JP4943185B2 - Process for producing optically active sulfonylimine compound - Google Patents

Process for producing optically active sulfonylimine compound Download PDF

Info

Publication number
JP4943185B2
JP4943185B2 JP2007053559A JP2007053559A JP4943185B2 JP 4943185 B2 JP4943185 B2 JP 4943185B2 JP 2007053559 A JP2007053559 A JP 2007053559A JP 2007053559 A JP2007053559 A JP 2007053559A JP 4943185 B2 JP4943185 B2 JP 4943185B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007053559A
Other languages
Japanese (ja)
Other versions
JP2008214262A (en
Inventor
修 小林
亮介 松原
隆司 土幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2007053559A priority Critical patent/JP4943185B2/en
Publication of JP2008214262A publication Critical patent/JP2008214262A/en
Application granted granted Critical
Publication of JP4943185B2 publication Critical patent/JP4943185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、エンスルホンアミド、及びこれと、アルデヒド基を有する化合物とを、有機溶媒中で銅化合物及び不斉炭素原子を含有するジイミンとを含有してなる触媒の存在下で反応させて、スルホニルイミン化合物、並びにその加水分解物及び還元物を製造する方法に関する。   The present invention comprises reacting an enesulfonamide and a compound having an aldehyde group in an organic solvent in the presence of a catalyst containing a copper compound and a diimine containing an asymmetric carbon atom, The present invention relates to a method for producing a sulfonylimine compound, and a hydrolyzate and a reduced product thereof.

医薬品、農薬、香料、機能性高分子等のファインケミカル分野においては、化学物質の有効性や安全性の観点からより高純度の物質を提供することが望まれてきている。特に、分子中に不斉炭素原子を有する物質については、光学的にもより高純度の物質の提供が望まれてきており、立体選択的又はエナンチオ選択的な化学物質の製造法の開発が望まれてきている。このような製造方法は、一般に不斉合成法として呼ばれており、不斉水素化反応はすでに工業化されてきている。
触媒的不斉アルドール反応は、カルボニル基と水酸基を有する化合物のエナンチオ選択的な製造方法としてファインケミカル分野における重要な化合物の合成方法として活発に検討されてきたが、アルドール反応は自己縮合やオリゴマー化などの副反応が生じやすく必ずしも十分な収率で目的物を得ることはできなかった。特に、アルデヒドを求核剤として用いた場合、自己縮合や、生成物の再反応といった問題を伴うことがよく知られている。近年、アルデヒドを直接、あるいはアルデヒド由来のケイ素、エノレートを用いた触媒的不斉交差アルドール反応が報告され注目されている(非特許文献1〜3参照)。
本発明者らは、このような状況において、キラル銅触媒を用いてイミン、アルデヒド、ケトンに対する、ケトン由来のエンカルバメート又はエナミドの触媒的不斉求核付加反応を報告している(特許文献1、及び非特許文献4〜7参照)。
In the field of fine chemicals such as pharmaceuticals, agricultural chemicals, fragrances, and functional polymers, it has been desired to provide substances with higher purity from the viewpoint of the effectiveness and safety of chemical substances. In particular, for substances having an asymmetric carbon atom in the molecule, it has been desired to provide optically higher-purity substances, and development of methods for producing stereoselective or enantioselective chemical substances is desired. It is rare. Such a production method is generally called an asymmetric synthesis method, and the asymmetric hydrogenation reaction has already been industrialized.
Catalytic asymmetric aldol reaction has been actively studied as an enantioselective production method for compounds having carbonyl groups and hydroxyl groups as a method for synthesizing important compounds in the fine chemical field. The side reaction was likely to occur, and the target product could not be obtained in a sufficient yield. In particular, when an aldehyde is used as a nucleophile, it is well known that it involves problems such as self-condensation and product re-reaction. In recent years, catalytic asymmetric cross-aldol reaction using aldehyde directly or aldehyde-derived silicon and enolate has been reported and attracted attention (see Non-Patent Documents 1 to 3).
In such a situation, the present inventors have reported a catalytic asymmetric nucleophilic addition reaction of ketone-derived encarbamate or enamide to imine, aldehyde, and ketone using a chiral copper catalyst (Patent Document 1). And non-patent documents 4 to 7).

しかしながら、これまでの報告では単純なエナミンが使用されてきており、エナミンの改良が求められていた。この改良のひとつとして、キラルなアザエノラートを用いる求核付加反応が報告されていた。アザエノラートは求核性が高く有用であり、特に、アザエノラートを用いた不斉求核付加反応は、光学活性な含窒素化合物を得ることができるために有用であるとされてきた。
一方、化学工業の分野では環境負荷の低減が重要課題となっており、特に不斉点を触媒量の不斉源から合成する試みが活発に検討されている。従来法であるキラルなアザエノラートを用いる不斉求核付加反応は、その選択性には優れるものの不斉源を当量必要とし、反応後多くの場合不斉源を回収しない。アザエノラートを求核剤として用いる触媒的不斉付加反応も検討されているが非常に限られた例が報告されているのみであった。
また、近年、本発明者らは、エナミドやエンカルバメートがキラルルイス酸触媒存在下、エチルグリオキシレートやアシルイミン、アゾジカルボキシレート等種々の求電子剤と反応し、付加体を高収率、高選択的に与えることを見いだしている。
However, simple enamines have been used in previous reports, and improvements to enamines have been sought. As one of the improvements, a nucleophilic addition reaction using a chiral azaenolate has been reported. Azaenolate has high nucleophilicity and is useful, and in particular, an asymmetric nucleophilic addition reaction using azaenolate has been considered useful because an optically active nitrogen-containing compound can be obtained.
On the other hand, in the field of the chemical industry, reduction of environmental load is an important issue, and in particular, attempts to synthesize asymmetric points from a catalytic amount of asymmetric sources are being actively studied. The conventional asymmetric nucleophilic addition reaction using chiral azaenolate is excellent in selectivity, but requires an equivalent amount of the asymmetric source, and often does not recover the asymmetric source after the reaction. Catalytic asymmetric addition reaction using azaenolate as a nucleophile has been studied, but only a very limited example has been reported.
In recent years, the present inventors have reacted enamides and encarbamates with various electrophiles such as ethyl glyoxylate, acylimine, and azodicarboxylate in the presence of a chiral Lewis acid catalyst to produce adducts in high yield and high yield. Finding to give selectively.

WO 2005/070864号WO 2005/070864 Cordoba,A. 他 J.Org.Chem. 2002,67,301.Cordoba, A. and others J. Org. Chem. 2002, 67, 301. Chowdari,R. 他 Tetrahedron Lett. 2002,43,9591.Chowdari, R. et al. Tetrahedron Lett. 2002, 43, 9951. Denmark,S. E. 他 Angew.Chem.,Int.Ed. 2001,40,4759.Denmark, S. E. and others Angew. Chem., Int. Ed. 2001, 40, 4759. J.S.Fossey et al.,Org. Biomol. Chem.,2005,3,2910-2913J.S. Fossey et al., Org. Biomol. Chem., 2005, 3, 2910-2913 R.Matasubara et al.,Tetrahedron,60,2004,9769-9784R. Matasubara et al., Tetrahedron, 60, 2004, 9769-9784 R.Matasubara et al.,Angew. Chem. Int. Ed.,2004,43,1679-1681R. Matasubara et al., Angew. Chem. Int. Ed., 2004, 43, 1679-1681 R.Matasubara et al.,Angew. Chem. Int. Ed.,2004,43,3258-3260R. Matasubara et al., Angew. Chem. Int. Ed., 2004, 43, 3258-3260

本発明は、医薬品、農薬、香料、機能性高分子等の製造のための原料や合成中間体として有用な光学活性アミノアルコールやケトアルコールを製造するための原料となる、一般式(3)で表されるスルホニルイミン化合物を触媒的不斉求核付加反応により製造する方法を提供することを目的としている。より詳細には、本発明は、銅化合物及び光学活性ジイミンの存在下で、カルボニル化合物とエナミン誘導体を用いるアルドール付加反応型の触媒的不斉求核付加反応により簡便でかつ高収率で立体選択的なスルホニルイミン化合物、並びにその加水分解物及び還元物の製造方法を提供することを目的としている。   The present invention is a general formula (3), which is a raw material for producing pharmaceuticals, agricultural chemicals, fragrances, functional polymers and the like and a raw material for producing optically active amino alcohols and keto alcohols useful as synthetic intermediates. It aims at providing the method of manufacturing the represented sulfonyl imine compound by catalytic asymmetric nucleophilic addition reaction. More specifically, the present invention provides a stereoselection in a simple and high yield by an aldol addition-type catalytic asymmetric nucleophilic addition reaction using a carbonyl compound and an enamine derivative in the presence of a copper compound and an optically active diimine. It is an object of the present invention to provide a typical sulfonylimine compound and a method for producing a hydrolyzate and a reduced product thereof.

一般に、カルボニル化合物とエナミン又はその誘導体を用いたアルドール付加反応型の求核付加反応においては、アルドール付加反応により生成した付加体を加水分解してアルドール誘導体を製造するものであるが、この反応は原料のカルボニル化合物もエナミンも、いずれもカルボニル誘導体であることから、自己縮合やオリゴマー化などの副反応が生じやすく、生成物を単離することが困難な場合があった。特に使用するエナミンがアルデヒド由来のものである場合には、生成物が複雑となり十分な収率をえることは困難であった。本発明者らは、さらに検討し、新しいタイプのエナミン誘導体を用いたアルドール付加反応型の求核付加反応を見いだした。   In general, in an aldol addition reaction type nucleophilic addition reaction using a carbonyl compound and enamine or a derivative thereof, an adduct formed by the aldol addition reaction is hydrolyzed to produce an aldol derivative. Since both the starting carbonyl compound and enamine are carbonyl derivatives, side reactions such as self-condensation and oligomerization are likely to occur, and it may be difficult to isolate the product. In particular, when the enamine used is derived from an aldehyde, the product is complicated and it is difficult to obtain a sufficient yield. The present inventors further studied and found an aldol addition reaction type nucleophilic addition reaction using a new type of enamine derivative.

即ち、本発明は、一般式(1)で表されるエンスルホンアミドと、アルデヒド基を有する化合物とを、銅化合物及び不斉炭素原子を含有するジイミンとを含有してなる触媒の存在下で反応させて、一般式(3)表されるスルホニルイミン化合物、並びにその加水分解物及び還元物を製造する方法に関する。本発明の方法は、立体選択的なものであり、本発明は、光学活性のスルホニルイミン化合物、並びにその加水分解物及び還元物を効率的に製造する方法に関する。   That is, the present invention provides an enesulfonamide represented by the general formula (1) and a compound having an aldehyde group in the presence of a catalyst comprising a copper compound and a diimine containing an asymmetric carbon atom. The present invention relates to a method for producing a sulfonylimine compound represented by the general formula (3) and a hydrolyzate and a reduced product thereof by reacting them. The method of the present invention is stereoselective, and the present invention relates to an optically active sulfonylimine compound, and a method for efficiently producing a hydrolyzate and a reduced product thereof.

本発明をより具体的に説明すれば次のとおりとなる。
(1)次の一般式(1)
The present invention will be described more specifically as follows.
(1) The following general formula (1)

Figure 0004943185
Figure 0004943185

(式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよいアルキル基を表し、Rは、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、Rは、置換基を有してもよいアリール基を表し、また、RとRが一緒になって隣接する炭素原子と共に炭素数5〜15の炭素環を形成してもよい。)
で表されるエンスルホンアミドと、次の一般式(2)
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group which may have a substituent, and R 3 has an alkyl group or a substituent which may have a substituent. R 4 represents an aryl group which may have a substituent, and R 2 and R 3 together with adjacent carbon atoms have 5 to 15 carbon atoms. A ring may be formed.)
An enesulfonamide represented by the following general formula (2):

Figure 0004943185
Figure 0004943185

(式中、Rは、−R基、−C(=O)−R基、又は−COO−R基を示し、Rは置換基を有してもよい炭化水素基を示す。)
で表されるアルデヒド基を有する化合物とを、銅化合物及び不斉炭素原子を含有するジイミンとを含有してなる触媒の存在下で反応させて、次の一般式(3)
(In the formula, R 5 represents a —R a group, a —C (═O) —R a group, or a —COO—R a group, and R a represents a hydrocarbon group which may have a substituent. .)
In the presence of a catalyst comprising a copper compound and a diimine containing an asymmetric carbon atom, and the following general formula (3):

Figure 0004943185
Figure 0004943185

(式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよいアルキル基を表し、Rは、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、Rは、置換基を有してもよいアリール基を表し、また、R とR が一緒になって隣接する炭素原子と共に炭素数5〜15の炭素環を形成してもよく、は、−R基、−C(=O)−R基、又は−COO−R基を示し、Rは置換基を有してもよい炭化水素基を表す。
で表されるスルホニルイミン化合物を製造する方法。
(2)一般式(2)におけるRが、−C(=O)−R基又は−COO−R基(式中、Rは置換基を有してもよい炭化水素基を示す。)である前記(1)に記載の方法。
(3)不斉炭素原子を含有するジイミンが光学活性体であり、生成する一般式(3)で表されるスルホニルイミン化合物が少なくとも一種の光学活性体を過剰に含むものである前記(1)又は(2)に記載の方法。
(4)一般式(3)で表されるスルホニルイミン化合物が、光学活性体である前記(1)〜(3)のいずれかに記載の方法。
(5)不斉炭素原子を含有するジイミンが、エチレンジアミン構造を有する化合物である前記(1)〜(4)のいずれかに記載の方法。
(6)不斉炭素原子を含有するジイミンが、次の一般式(4)

(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group which may have a substituent , and R 3 has an alkyl group or a substituent which may have a substituent. represents an aryl group which may be, R 4 represents an aryl group which may have a substituent, and the carbon of 5 to 15 carbon atoms together with the carbon atoms to which R 2 and R 3 are adjacent, together A ring may be formed, and R 5 represents a —R a group, a —C (═O) —R a group, or a —COO—R a group, and R a may be a carbon atom that may have a substituent. Represents a hydrogen group . )
A process for producing a sulfonylimine compound represented by the formula:
(2) R 5 in the general formula (2) is a —C (═O) —R a group or a —COO—R a group (wherein R a represents a hydrocarbon group which may have a substituent). The method according to (1), wherein
(3) The diimine containing an asymmetric carbon atom is an optically active substance, and the sulfonylimine compound represented by the general formula (3) to be generated contains an excess of at least one optically active substance. The method according to 2).
(4) The method according to any one of (1) to (3), wherein the sulfonylimine compound represented by the general formula (3) is an optically active substance.
(5) The method according to any one of (1) to (4), wherein the diimine containing an asymmetric carbon atom is a compound having an ethylenediamine structure.
(6) A diimine containing an asymmetric carbon atom is represented by the following general formula (4)

Figure 0004943185
Figure 0004943185

(式中、Ar及びArは、それぞれ独立して置換基を有してもよいアリール基を表し、R及びRはそれぞれ独立してアルキル基を表す。)
で表されるエチレンジアミン誘導体である前記(1)〜(5)のいずれかに記載の方法。
(7)銅化合物が、過塩素酸銅である前記(1)〜(6)のいずれかに記載の方法。
(8)前記一般式(1)における、R及びRがそれぞれ独立して水素原子又は置換基を有してもよい炭素数1〜30の直鎖状若しくは分岐状のアルキル基を表し、Rが、置換基を有してもよい炭素数1〜30の直鎖状若しくは分岐状のアルキル基又は置換基を有してもよい炭素数6〜36、の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)を表し、Rが、置換基を有してもよい炭素数6〜36の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)を表す前記(1)〜(7)のいずれかに記載の方法。
(9)前記一般式(1)における、RとRが一緒になって隣接する炭素原子と共に炭素数5〜15の炭素環が、炭素数5〜15のシクロアルケン環である前記(1)〜(8)のいずれかに記載の方法。
(10)アルキル基又はアリール基における置換基が、ハロゲン、炭素数1〜20の直鎖状若しくは分岐状のアルキル基、又は炭素数1〜20の直鎖状若しくは分岐状のアルキル基から誘導されるアルコキシ基である前記(1)〜(9)のいずれかに記載の方法。
(11)前記した一般式(3)で表されるスルホニルイミン化合物を加水分解して、イミノ基の部分がケト基(=O)になった対応する3−ケトアルコール誘導体を製造する方法。
(12)加水分解が、酸の存在下で行われる前記(11)に記載の方法。
(13)前記した一般式(3)で表されるスルホニルイミン化合物を還元して、イミノ基の部分がアミド基(−N−SO−)になった対応する3−アミノアルコール誘導体を製造する方法。
(14)還元が、水素化物による還元である前記(13)に記載の方法。
(In the formula, Ar 1 and Ar 2 each independently represent an aryl group which may have a substituent, and R 6 and R 7 each independently represent an alkyl group.)
The method in any one of said (1)-(5) which is an ethylenediamine derivative represented by these.
(7) The method according to any one of (1) to (6), wherein the copper compound is copper perchlorate.
(8) In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 30 carbon atoms which may have a substituent, R 3 is a monocyclic or polycyclic group having 1 to 30 carbon atoms which may have a linear or branched alkyl group having 1 to 30 carbon atoms, or 6 to 36 carbon atoms which may have a substituent. Or a condensed cyclic carbocyclic aromatic group (aryl group), and R 4 may be a monocyclic, polycyclic or condensed cyclic group having 6 to 36 carbon atoms which may have a substituent. The method according to any one of (1) to (7) above, which represents a carbocyclic aromatic group (aryl group).
(9) In the general formula (1), the carbocyclic ring having 5 to 15 carbon atoms together with the adjacent carbon atom in which R 2 and R 3 are combined is a cycloalkene ring having 5 to 15 carbon atoms (1 ) To (8).
(10) The substituent in the alkyl group or aryl group is derived from halogen, a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched alkyl group having 1 to 20 carbon atoms. The method according to any one of (1) to (9) above, which is an alkoxy group.
(11) A method for producing a corresponding 3-ketoalcohol derivative in which the imino group is converted to a keto group (= O) by hydrolyzing the sulfonylimine compound represented by the general formula (3).
(12) The method according to (11), wherein the hydrolysis is performed in the presence of an acid.
(13) The corresponding sulfonylimine compound represented by the general formula (3) is reduced to produce a corresponding 3-aminoalcohol derivative in which the imino group is an amide group (—N—SO 2 —). Method.
(14) The method according to (13), wherein the reduction is reduction with a hydride.

次に、本発明の態様をさらに詳細に説明する。
まず本発明の、アルデヒド基を有する化合物のアルデヒド基に、一般式(1)で表されるエンスルホンアミドをアルドール付加型の求核付加反応について説明する。
本発明における「アルデヒド基を有する化合物」としては、アルデヒド基(−CHO基)を有し、当該アルデヒド基の一端に炭素原子が結合したものであって、反応条件下で副反応を生じさせるような官能基を有さないものであれば特に制限はない。そして、当該アルデヒド基(−CHO基)に対する反応が、求核反応であることから電子吸引性の官能基を有し、当該アルデヒド基(−CHO基)の炭素原子における電子がより不足系となっているものが好ましい。
本発明における好ましい「アルデヒド基を有する化合物」をより具体的に示せば、次の一般式(2)
Next, aspects of the present invention will be described in more detail.
First, an aldol addition type nucleophilic addition reaction of an enesulfonamide represented by the general formula (1) with an aldehyde group of a compound having an aldehyde group according to the present invention will be described.
The “compound having an aldehyde group” in the present invention has an aldehyde group (—CHO group) and has a carbon atom bonded to one end of the aldehyde group, and causes a side reaction under reaction conditions. There is no particular limitation as long as it does not have a functional group. And since reaction with respect to the said aldehyde group (-CHO group) is a nucleophilic reaction, it has an electron withdrawing functional group, and the electron in the carbon atom of the said aldehyde group (-CHO group) becomes a deficient system. Are preferred.
If the “compound having an aldehyde group” in the present invention is more specifically shown, the following general formula (2)

Figure 0004943185
Figure 0004943185

(式中、Rは、−R基、−C(=O)−R基、又は−COO−R基を示し、Rは置換基を有してもよい炭化水素基を示す。)
で表される化合物が挙げられる。
前記一般式(2)における基Rの炭化水素基としては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基;炭素数2〜20、好ましくは炭素数2〜15、炭素数2〜10の直鎖状又は分枝状のアルケニル基;炭素数2〜20、好ましくは炭素数2〜15、炭素数2〜10の直鎖状又は分枝状のアルキニル基;炭素数3〜15、好ましくは炭素数3〜10の飽和又は不飽和の単環式、多環式又は縮合環式の脂環式炭化水素基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数1〜20のアルキル基が結合した、炭素数7〜40、好ましくは炭素数7〜20、炭素数7〜15のアラルキル基(炭素環式芳香脂肪族基)が挙げられる。これらの炭化水素基の例としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ビニル基、1−メチル−ビニル基、2−メチル−ビニル基、n−2−プロペニル基、1,2−ジメチル−ビニル基、1−メチル−プロペニル基、2−メチル−プロペニル基、n−1−ブテニル基、n−2−ブテニル基、n−3−ブテニル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ビシクロ[1.1.0]ブチル基、トリシクロ[2.2.1.0]ヘプチル基、ビシクロ[3.2.1]オクチル基、ビシクロ[2.2.2.]オクチル基、アダマンチル基(トリシクロ[3.3.1.1]デカニル基)、ビシクロ[4.3.2]ウンデカニル基、トリシクロ[5.3.1.1]ドデカニル基、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ベンジル基、フェネチル基、α−ナフチル−メチル基などが挙げられる。また、これらの炭化水素基における置換基としては、塩素原子、臭素原子などのハロゲン原子;前記したアルキル基から誘導されるアルコキシ基;前記したアルキル基から誘導されるアルコキシカルボニル基;前記したアルキル基から誘導されるアルキルカルボニルオキシ基;前記したシクロアルキル基から誘導されるシクロアルコキシ基;前記したシクロアルキル基から誘導されるシクロアルコキシカルボニル基;前記したシクロアルキル基から誘導されるシクロアルキルカルボニルオキシ基;前記した炭素環式芳香族基から誘導されるアリールオキシ基;前記した炭素環式芳香族基から誘導されるアリールオキシカルボニル基;前記した炭素環式芳香族基から誘導されるアリールカルボニルオキシ基;前記したアラルキル基から誘導されるアラルキルオキシ基;前記したアラルキル基から誘導されるアラルキルオキシカルボニル基;前記したアラルキル基から誘導されるアラルキルカルボニルオキシ基;シアノ基;ニトロ基などや、場合によっては、前記したアルキル基やアルケニル基やシクロアルキル基などを置換基とすることもできる。
(In the formula, R 1 represents a —R a group, a —C (═O) —R a group, or a —COO—R a group, and R a represents a hydrocarbon group that may have a substituent. .)
The compound represented by these is mentioned.
As the hydrocarbon group of the group R a in the general formula (2), a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms and 1 to 10 carbon atoms; A linear or branched alkenyl group having 2 to 20, preferably 2 to 15 carbon atoms and 2 to 10 carbon atoms; a straight chain or branched alkenyl group having 2 to 20 carbon atoms, preferably 2 to 15 carbon atoms, and a straight chain having 2 to 10 carbon atoms. A chain or branched alkynyl group; a saturated or unsaturated monocyclic, polycyclic or condensed cyclic alicyclic hydrocarbon group having 3 to 15 carbon atoms, preferably 3 to 10 carbon atoms; 6-36, preferably 6-18, monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group having 6-12 carbon atoms; 6-36 carbon atoms, preferably 6-6 carbon atoms 18. The number of carbon atoms described above in a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 12 carbon atoms Examples thereof include an aralkyl group (carbocyclic araliphatic group) having 7 to 40 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 15 carbon atoms, to which an alkyl group having 1 to 20 is bonded. Examples of these hydrocarbon groups include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, Octyl group, vinyl group, 1-methyl-vinyl group, 2-methyl-vinyl group, n-2-propenyl group, 1,2-dimethyl-vinyl group, 1-methyl-propenyl group, 2-methyl-propenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclooctyl group, bicyclo [1.1.0] butyl group, tricyclo [2. 2.1.0] heptyl group, bicyclo [3.2.1] octyl group, bicyclo [2.2.2. ] Octyl group, adamantyl group (tricyclo [3.3.1.1] decanyl group), bicyclo [4.3.2] undecanyl group, tricyclo [5.3.1.1] dodecanyl group, phenyl group, naphthyl group , Biphenyl group, phenanthryl group, anthryl group, benzyl group, phenethyl group, α-naphthyl-methyl group and the like. The substituents in these hydrocarbon groups include halogen atoms such as chlorine and bromine atoms; alkoxy groups derived from the aforementioned alkyl groups; alkoxycarbonyl groups derived from the aforementioned alkyl groups; An alkylcarbonyloxy group derived from: a cycloalkoxy group derived from the above cycloalkyl group; a cycloalkoxycarbonyl group derived from the above cycloalkyl group; a cycloalkylcarbonyloxy group derived from the above cycloalkyl group An aryloxy group derived from the carbocyclic aromatic group; an aryloxycarbonyl group derived from the carbocyclic aromatic group; an arylcarbonyloxy group derived from the carbocyclic aromatic group; Derived from the aralkyl groups described above An aralkyloxycarbonyl group; an aralkyloxycarbonyl group derived from the aralkyl group; an aralkylcarbonyloxy group derived from the aralkyl group; a cyano group; a nitro group; A cycloalkyl group or the like can also be used as a substituent.

一般式(2)で表されるアルデヒド基を有する化合物の中でもさらに好ましい化合物としては、一般式(1)における基Rが−C(=O)−R基又は−COO−R基である場合が挙げられる。本発明の方法において、さらに好ましい一般式(2)で表されるアルデヒド基を有する化合物としては、次の一般式(5) Among the compounds having an aldehyde group represented by the general formula (2), as a more preferable compound, the group R 1 in the general formula (1) is a —C (═O) —R a group or a —COO—R a group. There are some cases. In the method of the present invention, the compound having an aldehyde group represented by the general formula (2) is more preferably the following general formula (5).

Figure 0004943185
Figure 0004943185

(式中、Rは、置換基を有してもよい炭化水素基、又は置換基を有してもよい炭化水素オキシ基を示す。)
で表される化合物が挙げられる。一般式(5)における置換基を有してもよい炭化水素基としては前記した基Rとして説明したものと同じものが挙げられる。好ましいRとしては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基;前記した炭素数1〜20のアルキル基に酸素原子が結合したアルコキシ基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基、前記したアリール基に酸素原子が結合したアリールオキシ基;炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)に、前記した炭素数1〜20のアルキル基が結合した、炭素数7〜40、好ましくは炭素数7〜20、炭素数7〜15のアラルキル基;前記したアラルキル基に酸素原子が結合したアラルキルオキシ基などが挙げられる。これらの基の置換基としては、前記してきた置換基群が挙げられる。
本発明の方法における好ましい「アルデヒド基を有する化合物」の具体例としては、例えば、グリオキシル酸エチルエステルなどのグリオキシル酸エステル類、フェニルグリオキサールなどのグリオキサール類などが挙げられる。
(In the formula, R 8 represents a hydrocarbon group which may have a substituent or a hydrocarbon oxy group which may have a substituent.)
The compound represented by these is mentioned. Examples of the hydrocarbon group which may have a substituent in the general formula (5) include the same groups as those described as the group R a described above. Preferred R 8 is a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms and 1 to 10 carbon atoms; an oxygen atom in the above alkyl group having 1 to 20 carbon atoms; An alkoxy group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 12 carbon atoms, an oxygen atom in the above-described aryl group A bonded aryloxy group; a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms. An aralkyl group having 7 to 40 carbon atoms, preferably 7 to 20 carbon atoms and 7 to 15 carbon atoms, to which the alkyl group having 1 to 20 carbon atoms is bonded; an aralkyloxy having an oxygen atom bonded to the aralkyl group described above Group and the like. Examples of the substituent of these groups include the substituent groups described above.
Specific examples of preferable “compound having an aldehyde group” in the method of the present invention include glyoxylic acid esters such as glyoxylic acid ethyl ester and glyoxal such as phenylglyoxal.

本発明の方法における一般式(1)で表されるエンスルホンアミドにおけるアルキル基としては、炭素数1〜30、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられる。また、アリール基としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式の炭素環式芳香族基(アリール基)が挙げられる。このようなアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、などが挙げられる。これらの、アルキル基やアリール基は、反応に悪影響を及ぼさない限りで、各種の置換基を有することができる。このような置換基としては、塩素原子、臭素原子などのハロゲン原子、メトキシ基やエトキシ基などの炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜6の直鎖状若しくは分岐状のアルキル基から誘導されるアルコキシ基などが挙げられる。また、アリール基の置換基としては前記してきた炭素数1〜30のアルキル基であってもよい。
本発明の好ましいエンスルホンアミドとしては、N−(ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン、N−(ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン、N−(p−メチル−ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン、N−(p−メチル−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン、N−(p−クロロ−ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン、N−(p−クロロ−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−(p−メトキシ−フェニル)−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−(p−メトキシ−フェニル)−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−(p−クロロ−フェニル)−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−(p−クロロ−フェニル)−1−プロペニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−フェニル−1−ブテニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−フェニル−1−ブテニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(E)−2−ペンテニル−アミン、N−(p−メトキシ−ベンゼンスルホニル)−(Z)−2−ペンテン−1−イル−アミンなどが挙げられる。
The alkyl group in the enesulfonamide represented by the general formula (1) in the method of the present invention is a linear or branched group having 1 to 30 carbon atoms, preferably 1 to 15 carbon atoms and 1 to 10 carbon atoms. Of the alkyl group. The aryl group is a monocyclic, polycyclic or condensed cyclic carbocyclic aromatic group (aryl group) having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms and 6 to 12 carbon atoms. Is mentioned. Examples of such an aryl group include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, and an anthryl group. These alkyl groups and aryl groups can have various substituents as long as they do not adversely affect the reaction. As such a substituent, a halogen atom such as a chlorine atom or a bromine atom, a straight chain having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms such as a methoxy group or an ethoxy group. And an alkoxy group derived from a linear or branched alkyl group. Moreover, as a substituent of an aryl group, the C1-C30 alkyl group mentioned above may be sufficient.
Preferred enesulfonamides of the present invention include N- (benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine, N- (benzenesulfonyl)-(Z) -1-phenyl-1-propenyl- Amine, N- (p-methoxy-benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine, N- (p-methoxy-benzenesulfonyl)-(Z) -1-phenyl-1-propenyl- Amine, N- (p-methyl-benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine, N- (p-methyl-benzenesulfonyl)-(Z) -1-phenyl-1-propenyl- Amine, N- (p-chloro-benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine, N- (p-chloro-benzenesulfonyl)- Z) -1-phenyl-1-propenyl-amine, N- (p-methoxy-benzenesulfonyl)-(E) -1- (p-methoxy-phenyl) -1-propenyl-amine, N- (p-methoxy -Benzenesulfonyl)-(Z) -1- (p-methoxy-phenyl) -1-propenyl-amine, N- (p-methoxy-benzenesulfonyl)-(E) -1- (p-chloro-phenyl)- 1-propenyl-amine, N- (p-methoxy-benzenesulfonyl)-(Z) -1- (p-chloro-phenyl) -1-propenyl-amine, N- (p-methoxy-benzenesulfonyl)-(E ) -1-phenyl-1-butenyl-amine, N- (p-methoxy-benzenesulfonyl)-(Z) -1-phenyl-1-butenyl-amine, N- (p-methoxy-benzene) Ruhoniru) - (E) -2- pentenyl - amine, N-(p-methoxy - benzenesulfonyl) - (Z) -2- penten-1-yl - amine and the like.

本発明の方法におけるアルデヒド基を有する化合物と、一般式(1)で表されるエンスルホンアミドとの使用割合は、1:1とすることが基本ではあるが、原料化合物の反応性や価格などを考慮して適宜決めることができる。両者のモル比としては、0.1〜10程度の広い範囲で選択することができる。   The use ratio of the compound having an aldehyde group and the enesulfonamide represented by the general formula (1) in the method of the present invention is basically 1: 1, but the reactivity and price of the raw material compound, etc. Can be determined as appropriate. The molar ratio of the two can be selected within a wide range of about 0.1 to 10.

本発明のアルデヒド基を有する化合物のアルデヒド基に、一般式(1)で表されるエンスルホンアミドをアルドール付加型の求核付加反応の方法としては、通常のアルドール付加反応の反応条件下で行うこともできるが、触媒としてキラルな触媒の存在下で、エナンチオ選択的な生成物を得る方法が好ましい。このような方法としては、各種のキラル触媒を使用することもできるが、本発明者らが先に報告してきたキラル触媒(WO 2005/070864号参照)の使用が好ましい。例えば、触媒としてキラルな銅触媒又はキラルなニッケル触媒が挙げられる。これらの触媒におけるキラリティーは、配位子として使用する有機化合物によって生じさせることができる。
このようなキラリティーを有する配位子の好ましい例としては、ジイミン系の化合物が挙げられる。より好ましくはアルキレンジアミン構造、より具体的にはエチレンジアミン構造を有する化合物が挙げられる。不斉炭素原子を含有する配位子であって、キラルな配位子の好ましい例としては、前記した一般式(4)で表されるエチレンジアミン化合物が挙げられる。一般式(4)における基R及びRにおけるアルキル基としては、炭素数1〜20、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基が挙げられ、例えば、n−ブチル基、t−ブチル基などが挙げられる。また、基Ar及びArにおけるアリール基としては、炭素数6〜36、好ましくは炭素数6〜18、炭素数6〜12の単環式、多環式、又は縮合環式のアリール基が挙げられる。このようなアリール基としては、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、などが挙げられる。好ましいアリール基としてはフェニル基やナフチル基が挙げられる。これらのアルキル基やアリールの置換基としては前記した基Rで説明してきた置換基が挙げられる。アリール基における好ましい置換基としては、塩素原子、臭素原子などのハロゲン原子;メチル基やエチル基などの炭素数1〜30、好ましくは炭素数1〜15、炭素数1〜10の直鎖状又は分枝状のアルキル基;メトキシ基やエトキシ基などの炭素数1〜20、好ましくは炭素数1〜10、より好ましくは炭素数1〜6の直鎖状若しくは分岐状のアルキル基から誘導されるアルコキシ基などが挙げられる。これらの置換基は1個又は2個以上であってもよい。
これらの中で、さらに好ましい不斉炭素原子を含有するジイミンとしては、次のものが挙げられる。
The enesulfonamide represented by the general formula (1) is added to the aldehyde group of the compound having an aldehyde group of the present invention as an aldol addition type nucleophilic addition reaction under the reaction conditions of a normal aldol addition reaction. However, a method for obtaining an enantioselective product in the presence of a chiral catalyst as a catalyst is preferred. As such a method, various kinds of chiral catalysts can be used, but the use of the chiral catalyst previously reported by the present inventors (see WO 2005/070864) is preferred. For example, the catalyst may be a chiral copper catalyst or a chiral nickel catalyst. The chirality in these catalysts can be generated by the organic compound used as the ligand.
Preferable examples of the ligand having such a chirality include diimine compounds. A compound having an alkylene diamine structure, more specifically an ethylene diamine structure is more preferable. A preferred example of a chiral ligand that is an asymmetric carbon atom-containing ligand is an ethylenediamine compound represented by the above general formula (4). Examples of the alkyl group in the groups R 6 and R 7 in the general formula (4) include linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 15 carbon atoms and 1 to 10 carbon atoms. Examples thereof include an n-butyl group and a t-butyl group. The aryl group in the groups Ar 1 and Ar 2 is a monocyclic, polycyclic or condensed cyclic aryl group having 6 to 36 carbon atoms, preferably 6 to 18 carbon atoms, and 6 to 12 carbon atoms. Can be mentioned. Examples of such an aryl group include a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, and an anthryl group. Preferred aryl groups include phenyl and naphthyl groups. Examples of the substituent for the alkyl group or aryl include substituents which have been described in the group R a as described above. As a preferable substituent in the aryl group, a halogen atom such as a chlorine atom or a bromine atom; a straight chain having 1 to 30 carbon atoms such as a methyl group or an ethyl group, preferably 1 to 15 carbon atoms, or 1 to 10 carbon atoms; A branched alkyl group; derived from a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, such as a methoxy group or an ethoxy group; An alkoxy group etc. are mentioned. One or two or more of these substituents may be used.
Among these, more preferred diimines containing an asymmetric carbon atom include the following.

Figure 0004943185
Figure 0004943185

(式中、Rは、それぞれ独立して炭素数1〜20の直鎖状又は分岐状のアルキル基、又は置換基を有してもよい炭素数6〜36のアリール基を示す。)
で表されるアルキレンジアミン誘導体又はシクロヘキシルジアミン誘導体が挙げられる。前記式中におけるPh基又はアリール基は、1個又は2個以上の置換基を有していてもよく、このような置換基としては、メチル基やエチル基やi−プロピル基やt−ブチル基などの炭素数1〜10の直鎖状又は分枝状のアルキル基;メトキシ基やエトキシ基などの炭素数1〜10の直鎖状又は分枝状のアルコキシ基;塩素原子、フッ素原子、臭素原子などのハロゲン原子などが挙げられる。より好ましいPh基やアリール基としては無置換のフェニル基、p−ブロムフェニル基などのハロゲン置換フェニル基、3,5−キシリル基などのアルキル置換フェニル基などが挙げられる。特に好ましいアリール基の例としてはp−ブロムフェニル基が挙げられ、Ph基の例としては、フェニル基又は3,5−キシリル基などが挙げられる。
(In formula, R shows a C1-C20 linear or branched alkyl group each independently, or a C6-C36 aryl group which may have a substituent.)
The diamine diamine derivative or cyclohexyl diamine derivative represented by these is mentioned. The Ph group or aryl group in the above formula may have one or more substituents, and examples of such substituents include a methyl group, an ethyl group, an i-propyl group, and a t-butyl group. A linear or branched alkyl group having 1 to 10 carbon atoms such as a group; a linear or branched alkoxy group having 1 to 10 carbon atoms such as a methoxy group or an ethoxy group; a chlorine atom, a fluorine atom, And halogen atoms such as bromine atom. More preferred Ph groups and aryl groups include unsubstituted phenyl groups, halogen-substituted phenyl groups such as p-bromophenyl groups, and alkyl-substituted phenyl groups such as 3,5-xylyl groups. Particularly preferable examples of the aryl group include a p-bromophenyl group, and examples of the Ph group include a phenyl group or a 3,5-xylyl group.

銅化合物としては、1価又は2価の化合物として銅塩、錯塩、有機金属化合物等の各種のものから選択されてよいが、なかでも、有機酸または無機酸との塩、もしくはこの塩との錯体や有機複合体が好適なものとして挙げられる。より好ましくは強酸との塩、例えばパーフルオロアルキルスルホン酸や過塩素酸、硫酸等の塩、それらの錯体や有機複合体が挙げられる。このような銅化合物としては、例えば、Cu(OTf)、CuOTf、CuClO・4CHCN、Cu(ClO・6HO、Ni(OTf)、NiX+AgOTf(Xはハロゲン原子を示す。)等が挙げられる。好ましい銅化合物としては過塩素酸銅、その溶媒和物であるCuClO・4CHCNが挙げられる。
本発明の方法における銅化合物は、前記したような銅化合物とキラルな不斉炭素原子を含有するジイミンとを、あらかじめ混合して錯体を調製してから、これを触媒として用いてもよいし、あるいは反応系において銅化合物と不斉炭素原子を含有する化合物とを混合して使用するようにしてもよい。触媒としての使用割合については、銅化合物とキラルな有機分子との錯体として、アルデヒド化合物に対して、通常は、0.1〜50モル%、好ましくは0.5〜20モル%程度の割合とすることができる。
The copper compound may be selected from a variety of monovalent or divalent compounds such as copper salts, complex salts, and organometallic compounds. Among them, a salt with an organic acid or an inorganic acid, or a salt thereof Complexes and organic complexes are preferred. More preferably, a salt with a strong acid, for example, a salt of perfluoroalkylsulfonic acid, perchloric acid, sulfuric acid or the like, a complex or an organic complex thereof can be used. Examples of such a copper compound include Cu (OTf) 2 , CuOTf, CuClO 4 .4CH 3 CN, Cu (ClO 4 ) 2 .6H 2 O, Ni (OTf) 2 , NiX 2 + AgOTf (X is a halogen atom) And the like. Preferred copper compounds include copper perchlorate and its solvate CuClO 4 · 4CH 3 CN.
The copper compound in the method of the present invention may be prepared by previously mixing a copper compound as described above and a diimine containing a chiral asymmetric carbon atom to prepare a complex, which may be used as a catalyst. Alternatively, a copper compound and a compound containing an asymmetric carbon atom may be mixed and used in the reaction system. About the use ratio as a catalyst, it is 0.1-50 mol% normally as a complex of a copper compound and a chiral organic molecule with respect to an aldehyde compound, Preferably it is a ratio of about 0.5-20 mol%. can do.

本発明のアルデヒド基を有する化合物のアルデヒド基に、一般式(1)で表されるエンスルホンアミドをアルドール付加型の求核付加反応の方法は、塩化メチレンなどのハロゲン化炭化水素、アセトニトリル等のニトリル類、THF等のエーテル類などの有機溶媒の存在下で行うのが好ましい。反応温度としては、好ましくは−20℃〜溶媒の沸点、−20℃〜40℃程度の範囲で適宜選択することができる。雰囲気は大気中もしくは不活性雰囲気とすることができる。
前記したような本発明の触媒を使用することにより、一般式(1)で表されるエンスルホンアミドの付加が立体選択的に生成し、アルデヒド基を有する化合物のアルデヒド基の位置に生成する水酸基が(R)又は(S)のいずれか一方の鏡像体が優位に生成する。本明細書ではこの位置における(R)体又は(S)体のいずれか一方の過剰率をエナンチオマー過剰率(ee)(%)として表す。このエナンチオマー過剰率は、((R)−(S))/((R)+(S))×100、又は((S)−(R))/((R)+(S))×100として計算される値である。
アルデヒド基を有する化合物のアルデヒド基に一般式(1)で表されるエンスルホンアミドをアルドール付加型の求核付加反応の方法においては、通常はイミノアルコールが生成し、これを加水分解することにより光学活性なアルドール誘導体(3−カルボニルアルコール誘導体)を得ることができ、また、これを還元することにより光学活性な3−アミノアルコールを製造することができる。これらの方法は、本発明の方法において生成した一般式(3)で表されるスルホニルイミン化合物を単離することなく、そのまま行うこともできる。
前記した一般式(3)で表されるスルホニルイミン化合物を加水分解することにより、一般式(3)におけるイミノ基(=N)の部分がケト基(=O)になった対応する3−ケトアルコール誘導体を製造することができる。このときに使用される酸としては、塩酸、臭化水素酸などの無機酸を使用することができる。
また、前記した一般式(3)で表されるスルホニルイミン化合物を還元して、一般式(3)におけるイミノ基(=N−SO−)の部分がアミド基(−N−SO−)になった対応する3−アミド−アルコール誘導体を製造することができ、これをさらに加水分解することにより、対応する3−アミノアルコール誘導体とすることができる。このときの還元のための還元剤としては水素化ホウ素化合物、水素化アルミニウム化合物、またはそれらの塩などの水素化物を使用することができる。これらの具体的な例を後述する実施例で示す。
The method of nucleophilic addition reaction of enesulfonamide represented by the general formula (1) to the aldehyde group of the compound having an aldehyde group of the present invention is an aldol addition type halophilic hydrocarbon such as methylene chloride, acetonitrile or the like. It is preferably carried out in the presence of an organic solvent such as nitriles and ethers such as THF. The reaction temperature can be appropriately selected within the range of preferably −20 ° C. to the boiling point of the solvent and about −20 ° C. to 40 ° C. The atmosphere can be air or an inert atmosphere.
By using the catalyst of the present invention as described above, the addition of enesulfonamide represented by the general formula (1) is stereoselectively generated, and the hydroxyl group generated at the position of the aldehyde group of the compound having an aldehyde group Either (R) or (S) is preferentially generated. In this specification, the excess of either the (R) isomer or the (S) isomer at this position is expressed as an enantiomeric excess (ee) (%). This enantiomeric excess is ((R) − (S)) / ((R) + (S)) × 100 or ((S) − (R)) / ((R) + (S)) × 100 Is calculated as
In the method of aldol addition type nucleophilic addition reaction of an enesulfonamide represented by the general formula (1) to an aldehyde group of a compound having an aldehyde group, an iminoalcohol is usually produced and hydrolyzed. An optically active aldol derivative (3-carbonyl alcohol derivative) can be obtained, and an optically active 3-amino alcohol can be produced by reducing this. These methods can be carried out as they are without isolating the sulfonylimine compound represented by the general formula (3) produced in the method of the present invention.
By hydrolyzing the sulfonylimine compound represented by the general formula (3), the corresponding 3-keto in which the imino group (= N) moiety in the general formula (3) is converted to a keto group (= O) Alcohol derivatives can be produced. As the acid used at this time, inorganic acids such as hydrochloric acid and hydrobromic acid can be used.
Further, the sulfonylimine compound represented by the general formula (3) is reduced so that the imino group (= N—SO 2 —) moiety in the general formula (3) is an amide group (—N—SO 2 —). The corresponding 3-amide-alcohol derivative can be prepared and further hydrolyzed to the corresponding 3-aminoalcohol derivative. As a reducing agent for reduction at this time, a hydride such as a borohydride compound, an aluminum hydride compound, or a salt thereof can be used. Specific examples of these will be described in Examples described later.

本発明は、医薬品、農薬、香料、機能性高分子等の製造のための原料や合成中間体として有用な光学活性1,3−アミノアルコール誘導体や1,3−カルボニルアルコール誘導体の原料となる光学活性なスルホニルイミン誘導体を、高収率で、高光学収率で、しかも触媒の再使用が可能な効率的な製造方法を提供するものである。また、本発明の方法は、エナンチオ選択的かつジアステレオ選択的なグリオキシル酸エステルのアルデヒド基への求核付加反応方法と、これを応用した光学活性α−ヒドロキシ酸エステル等の製造方法を提供するものである。   The present invention is an optical material used as a raw material for optically active 1,3-amino alcohol derivatives and 1,3-carbonyl alcohol derivatives useful as raw materials and synthetic intermediates for the production of pharmaceuticals, agricultural chemicals, fragrances, functional polymers and the like. The present invention provides an efficient process for producing an active sulfonylimine derivative with high yield, high optical yield, and the ability to reuse a catalyst. In addition, the method of the present invention provides a method for the nucleophilic addition reaction of an enantioselective and diastereoselective glyoxylate to an aldehyde group, and a method for producing an optically active α-hydroxy acid ester and the like using the method. Is.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。
H−NMRと13C−NMR は JEOL JNM-ECX400、JNM-ECX500、又はJNM-ECX600を使用しCDClを溶媒とし(他の溶媒を使用した場合は個別に記載)、テトラメチルシラン (δ=0、H−NMR)またはCDCl (δ=77.0、13C−NMR)を内部標準物質として測定した。IRスペクトルの測定は JASCO FT/IR-610 を、旋光度の測定は JASCO P-1010 を使用した。HPLCの測定にはSHIMADZU LC-10AT、SHIMADZU SPD-10A及びSHIMADZU C-R6A Cを使用した。質量分析にはSHIMADZU GC-17A又はSHIMADZU GCMS-QP5050Aを使用し、融点の測定には、YAZAWA BY-1を使用した。カラムクロマトグラフィーには、Silica gel 60 (Merck) を使用し、調製用薄層クロマトグラフィーにはWakogel B-5Fを使用した。全ての反応はアルゴン雰囲気下で実施し、溶媒は定法に従い蒸留したものを使用した。グリオキシル酸エチルは使用直前に蒸留した。
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.
For 1 H-NMR and 13 C-NMR, JEOL JNM-ECX400, JNM-ECX500, or JNM-ECX600 is used, CDCl 3 is used as a solvent (indicated separately when other solvents are used), and tetramethylsilane (δ = 0, 1 H-NMR) or CDCl 3 (δ = 77.0, 13 C-NMR) was used as an internal standard substance. JASCO FT / IR-610 was used for IR spectrum measurement and JASCO P-1010 was used for optical rotation measurement. For the measurement of HPLC, SHIMADZU LC-10AT, SHIMADZU SPD-10A and SHIMADZU C-R6A C were used. SHIMADZU GC-17A or SHIMADZU GCMS-QP5050A was used for mass spectrometry, and YAZAWA BY-1 was used for measuring the melting point. Silica gel 60 (Merck) was used for column chromatography, and Wakogel B-5F was used for preparative thin-layer chromatography. All the reactions were carried out under an argon atmosphere, and the solvent used was distilled according to a conventional method. Ethyl glyoxylate was distilled immediately before use.

一般式(1)で表されるエンスルホンアミドの製造
エンスルホンアミドは、加藤らの方法(Kato, S.; Igami, S. JP 63250303 A2(特開昭63−250303号) 1988-10-18(Chem.Abstr. 111 : 96854 1988年))文献記載の方法により合成した。
これらの方法により製造されたエンスルホンアミドの物性値を以下に示す。なお、化合物名の後の括弧内は以下の説明で使用する化合物の番号である。
実施例1−1
N−(ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン(E−4a)。
Production of Ensulfonamide Represented by General Formula (1) Ensulfonamide is obtained by the method of Kato et al. (Kato, S .; Igami, S. JP 63250303 A2 (JP-A 63-250303) 1988-10-18 (Chem. Abstr. 111: 96854 1988)) Synthesized by the method described in the literature.
The physical property values of enesulfonamides produced by these methods are shown below. The numbers in parentheses after the compound name are the numbers of the compounds used in the following description.
Example 1-1
N- (benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine (E-4a).

Figure 0004943185
Figure 0004943185

Mp. 107−108℃;
H NMR (CDCl) δ:
1.60 (d, 3H, J = 7.3 Hz), 5.68 (q, 1H, J = 7.2 Hz), 6.03 (s, 1H),
6.95-7.10 (m, 2H), 7.20-7.30 (m, 3H), 7.45-7.63 (m, 3H),
7.82 (d, 2H, J = 7.8 Hz);
13C NMR (CDCl) δ:
13.9, 115.7, 127.4, 128.3, 128.3, 128.8, 128.9, 132.8, 133.8,
135.4, 139.7;
IR (neat) 3347, 3255, 2978, 1685, 1596, 1447, 1332, 1219, 1159,
1090, 951, 754, 688, 592, 536 cm−1
HRMS (FAB); [M+H]として、 計算値 274.0902.
実測値 274.0911.
実施例1−2
N−(ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン(Z−4a)。
Mp. 107-108 ° C;
1 H NMR (CDCl 3 ) δ:
1.60 (d, 3H, J = 7.3 Hz), 5.68 (q, 1H, J = 7.2 Hz), 6.03 (s, 1H),
6.95-7.10 (m, 2H), 7.20-7.30 (m, 3H), 7.45-7.63 (m, 3H),
7.82 (d, 2H, J = 7.8 Hz);
13 C NMR (CDCl 3 ) δ:
13.9, 115.7, 127.4, 128.3, 128.3, 128.8, 128.9, 132.8, 133.8,
135.4, 139.7;
IR (neat) 3347, 3255, 2978, 1685, 1596, 1447, 1332, 1219, 1159,
1090, 951, 754, 688, 592, 536 cm −1 ;
HRMS (FAB); [M + H] + as calculated 274.9022.
Actual value 274.0911.
Example 1-2
N- (benzenesulfonyl)-(Z) -1-phenyl-1-propenyl-amine (Z-4a).

Figure 0004943185
Figure 0004943185

Mp. 104−104.5℃;
H−NMR (CDCl); δ:
1.47 (d, 3H, J = 6.8 Hz), 5.68 (q, 1H, J = 7.0 Hz), 6.18 (s, 1H),
7.20-7.27 (m, 3H), 7.30-7.37 (m, 2H), 7.38-7.45 (m, 2H),
7.50-7.55 (m, 1H);
13C−NMR (CDCl) δ:
13.0, 121.4, 126.8, 127.4, 128.1, 128.2, 128.9, 132.9,
135.1, 137.8, 139.8;
IR (neat) 3258, 3082, 3062, 3020, 2919, 1644, 1585, 1491, 1480,
1446, 1402, 1326, 1268, 1165, 1091, 1043, 1025, 997,
970, 904, 844, 787, 748, 727, 696, 685, 645, 620, 571,
532, 440 cm−1
HRMS (FAB); [M+H]として、計算値 274.0902.
実測値 274.0903.
実施例1−3
N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン(E−4b)。
Mp. 104-104.5 ° C;
1 H-NMR (CDCl 3 ); δ:
1.47 (d, 3H, J = 6.8 Hz), 5.68 (q, 1H, J = 7.0 Hz), 6.18 (s, 1H),
7.20-7.27 (m, 3H), 7.30-7.37 (m, 2H), 7.38-7.45 (m, 2H),
7.50-7.55 (m, 1H);
13 C-NMR (CDCl 3 ) δ:
13.0, 121.4, 126.8, 127.4, 128.1, 128.2, 128.9, 132.9,
135.1, 137.8, 139.8;
IR (neat) 3258, 3082, 3062, 3020, 2919, 1644, 1585, 1491, 1480,
1446, 1402, 1326, 1268, 1165, 1091, 1043, 1025, 997,
970, 904, 844, 787, 748, 727, 696, 685, 645, 620, 571,
532, 440 cm −1 ;
HRMS (FAB); [M + H] + as calculated 274.902.
Actual value 274.903.
Example 1-3
N- (p-methoxy-benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine (E-4b).

Figure 0004943185
Figure 0004943185

Mp. 52−54℃;
H−NMR (CDCl); δ:
1.59 (d, 3H, J = 7.3 Hz), 3.87 (s, 3H), 5.65 (q, 1H, J = 7.2 Hz),
5.95-6.02 (brs, 1H), 6.94 (d, 2H, J = 8.7 Hz), 7.00-7.07 (m, 2H),
7.22-7.27 (m, 3H), 7.70-7.78 (m, 2H);
13C−NMR (CDCl) δ:
13.9, 55.6, 114.0, 115.0, 128.3, 128.8, 129.6, 131.3, 134.0,
135.6, 163.0;
IR (neat) 3647, 3266, 3057, 2942, 2840, 1595, 1578, 1497, 1434,
1415, 1378, 1357, 1312, 1260, 1224, 1180, 1157, 1091,
1025, 960, 877, 834, 802, 781, 767, 700, 628, 577,
553 cm−1
HRMS (FAB); [M+H]として、計算値 304.1007.
実測値 304.0996.
実施例1−4
N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン(Z−4b)。
Mp. 52-54 ° C;
1 H-NMR (CDCl 3 ); δ:
1.59 (d, 3H, J = 7.3 Hz), 3.87 (s, 3H), 5.65 (q, 1H, J = 7.2 Hz),
5.95-6.02 (brs, 1H), 6.94 (d, 2H, J = 8.7 Hz), 7.00-7.07 (m, 2H),
7.22-7.27 (m, 3H), 7.70-7.78 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
13.9, 55.6, 114.0, 115.0, 128.3, 128.8, 129.6, 131.3, 134.0,
135.6, 163.0;
IR (neat) 3647, 3266, 3057, 2942, 2840, 1595, 1578, 1497, 1434,
1415, 1378, 1357, 1312, 1260, 1224, 1180, 1157, 1091,
1025, 960, 877, 834, 802, 781, 767, 700, 628, 577,
553 cm −1 ;
HRMS (FAB); Calculated as [M + H] + 304.1007.
Actual value 304.0996.
Example 1-4
N- (p-methoxy-benzenesulfonyl)-(Z) -1-phenyl-1-propenyl-amine (Z-4b).

Figure 0004943185
Figure 0004943185

Mp. 142.5−143.5℃;
H−NMR (CDCl); δ:
1.49 (d, 3H, J = 6.9 Hz), 3.84 (s, 3H), 5.64 (q, 1H, J = 7.1 Hz),
6.12 (s, 1H), 6.85-6.88 (m, 2H), 7.22-7.26 (m, 3H),
7.34-7.37 (m, 2H), 7.61-7.64 (m, 2H);
13C−NMR (CDCl) δ:
12.9, 55.6, 113.9, 120.7, 126.7, 127.9, 128.0, 129.4, 131.4,
135.3, 137.7, 163.0;
IR (neat) 3255, 1643, 1595, 1576, 1496, 1457, 1442, 1395, 1326,
1263, 1181, 1159, 1112, 1094, 1041, 1024, 968, 904, 833,
802, 785, 748, 695, 645, 612, 558, 539, 504, 448 cm−1
HRMS (FAB); [M+H]として、計算値 304.1007.
実測値 304.0995.
なお、この結晶はX−線回折の測定に適当であったので、これをAcOEt/ヘキサンから再結晶して解析された。このデータは、CCDC−629330として、www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.htmlにアクセスすることにより無料で得られる。
実施例1−5
N−(p−メチル−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン(Z−4c)。
Mp. 142.5-143.5 ° C;
1 H-NMR (CDCl 3 ); δ:
1.49 (d, 3H, J = 6.9 Hz), 3.84 (s, 3H), 5.64 (q, 1H, J = 7.1 Hz),
6.12 (s, 1H), 6.85-6.88 (m, 2H), 7.22-7.26 (m, 3H),
7.34-7.37 (m, 2H), 7.61-7.64 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
12.9, 55.6, 113.9, 120.7, 126.7, 127.9, 128.0, 129.4, 131.4,
135.3, 137.7, 163.0;
IR (neat) 3255, 1643, 1595, 1576, 1496, 1457, 1442, 1395, 1326,
1263, 1181, 1159, 1112, 1094, 1041, 1024, 968, 904, 833,
802, 785, 748, 695, 645, 612, 558, 539, 504, 448 cm -1 ;
HRMS (FAB); Calculated as [M + H] + 304.1007.
Actual value 304.0995.
Since this crystal was suitable for the measurement of X-ray diffraction, it was recrystallized from AcOEt / hexane and analyzed. This data can be obtained free of charge as CCDC-629330 by accessing www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.html.
Example 1-5
N- (p-methyl-benzenesulfonyl)-(Z) -1-phenyl-1-propenyl-amine (Z-4c).

Figure 0004943185
Figure 0004943185

Mp. 132−134℃;
H−NMR (CDCl); δ:
1.47 (d, 3H, J = 6.9 Hz), 2.41 (s, 3H), 5.66 (q, 1H, J = 7.2 Hz),
6.10 (s, 1H), 7.20-7.27 (m, 5H), 7.34-7.38 (m, 2H),
7.58-7.63 (m, 2H);
13C−NMR (CDCl) δ:
12.9, 21.5, 120.8, 126.7, 127.3, 127.9, 128.0, 129.4, 135.2,
136.7, 137.7, 143.6;
IR (neat) 3263, 3032, 1646, 1596, 1492, 1444, 1395, 1326, 1164,
1091, 1040, 1025, 899, 834, 813, 783, 748, 693, 609,
549, 531 cm−1
HRMS (FAB); [M+H]として、計算値 288.1058.
実測値 288.1059.
実施例1−6
N−(p−クロロ−ベンゼンスルホニル)−(E)−1−フェニル−1−プロペニル−アミン(E−4d)。
Mp. 132-134 ° C;
1 H-NMR (CDCl 3 ); δ:
1.47 (d, 3H, J = 6.9 Hz), 2.41 (s, 3H), 5.66 (q, 1H, J = 7.2 Hz),
6.10 (s, 1H), 7.20-7.27 (m, 5H), 7.34-7.38 (m, 2H),
7.58-7.63 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
12.9, 21.5, 120.8, 126.7, 127.3, 127.9, 128.0, 129.4, 135.2,
136.7, 137.7, 143.6;
IR (neat) 3263, 3032, 1646, 1596, 1492, 1444, 1395, 1326, 1164,
1091, 1040, 1025, 899, 834, 813, 783, 748, 693, 609,
549, 531 cm −1 ;
HRMS (FAB); [M + H] + as calculated 288.1058.
Actual value 288.1059.
Example 1-6
N- (p-chloro-benzenesulfonyl)-(E) -1-phenyl-1-propenyl-amine (E-4d).

Figure 0004943185
Figure 0004943185

H−NMR (C) δ:
1.34 (d, 3H, J = 7.4 Hz), 5.45-5.55 (m, 1H), 5.75-6.05 (m, 1H),
6.80-6.85 (m, 2H), 6.85-7.00 (m, 5H), 7.43-7.50 (m, 2H);
13C−NMR (C) δ:
13.7, 116.0, 127.9, 128.0, 128.1, 128.3, 128.4, 129.0, 129.1,
129.2, 134.5, 135.7, 138.8, 139.4;
IR (neat) 3266, 3088, 3059, 2919, 2857, 1911, 1700, 1650, 1585,
1493, 1476, 1443, 1396, 1379, 1359, 1317, 1278, 1223,
1164, 1091, 1027, 1014, 960, 883, 828, 781, 755, 700, 619,
564, 533, 482 cm−1
HRMS (FAB); [M+H]として、計算値 308.0512.
実測値 308.0514.
実施例1−7
N−(p−クロロ−ベンゼンスルホニル)−(Z)−1−フェニル−1−プロペニル−アミン(Z−4d)。
1 H-NMR (C 6 D 6 ) δ:
1.34 (d, 3H, J = 7.4 Hz), 5.45-5.55 (m, 1H), 5.75-6.05 (m, 1H),
6.80-6.85 (m, 2H), 6.85-7.00 (m, 5H), 7.43-7.50 (m, 2H);
13 C-NMR (C 6 D 6 ) δ:
13.7, 116.0, 127.9, 128.0, 128.1, 128.3, 128.4, 129.0, 129.1,
129.2, 134.5, 135.7, 138.8, 139.4;
IR (neat) 3266, 3088, 3059, 2919, 2857, 1911, 1700, 1650, 1585,
1493, 1476, 1443, 1396, 1379, 1359, 1317, 1278, 1223,
1164, 1091, 1027, 1014, 960, 883, 828, 781, 755, 700, 619,
564, 533, 482 cm -1 ;
HRMS (FAB); [M + H] + , calculated 308.0512.
Actual value 308.0514.
Example 1-7
N- (p-chloro-benzenesulfonyl)-(Z) -1-phenyl-1-propenyl-amine (Z-4d).

Figure 0004943185
Figure 0004943185

Mp. 152−155℃;
H−NMR (CDCl); δ:
1.54 (d, 3H, J = 6.9 Hz), 5.70 (q, 1H, J = 6.9 Hz), 6.21 (s, 1H),
7.20-7.25 (m, 3H), 7.28-7.32 (m, 2H), 7.35-7.38 (m, 2H),
7.60-7.63 (m, 2H);
13C−NMR (CDCl) δ:
13.0, 121.7, 126.7, 128.1, 128.7, 129.0, 134.8, 137.3, 138.3,
139.3;
IR (neat) 3265, 1557, 1471, 1394, 1331, 1167, 1089, 1010, 900, 824,
784, 756, 667, 642, 593, 530, 482, 419 cm−1
HRMS (FAB); [M+H]として、 計算値 308.0512.
実測値 308.0524.
実施例1−8
N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−(p−メトキシ−フェニル)−1−プロペニル−アミン(E−4e)。
Mp. 152-155 ° C;
1 H-NMR (CDCl 3 ); δ:
1.54 (d, 3H, J = 6.9 Hz), 5.70 (q, 1H, J = 6.9 Hz), 6.21 (s, 1H),
7.20-7.25 (m, 3H), 7.28-7.32 (m, 2H), 7.35-7.38 (m, 2H),
7.60-7.63 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
13.0, 121.7, 126.7, 128.1, 128.7, 129.0, 134.8, 137.3, 138.3,
139.3;
IR (neat) 3265, 1557, 1471, 1394, 1331, 1167, 1089, 1010, 900, 824,
784, 756, 667, 642, 593, 530, 482, 419 cm −1 ;
HRMS (FAB); [M + H] + as calculated 308.0512.
Actual value 308.0524.
Example 1-8
N- (p-methoxy-benzenesulfonyl)-(E) -1- (p-methoxy-phenyl) -1-propenyl-amine (E-4e).

Figure 0004943185
Figure 0004943185

Mp. 95−96℃;
H−NMR (CDCl); δ:
1.59 (d, 3H, J = 7.6 Hz), 3.78 (s, 3H), 3,87 (s, 1H),
5.57 (q, 1H, J = 7.1 Hz), 5.90 (s, 1H), 6.77-6.80 (m, 2H),
6.93-6.96 (m, 2H), 6.97-7.01 (m, 2H), 7.73-7.76 (m, 2H);
13C−NMR (CDCl) δ:
13.9, 55.3, 55.6, 113.6, 114.0, 114.2, 127.9, 129.7, 130.2,
131.4, 133.8, 159.4, 163.0;
IR (neat) 3263, 2975, 2939, 2839, 1671, 1596, 1555, 1510, 1498,
1459, 1441, 1418, 1377, 1356, 1315, 1260, 1176, 1150,
1088, 1026, 941, 881, 835, 803, 761, 739, 677, 628, 596,
552 cm−1
HRMS (FAB); E[M+H]として、 計算値 334.1113.
実測値 334.1102.
実施例1−9
N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−(p−メトキシ−フェニル)−1−プロペニル−アミン(Z−4e)。
Mp. 95-96 ° C;
1 H-NMR (CDCl 3 ); δ:
1.59 (d, 3H, J = 7.6 Hz), 3.78 (s, 3H), 3,87 (s, 1H),
5.57 (q, 1H, J = 7.1 Hz), 5.90 (s, 1H), 6.77-6.80 (m, 2H),
6.93-6.96 (m, 2H), 6.97-7.01 (m, 2H), 7.73-7.76 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
13.9, 55.3, 55.6, 113.6, 114.0, 114.2, 127.9, 129.7, 130.2,
131.4, 133.8, 159.4, 163.0;
IR (neat) 3263, 2975, 2939, 2839, 1671, 1596, 1555, 1510, 1498,
1459, 1441, 1418, 1377, 1356, 1315, 1260, 1176, 1150,
1088, 1026, 941, 881, 835, 803, 761, 739, 677, 628, 596,
552 cm −1 ;
HRMS (FAB); As E [M + H] + , calculated value 334.1113.
Actual value 334.1102.
Example 1-9
N- (p-methoxy-benzenesulfonyl)-(Z) -1- (p-methoxy-phenyl) -1-propenyl-amine (Z-4e).

Figure 0004943185
Figure 0004943185

Mp. 151.5−152℃;
H−NMR (CDCl); δ:
1.45 (d, 3H, J = 7.1 Hz), 3.78 (s, 3H), 3.84 (s, 3H),
5.50 (q, 1H, J = 7.0 Hz), 5.96 (s, 1H), 6.75-6.80 (m, 2H),
6.85-6.90 (m, 2H), 7.26-7.33 (m, 2H), 7.60-7.67 (m, 2H);
13C−NMR (CDCl) δ:
12.7, 55.2, 55.6, 113.4, 113.9, 118.4, 128.0, 129.4, 130.3,
135.0, 159.5, 163.0;
IR (neat) 3266, 1610, 1594, 1573, 1553, 1508, 1455, 1387, 1331,
1265, 1176, 1160, 1093, 1029, 824, 803, 702, 6116,
556, 419 cm−1
HRMS (FAB); [M+H]として、 計算値 334.1113.
実測値 334.1102.
実施例1−10
N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−(p−クロロ−フェニル)−1−プロペニル−アミン(E−4f)。
Mp. 151.5-152 ° C;
1 H-NMR (CDCl 3 ); δ:
1.45 (d, 3H, J = 7.1 Hz), 3.78 (s, 3H), 3.84 (s, 3H),
5.50 (q, 1H, J = 7.0 Hz), 5.96 (s, 1H), 6.75-6.80 (m, 2H),
6.85-6.90 (m, 2H), 7.26-7.33 (m, 2H), 7.60-7.67 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
12.7, 55.2, 55.6, 113.4, 113.9, 118.4, 128.0, 129.4, 130.3,
135.0, 159.5, 163.0;
IR (neat) 3266, 1610, 1594, 1573, 1553, 1508, 1455, 1387, 1331,
1265, 1176, 1160, 1093, 1029, 824, 803, 702, 6116,
556, 419 cm −1 ;
HRMS (FAB); As [M + H] + , calculated value 334.1113.
Actual value 334.1102.
Example 1-10
N- (p-methoxy-benzenesulfonyl)-(E) -1- (p-chloro-phenyl) -1-propenyl-amine (E-4f).

Figure 0004943185
Figure 0004943185

Mp. 116−117℃;
H−NMR (CDCl); δ:
1.58 (d, 3H, J = 7.4 Hz), 3.86 (s, 3H), 5.59 (q, 1H, J = 7.2 Hz),
6.05 (s, 1H), 6.92 (d, 2H, J = 8.8 Hz), 7.01 (d, 2H, J = 8.2 Hz),
7.22 (d, 2H, J = 8.2 Hz), 7.68 (d, 2H, J = 8.8 Hz);
13C−NMR (CDCl) δ:
13.9, 55.6, 114.0, 116.8, 128.4, 129.6, 130.4, 131.1, 133.2,
133.8, 134.1, 163.1;
IR (neat) 3648, 3262, 2942, 2840, 1653, 1595, 1578, 1496, 1440,
1378, 1357, 1312, 1261, 1223, 1180, 1158, 1091, 1025,
961, 881, 833, 766, 720, 669, 628, 577, 555, 486 cm−1
HRMS (FAB); [M+H]として、 計算値 338.0618.
実測値 338.0602.
実施例1−11
N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−(p−クロロ−フェニル)−1−プロペニル−アミン(Z−4f)
Mp. 116-117 ° C;
1 H-NMR (CDCl 3 ); δ:
1.58 (d, 3H, J = 7.4 Hz), 3.86 (s, 3H), 5.59 (q, 1H, J = 7.2 Hz),
6.05 (s, 1H), 6.92 (d, 2H, J = 8.8 Hz), 7.01 (d, 2H, J = 8.2 Hz),
7.22 (d, 2H, J = 8.2 Hz), 7.68 (d, 2H, J = 8.8 Hz);
13 C-NMR (CDCl 3 ) δ:
13.9, 55.6, 114.0, 116.8, 128.4, 129.6, 130.4, 131.1, 133.2,
133.8, 134.1, 163.1;
IR (neat) 3648, 3262, 2942, 2840, 1653, 1595, 1578, 1496, 1440,
1378, 1357, 1312, 1261, 1223, 1180, 1158, 1091, 1025,
961, 881, 833, 766, 720, 669, 628, 577, 555, 486 cm −1 ;
HRMS (FAB); As [M + H] + , calculated value 338.0618.
Actual value 338.0602.
Example 1-11
N- (p-methoxy-benzenesulfonyl)-(Z) -1- (p-chloro-phenyl) -1-propenyl-amine (Z-4f)

Figure 0004943185
Figure 0004943185

Mp. 175−176℃;
H−NMR (CDCl); δ:
1.47 (d, 3H, J = 6.9 Hz), 3.86 (s, 3H), 5.62 (q, 1H, J = 6.9 Hz),
6.02 (s, 1H), 6.87-6.90 (m, 2H), 7.19-7.22 (m, 2H),
7.28-7.32 (m, 2H) 7.60-7.63 (m, 2H);
13C−NMR (CDCl) δ:
12.8, 55.6, 114.0, 120.9, 128.1, 128.2, 129.4, 131.2, 133.8,
134.5, 136.2, 163.1;
IR (neat) 3238, 1594, 1576, 1486, 1455, 1402, 1320, 1304, 1264,
1154, 1090, 1019, 822, 802, 739, 695, 679, 608, 561,
536, 420 cm−1
HRMS (FAB); [M+H]として、 計算値 338.0618.
実測値 338.0612.
実施例1−12
N−(p−メトキシ−ベンゼンスルホニル)−(E)−1−フェニル−1−ブテニル−アミン(E−4g)。
Mp. 175-176 ° C;
1 H-NMR (CDCl 3 ); δ:
1.47 (d, 3H, J = 6.9 Hz), 3.86 (s, 3H), 5.62 (q, 1H, J = 6.9 Hz),
6.02 (s, 1H), 6.87-6.90 (m, 2H), 7.19-7.22 (m, 2H),
7.28-7.32 (m, 2H) 7.60-7.63 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
12.8, 55.6, 114.0, 120.9, 128.1, 128.2, 129.4, 131.2, 133.8,
134.5, 136.2, 163.1;
IR (neat) 3238, 1594, 1576, 1486, 1455, 1402, 1320, 1304, 1264,
1154, 1090, 1019, 822, 802, 739, 695, 679, 608, 561,
536, 420 cm −1 ;
HRMS (FAB); As [M + H] + , calculated value 338.0618.
Actual value 338.0612.
Example 1-12
N- (p-methoxy-benzenesulfonyl)-(E) -1-phenyl-1-butenyl-amine (E-4g).

Figure 0004943185
Figure 0004943185

H−NMR (C) δ:
0.72 (t, 3H, J = 7.5 Hz), 1.83 (quintet, 2H, J = 7.6 Hz),
3.05 (s, 3H), 5.61 (t, 1H, J = 7.8 Hz), 6.48-6.52 (m, 2H),
6.92-6.97 (m, 4H), 7.73-7.77 (m, 2H);
13C−NMR (C) δ:
14.5, 21.6, 54.6, 113.7, 113.9, 121.5, 127.6, 128.0, 128.9,
129.4, 129.8, 132.4, 133.6, 136.3, 162.7;
IR (neat) 3267, 2963, 2930, 2871, 1595, 1578, 1497, 1444, 1362,
1317, 1260, 1217, 1180, 1155, 1091, 1025, 923, 886,
834, 803, 775, 700, 628, 579, 553 cm−1
HRMS (FAB); [M+H]として、 計算値 318.1164.
実測値 318.1161.
実施例1−13
N−(p−メトキシ−ベンゼンスルホニル)−(Z)−1−フェニル−1−ブテニル−アミン(Z−4g)。
1 H-NMR (C 6 D 6 ) δ:
0.72 (t, 3H, J = 7.5 Hz), 1.83 (quintet, 2H, J = 7.6 Hz),
3.05 (s, 3H), 5.61 (t, 1H, J = 7.8 Hz), 6.48-6.52 (m, 2H),
6.92-6.97 (m, 4H), 7.73-7.77 (m, 2H);
13 C-NMR (C 6 D 6 ) δ:
14.5, 21.6, 54.6, 113.7, 113.9, 121.5, 127.6, 128.0, 128.9,
129.4, 129.8, 132.4, 133.6, 136.3, 162.7;
IR (neat) 3267, 2963, 2930, 2871, 1595, 1578, 1497, 1444, 1362,
1317, 1260, 1217, 1180, 1155, 1091, 1025, 923, 886,
834, 803, 775, 700, 628, 579, 553 cm -1 ;
HRMS (FAB); [M + H] + as calculated 318.1164.
Actual value 318.1161.
Example 1-13
N- (p-methoxy-benzenesulfonyl)-(Z) -1-phenyl-1-butenyl-amine (Z-4g).

Figure 0004943185
Figure 0004943185

Mp. 170−171℃;
H−NMR (CDCl); δ:
0.83 (t, 3H, J = 7.5 Hz), 1.89 (quintet, 2H, J = 7.5 Hz),
3.84 (s, 3H), 5.50 (t, 1H, J = 7.4 Hz), 6.03 (s, 1H),
6.84-6.90 (m, 2H), 7.21-7.27 (m, 3H), 7.33-7.38 (m, 2H),
7.58-7.65 (m, 2H);
13C−NMR (CDCl) δ:
13.4, 20.8, 55.6, 113.8, 126.9, 127.8, 128.0, 129.5, 131.3,
133.8, 137.6, 163.0;
IR (neat) 3237, 2966, 1595, 1577, 1498, 1443, 1411, 1322, 1303,
1265, 1183, 1158, 1094, 1022, 920, 848, 802, 767, 739,
694, 624, 550 cm−1
HRMS (FAB); [M+H]として、 計算値 318.1164.
実測値 318.1162.
実施例1−14
N−(p−メトキシ−ベンゼンスルホニル)−(E)−2−ペンテン−1−イル−アミン(E−4h)。
Mp. 170-171 ° C;
1 H-NMR (CDCl 3 ); δ:
0.83 (t, 3H, J = 7.5 Hz), 1.89 (quintet, 2H, J = 7.5 Hz),
3.84 (s, 3H), 5.50 (t, 1H, J = 7.4 Hz), 6.03 (s, 1H),
6.84-6.90 (m, 2H), 7.21-7.27 (m, 3H), 7.33-7.38 (m, 2H),
7.58-7.65 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
13.4, 20.8, 55.6, 113.8, 126.9, 127.8, 128.0, 129.5, 131.3,
133.8, 137.6, 163.0;
IR (neat) 3237, 2966, 1595, 1577, 1498, 1443, 1411, 1322, 1303,
1265, 1183, 1158, 1094, 1022, 920, 848, 802, 767, 739,
694, 624, 550 cm -1 ;
HRMS (FAB); [M + H] + as calculated 318.1164.
Actual value 318.1162.
Example 1-14
N- (p-methoxy-benzenesulfonyl)-(E) -2-penten-1-yl-amine (E-4h).

Figure 0004943185
Figure 0004943185

Mp. 85−86℃;
H−NMR (C) δ:
0.78 (t, 3H, J = 7.3 Hz), 1.29 (d, 3H, J = 6.9 Hz),
1.94 (t, 2H, J = 7.3 Hz), 1.93 (q, 2H, J = 7.8 Hz), 3.06 (s, 3H),
5.34-5.46 (m, 1H), 6.50-6.80 (m, 3H), 7.85-7.98 (m, 2H);
13C−NMR (C) δ:
11.9, 12.2, 23.3, 54.9, 111.1, 114.1, 130.0, 132.3, 136.6, 163.0;
IR (neat) 3267, 2974, 2841, 1596, 1579, 1499, 1461, 1442, 1414,
1320, 1260, 1181, 1156, 1094, 1058, 1024, 954, 891, 833,
803, 681, 628, 593, 566, 546 cm−1
HRMS (FAB); [M+H]として、 計算値 256.1007.
実測値 256.1017.

なお、この結晶はX−線回折の測定に適当であったので、これをAcOEt/ヘキサンから再結晶して解析された。このデータは、CCDC−629329として、www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.htmlにアクセスすることにより無料で得られる。
実施例1−15
N−(p−メトキシ−ベンゼンスルホニル)−(Z)−2−ペンテン−1−イル−アミン(Z−4h)。
Mp. 85-86 ° C;
1 H-NMR (C 6 D 6 ) δ:
0.78 (t, 3H, J = 7.3 Hz), 1.29 (d, 3H, J = 6.9 Hz),
1.94 (t, 2H, J = 7.3 Hz), 1.93 (q, 2H, J = 7.8 Hz), 3.06 (s, 3H),
5.34-5.46 (m, 1H), 6.50-6.80 (m, 3H), 7.85-7.98 (m, 2H);
13 C-NMR (C 6 D 6 ) δ:
11.9, 12.2, 23.3, 54.9, 111.1, 114.1, 130.0, 132.3, 136.6, 163.0;
IR (neat) 3267, 2974, 2841, 1596, 1579, 1499, 1461, 1442, 1414,
1320, 1260, 1181, 1156, 1094, 1058, 1024, 954, 891, 833,
803, 681, 628, 593, 566, 546 cm −1 ;
HRMS (FAB); [M + H] + as calculated 256.1007.
Actual value 256.1017.

Since this crystal was suitable for the measurement of X-ray diffraction, it was recrystallized from AcOEt / hexane and analyzed. This data can be obtained free of charge as CCDC-629329 by accessing www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.html.
Example 1-15
N- (p-methoxy-benzenesulfonyl)-(Z) -2-penten-1-yl-amine (Z-4h).

Figure 0004943185
Figure 0004943185

Mp. 101−102℃;
H−NMR (CDCl); δ:
0.97 (t, 3H, J = 7.3 Hz), 1.30 (d, 3H, J = 6.9 Hz),
2.16 (q, 2H, J = 7.5 Hz), 3.86 (s, 3H), 5.03 (q, 1H, J = 6.9 Hz),
5.70-5.83 (m, 1H), 6.93-6.97 (m, 2H), 7.75-7.80 (m, 2H);
13C−NMR (CDCl) δ:
11.7, 12.1, 27.9, 55.6, 114.1, 115.0, 129.2, 131.8, 136.6, 162.9;
IR (neat) 3275, 2969, 2938, 2841, 1671, 1596, 1578, 1498, 1461,
1442, 1396, 1321, 1260, 1180, 1156, 1094, 1063, 1024,
957, 900, 834, 803, 750, 718, 675, 629, 595, 556,
458 cm−1
HRMS (FAB); [M+H]として、 計算値 256.1007.
実測値 256.1013.

なお、この結晶はX−線回折の測定に適当であったので、これをAcOEt/ヘキサンから再結晶して解析された。このデータは、CCDC−629331として、www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.htmlにアクセスすることにより無料で得られる。
実施例1−16
N−(p−メトキシ−ベンゼンスルホニル)−1−シクロヘキセン−1−イル−アミン(4i)。
Mp. 101-102 ° C;
1 H-NMR (CDCl 3 ); δ:
0.97 (t, 3H, J = 7.3 Hz), 1.30 (d, 3H, J = 6.9 Hz),
2.16 (q, 2H, J = 7.5 Hz), 3.86 (s, 3H), 5.03 (q, 1H, J = 6.9 Hz),
5.70-5.83 (m, 1H), 6.93-6.97 (m, 2H), 7.75-7.80 (m, 2H);
13 C-NMR (CDCl 3 ) δ:
11.7, 12.1, 27.9, 55.6, 114.1, 115.0, 129.2, 131.8, 136.6, 162.9;
IR (neat) 3275, 2969, 2938, 2841, 1671, 1596, 1578, 1498, 1461,
1442, 1396, 1321, 1260, 1180, 1156, 1094, 1063, 1024,
957, 900, 834, 803, 750, 718, 675, 629, 595, 556,
458 cm −1 ;
HRMS (FAB); [M + H] + as calculated 256.1007.
Actual value 256.1013.

Since this crystal was suitable for the measurement of X-ray diffraction, it was recrystallized from AcOEt / hexane and analyzed. This data can be obtained free of charge as CCDC-629331 by accessing www.ccdc.cam.ac.uk/conts/retrieving.htmlam.ac.uk/conts/retrieving.html.
Example 1-16
N- (p-methoxy-benzenesulfonyl) -1-cyclohexen-1-yl-amine (4i).

Figure 0004943185
Figure 0004943185

Mp. 86−88℃;
H−NMR (C) δ:
1.10-1.40 (m, 4H), 1.72-2.02 (m, 4H), 3.03-3.25 (m, 3H),
5.51-5.70 (m, 1H), 6.50-6.70 m, 2H), 7.08 (s, 1H),
7.85-8.10 (m, 2H);
13C−NMR (C) δ:
21.9, 22.6, 24.3, 28.2, 55.0, 113.8, 114.3, 130.0, 132.4,
133.1, 163.0, 163.1;
IR (neat) 3346, 3259, 1597, 1577, 1499, 1457, 1324, 1301, 1264,
1154, 1095, 1027, 896, 836, 568, 543 cm−1
HRMS (FAB); [M+H]として、 計算値 268.1007.
実測値 268.1012.
Mp. 86-88 ° C;
1 H-NMR (C 6 D 6 ) δ:
1.10-1.40 (m, 4H), 1.72-2.02 (m, 4H), 3.03-3.25 (m, 3H),
5.51-5.70 (m, 1H), 6.50-6.70 m, 2H), 7.08 (s, 1H),
7.85-8.10 (m, 2H);
13 C-NMR (C 6 D 6 ) δ:
21.9, 22.6, 24.3, 28.2, 55.0, 113.8, 114.3, 130.0, 132.4,
133.1, 163.0, 163.1;
IR (neat) 3346, 3259, 1597, 1577, 1499, 1457, 1324, 1301, 1264,
1154, 1095, 1027, 896, 836, 568, 543 cm −1 ;
HRMS (FAB); [M + H] + as calculated 268.1007.
Actual value 268.1012.

過塩素酸銅(CuClO・4CHCN)とキラルジアミン配位子5(N,N’−ビスアリール−シクロヘキシルジイミンにおける両方のアリール基が、4−ブロモフェニル基である化合物)から調整されたキラル銅触媒を用いる、エンスルホンアミドのグリオキシル酸エチルへの付加反応
実施例2の方法を次の化学反応式で示す。
Prepared from copper perchlorate (CuClO 4 • 4CH 3 CN) and chiral diamine ligand 5 (a compound in which both aryl groups in N, N′-bisaryl-cyclohexyldiimine are 4-bromophenyl groups) Addition reaction of enesulfonamide to ethyl glyoxylate using a chiral copper catalyst The method of Example 2 is shown by the following chemical reaction formula.

Figure 0004943185
Figure 0004943185

(1)CuClO・4CHCN(3.3mg,0.010mmol)の入っている容器に、リガンド5(5.0mg,0.011mmol)の塩化メチレン(1.5mL)溶液を加え、12時間撹拌した。0℃に冷やした後、エチルグリオキシレート(40ml,0.40mmol)と塩化メチレン(1.5mL)を加えた。さらに、エンスルホンアミドZ−4e(0.20mmol)を加え、0℃にて24時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。反応液を室温に戻し、塩化メチレンで抽出した。無水硫酸ナトリウム上で乾燥した後、乾燥剤を濾別後、溶媒を減圧留去した。
(2)得られた残さにエタノール(0.5mL)と48%HBr水溶液(0.5mL)を加え室温で2分間撹拌後、0℃にて飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。反応液を室温に戻し、塩化メチレンで抽出した。無水硫酸ナトリウム上で乾燥した後、乾燥剤を濾別後、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィーで精製して次式
(1) To a container containing CuClO 4 .4CH 3 CN (3.3 mg, 0.010 mmol), a solution of ligand 5 (5.0 mg, 0.011 mmol) in methylene chloride (1.5 mL) was added for 12 hours. Stir. After cooling to 0 ° C., ethyl glyoxylate (40 ml, 0.40 mmol) and methylene chloride (1.5 mL) were added. Furthermore, enesulfonamide Z-4e (0.20 mmol) was added and stirred at 0 ° C. for 24 hours. Saturated aqueous sodium hydrogen carbonate solution was added to stop the reaction. The reaction solution was returned to room temperature and extracted with methylene chloride. After drying over anhydrous sodium sulfate, the desiccant was filtered off and the solvent was distilled off under reduced pressure.
(2) Ethanol (0.5 mL) and 48% HBr aqueous solution (0.5 mL) were added to the obtained residue, and the mixture was stirred at room temperature for 2 minutes, and then saturated sodium hydrogen carbonate aqueous solution was added at 0 ° C. to stop the reaction. The reaction solution was returned to room temperature and extracted with methylene chloride. After drying over anhydrous sodium sulfate, the desiccant was filtered off and the solvent was distilled off under reduced pressure. The crude product is purified by silica gel column chromatography

Figure 0004943185
Figure 0004943185

で表される化合物7(前記した化学反応式における生成物6を加水分解した化合物)を得た。収率93%。主なジアステレオマーの光学純度はHPLC分析の結果98%eeであった。
(2S)−2−ヒドロキシ−4−(4−メトキシ−フェニル)−3−メチル−4−オキソ−ブタン酸エチルエステル(シン体とアンチ体の混合物):
H−NMR シン体 (CDCl) δ:
1.28 (t, 3H, J = 7.1 Hz), 1.29 (d, 3H, J = 7.1 Hz),
3.35 (br, 1H), 3.84-3.96 (m, 4H), 4.27 (q, 2H, J = 7.1 Hz),
4.58 (t, 1H, J = 4.2 Hz), 6.96 (apparent d, 2H, J = 9.0 Hz),
7.30-7.45 (m, 5H), 7.95 (apparent d, 2H, J = 8.8 Hz);
アンチ体 (CDCl) δ:
1.19 (t, 3H, J = 7.1 Hz), 1.36 (d, 3H, J = 7.3 Hz),
3.75 (d, 1H, J = 9.3 Hz), 3.88 (s, 3H),
3.94 (dq, 1H, J = 4.6, 7.3 Hz),
4.15 (apparent dq, 2H, J = 3.2, 7.1 Hz),
4.36 (dd, 1H, J = 4.6, 9.3 Hz), 6.92-6.99 (m, 2H),
7.90-7.97 (m, 2H);
13C−NMR シン体 (CDCl) δ:
12.3, 14.0, 43.7, 55.4, 61.8, 71.7, 113.9, 128.5, 130.7, 163.7,
173.1, 200.4;
アンチ体(CDCl) δ:
14.0, 14.6, 43.2, 55.5, 61.4, 73.4, 113.9, 128.7, 130.8, 163.8,
173.2, 201.9;
IR (neat) シン体 :3477, 2979, 2935, 2850, 1730, 1670, 1600, 1573,
1510, 1463, 1420, 1308, 1261, 1173, 1125,
1027, 976, 843, 770, 604;
アンチ体 : 3478, 2979, 2941, 2843, 1738, 1671, 1599,
1580, 1510, 1457, 1419, 1370, 1308, 1257,
1216, 1172, 1092, 1026, 974, 841 cm−1
HRMS (FAB); C1419 [M+H]として、
計算値 267.1232.
実測値 267.1232.;
HPLC, Daicel Chiralcel ADH, ヘキサン/i−PrOH = 4/1,
流速 = 0.2 mL/分 :
tR = 60.5分 (2R, 3R),
tR = 65.4分 (2S, 2S),
tR = 75.2分 (2R, 3S),
tR = 78.9分 (2S, 3R).
The compound 7 (compound which hydrolyzed the product 6 in the above-mentioned chemical reaction formula) represented by this was obtained. Yield 93%. The optical purity of the main diastereomer was 98% ee as a result of HPLC analysis.
(2S) -2-Hydroxy-4- (4-methoxy-phenyl) -3-methyl-4-oxo-butanoic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR syn form (CDCl 3 ) δ:
1.28 (t, 3H, J = 7.1 Hz), 1.29 (d, 3H, J = 7.1 Hz),
3.35 (br, 1H), 3.84-3.96 (m, 4H), 4.27 (q, 2H, J = 7.1 Hz),
4.58 (t, 1H, J = 4.2 Hz), 6.96 (apparent d, 2H, J = 9.0 Hz),
7.30-7.45 (m, 5H), 7.95 (apparent d, 2H, J = 8.8 Hz);
Anti-body (CDCl 3 ) δ:
1.19 (t, 3H, J = 7.1 Hz), 1.36 (d, 3H, J = 7.3 Hz),
3.75 (d, 1H, J = 9.3 Hz), 3.88 (s, 3H),
3.94 (dq, 1H, J = 4.6, 7.3 Hz),
4.15 (apparent dq, 2H, J = 3.2, 7.1 Hz),
4.36 (dd, 1H, J = 4.6, 9.3 Hz), 6.92-6.99 (m, 2H),
7.90-7.97 (m, 2H);
13 C-NMR syn form (CDCl 3 ) δ:
12.3, 14.0, 43.7, 55.4, 61.8, 71.7, 113.9, 128.5, 130.7, 163.7,
173.1, 200.4;
Anti-body (CDCl 3 ) δ:
14.0, 14.6, 43.2, 55.5, 61.4, 73.4, 113.9, 128.7, 130.8, 163.8,
173.2, 201.9;
IR (neat) thin body: 3477, 2979, 2935, 2850, 1730, 1670, 1600, 1573,
1510, 1463, 1420, 1308, 1261, 1173, 1125,
1027, 976, 843, 770, 604;
Anti: 3478, 2979, 2941, 2843, 1738, 1671, 1599,
1580, 1510, 1457, 1419, 1370, 1308, 1257,
1216, 1172, 1092, 1026, 974, 841 cm -1 ;
HRMS (FAB); as C 14 H 19 O 5 [M + H] +
Calculated value 267.1232.
Actual value 2677.132. ;
HPLC, Daicel Chiralcel ADH, hexane / i-PrOH = 4/1
Flow rate = 0.2 mL / min:
tR = 60.5 minutes (2R, 3R),
tR = 65.4 minutes (2S, 2S),
tR = 75.2 minutes (2R, 3S),
tR = 78.9 minutes (2S, 3R).

前記した実施例1で製造した各種のエンスルホンアミドを用いて同様に行った。これらの結果を次の表1に示し、生成物の物性データを示す。   It carried out similarly using the various enesulfonamides produced in Example 1 described above. These results are shown in the following Table 1 and show physical property data of the product.

Figure 0004943185
Figure 0004943185

(2S)−2−ヒドロキシ−3−メチル−4−オキソ−4−フェニル−ブタン酸エチルエステル(シン体とアンチ体の混合物):
H−NMR シン体 (CDCl) δ:
1.26 (t, 3H, J = 7.0 Hz), 1.29 (d, 3H, J = 7.0 Hz), 3.28 (br, 1H),
3.93 (dq, 1H, J = 4.2, 7.0 Hz), 4.25 (q, 2H, J = 7.0 Hz),
4.58 (d, 1H, J = 4.2 Hz), 7.40-7.65 (m, 3H), 7.90-8.05 (m, 2H);
アンチ体
anti (CDCl) δ:
1.20 (t, 3H, J = 7.1 Hz), 1.36 (d, 3H, J = 7.3 Hz),
3.61 (d, 1H, J = 8.3 Hz), 3.98 (dq, 1H, J = 4.6, 7.1 Hz),
4.10-4.25 (m, 2H), 4.39 (dd, 1H, J = 4.6, 8.3 Hz),
7.40-7.65 (m, 3H);
13C−NMR シン体 (CDCl) δ:
12.1, 14.0, 44.3, 61.9, 71.6, 128.4, 128.7, 133.3, 135.7,
173.1, 201.6;
アンチ体(CDCl) δ:
14.0, 14.1, 44.0, 61.5, 73.1, 128.3, 128.7, 133.4, 135.9, 173.1;
IR (neat) シン体: 3480, 3063, 2978, 2936, 1734, 1678, 1596, 1579,
1449, 1369, 1217, 1133, 1062, 1023, 1001, 975,
952, 862, 794, 708;
アンチ体: 3481, 3059, 2981, 2941, 1738, 1685, 1588,
1454, 1372, 1255, 1209, 1144, 1092, 1024,
973, 701 cm−1
HRMS (FAB); C1317 [M+H]として、
計算値 237.1127.
実測値 237.1118.;
HPLC, Daicel Chiralcel AS + ADH + AD,
ヘキサン/i−PrOH = 4/1, 流速 = 0.5 mL/分:
tR = 46.7分 (2S, 3S),
tR = 50.6分 (2R, 3R),
tR = 54.3分 (2S, 3R),
tR = 61.9分 (2R, 3S).
(2S) -2-Hydroxy-3-methyl-4-oxo-4-phenyl-butanoic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR syn form (CDCl 3 ) δ:
1.26 (t, 3H, J = 7.0 Hz), 1.29 (d, 3H, J = 7.0 Hz), 3.28 (br, 1H),
3.93 (dq, 1H, J = 4.2, 7.0 Hz), 4.25 (q, 2H, J = 7.0 Hz),
4.58 (d, 1H, J = 4.2 Hz), 7.40-7.65 (m, 3H), 7.90-8.05 (m, 2H);
Anti body
anti (CDCl 3 ) δ:
1.20 (t, 3H, J = 7.1 Hz), 1.36 (d, 3H, J = 7.3 Hz),
3.61 (d, 1H, J = 8.3 Hz), 3.98 (dq, 1H, J = 4.6, 7.1 Hz),
4.10-4.25 (m, 2H), 4.39 (dd, 1H, J = 4.6, 8.3 Hz),
7.40-7.65 (m, 3H);
13 C-NMR syn form (CDCl 3 ) δ:
12.1, 14.0, 44.3, 61.9, 71.6, 128.4, 128.7, 133.3, 135.7,
173.1, 201.6;
Anti-body (CDCl 3 ) δ:
14.0, 14.1, 44.0, 61.5, 73.1, 128.3, 128.7, 133.4, 135.9, 173.1;
IR (neat) Syn: 3480, 3063, 2978, 2936, 1734, 1678, 1596, 1579,
1449, 1369, 1217, 1133, 1062, 1023, 1001, 975,
952, 862, 794, 708;
Anti: 3481, 3059, 2981, 2941, 1738, 1685, 1588,
1454, 1372, 1255, 1209, 1144, 1092, 1024,
973, 701 cm −1 ;
HRMS (FAB); as C 13 H 17 O 4 [M + H] +
Calculated value 237.1127.
Actual value 237.1118. ;
HPLC, Daicel Chiralcel AS + ADH + AD,
Hexane / i-PrOH = 4/1, flow rate = 0.5 mL / min:
tR = 46.7 minutes (2S, 3S),
tR = 50.6 minutes (2R, 3R),
tR = 54.3 minutes (2S, 3R),
tR = 61.9 minutes (2R, 3S).

(2S)−4−(4−クロロ−フェニル)−2−ヒドロキシ−3−メチル−4−オキソ−ブタン酸エチルエステル(シン体とアンチ体の混合物):
H−NMR シン体 (CDCl) δ:
1.26 (t, 3H, J = 7.0 Hz), 1.28 (d, 3H, J = 7.0 Hz), 3.27 (brs, 1H),
3.87 (dq, 1H, J = 4.4, 7.0 Hz), 4.25 (q, 2H, J = 7.0 Hz),
4.55 (d, 1H, J = 4.4 Hz), 7.40-7.55 (m, 2H), 7.84-7.97 (m, 2H);
アンチ体 (CDCl) δ:
1.21 (t, 3H, J = 7.1 Hz), 1.34 (d, 3H, J = 7.1 Hz),
3.53 (d, 1H, J = 8.2 Hz), 3.91 (dq, 1H, J = 5.0, 7.1 Hz),
4.08-4.24 (m, 2H), 4.38 (dd, 1H, J = 5.0, 8.2 Hz),
7.42-7.52 (m, 2H), 7.80-7.95 (m, 2H);
13C−NMR シン体 (CDCl) δ:
12.1, 14.0, 44.4, 62.0, 71.5, 129.0, 129.8, 134.1, 139.7, 173.1,
200.3;
アンチ体(CDCl) δ:
13.9, 14.0, 44.1, 61.6, 73.0, 129.0, 129.8, 134.3, 139.9, 173.0,
201.8;
IR (neat) シン体: 3485, 2982, 2938, 1730, 1682, 1589, 1571, 1488,
1455, 1401, 1217, 1132, 1092, 1013, 977, 843,
758, 692, 533, 478;
アンチ体: 3478, 3092, 2982, 2935, 1738, 1686, 1589,
1455, 1402, 1255, 1208, 1144, 1092, 1022,
976, 842, 751, 527 cm−1
HRMS (FAB); C1316ClO [M+H]として、
計算値 271.0737.
実測値 271.0745.;
HPLC, Daicel Chiralcel AS, ヘキサン/i−PrOH = 4/1,
流速 = 0.5 mL/分 :
tR = 15.1分 (2S, 3S),
tR = 16.6分 (2S, 3R),
tR = 21.4分 (2R, 3S),
tR = 23.9分 (2R, 3R).
(2S) -4- (4-Chloro-phenyl) -2-hydroxy-3-methyl-4-oxo-butanoic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR syn form (CDCl 3 ) δ:
1.26 (t, 3H, J = 7.0 Hz), 1.28 (d, 3H, J = 7.0 Hz), 3.27 (brs, 1H),
3.87 (dq, 1H, J = 4.4, 7.0 Hz), 4.25 (q, 2H, J = 7.0 Hz),
4.55 (d, 1H, J = 4.4 Hz), 7.40-7.55 (m, 2H), 7.84-7.97 (m, 2H);
Anti-body (CDCl 3 ) δ:
1.21 (t, 3H, J = 7.1 Hz), 1.34 (d, 3H, J = 7.1 Hz),
3.53 (d, 1H, J = 8.2 Hz), 3.91 (dq, 1H, J = 5.0, 7.1 Hz),
4.08-4.24 (m, 2H), 4.38 (dd, 1H, J = 5.0, 8.2 Hz),
7.42-7.52 (m, 2H), 7.80-7.95 (m, 2H);
13 C-NMR syn form (CDCl 3 ) δ:
12.1, 14.0, 44.4, 62.0, 71.5, 129.0, 129.8, 134.1, 139.7, 173.1,
200.3;
Anti-body (CDCl 3 ) δ:
13.9, 14.0, 44.1, 61.6, 73.0, 129.0, 129.8, 134.3, 139.9, 173.0,
201.8;
IR (neat) Thin body: 3485, 2982, 2938, 1730, 1682, 1589, 1571, 1488,
1455, 1401, 1217, 1132, 1092, 1013, 977, 843,
758, 692, 533, 478;
Anti: 3478, 3092, 2982, 2935, 1738, 1686, 1589,
1455, 1402, 1255, 1208, 1144, 1092, 1022,
976, 842, 751, 527 cm -1 ;
HRMS (FAB); as C 13 H 16 ClO 4 [M + H] +
Calculated value 271.0737.
Actual value 271.0745. ;
HPLC, Daicel Chiralcel AS, hexane / i-PrOH = 4/1
Flow rate = 0.5 mL / min:
tR = 15.1 minutes (2S, 3S),
tR = 16.6 minutes (2S, 3R),
tR = 21.4 minutes (2R, 3S),
tR = 23.9 min (2R, 3R).

(2S)−3−ベンゾイル−2−ヒドロキシ−ペンタン酸エチルエステル(シン体とアンチ体の混合物):
H−NMR シン体 (CDCl) δ:
0.93 (t, 3H, J = 7.5 Hz), 1.19 (t, 3H, J = 7.1 Hz),
1.70-2.05 (m, 2H), 3.18 (brs, 1H), 3.83 (dt, 1H, J = 5.3, 8.3 Hz),
4.19 (q, 2H, J = 7.1 Hz), 4.51 (d, 1H, J = 5.3 Hz),
7.42-7.54 (m, 2H), 7.54-7.62 (m, 1H), 7.90-8.02 (m, 2H);
アンチ体(CDCl) δ:
1.04 (t, 3H, J = 7.6 Hz), 1.15 (t, 3H, J = 7.1 Hz),
1.80-1.95 (m, 2H), 3.70 (d, 1H, J = 9.5 Hz),
3.83 (dt, 1H, J = 4.2, 7.1 Hz), 4.09 (q, 2H, J = 7.1 Hz),
4.43 (dd, 1H, J = 4.2, 9.5 Hz), 7.46-7.52 (m, 2H),
7.56-7.63 (m, 1H), 7.88-7.95 (m, 2H);
13C−NMR シン体 (CDCl) δ:
12.0, 13.9, 21.3, 51.2, 61.9, 71.1, 128.3, 128.6, 133.2, 137.0,
173.6, 201.5;
アンチ体(CDCl) δ:
12.0, 13.9, 22.3, 50.1, 61.4, 71.3, 128.3, 128.7, 133.5, 136.6,
173.4, 203.9;
IR (neat) シン体: 3477, 2972, 2876, 1738, 1675, 1596, 1447, 1372,
1255, 1220, 1118, 1023, 931, 849, 779, 701;
アンチ体: 3485, 3062, 2966, 2941, 2875, 1738, 1682,
1596, 1579, 1448, 1368, 1268, 1208, 1134,
1100, 1028, 914, 849, 785, 699 cm−1
HRMS (FAB); C1419 [M+H]として、
計算値 251.1283.
実測値 251.1277.;
HPLC, Daicel Chiralcel AS, ヘキサン/i−PrOH = 4/1,
流速 = 0.5 mL/分 :
tR = 13.7分 (2S, 3S),
tR = 15.3分 (2S, 3R),
tR = 17.6分 (2R, 3R),
tR = 23.1分 (2R, 3S).
(2S) -3-Benzoyl-2-hydroxy-pentanoic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR syn form (CDCl 3 ) δ:
0.93 (t, 3H, J = 7.5 Hz), 1.19 (t, 3H, J = 7.1 Hz),
1.70-2.05 (m, 2H), 3.18 (brs, 1H), 3.83 (dt, 1H, J = 5.3, 8.3 Hz),
4.19 (q, 2H, J = 7.1 Hz), 4.51 (d, 1H, J = 5.3 Hz),
7.42-7.54 (m, 2H), 7.54-7.62 (m, 1H), 7.90-8.02 (m, 2H);
Anti-body (CDCl 3 ) δ:
1.04 (t, 3H, J = 7.6 Hz), 1.15 (t, 3H, J = 7.1 Hz),
1.80-1.95 (m, 2H), 3.70 (d, 1H, J = 9.5 Hz),
3.83 (dt, 1H, J = 4.2, 7.1 Hz), 4.09 (q, 2H, J = 7.1 Hz),
4.43 (dd, 1H, J = 4.2, 9.5 Hz), 7.46-7.52 (m, 2H),
7.56-7.63 (m, 1H), 7.88-7.95 (m, 2H);
13 C-NMR syn form (CDCl 3 ) δ:
12.0, 13.9, 21.3, 51.2, 61.9, 71.1, 128.3, 128.6, 133.2, 137.0,
173.6, 201.5;
Anti-body (CDCl 3 ) δ:
12.0, 13.9, 22.3, 50.1, 61.4, 71.3, 128.3, 128.7, 133.5, 136.6,
173.4, 203.9;
IR (neat) syn form: 3477, 2972, 2876, 1738, 1675, 1596, 1447, 1372,
1255, 1220, 1118, 1023, 931, 849, 779, 701;
Anti: 3485, 3062, 2966, 2941, 2875, 1738, 1682,
1596, 1579, 1448, 1368, 1268, 1208, 1134,
1100, 1028, 914, 849, 785, 699 cm −1 ;
HRMS (FAB); as C 14 H 19 O 4 [M + H] +
Calculated value 251.1283.
Actual value 251.1277. ;
HPLC, Daicel Chiralcel AS, hexane / i-PrOH = 4/1
Flow rate = 0.5 mL / min:
tR = 13.7 minutes (2S, 3S),
tR = 15.3 minutes (2S, 3R),
tR = 17.6 minutes (2R, 3R),
tR = 23.1 minutes (2R, 3S).

(2S)−2−ヒドロキシ−3−メチル−4−オキソ−ヘキサン酸エチルエステル(シン体とアンチ体の混合物):
H−NMR アンチ体 (C) δ:
0.89 (t, 3H, J = 7.1 Hz), 0.99 (d, 3H, J = 7.2 Hz),
1.97-2.08 (m, 2H), 2.70 (dq, 1H, J = 4.9, 7.2 Hz),
3.39 (d, 1H, J = 6.7 Hz), 3.80-4.00 (m, 2H),
4.11 (dd, 1H, J = 4.9, 6.7 Hz);
シン体 (C) δ:
0.87 (t, 3H, J = 7.1 Hz), 0.93 (t, 3H, J = 7.3 Hz),
1.02 (d, 3H, J = 7.2 Hz), 1.95-2.22 (m, 2H),
2.65 (dq, 1H, J = 4.4, 7.2 Hz), 3.05-3.23 (m, 1H),
3.80-4.00 (m, 2H), 4.38-4.47 (m, 1H);
13C−NMR アンチ体 (CDCl) δ:
7.58, 12.8, 14.0, 34.6, 49.4, 61.3, 73.0, 173.5, 211.3;
シン体 (C) δ:
7.7, 11.0, 14.0, 34.0, 49.5, 61.6, 71.7, 173.7, 209.9;
IR (neat) アンチ体: 3484, 2981, 2940, 1739, 1716, 1459, 1409, 1375,
1268, 1209, 1108, 1066, 1025, 975, 862, 808,
748;
シン体: 3488, 2981, 2940, 1733, 1716, 1459, 1373, 1218,
1145, 1025, 977, 862, 800, 752 cm−1
HRMS (FAB); C17 [M+H]として、
計算値 189.1127.
実測値 189.1120.;
(2S) -2-Hydroxy-3-methyl-4-oxo-hexanoic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR anti-isomer (C 6 D 6 ) δ:
0.89 (t, 3H, J = 7.1 Hz), 0.99 (d, 3H, J = 7.2 Hz),
1.97-2.08 (m, 2H), 2.70 (dq, 1H, J = 4.9, 7.2 Hz),
3.39 (d, 1H, J = 6.7 Hz), 3.80-4.00 (m, 2H),
4.11 (dd, 1H, J = 4.9, 6.7 Hz);
Thin body (C 6 D 6 ) δ:
0.87 (t, 3H, J = 7.1 Hz), 0.93 (t, 3H, J = 7.3 Hz),
1.02 (d, 3H, J = 7.2 Hz), 1.95-2.22 (m, 2H),
2.65 (dq, 1H, J = 4.4, 7.2 Hz), 3.05-3.23 (m, 1H),
3.80-4.00 (m, 2H), 4.38-4.47 (m, 1H);
13 C-NMR anti-isomer (CDCl 3 ) δ:
7.58, 12.8, 14.0, 34.6, 49.4, 61.3, 73.0, 173.5, 211.3;
Thin body (C 6 D 6 ) δ:
7.7, 11.0, 14.0, 34.0, 49.5, 61.6, 71.7, 173.7, 209.9;
IR (neat) Anti: 3484, 2981, 2940, 1739, 1716, 1459, 1409, 1375,
1268, 1209, 1108, 1066, 1025, 975, 862, 808,
748;
Thin body: 3488, 2981, 2940, 1733, 1716, 1459, 1373, 1218,
1145, 1025, 977, 862, 800, 752 cm −1 ;
HRMS (FAB); as C 9 H 17 O 4 [M + H] +
Calculated value 189.1127.
Actual value 189.1120. ;

(1S)−ヒドロキシ−(2−オキソ−シクロヘキシル)−酢酸エチルエステル(シン体とアンチ体の混合物):
H−NMR アンチ体 ((1S,1’R),(C) δ:
0.95 (t, 3H, J = 7.1 Hz), 0.94-1.20 (m, 2H), 1.30-1.42 (m, 2H),
1.56-1.84 (m, 3H), 2.02-2.12 (m, 1H), 2.60-2.70 (m, 1H),
3.35 (d, 1H, J = 7.2 Hz), 3.84 (dd, 1H, J = 3.2, 7.2 Hz),
4.02 (dq, 2H, J = 1.9, 7.1 Hz);
シン体(シン体の特徴的なピーク) δ:
0.88 (t, 3H, J = 7.1 Hz), 2.12-2.21 (m, 1H), 2.48-2.57 (m ,1H),
2.94 (d, 1H, J = 5.0 Hz), 4.60 (dd, 1H, J = 3.2, 5.0 Hz);
13C−NMR アンチ体 (CDCl) δ:
14.1, 24.8, 26.9, 30.1, 42.0, 53.7, 61.6, 71.1, 173.4, 211.2;
シン体(シン体の特徴的なピーク) δ:
14.2, 24.6, 27.1, 41.9, 53.8, 61.7, 69.2, 173.6, 210.4;
HRMS (FAB); C1017 [M+H]として、
計算値 201.1127.
実測値 201.1127.;
(1S) -Hydroxy- (2-oxo-cyclohexyl) -acetic acid ethyl ester (mixture of syn and anti isomers):
1 H-NMR anti-form ((1S, 1′R), (C 6 D 6 ) δ:
0.95 (t, 3H, J = 7.1 Hz), 0.94-1.20 (m, 2H), 1.30-1.42 (m, 2H),
1.56-1.84 (m, 3H), 2.02-2.12 (m, 1H), 2.60-2.70 (m, 1H),
3.35 (d, 1H, J = 7.2 Hz), 3.84 (dd, 1H, J = 3.2, 7.2 Hz),
4.02 (dq, 2H, J = 1.9, 7.1 Hz);
Thin body (characteristic peak of thin body) δ:
0.88 (t, 3H, J = 7.1 Hz), 2.12-2.21 (m, 1H), 2.48-2.57 (m, 1H),
2.94 (d, 1H, J = 5.0 Hz), 4.60 (dd, 1H, J = 3.2, 5.0 Hz);
13 C-NMR anti-isomer (CDCl 3 ) δ:
14.1, 24.8, 26.9, 30.1, 42.0, 53.7, 61.6, 71.1, 173.4, 211.2;
Thin body (characteristic peak of thin body) δ:
14.2, 24.6, 27.1, 41.9, 53.8, 61.7, 69.2, 173.6, 210.4;
HRMS (FAB); as C 10 H 17 O 4 [M + H] +
Calculated value 2011.127.
Actual value 2011.127. ;

次に示す反応式にしたがって、実施例2と同様に行った。   It carried out similarly to Example 2 according to the reaction formula shown next.

Figure 0004943185
Figure 0004943185

生成物の物性は次のとおりである。
(2S,3R)−2−ヒドロキシ−3−メチル−1,4−ジフェニルブタン−1,4−ジオン(シン−10):
[α]22 +80.1 (69%ee, c 1.285, CHCl);
H−NMR (CDCl) δ:
1.12 (d, 3H, J = 6.9 Hz), 3.72 (d, 1H, J = 6.4 Hz),
3.83 (dq, 1H, J = 3.7, 6.9 Hz), 5.47 (dd, 1H, J = 3.7, 6.4 Hz),
7.45-7.67 (m, 6H), 7.89 (d, 2H, J = 7.3 Hz),
7.94 (d, 2H, J = 7.3 Hz);
13C−NMR (CDCl) δ:
10.4, 44.9, 73.5, 128.2, 128.6, 128.8, 129.0, 133.1, 134.0,
134.3, 136.3, 200.4, 201.3;
IR (neat) 3448, 2925, 1681, 1596, 1578, 1448, 1252, 1219, 971,
701 cm−1
HRMS (FAB); [M+H]として、
計算値 269.1178.
実測値 269.1166;
キラルHPLC; Daicel Chiralcel AD-H;
ヘキサン/i−PrOH = 4/1,流速 = 1.0mL/分:
tR = 9.6分 (2S,3R),
tR = 13.1分 (2R,3S).
The physical properties of the product are as follows.
(2S, 3R) -2-Hydroxy-3-methyl-1,4-diphenylbutane-1,4-dione (Syn-10):
[Α] 22 D +80.1 (69% ee, c 1.285, CHCl 3 );
1 H-NMR (CDCl 3 ) δ:
1.12 (d, 3H, J = 6.9 Hz), 3.72 (d, 1H, J = 6.4 Hz),
3.83 (dq, 1H, J = 3.7, 6.9 Hz), 5.47 (dd, 1H, J = 3.7, 6.4 Hz),
7.45-7.67 (m, 6H), 7.89 (d, 2H, J = 7.3 Hz),
7.94 (d, 2H, J = 7.3 Hz);
13 C-NMR (CDCl 3 ) δ:
10.4, 44.9, 73.5, 128.2, 128.6, 128.8, 129.0, 133.1, 134.0,
134.3, 136.3, 200.4, 201.3;
IR (neat) 3448, 2925, 1681, 1596, 1578, 1448, 1252, 1219, 971,
701 cm −1 ;
HRMS (FAB); as [M + H] +
Calculated value 269.1178.
Measured value 269.1166;
Chiral HPLC; Daicel Chiralcel AD-H;
Hexane / i-PrOH = 4/1, flow rate = 1.0 mL / min:
tR = 9.6 minutes (2S, 3R),
tR = 13.1 minutes (2R, 3S).

(2S,3S)−2−ヒドロキシ−3−メチル−1,4−ジフェニルブタン−1,4−ジオン(アンチ−10):
[α]22 +76.5 (78%ee,c 0.685,CHCl);
H−NMR (CDCl) δ:
1.35 (d, 3H, J = 7.3 Hz), 3.95-4.04 (m, 1H), 4.37 (s, 1H),
5.20 (d, 1H, J = 4.1 Hz), 7.42-7.50 (m, 4H), 7.54-7.62 (m, 2H),
7.92 (d, 2H, J = 7.3 Hz), 7.98 (d, 2H, J = 7.3 Hz);
13C−NMR (CDCl) δ:
14.9, 42.7, 76.6, 128.4, 128.6, 128.7, 129.1, 133.5, 133.7, 135.1,
136.1, 200.2, 204.7;
IR (neat) 3069, 2929, 1682, 1595, 1448, 1218, 974, 838, 702,
420 cm−1
HRMS (FAB); [M+H]として、
計算値 269.1178.
実測値 269.1183;
キラルHPLC; Daicel Chiralcel AS-H;
ヘキサン/i−PrOH = 4/1, 流速 = 1.0mL/分:
tR = 9.1分 (2S,3S),
tR = 22.9分 (2R,3R).
(2S, 3S) -2-hydroxy-3-methyl-1,4-diphenylbutane-1,4-dione (anti-10):
[Α] 22 D +76.5 (78% ee, c 0.685, CHCl 3 );
1 H-NMR (CDCl 3 ) δ:
1.35 (d, 3H, J = 7.3 Hz), 3.95-4.04 (m, 1H), 4.37 (s, 1H),
5.20 (d, 1H, J = 4.1 Hz), 7.42-7.50 (m, 4H), 7.54-7.62 (m, 2H),
7.92 (d, 2H, J = 7.3 Hz), 7.98 (d, 2H, J = 7.3 Hz);
13 C-NMR (CDCl 3 ) δ:
14.9, 42.7, 76.6, 128.4, 128.6, 128.7, 129.1, 133.5, 133.7, 135.1,
136.1, 200.2, 204.7;
IR (neat) 3069, 2929, 1682, 1595, 1448, 1218, 974, 838, 702,
420 cm −1 ;
HRMS (FAB); as [M + H] +
Calculated value 269.1178.
Measured value 269.1183;
Chiral HPLC; Daicel Chiralcel AS-H;
Hexane / i-PrOH = 4/1, flow rate = 1.0 mL / min:
tR = 9.1 minutes (2S, 3S),
tR = 22.9 minutes (2R, 3R).

次の反応式にしたがって以下のとおり行った。   According to the following reaction formula, it carried out as follows.

Figure 0004943185
Figure 0004943185

Cu(OTf)(7.2mg,0.02mmol)の入っている容器にジアミンリガンド11(9.9mg,0.022mmol)のトルエン溶液(1.5mL)を加え、室温で12時間撹拌した。−20℃に冷やした後、MS 3A(20mg)、ジイソプロピルアゾジカルボキシレートのトルエン溶液(0.2mmol)と、実施例1で製造したエンスルホンアミド(E−4b)(0.2mmol)のトルエン溶液(1.2mL)を順次加えた。さらにその温度で4.5時間撹拌した後、飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。反応液を室温に戻し、塩化メチレンで抽出した。無水硫酸ナトリウム上で乾燥した後、乾燥剤を濾別後、溶媒を減圧留去した。得られた残さにEtOH(0.5mL)と48%HBr水溶液(0.5mL)を加え室温で1.5分間撹拌後、0℃にて飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。反応液を室温に戻し、塩化メチレンで抽出した。無水硫酸ナトリウム上で乾燥した後、乾燥剤を濾別後、溶媒を減圧留去した。粗生成物をシリカゲルカラムクロマトグラフィーで精製して12を得た。収量47mg,収率70%。光学純度はHPLC分析の結果91%eeであった。 A toluene solution (1.5 mL) of diamine ligand 11 (9.9 mg, 0.022 mmol) was added to a container containing Cu (OTf) 2 (7.2 mg, 0.02 mmol), and the mixture was stirred at room temperature for 12 hours. After cooling to −20 ° C., MS 3A (20 mg), toluene solution of diisopropyl azodicarboxylate (0.2 mmol) and toluene of enesulfonamide (E-4b) (0.2 mmol) prepared in Example 1 Solution (1.2 mL) was added sequentially. Furthermore, after stirring for 4.5 hours at that temperature, a saturated aqueous sodium hydrogen carbonate solution was added to stop the reaction. The reaction solution was returned to room temperature and extracted with methylene chloride. After drying over anhydrous sodium sulfate, the desiccant was filtered off and the solvent was distilled off under reduced pressure. EtOH (0.5 mL) and 48% HBr aqueous solution (0.5 mL) were added to the obtained residue, and the mixture was stirred at room temperature for 1.5 minutes, and then saturated sodium bicarbonate aqueous solution was added at 0 ° C. to stop the reaction. The reaction solution was returned to room temperature and extracted with methylene chloride. After drying over anhydrous sodium sulfate, the desiccant was filtered off and the solvent was distilled off under reduced pressure. The crude product was purified by silica gel column chromatography to give 12. Yield 47 mg, yield 70%. The optical purity was 91% ee as a result of HPLC analysis.

ジイソプロピル N−(1−メチル−2−オキソ−2−フェニルエチル)−N,N’−ヒドラジンジカルボン酸:
[α]24 −20.1 (95%ee,c 3.46,CHCl);
H−NMR (CDCl) See below.;

13C NMR (CDCl3) See below.;

IR (neat) 3314, 2982, 2938, 1692, 1596, 1453, 1380, 1299, 1222, 1180,
1145, 1108, 1058, 1037, 1003, 966, 936, 766, 700 cm−1
HRMS (FAB); C1725 [M+H]として、
計算値 337.1763.
実測値 337.1761.;
キラルHPLC; Daicel Chiralcel AD-H; ヘキサン/i−PrOH = 4/1,
流速 = 1.0mL/分:
tR = 8.0分 (R),
tR = 11.0分 (S).
Diisopropyl N- (1-methyl-2-oxo-2-phenylethyl) -N, N′-hydrazine dicarboxylic acid:
[Α] 24 D -20.1 (95% ee, c 3.46, CHCl 3 );
1 H-NMR (CDCl 3) See below. ;

13C NMR (CDCl3) See bellow. ;

IR (neat) 3314, 2982, 2938, 1692, 1596, 1453, 1380, 1299, 1222, 1180,
1145, 1108, 1058, 1037, 1003, 966, 936, 766, 700 cm −1 ;
HRMS (FAB); as C 17 H 25 N 2 O 5 [M + H] +
Calculated value 337.1763.
Actual value 337.1761. ;
Chiral HPLC; Daicel Chiralcel AD-H; Hexane / i-PrOH = 4/1
Flow rate = 1.0 mL / min:
tR = 8.0 minutes (R),
tR = 11.0 minutes (S).

次の反応式にしたがって、次の表2に示す条件で実施例2で製造したスルホニルイミンの加水分解を行った。   According to the following reaction formula, the sulfonylimine produced in Example 2 was hydrolyzed under the conditions shown in Table 2 below.

Figure 0004943185
Figure 0004943185

反応条件と結果を次の表2に示す。   The reaction conditions and results are shown in Table 2 below.

Figure 0004943185
Figure 0004943185

次の反応式にしたがって、実施例2で製造したスルホニルイミンの還元を行った。   According to the following reaction formula, the sulfonylimine produced in Example 2 was reduced.

Figure 0004943185
Figure 0004943185

目的の化合物9aと9bを収率93%で得た。9aと9bの比は、92:8であった。   The target compounds 9a and 9b were obtained with a yield of 93%. The ratio of 9a and 9b was 92: 8.

本発明は、医薬品、農薬、香料、機能性高分子等の製造のための原料や合成中間体として有用な光学活性な1,3−アミノアルコールや1,3−カルボニルアルコールの原料となる光学活性スルホニルイミンを、高収率で、高光学収率で製造する方法を提供するものであり、化学物質を製造する分野、特にファインケミカル分野における産業に極めて有用なものであり、産業上の利用可能性を有している。   The present invention is an optical activity to be a raw material for optically active 1,3-amino alcohols and 1,3-carbonyl alcohols useful as raw materials and synthetic intermediates for the production of pharmaceuticals, agricultural chemicals, fragrances, functional polymers and the like. It provides a method for producing sulfonylimine with high yield and high optical yield, and is extremely useful for industries in the field of producing chemical substances, particularly in the field of fine chemicals. have.

Claims (4)

次の一般式(1)
Figure 0004943185
(式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよいアルキル基を表し、Rは、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、Rは、置換基を有してもよいアリール基を表し、また、RとRが一緒になって隣接する炭素原子と共に炭素数5〜15の炭素環を形成してもよい。)
で表されるエンスルホンアミドと、次の一般式(2)
Figure 0004943185
(式中、R は、−C(=O)−R基、又は−COO−R基を示し、Rは置換基を有してもよい炭化水素基を示す。)
で表されるアルデヒド基を有する化合物とを、銅化合物及び次の一般式
Figure 0004943185
(式中、Rはそれぞれ独立して炭素数1〜20の直鎖状又は分岐状のアルキル基、又は置換基を有していてもよい炭素数6〜26のアリール基を示す。)
で表される不斉炭素原子を含有するジイミンとを含有してなる触媒の存在下で反応させて、次の一般式(3)
Figure 0004943185
(式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよいアルキル基を表し、Rは、置換基を有してもよいアルキル基又は置換基を有してもよいアリール基を表し、Rは、置換基を有してもよいアリール基を表し、また、R とR が一緒になって隣接する炭素原子と共に炭素数5〜15の炭素環を形成してもよく、 は、−C(=O)−R基、又は−COO−R基を示し、Rは置換基を有してもよい炭化水素基を表す。
で表されるスルホニルイミン化合物を製造する方法。
The following general formula (1)
Figure 0004943185
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group which may have a substituent, and R 3 has an alkyl group or a substituent which may have a substituent. R 4 represents an aryl group which may have a substituent, and R 2 and R 3 together with adjacent carbon atoms have 5 to 15 carbon atoms. A ring may be formed.)
An enesulfonamide represented by the following general formula (2):
Figure 0004943185
(In the formula, R 5 represents a —C (═O) —R a group or a —COO—R a group, and R a represents a hydrocarbon group which may have a substituent.)
A compound having an aldehyde group represented by the following formula: a copper compound and the following general formula:
Figure 0004943185
(In the formula, each R independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 26 carbon atoms which may have a substituent.)
And a diimine containing an asymmetric carbon atom represented by the following general formula (3):
Figure 0004943185
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group which may have a substituent , and R 3 has an alkyl group or a substituent which may have a substituent. represents an aryl group which may be, R 4 represents an aryl group which may have a substituent, and the carbon of 5 to 15 carbon atoms together with the carbon atoms to which R 2 and R 3 are adjacent, together A ring may be formed, and R 5 represents a —C (═O) —R a group or a —COO—R a group, and R a represents a hydrocarbon group which may have a substituent . )
A process for producing a sulfonylimine compound represented by the formula:
不斉炭素原子を含有するジイミンが光学活性体であり、生成する一般式(3)で表されるスルホニルイミン化合物が少なくとも一種の光学活性体を過剰に含むものである請求項に記載の方法。 2. The method according to claim 1 , wherein the diimine containing an asymmetric carbon atom is an optically active substance, and the sulfonylimine compound represented by the general formula (3) to be produced contains at least one optically active substance in excess. 一般式(3)で表されるスルホニルイミン化合物が、光学活性体である請求項1又は2に記載の方法。 The method according to claim 1 or 2 , wherein the sulfonylimine compound represented by the general formula (3) is an optically active substance. 銅化合物が、過塩素酸銅である請求項1〜のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the copper compound is copper perchlorate.
JP2007053559A 2007-03-03 2007-03-03 Process for producing optically active sulfonylimine compound Expired - Fee Related JP4943185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053559A JP4943185B2 (en) 2007-03-03 2007-03-03 Process for producing optically active sulfonylimine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053559A JP4943185B2 (en) 2007-03-03 2007-03-03 Process for producing optically active sulfonylimine compound

Publications (2)

Publication Number Publication Date
JP2008214262A JP2008214262A (en) 2008-09-18
JP4943185B2 true JP4943185B2 (en) 2012-05-30

Family

ID=39834737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053559A Expired - Fee Related JP4943185B2 (en) 2007-03-03 2007-03-03 Process for producing optically active sulfonylimine compound

Country Status (1)

Country Link
JP (1) JP4943185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917064B2 (en) * 2008-03-11 2012-04-18 独立行政法人科学技術振興機構 Method for allylation of sulfonylimidate
JP5107286B2 (en) * 2009-03-11 2012-12-26 独立行政法人科学技術振興機構 Method using phosphonimidate as a nucleophile
JP5574480B2 (en) * 2009-03-12 2014-08-20 国立大学法人高知大学 Amino group-containing acetone derivative and carbon-carbon bond forming method using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380429B1 (en) * 1999-09-28 2002-04-30 E. I. Du Pont Nemours And Company Preparation of sulfonyl imine compounds
JP2003277346A (en) * 2002-03-25 2003-10-02 Mitsui Chemicals Inc Method for producing optically active sulfonamide compound
FR2854629B1 (en) * 2003-05-07 2005-06-17 Centre Nat Rech Scient PROCESS FOR THE SYNTHESIS OF 4-HYDROXYISOLEUCINE AND ITS DERIVATIVES
WO2005070864A1 (en) * 2004-01-23 2005-08-04 Japan Science And Technology Agency METHOD OF ENANTIOMETRICALLY SELECTIVE NUCLEOPHILIC ADDITION REACTION TO CARBONYL OF ENAMIDE AND METHOD OF SYNTHESIZING OPTICALLY ACTIVE α-HYDROXY-Ϝ-KETO ACID ESTER AND HYDROXYDIKETONE

Also Published As

Publication number Publication date
JP2008214262A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4502293B2 (en) Optically active quaternary ammonium salt having axial asymmetry, its production method and application to asymmetric synthesis of α-amino acid derivatives
JPH05331128A (en) @(3754/24)r)-@(3754/24)-)-4-cyano-3-hydroxylactic acid t-butyl ester and its production
JP4943185B2 (en) Process for producing optically active sulfonylimine compound
JPWO2005000803A1 (en) Asymmetric urea compound and method for producing asymmetric compound by asymmetric conjugate addition reaction using the same
US6187918B1 (en) Catalysts for asymmetric addition of organozinc reagents to aldehydes and method for preparation
JP3999028B2 (en) Process for producing optically active 2-acylated 1,2-diol compound derivative
CN115304507A (en) Synthesis method of N-substituted aryl formamide
WO2008135386A1 (en) Chiral ligands of the n-heterocyclic carbene type for asymmetrical catalysis
US20020065414A1 (en) Optically active quarternary ammonium salt with axial chirality, method for producing thereof, and aplication thereof for asymmetric synthesis of alpha-amino acid
JP4860510B2 (en) Production of carboxylic acid having asymmetric point at β-position and nucleophile
JP3896774B2 (en) Bisisoxazoline derivative, production method thereof and catalyst comprising metal complex thereof
JP4732180B2 (en) Stereoselective production method of 1,3-aminoalcohol derivatives
JP4427266B2 (en) β-alanine derivative and method for producing the same
JP4696274B2 (en) Solid chiral zirconium catalyst and method for synthesizing aldol reactant or cyclized compound using the same
KR20060136357A (en) Method for producing aromatic unsaturated compound
CN113501766B (en) Asymmetric synthesis method of multi-functional cyclopentenone derivative containing difluoroalkyl
JP4586568B2 (en) Method for producing tetralones
JP3134786B2 (en) 2-Azabicyclo [3.3.0] octane derivatives, their production and optical resolution of diols or amino alcohols
JP5106562B2 (en) Optically active quaternary ammonium salt having axial asymmetry, its production method and application to asymmetric synthesis of α-amino acid derivatives
JP5053895B2 (en) Method for producing nitrogen-containing heterocyclic compound
JP4208174B2 (en) Amino compounds and stereoselective production method thereof
JP3770678B2 (en) Optically active alcohol and its carboxylic acid ester
Sun et al. Iron-mediated Reformatsky reaction of iododifluoromethyl ketones with aldehydes: Preparation of α, α-difluoro-β-hydroxyketone derivatives
RU2544859C1 (en) Method of producing (s)-3-aminomethyl-5-methylhexanoic acid (pregabalin)
JP4579174B2 (en) Process for producing optically active α, β-diamino acid derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R150 Certificate of patent or registration of utility model

Ref document number: 4943185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees