JP2001103798A - Identification apparatus for constant of induction motor and control device - Google Patents

Identification apparatus for constant of induction motor and control device

Info

Publication number
JP2001103798A
JP2001103798A JP27489299A JP27489299A JP2001103798A JP 2001103798 A JP2001103798 A JP 2001103798A JP 27489299 A JP27489299 A JP 27489299A JP 27489299 A JP27489299 A JP 27489299A JP 2001103798 A JP2001103798 A JP 2001103798A
Authority
JP
Japan
Prior art keywords
current
axis
motor
constant
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27489299A
Other languages
Japanese (ja)
Other versions
JP3959902B2 (en
Inventor
Kozo Ide
耕三 井手
Shuichi Fujii
秋一 藤井
Ikuma Murokita
幾磨 室北
Hideaki Iura
英昭 井浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP27489299A priority Critical patent/JP3959902B2/en
Publication of JP2001103798A publication Critical patent/JP2001103798A/en
Application granted granted Critical
Publication of JP3959902B2 publication Critical patent/JP3959902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an identification apparatus for the constant of an induction motor, by which the constant of the induction motor can be identified in a state that the induction motor is in stop, and by which the constant of the induction motor can be identified precisely even when the skin effect or the magnetic saturation of the induction motor is generated. SOLUTION: A high-frequency signal is superimposed on a motor-voltage command value, and the constant of a motor is identified on the basis of a motor current. At this time, a command voltage or current which generates a torque is set to 0. The constant of the motor is set over a wide range by taking into consideration that the value of the constant of the motor is changed when ths superimposed signal for identification generates the skin effect or the magnetic saturation of the motor according to a frequency or a place.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘導電動機を停止
させたまま電動機定数(又は、モータ定数)を同定する
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for identifying a motor constant (or a motor constant) while an induction motor is stopped.

【0002】[0002]

【従来の技術】従来、ベクトル制御により誘導電動機を
制御するに際して、制御対象となる誘導電動機のモータ
定数(例えば、1次、2次抵抗、漏れインダクタンス、
2次回路時定数等)から演算によって、速度、磁束、滑
り角速度などを求める必要があるが、これらのモータ定
数を、誘導電動機を停止させたまま同定する方法として
は、特開平6−273496号公報に開示されたものが
ある。これらの手法によれば、モータを停止させるため
にトルクを発生させる指令電圧あるいは電流を0とし直
流励磁された状態で、高周波あるいは交流信号を界磁成
分の指令電圧あるいは電流に重畳して、重畳信号とその
ときのモータ電圧あるいは電流を用いてモータ定数を同
定する手法である。
2. Description of the Related Art Conventionally, when an induction motor is controlled by vector control, the motor constant (for example, primary and secondary resistance, leakage inductance,
It is necessary to obtain the speed, magnetic flux, slip angular velocity, and the like by calculation from the secondary circuit time constant, and the like. A method for identifying these motor constants while the induction motor is stopped is disclosed in JP-A-6-273496. There is one disclosed in the gazette. According to these techniques, a high-frequency or AC signal is superimposed on a command voltage or current of a field component in a state where a command voltage or a current for generating a torque for stopping the motor is set to 0 and DC excitation is performed. This is a method of identifying a motor constant using a signal and a motor voltage or current at that time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例において、高周波信号をモータ電圧指令値に重畳し
てモータ電流からモータ定数を測定する手法を用いた場
合、重畳する周波数や重畳する場所によって表皮効果や
磁気飽和の状態によってモータ定数の値が変化するた
め、通常駆動周波数領域で用いるモータ定数とは大きく
異なる値が同定されるといった問題があった。そこで、
本発明は、誘導電動機が停止した状態でモータ定数を同
定する際に、同定のための重畳信号が周波数や場所によ
って表皮効果や磁気飽和を生じることによってモータ定
数の値が変化することを考慮し、正確に電動機定数を同
定できる誘導電動機の定数同定装置および制御装置を提
供することを目的としている。
However, in the above-mentioned conventional example, when a technique of measuring a motor constant from a motor current by superimposing a high-frequency signal on a motor voltage command value is used, the skin depends on the frequency to be superimposed and the place of superimposition. Since the value of the motor constant changes depending on the effect and the state of the magnetic saturation, there is a problem that a value significantly different from the motor constant used in the normal driving frequency region is identified. Therefore,
The present invention considers that when a motor constant is identified in a state where the induction motor is stopped, a value of the motor constant changes due to a skin effect or magnetic saturation caused by a superimposed signal for identification depending on frequency or location. It is another object of the present invention to provide an induction motor constant identification device and a control device capable of accurately identifying a motor constant.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明の誘導電動機の定数同定装置は、電動機電流
を磁束成分(d 軸成分)とトルク成分(q 軸成分)とに
分離し、それぞれを独立に制御することによって直流機
相当の応答を得るベクトル制御の誘導電動機の定数同定
装置において、電動機の制御磁束軸(γ軸)から任意の
角度(テスト角)に位置する定数測定軸(X軸)に任意
の周波数を含む電圧信号を発生するテスト電圧信号発生
器と、前記電圧発生器の出力を制御磁束軸(γ軸)と制
御トルク軸(δ軸)に分配するテスト電圧信号分配器
と、前記テスト電圧信号分配器の出力をγ軸電圧指令値
とδ軸電圧指令値のそれぞれに加算する電圧加算器と、
電動機の入力電流を制御基準座標上に磁束成分γ電流と
トルク成分δ電流に変換する第1の座標変換器と、電動
機の入力電流を定数測定軸上に変換する第2の座標変換
器と、前記第1の座標変換器の出力であるγ、δ電流か
ら高周波分を除去する高周波成分除去器と、高周波成分
除去器の出力電流を電流指令値に一致させるように制御
する電流制御器と、前記第2の座標変換器の出力である
電流から前記テスト電圧信号と同周波数成分を抽出する
テスト周波数成分抽出器と、前記テスト周波数抽出器か
らの出力電流と前記高周波テスト電圧からテスト角度に
対するインピーダンスを同定するインピーダンス同定器
と、前記テスト角度に対して変化するインピーダンスか
ら最適値を求めるインピーダンス最適値演算器と、前記
第2の座標変換器の出力である電流と前記高周波電圧か
ら力率を演算する力率演算器と、前記インピーダンス同
定器出力と力率演算器出力から抵抗分とインダクタンス
分とを分離する定数同定器を備えている。また、請求項
2記載の発明は、請求項1記載の誘導電動機の定数同定
装置によって同定された誘導電動機定数を用いることを
特徴としている。この誘導電動機の定数同定装置およ制
御装置によれば、任意の周波数を含むテスト用電圧信号
を制御磁束軸から任意の角度に位置する定数測定軸(X
軸)に発生させ、誘導電動機の検出電流からテスト用信
号周波数成分を抽出して、テスト用信号成分の(電圧実
効値/電流実効値)としてインピーダンスを同定し、力
率を計算して電動機の抵抗分とインダクタンス分を分離
・同定する際に、テスト用信号の周波数は単一周波数で
はなく広い範囲の周波数を含み、その発生位置も特定位
置だけではなく、例えば、制御磁束軸(γ軸)から0±
90°といった範囲に発生させるので、表皮効果又は磁
気飽和に影響されない最適なインピーダンスを同定し選
択して設定することができる。
Means for Solving the Problems To achieve the above object, a constant identification device for an induction motor according to the present invention separates a motor current into a magnetic flux component (d-axis component) and a torque component (q-axis component). In a vector control induction motor constant identification device that obtains a response equivalent to a DC motor by independently controlling each of them, a constant measurement axis (test angle) located at an arbitrary angle (test angle) from a control magnetic flux axis (γ axis) of the motor. A test voltage signal generator for generating a voltage signal including an arbitrary frequency on the X axis) and a test voltage signal distribution for distributing an output of the voltage generator to a control magnetic flux axis (γ axis) and a control torque axis (δ axis) A voltage adder that adds the output of the test voltage signal distributor to the specified γ-axis voltage value and the specified δ-axis voltage value,
A first coordinate converter that converts the input current of the motor into a magnetic flux component γ current and a torque component δ current on a control reference coordinate, a second coordinate converter that converts the input current of the motor onto a constant measurement axis, A high-frequency component remover that removes high-frequency components from the γ and δ currents that are outputs of the first coordinate converter, a current controller that controls an output current of the high-frequency component remover to match a current command value, A test frequency component extractor for extracting the same frequency component as the test voltage signal from a current output from the second coordinate converter; and an impedance with respect to a test angle from the output current from the test frequency extractor and the high frequency test voltage. An impedance identifier for identifying the second coordinate converter; an impedance optimum value calculator for obtaining an optimum value from the impedance that changes with respect to the test angle; Includes power and power factor calculator for calculating the power factor from the current and the high frequency voltage is, the constant identifier for separating the resistance component and the inductance from the impedance identifier output and power factor calculator output. The invention according to claim 2 is characterized in that the induction motor constant identified by the induction motor constant identification device according to claim 1 is used. According to the constant identification device and the control device of the induction motor, a test voltage signal including an arbitrary frequency is applied to a constant measurement axis (X) located at an arbitrary angle from the control magnetic flux axis.
Axis), the test signal frequency component is extracted from the detected current of the induction motor, the impedance is identified as (voltage effective value / current effective value) of the test signal component, and the power factor is calculated by calculating the power factor. When separating and identifying the resistance component and the inductance component, the frequency of the test signal includes not only a single frequency but a wide range of frequencies, and the generation position is not limited to a specific position, for example, a control magnetic flux axis (γ axis) From 0 ±
Since it is generated in a range such as 90 °, it is possible to identify, select and set an optimum impedance which is not affected by the skin effect or the magnetic saturation.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照し説明する。図1は本発明の実施の形態に
係る誘導電動機の定数同定装置の制御ブロック線図であ
る。図2は図1に示す誘導電動機の等価回路図である。
図3は図2に示す誘導電動機の等価回路の簡略回路図で
ある。図4は図1に示すインピーダンス同定器による同
定結果を示す図である。図5は図1に示す力率演算器の
ブロック図である。図1において、1は誘導電動機、2
は誘導電動機1に印加する3相電流を発生する電圧形P
WMインバータである。3は2相電圧を3相電圧に変換
する2/3相座標変換器、4はテスト信号出力を任意の
角度に座標変換するテスト電圧分配器、5はテスト信号
として高周波fxの電圧を発生するテスト信号発生器、
6は電流制御器の出力にテスト電圧分配器4の出力を加
算する加算器、7は電流指令iγ* 、iδ* から電圧指
令Vγ *、Vδ* を生成する電流制御器、9は電流検出
器16からの3相検出電流を2相電流に変換する第1の
座標変換器、8は座標変換器9の出力からLPF等によ
りテスト用高周波成分を除去して2相電流iγ、iδを
フィードバック出力する高周波成分除去器である。10
は電流検出器9の検出電流値を定数測定軸(X軸)に変
換する第2の座標変換器、11はBPF等により重畳周
波数fxの成分を抽出するテスト周波数成分抽出器、1
2は抽出したテスト周波数成分からインピーダンスZx
を求めるインピーダンス同定器、13はインピーダンス
同定器12の出力から力率φを計算する力率演算器、1
4はインピーダンス値を選択するインピーダンス最適値
演算器、15はR、L分離・同定する定数同定器であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a control block diagram of a constant identification device for an induction motor according to an embodiment of the present invention. FIG. 2 is an equivalent circuit diagram of the induction motor shown in FIG.
FIG. 3 is a simplified circuit diagram of an equivalent circuit of the induction motor shown in FIG. FIG. 4 is a diagram showing an identification result by the impedance identifier shown in FIG. FIG. 5 is a block diagram of the power factor calculator shown in FIG. In FIG. 1, 1 is an induction motor, 2
Is a voltage source P that generates a three-phase current applied to the induction motor 1.
It is a WM inverter. Reference numeral 3 denotes a 2 / 3-phase coordinate converter that converts a two-phase voltage into a three-phase voltage, 4 denotes a test voltage distributor that converts a test signal output to an arbitrary angle, and 5 generates a high-frequency fx voltage as a test signal. Test signal generator,
6 is an adder for adding the output of the test voltage divider 4 to the output of the current controller 7 is a current command i? *, I? * Voltage command from V.gamma *, a current controller for generating a V8 *, 9 denotes a current detector A first coordinate converter for converting the three-phase detection current from 16 to a two-phase current, and a feedback output of two-phase currents iγ and iδ by removing high-frequency components for testing from the output of the coordinate converter 9 using an LPF or the like. High frequency component remover. 10
Is a second coordinate converter for converting the detected current value of the current detector 9 into a constant measurement axis (X axis); 11 is a test frequency component extractor for extracting a component of the superimposed frequency fx by BPF or the like;
2 is the impedance Zx from the extracted test frequency component.
, A power factor calculator 13 for calculating a power factor φ from the output of the impedance identifier 12,
4 is an impedance optimum value calculator for selecting an impedance value, and 15 is a constant identifier for separating and identifying R and L.

【0006】つぎに動作について説明する。テスト信号
発生器5は、任意の高周波数 fx の成分である電圧指令
値を発生する。電流制御器7の出力である電圧指令値の
γ成分(磁束成分)と、電圧指令値のδ成分(トルク成
分)に、次の数式(1)に示すような、
Next, the operation will be described. The test signal generator 5 generates a voltage command value which is a component of an arbitrary high frequency fx. The γ component (magnetic flux component) of the voltage command value and the δ component (torque component) of the voltage command value, which are the outputs of the current controller 7, are represented by the following formula (1).

【数1】 テスト信号発生器出力VX をテスト電圧分配器4から任
意の角度θt によって数式(1)の電圧指令値に対し
て、次の数式(2)に示すような、
(Equation 1) A test signal generator output V X from the test voltage divider 4 by any angle theta t with respect to the voltage command value of the equation (1), as shown in the following equation (2),

【数2】 X γ とVX δに座標変換したものを、加算器6にて
加算する。任意の角θt は、γ軸を中心に0 度とし、−
90度から90度まで一定サンプル時間一定角度で変化させ
る。電流検出器1 6で検出された電流は、第1の座標変
換器9で制御座標軸に座標変換し、高周波成分除去器8
にて重畳周波数fxと同じ周波数成分を除去してフィード
バックし、各々の指令値との偏差をとって、電流制御器
7で電流制御を実施する。電動機定数同定時は、適当な
iγ* を指令し、iδ* はトルクを発生させないように
0電流指令とする。一方、第2の座標変換器10では、
電流検出器16にて検出される電流を制御座標から任意
の角度θt に位置する定数測定軸(X軸)へ変換し、テ
スト周波数成分抽出器11にて重畳周波数fxと同じ周波
数成分を抽出する。テスト電圧を数式(1)とすれば、
ここで抽出される重畳周波数成分の電流iX は数式
(3)として展開できる。
(Equation 2) A material obtained by coordinate conversion to V X gamma and V X [delta], is added by adder 6. Any angle theta t is set to 0 degrees around the γ axis, -
It changes from 90 degrees to 90 degrees at a fixed angle for a fixed sampling time. The current detected by the current detector 16 is coordinate-transformed by a first coordinate converter 9 into control coordinate axes, and the high-frequency component remover 8 is used.
Then, the same frequency component as the superimposed frequency fx is removed and fed back, and a deviation from each command value is taken, and current control is performed by the current controller 7. At the time of motor constant identification, an appropriate iγ * is instructed, and iδ * is a 0 current instruction so as not to generate torque. On the other hand, in the second coordinate converter 10,
Converts the current detected by the current detector 16 from the control coordinates constant measurement axis located at an arbitrary angle theta t to (X-axis), extracts the same frequency components as the superposition frequency fx at the test frequency component extractor 11 I do. Assuming that the test voltage is Equation (1),
Current i X of the superimposed frequency component extracted here can be expanded as Equation (3).

【数3】 なお、式中のIX は(電圧VX )/(インピーダン
ス)、R、L、φはそれぞれ、 IX = VX /{R2 +(2πfX t)2 1/2 φ =tan- 1 (2πfL/R) R =RS +Rr L =LlS +Llr ・・・(4) である。ここで,X軸上であらわされる誘導電動機の等
価回路は、テスト周波数が適当な高周波の場合、図2か
ら図3のように励磁回路を通らず2次回路のほうへ電流
が流れることとなる。従って、X軸上では抵抗分とし
て、Rs+Rr (一次抵抗と二次抵抗の和)、インダクタン
ス分として、Llr+Lls(一次漏れインダクタンス+二次
漏れインダクタンスの和)を検出することができる。次
に、抽出分はインピーダンス同定器12へ入力され、イ
ンピーダンス同定器12では、その実効値|VX |/|
X |よりテスト角度θt 毎にインピーダンスZxを出
力する。この結果、主磁束による飽和の影響を受ける場
所と受けない場所でのインピーダンスを検出できる。検
出されたインピーダンスの結果の一例を、図4に示す。
図中、下段はテスト角度θt 、右欄が重畳する各周波数
fx、左欄がインピーダンスZxとなる。
(Equation 3) Incidentally, I X is (voltage V X) in the formula / (impedance), R, L, respectively φ, I X = V X / {R 2 + (2πf X t) 2} 1/2 φ = tan - is 1 (2πfL / R) R = R S + R r L = Ll S + Ll r ··· (4). Here, in the equivalent circuit of the induction motor expressed on the X axis, when the test frequency is an appropriate high frequency, current flows to the secondary circuit without passing through the excitation circuit as shown in FIGS. . Therefore, on the X-axis, Rs + Rr (sum of primary resistance and secondary resistance) can be detected as resistance, and Llr + Lls (sum of primary leakage inductance + secondary leakage inductance) can be detected as inductance. Next, the extracted portion is input to the impedance identifier 12, and the impedance identifier 12 calculates the effective value | V X | / |
The impedance Zx is output for each test angle θt from i X |. As a result, it is possible to detect the impedance at a place affected by the saturation by the main magnetic flux and a place not affected by the saturation. FIG. 4 shows an example of the result of the detected impedance.
In the figure, the lower row shows the test angle θ t , the right column shows the superposed frequencies fx, and the left column shows the impedance Zx.

【0007】図4のように、重畳周波数fxを変えた場
合のインピーダンスも検出できる。重畳周波数とテスト
角度θt を考慮することによってモータ駆動時に用いる
最適なインピーダンス値を、インピーダンス同定器12
からの出力Zx中からインピーダンス最適値演算器14
が演算決定する。力率演算器13では、図5に示すよう
な回路で力率を演算する。これにsin(2πfX t)
を乗算してローパスフィルタ(LPF )を通し直流分i
X A を抽出し、一方、これにcos(2πfX t)を乗
算してローパスフィルタ(LPF )を通し直流分iX B
抽出し、力率φを数式(5)のように計算する。(ここ
で、インピーダンス同定器12の出力Zxは、 iX の実効値=(iX A 2 +iX B 2 1 / 2 、 として、この値で電圧VX の実効値を除算して、求めて
もよい) φ=π/2+tan- 1 X B /iX A ・・・(5) 定数同定器15では、力率演算器13で得られたφを用
いて、次の数式(6)のようにR、Lを分離・計算す
る。 R=Zxcosφ、L=Zxsinφ、 ・・・(6) なお、1次抵抗Rsと2次抵抗Rrの分離については、1次
Rsが例えば特開平6−34724の手法のように、既に
設定済みであり補償回路等により補正するようになって
いて、予め同定されている場合にはRから1次抵抗Rsを
差し引いて2次抵抗Rrを同定できる。このような定数同
定装置を、速度検出器、励磁電流指令器、滑り角周波数
制御器、非干渉制御器などを備えて構成される誘導電動
機のベクトル制御装置と組合わせれば、1次抵抗、2次
抵抗、漏れインダクタンス等のモータ定数を定数同定装
置により同定する、正確なオートチューニングが可能に
なり、高精度なベクトル制御が可能になる。
As shown in FIG. 4, the impedance when the superimposed frequency fx is changed can also be detected. By considering the superimposed frequency and the test angle θt, the optimum impedance value used for driving the motor can be determined by the impedance identifier 12.
Optimum impedance value calculator 14 from the output Zx
Is calculated. The power factor calculator 13 calculates the power factor using a circuit as shown in FIG. In addition, sin (2πf X t)
And a DC component i through a low-pass filter (LPF).
Extracting XA, whereas, this is multiplied by cos (2 [pi] f X t) to extract the DC component i XB through the low-pass filter (LPF), to calculate the power factor φ as Equation (5). (Where the output Zx impedance identifier 12, the effective value of iX = (i XA 2 + i XB 2) 1/2, as, by dividing the effective value of the voltage V X at this value may be obtained ) Φ = π / 2 + tan −1 i XB / i XA (5) The constant identifier 15 uses the φ obtained by the power factor calculator 13 to calculate R, Separate and calculate L. R = Zxcosφ, L = Zxsinφ, (6) The separation of the primary resistance Rs and the secondary resistance Rr
Rs is already set and corrected by a compensation circuit or the like, for example, as in the method of JP-A-6-34724. If Rs has been identified in advance, the primary resistance Rs is subtracted from R to obtain a second order. The resistance Rr can be identified. When such a constant identification device is combined with a vector control device of an induction motor including a speed detector, an exciting current commander, a slip angle frequency controller, a non-interference controller, etc., the primary resistance, Accurate auto-tuning by identifying a motor constant such as a secondary resistance and a leakage inductance by a constant identification device becomes possible, and highly accurate vector control becomes possible.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば、
高周波信号をモータ電圧指令値に重畳してモータ電流か
ら電動機定数を同定する際に、トルクを発生する指令電
圧または電流を0とし、同定のための重畳信号が周波数
や場所によって表皮効果あるいは磁気飽和を生じること
によって電動機定数の値が変化することを考慮して広範
囲にとっているので、誘導電動機が停止した状態で電動
機定数を同定することが可能であり、且つ、正確に電動
機定数を同定することができる効果がある。
As described above, according to the present invention,
When identifying a motor constant from a motor current by superimposing a high-frequency signal on a motor voltage command value, the command voltage or current for generating torque is set to 0, and the superimposed signal for identification has a skin effect or magnetic saturation depending on the frequency or location. Is taken into account in consideration of the fact that the value of the motor constant changes due to the occurrence of, it is possible to identify the motor constant in a state where the induction motor is stopped, and to accurately identify the motor constant. There is an effect that can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る誘導電動機の定数同
定装置の制御ブロック線図である。
FIG. 1 is a control block diagram of a constant identification device for an induction motor according to an embodiment of the present invention.

【図2】図1に示す誘導電動機の等価回路図である。FIG. 2 is an equivalent circuit diagram of the induction motor shown in FIG.

【図3】図2に示す誘導電動機の等価回路の簡略図であ
る。
FIG. 3 is a simplified diagram of an equivalent circuit of the induction motor shown in FIG.

【図4】図1に示すインピーダンス同定器による同定結
果を示す図である。
FIG. 4 is a diagram showing an identification result by the impedance identifier shown in FIG. 1;

【図5】図1に示す力率演算器のブロック図である。FIG. 5 is a block diagram of a power factor calculator shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 誘導電動機 2 PWM 電圧形インバータ装置 3 2相3相変換器 4 テスト電圧分配器 5 テスト信号発生器 6 電圧加算器 7 電流制御器 8 高周波成分除去器 9 第1座標変換器 10 第2座標変換器 11 テスト周波数成分抽出器 12 インピーダンス同定器 13 力率演算器 14 インピーダンス最適値演算器 15 定数同定器 16 電流検出器 DESCRIPTION OF SYMBOLS 1 Induction motor 2 PWM voltage type inverter device 3 2 phase 3 phase converter 4 Test voltage distributor 5 Test signal generator 6 Voltage adder 7 Current controller 8 High frequency component remover 9 First coordinate converter 10 Second coordinate conversion Unit 11 Test frequency component extractor 12 Impedance identifier 13 Power factor calculator 14 Impedance optimum value calculator 15 Constant identifier 16 Current detector

フロントページの続き (72)発明者 室北 幾磨 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 井浦 英昭 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 5H576 BB10 CC05 DD02 DD04 EE01 EE11 FF05 GG04 HB02 JJ26 KK06 LL01 LL22 LL24 LL27Continued on the front page (72) Inventor Ikuma Murohita 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Inside Yaskawa Electric Co., Ltd. (72) Inventor Hideaki Iura 2-1 Kurosaki Castle Stone, Yawata-nishi-ku, Kitakyushu-shi, Fukuoka Stock F-term (reference) in Yaskawa Electric Corporation 5H576 BB10 CC05 DD02 DD04 EE01 EE11 FF05 GG04 HB02 JJ26 KK06 LL01 LL22 LL24 LL27

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電動機電流を磁束成分(d 軸成分)とト
ルク成分(q 軸成分)とに分離し、それぞれを独立に制
御することによって直流機相当の応答を得るベクトル制
御の誘導電動機の定数同定装置において、 電動機の制御磁束軸(γ軸)から任意の角度(テスト
角)に位置する定数測定軸(X軸)に任意の周波数を含
む電圧信号を発生するテスト電圧信号発生器と、前記電
圧発生器の出力を制御磁束軸(γ軸)と制御トルク軸
(δ軸)に分配するテスト電圧信号分配器と、前記テス
ト電圧信号分配器の出力をγ軸電圧指令値とδ軸電圧指
令値のそれぞれに加算する電圧加算器と、電動機の入力
電流を制御基準座標上に磁束成分γ電流とトルク成分δ
電流に変換する第1の座標変換器と、電動機の入力電流
を定数測定軸上に変換する第2の座標変換器と、前記第
1の座標変換器の出力であるγ、δ電流から高周波分を
除去する高周波成分除去器と、高周波成分除去器の出力
電流を電流指令値に一致させるように制御する電流制御
器と、前記第2の座標変換器の出力である電流から前記
テスト電圧信号と同周波数成分を抽出するテスト周波数
成分抽出器と、前記テスト周波数抽出器からの出力電流
と前記高周波テスト電圧からテスト角度に対するインピ
ーダンスを同定するインピーダンス同定器と、前記テス
ト角度に対して変化するインピーダンスから最適値を求
めるインピーダンス最適値演算器と、前記第2の座標変
換器の出力である電流と前記高周波電圧から力率を演算
する力率演算器と、前記インピーダンス同定器出力と力
率演算器出力から抵抗分とインダクタンス分とを分離す
る定数同定器を備えたことを特徴とする誘導電動機の定
数同定装置。
1. A constant of a vector control induction motor that obtains a response equivalent to a DC motor by separating a motor current into a magnetic flux component (d-axis component) and a torque component (q-axis component) and independently controlling each component. A test voltage signal generator for generating a voltage signal including an arbitrary frequency on a constant measurement axis (X axis) located at an arbitrary angle (test angle) from a control magnetic flux axis (γ axis) of the motor; A test voltage signal distributor for distributing an output of the voltage generator to a control magnetic flux axis (γ axis) and a control torque axis (δ axis); and outputting the output of the test voltage signal distributor to a γ axis voltage command value and a δ axis voltage command. A voltage adder for adding each of the values, a magnetic flux component γ current and a torque component δ on the control reference coordinates of the input current of the motor.
A first coordinate converter for converting the current into an electric current, a second coordinate converter for converting the input current of the motor onto a constant measuring axis, and a high frequency component based on the γ and δ currents output from the first coordinate converter. A high-frequency component remover, a current controller that controls the output current of the high-frequency component remover to match the current command value, and the test voltage signal from the current that is the output of the second coordinate converter. A test frequency component extractor for extracting the same frequency component, an impedance identifier for identifying an impedance with respect to a test angle from an output current from the test frequency extractor and the high frequency test voltage, and an impedance that changes with respect to the test angle. An impedance optimum value calculator for obtaining an optimum value, a power factor calculator for calculating a power factor from a current output from the second coordinate converter and the high-frequency voltage, A constant identification device for an induction motor, comprising: a constant identifier for separating a resistance component and an inductance component from the impedance identifier output and the power factor calculator output.
【請求項2】 請求項1記載の誘導電動機の定数同定装
置によって同定された誘導電動機定数を用いることを特
徴とする誘導電動機の制御装置。
2. A control device for an induction motor, characterized by using an induction motor constant identified by the induction motor constant identification device according to claim 1.
JP27489299A 1999-09-28 1999-09-28 Constant identification device and control device for induction motor Expired - Fee Related JP3959902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27489299A JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27489299A JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Publications (2)

Publication Number Publication Date
JP2001103798A true JP2001103798A (en) 2001-04-13
JP3959902B2 JP3959902B2 (en) 2007-08-15

Family

ID=17547996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27489299A Expired - Fee Related JP3959902B2 (en) 1999-09-28 1999-09-28 Constant identification device and control device for induction motor

Country Status (1)

Country Link
JP (1) JP3959902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257049A2 (en) * 2001-05-09 2002-11-13 Hitachi, Ltd. Control apparatus for alternating-current source
WO2006008846A1 (en) * 2004-07-21 2006-01-26 Mitsubishi Denki Kabushiki Kaisha Ac rotary machine constant measuring apparatus
EP2421145A1 (en) * 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Apparatus and method for identifying equivalent circuit parameters of an alternating current asynchronous motor without using a rotary encoder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257049A2 (en) * 2001-05-09 2002-11-13 Hitachi, Ltd. Control apparatus for alternating-current source
EP1257049A3 (en) * 2001-05-09 2003-12-10 Hitachi, Ltd. Control apparatus for alternating-current source
WO2006008846A1 (en) * 2004-07-21 2006-01-26 Mitsubishi Denki Kabushiki Kaisha Ac rotary machine constant measuring apparatus
JPWO2006008846A1 (en) * 2004-07-21 2008-05-01 三菱電機株式会社 AC rotating machine constant measurement device
US7423401B2 (en) 2004-07-21 2008-09-09 Mitsubishi Denki Kabushiki Kaisha AC rotary machine constant measuring apparatus for measuring constants of stationary AC rotary machine
KR100867039B1 (en) * 2004-07-21 2008-11-04 미쓰비시덴키 가부시키가이샤 Ac rotary machine constant measuring apparatus
JP4540674B2 (en) * 2004-07-21 2010-09-08 三菱電機株式会社 AC rotating machine constant measurement device
EP2421145A1 (en) * 2010-08-16 2012-02-22 Baumüller Nürnberg GmbH Apparatus and method for identifying equivalent circuit parameters of an alternating current asynchronous motor without using a rotary encoder
CN102375118A (en) * 2010-08-16 2012-03-14 包米勒公司 Apparatus and method for identification of rotating electrical equivalent circuit parameters of a three-phase asynchronous motor
US8587239B2 (en) 2010-08-16 2013-11-19 Baumuller Nurnberg Gmbh Apparatus and method for sensorless identification of rotating electrical equivalent circuit parameters of a three-phase asynchronous motor

Also Published As

Publication number Publication date
JP3959902B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
EP1312932B1 (en) Method for measuring motor constant of induction motor
JP6324627B2 (en) AC rotating machine control device and electric power steering control device
US6801011B2 (en) Magnetic pole position estimating method and control apparatus for synchronous motor
US8736206B2 (en) Power converting apparatus
JP2708408B2 (en) Control device of voltage control type vector control inverter
EP1944862B1 (en) Induction motor controller
JP2002320398A (en) Rotor angle detector of dc brushless motor
JP2008086129A (en) Ac motor controller and constant measurement apparatus
US9331618B2 (en) Magnetic pole position detector for synchronous motor
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
JP3914107B2 (en) DC brushless motor control device
JP3959902B2 (en) Constant identification device and control device for induction motor
JP4419220B2 (en) Vector control device for induction motor
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
JP4583257B2 (en) AC rotating machine control device
JP4153619B2 (en) Electric motor control device
JP2010183691A (en) Control device of induction motor
JP2018125955A (en) Motor controller
JP2008301619A (en) Motor controller and motor-constant calculation method therefor
JP2017175878A (en) Method and apparatus for estimating magnet temperature
JP2017181034A (en) Magnet temperature estimation method, and magnet temperature estimation device
JPH0870598A (en) Sensorless vector control apparatus for induction motor speed
JP2007325427A (en) Speed sensorless vector control unit of induction motor
JP5119759B2 (en) Electric motor control device and control method thereof
JP2914997B2 (en) Inverter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees