydrogen atom or a methyl group.
2に記載のビスイソオキサゾリン誘導体。3. The bisisoxazoline derivative according to claim 1, wherein R ′ is a methylene group.
かに記載のビスイソオキサゾリン誘導体。4. The bisisoxazoline derivative according to claim 1, which is an optically active substance.
化条件下で環化してビスイソオキサゾリン誘導体[I]
を得る請求項1に記載のビスイソオキサゾリン誘導体の
製造法。 【化2】 (式中、RおよびR´は請求項1における定義と同じ意
味を有する。)5. A bisisoxazoline derivative [I] obtained by cyclizing a dioxime represented by the general formula [VI] under oxidizing conditions.
The process for producing a bisisoxazoline derivative according to claim 1, wherein Embedded image (Wherein, R and R ′ have the same meaning as defined in claim 1)
光学分割する請求項5に記載のビスイソオキサゾリン誘
導体の製造法。6. The method for producing a bisisoxazoline derivative according to claim 5, wherein the obtained bisisoxazoline derivative is optically resolved.
ル基、置換基を有していてもよいアラルキル基、また
は、置換基を有していてもよいアリール基であり、4つ
のRはすべて同一であっても少なくとも1つ異なってい
てもよい。R´は単結合または低級アルキレン基であ
る。)7. A dioxime represented by the general formula [VI]. Embedded image (In the formula, R is a hydrogen atom, a lower alkyl group, a lower alkenyl group, an aralkyl group which may have a substituent, or an aryl group which may have a substituent. It may be the same or at least one different. R 'is a single bond or a lower alkylene group.)
のジオキシム。8. The dioxime according to claim 7, wherein R ′ is a methylene group.
ヒドロキシルアミンと反応させてジオキシム[VI]を得
る請求項7に記載のジオキシムの製造法。 【化4】 (式中、RおよびR´は請求項7における定義と同じ意
味を有する。)9. The process for producing a dioxime according to claim 7, wherein the dialdehyde represented by the general formula [V] is reacted with hydroxylamine to obtain a dioxime [VI]. Embedded image (Wherein R and R ′ have the same meaning as defined in claim 7)
ド。 【化5】 (式中、Rは水素原子、低級アルキル基、低級アルケニ
ル基、置換基を有していてもよいアラルキル基、また
は、置換基を有していてもよいアリール基であり、4つ
のRはすべて同一であっても少なくとも1つ異なってい
てもよい。R´は単結合または低級アルキレン基であ
る。)10. A dialdehyde represented by the general formula [V]. Embedded image (In the formula, R is a hydrogen atom, a lower alkyl group, a lower alkenyl group, an aralkyl group which may have a substituent, or an aryl group which may have a substituent. It may be the same or at least one different. R 'is a single bond or a lower alkylene group.)
記載のジアルデヒド。11. The dialdehyde according to claim 10, wherein R ′ is a methylene group.
化してジアルデヒド[V]を得る請求項10に記載のジ
アルデヒドの製造法。 【化6】 (式中、RおよびR´は請求項10における定義と同じ
意味を有する。)12. The method for producing a dialdehyde according to claim 10, wherein the diol represented by the general formula [IV] is oxidized to obtain a dialdehyde [V]. Embedded image (Wherein, R and R ′ have the same meaning as defined in claim 10)
ル基、置換基を有していてもよいアラルキル基、また
は、置換基を有していてもよいアリール基であり、4つ
のRはすべて同一であっても少なくとも1つ異なってい
てもよい。R´は単結合または低級アルキレン基であ
る。)13. A diol represented by the general formula [IV]. Embedded image (In the formula, R is a hydrogen atom, a lower alkyl group, a lower alkenyl group, an aralkyl group which may have a substituent, or an aryl group which may have a substituent. It may be the same or at least one different. R 'is a single bond or a lower alkylene group.)
記載のジオール。14. The diol according to claim 13, wherein R ′ is a methylene group.
ルマロン酸エステルを還元してジオール[IV]を得る請
求項13に記載のジオールの製造法。 【化8】 (式中、RおよびR´は請求項13における定義と同じ
意味を有する。R''低級アルキル基である。)15. The method for producing a diol according to claim 13, wherein the dialkenyl malonic ester represented by the general formula [III] is reduced to obtain a diol [IV]. Embedded image Wherein R and R ′ have the same meaning as defined in claim 13. R ″ is a lower alkyl group.
]が、一般式[II]で表されるハロゲン化オレフィン
をマロン酸ジエステルと塩基存在下で作用させて得られ
るものである請求項15に記載のジオールの製造法。 【化9】 (式中、R、R´およびR''は請求項15における定義
と同じ意味を有する。Xはハロゲン原子である。)16. A dialkenyl malonic ester [III
] Is obtained by reacting a halogenated olefin represented by the general formula [II] with a malonic acid diester in the presence of a base. Embedded image (Wherein, R, R ′ and R ″ have the same meaning as defined in claim 15. X is a halogen atom.)
イソオキサゾリン誘導体[I]に金属を配位してなる錯
体。17. A complex obtained by coordinating a metal to the bisisoxazoline derivative [I] according to any one of claims 1 to 4.
キサゾリン誘導体[I]からなる不斉合成反応触媒。18. An asymmetric synthesis reaction catalyst comprising the optically active bisisoxazoline derivative [I] according to claim 4.
キサゾリン誘導体[I]に遷移金属を配位してなる錯体
からなる不斉合成反応触媒。19. An asymmetric synthesis catalyst comprising a complex obtained by coordinating a transition metal with the optically active bisisoxazoline derivative [I] according to claim 4.
o、Ni、Cu、Zn、Ru、Rh、およびPdからな
る群から選ばれる請求項19に記載の触媒。20. A transition metal comprising Cr, Mn, Fe, C
20. The catalyst according to claim 19, wherein the catalyst is selected from the group consisting of o, Ni, Cu, Zn, Ru, Rh, and Pd.
触媒を用いて不斉合成反応を行う方法。21. A method for performing an asymmetric synthesis reaction using the catalyst according to any one of claims 18 to 20.
る請求項21に記載の触媒の方法。22. The method according to claim 21, wherein the asymmetric synthesis reaction is an asymmetric nucleophilic addition reaction.
キシ化合物の不斉開環反応を行う方法。23. A method for performing an asymmetric ring-opening reaction of an epoxy compound using the catalyst according to claim 18.
用いて共役エノンへの不斉マイケル型求核付加反応を行
う方法。24. A method for performing an asymmetric Michael-type nucleophilic addition reaction to a conjugated enone using the catalyst according to claim 19 or 20.
用いて不斉ワッカー反応を行う方法。25. A method for performing an asymmetric Wacker reaction using the catalyst according to claim 19 or 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000236406A JP3896774B2 (en) | 1999-08-05 | 2000-08-04 | Bisisoxazoline derivative, production method thereof and catalyst comprising metal complex thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22277199 | 1999-08-05 | ||
JP11-222771 | 1999-08-05 | ||
JP2000236406A JP3896774B2 (en) | 1999-08-05 | 2000-08-04 | Bisisoxazoline derivative, production method thereof and catalyst comprising metal complex thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001106690A true JP2001106690A (en) | 2001-04-17 |
JP3896774B2 JP3896774B2 (en) | 2007-03-22 |
Family
ID=26525076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000236406A Expired - Fee Related JP3896774B2 (en) | 1999-08-05 | 2000-08-04 | Bisisoxazoline derivative, production method thereof and catalyst comprising metal complex thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3896774B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006076915A (en) * | 2004-09-09 | 2006-03-23 | Daiso Co Ltd | Optically-active spiro-bisisooxazole derivative and its manufacturing method, and asymmetric catalytic reaction using its metal complex |
JP2006076939A (en) * | 2004-09-10 | 2006-03-23 | Daiso Co Ltd | Optically-active spiro-bisisooxazoline derivative and its manufacturing method, and asymmetric catalytic reaction using its metal complex |
CN112110801A (en) * | 2020-10-09 | 2020-12-22 | 浙江工业大学 | Method for synthesizing gamma-aryl substituted ketone compound |
CN114057717A (en) * | 2020-07-29 | 2022-02-18 | 中国科学院上海有机化学研究所 | Quinoline-substituted bisoxazoline ligand, and synthesis method and application thereof |
-
2000
- 2000-08-04 JP JP2000236406A patent/JP3896774B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006076915A (en) * | 2004-09-09 | 2006-03-23 | Daiso Co Ltd | Optically-active spiro-bisisooxazole derivative and its manufacturing method, and asymmetric catalytic reaction using its metal complex |
JP2006076939A (en) * | 2004-09-10 | 2006-03-23 | Daiso Co Ltd | Optically-active spiro-bisisooxazoline derivative and its manufacturing method, and asymmetric catalytic reaction using its metal complex |
CN114057717A (en) * | 2020-07-29 | 2022-02-18 | 中国科学院上海有机化学研究所 | Quinoline-substituted bisoxazoline ligand, and synthesis method and application thereof |
CN114057717B (en) * | 2020-07-29 | 2023-09-15 | 中国科学院上海有机化学研究所 | Quinoline-substituted bisoxazoline ligand, and synthetic method and application thereof |
CN112110801A (en) * | 2020-10-09 | 2020-12-22 | 浙江工业大学 | Method for synthesizing gamma-aryl substituted ketone compound |
CN112110801B (en) * | 2020-10-09 | 2022-07-19 | 浙江工业大学 | Synthetic method of gamma-aryl substituted ketone compound |
Also Published As
Publication number | Publication date |
---|---|
JP3896774B2 (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5671456B2 (en) | Novel ruthenium carbonyl complex having a tridentate ligand, and production method and use thereof | |
EP2095875B1 (en) | Homogeneous asymmetric hydrogenation catalyst | |
JP6483134B2 (en) | Hydrogenation of esters with Fe / tridentate ligand complexes | |
Kirihara et al. | Sodium hypochlorite pentahydrate as a reagent for the cleavage of trans-cyclic glycols | |
JP4147516B2 (en) | Novel intermediate compound and method for producing optically active octanoic acid derivative | |
Wenderski et al. | Dearomatization applications of I (III) reagents and some unusual reactivity amongst resorcinol derived cyclohexadienones | |
Yamaguchi et al. | Concise Enantio‐and Diastereoselective Total Syntheses of Fumagillol, RK‐805, FR65814, Ovalicin, and 5‐Demethylovalicin | |
Sun et al. | Total Synthesis of (−)-Retigeranic Acid A: A Reductive Skeletal Rearrangement Strategy | |
Sasaki et al. | Bisoxazoline-catalyzed asymmetric nucleophilic addition of diethyl zinc to fluorinated alkyl ketones: enantiofacial control by changing the bisoxazoline substituent | |
JP3896774B2 (en) | Bisisoxazoline derivative, production method thereof and catalyst comprising metal complex thereof | |
JP4943185B2 (en) | Process for producing optically active sulfonylimine compound | |
CN114082446A (en) | Chiral zirconium catalyst for preparing chiral alpha-hydroxy-beta-keto ester compound and preparation method thereof | |
KR100778953B1 (en) | Cyclic ketones, their preparation and their use in the synthesis of amino acids | |
Itagaki et al. | Enantio-and diastereocontrolled synthesis of (+)-juvabione employing organocatalytic desymmetrisation and photoinduced fragmentation | |
JP4696274B2 (en) | Solid chiral zirconium catalyst and method for synthesizing aldol reactant or cyclized compound using the same | |
Nakatani et al. | Intramolecular Cooperative Reactions of 1, 2-Bis (diazoketone) s. The First Syntheses of trans-Hydro-1H-2-inden-1-ones | |
JP4860510B2 (en) | Production of carboxylic acid having asymmetric point at β-position and nucleophile | |
JP2001114755A (en) | Method for producing vitamin a aldehyde and intermediate | |
Nguyen | Development of neutral redox carbon-carbon bond forming reactions via transition metal-catalyzed transfer hydrogenation | |
JP4284027B2 (en) | Process for producing optically active isoxazolidines | |
CN117720396B (en) | Preparation method of cis-bicyclo [3.1.0] hex-3-ol | |
JP4732180B2 (en) | Stereoselective production method of 1,3-aminoalcohol derivatives | |
Mamboury | Palladium-Catalyzed Synthesis of Ketenimines from Isocyanides and Synthetic Studies Towards the Total Synthesis of Mersilongine | |
AU2005273649B2 (en) | Enantioselective synthesis of 13-oxotricyclo[8.2.1.0 3,8]trideca-3(8),4,6-triene-5-carboxylates | |
Guo | Mild Electrocyclization of Heptatrienyl Anions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061211 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |