JP2001102678A - Gallium nitride compound semiconductor element - Google Patents

Gallium nitride compound semiconductor element

Info

Publication number
JP2001102678A
JP2001102678A JP27682899A JP27682899A JP2001102678A JP 2001102678 A JP2001102678 A JP 2001102678A JP 27682899 A JP27682899 A JP 27682899A JP 27682899 A JP27682899 A JP 27682899A JP 2001102678 A JP2001102678 A JP 2001102678A
Authority
JP
Japan
Prior art keywords
layer
side electrode
gallium nitride
structure
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27682899A
Other languages
Japanese (ja)
Inventor
Kazuhiko Itaya
Chiharu Nozaki
Shinya Nunogami
Hiroaki Yoshida
博昭 吉田
真也 布上
和彦 板谷
千晴 野崎
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP27682899A priority Critical patent/JP2001102678A/en
Publication of JP2001102678A publication Critical patent/JP2001102678A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To realize a low-threshold current, a low operating voltage and a high reliability by reducing the contact resistance of an n-type GaN contact layer to an n-side electrode.
SOLUTION: On a sapphire substrate 11 an n-GaN contact layer 13, an n- AlGaN clad layer 14, an MQW active layer 16, a p-AlGaN clad layer 18 and a p-GaN contact layer 19 are laminated, a p-side electrode 20 is formed on the p-GaN contact layer 19, the layers 14, 16, 18, 20 are partly removed to expose the n-GaN contact layer 13 and an n-side electrode 30 is formed on the n-GaN contact layer 13, thus forming a blue semiconductor laser. The n-side electrode 30 is formed in a TiN-Ti-Al laminated structure, and semiconductor layer crystals 35 having a wurtzite structure and a cubic structure are mixed in the contact portion between the n-GaN contact layer 13 and the n-side electrode 30, and the wurtzite structure abundance ratio is less than 1%.
COPYRIGHT: (C)2001,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、窒化ガリウム系青紫色半導体レーザや窒化ガリウム系高輝度青/緑色発光ダイオードなどの窒化ガリウム系化合物半導体素子に係わり、特に窒化ガリウム系化合物半導体層と金属コンタクト層との接触部分の改良をはかった窒化ガリウム系化合物半導体素子に関する。 The present invention relates to relates to a gallium nitride compound semiconductor element such as a gallium nitride based blue-violet semiconductor laser or gallium nitride-based high-brightness blue / green light emitting diodes, in particular gallium nitride compound semiconductor layer and the metal contact about gallium nitride-based compound semiconductor device aimed at improvement of the contact portion between the layer.

【0002】 [0002]

【従来の技術】従来、InGaAlP材料を用いた半導体レーザは、600nm帯の光源として光ディスクの読出/書込のいずれも可能なレベルまで特性改善され、既に実用化されている。 Conventionally, semiconductor lasers using InGaAlP material is characteristic improved as a light source of 600nm band to both levels of optical disk read / write, it has already been put to practical use. さらなる記録密度向上を目指して近年、より波長の短い青色半導体レーザが盛んに開発されている。 Recently aiming to further improve the recording density, shorter blue semiconductor laser more wavelengths have been actively developed. 青色半導体レーザの構成材料としては、Ga As the constituent material of the blue semiconductor laser, Ga
N,InGaN,GaAlN,InGaAlNなどの窒化ガリウム系化合物半導体が注目されている。 N, InGaN, GaAlN, gallium nitride-based compound semiconductor such as InGaAlN has attracted attention.

【0003】例えば、GaN系材料を用いた半導体レーザでは、波長380〜417nmの連続発振が確認されている。 For example, in a semiconductor laser using the GaN-based material, the continuous oscillation wavelength 380~417nm have been identified. しかしながら、現状では満足な特性が得られず、室温発振におけるしきい値電圧は10V程度と高い値である上にばらつきが大きく、半導体レーザとしての特性は十分ではない。 However, no satisfactory characteristics were obtained at present, vary widely over the threshold voltage is about 10V and high values ​​at room temperature oscillation characteristics of the semiconductor laser is not sufficient. これは、窒化ガリウム系化合物半導体層の結晶成長が難しいことと、素子抵抗が大きいことに起因する。 This is because the it is difficult crystal growth of gallium nitride-based compound semiconductor layer, due to a large element resistance.

【0004】特に、窒化ガリウム系化合物半導体素子では、高キャリア濃度のp型窒化ガリウム系化合物半導体層を形成できないことと、p側電極コンタクト抵抗が高いことにより、大きな電圧降下を招き、パルス発振動作でさえ発熱や金属反応による劣化を生じる問題がある。 [0004] Particularly, in the semiconductor device gallium nitride compound, and it can not be formed a p-type gallium nitride-based compound semiconductor layer of high carrier concentration, the higher is p-side electrode contact resistance, lead to large voltage drop, pulse oscillation there is a problem of causing deterioration due to heat generation and metal reaction even.
この問題に関しては、様々な提案がなされており、解決の目処も立っている。 For this problem, it has been made various proposals, standing also prospect of resolution.

【0005】一方、n側の抵抗分に関しては、p側と比較してn型半導体は充分なキャリア濃度が実現でき、電極コンタクト抵抗も大きな問題にはならなかった。 On the other hand, with respect to the resistance of the n-side, as compared to the p-side n-type semiconductor is sufficient carrier concentration can be achieved, had also electrode contact resistance to a big problem. しかし、p側の抵抗分の改良が進むにつれ、全体の抵抗分としてn側についても改良すべき点があることが分かってきた。 However, as the resistance of the improvement of the p-side advances, it has been found that there are points to be improved also for the n-side as a whole of the resistance component. 例えば、n側電極金属はコンタクト層としてのn Eg, n-side electrode metal n as a contact layer
型GaN層上への堆積時に既に反応し、100℃〜15 Already reacted upon deposition to the type GaN layer, 100 ° C. to 15
0℃という工程時、或いはレーザ稼動時にかかる僅かな温度上昇でさえも劣化を起こす。 During the step of 0 ℃, or even cause a deterioration even a slight temperature rise in accordance with the time of laser operation. そして、抵抗が高く不安定になるため、レーザの室温での連続発振が困難となる場合がある。 Then, the resistance is high becomes unstable, there is a case where continuous oscillation at room temperature of the laser becomes difficult.

【0006】 [0006]

【発明が解決しようとする課題】このように、光ディスクなどへの応用が期待される窒化ガリウム系化合物半導体レーザでは、n側電極と窒化ガリウム系化合物半導体層とのコンタクト抵抗が高く不安定となる。 THE INVENTION Problems to be Solved] Thus, the expected gallium nitride-based compound semiconductor laser applications such as optical disk, the contact resistance between the n-side electrode and the gallium nitride compound semiconductor layer becomes higher unstable . このため、 For this reason,
コンタクト部で大きな電圧降下を生じ動作が不安定となり、低しきい値電流,低動作電圧,高い信頼性の素子の実現は困難となっている。 Operation results in significant voltage drop in the contact portion becomes unstable, low threshold current, low operating voltage, extremely high reliability of the device is difficult. また、n側電極と窒化ガリウム系半導体層が通電時に劣化を起こすために、レーザの室温での連続発振は困難であった。 Further, n-side electrode and the gallium nitride-based semiconductor layer to cause degradation when energized, a continuous oscillation at room temperature of the laser is difficult.

【0007】本発明は、上記の事情を考慮してなされたもので、その目的とするところは、n側電極と窒化ガリウム系化合物半導体層との間に生じるコンタクト抵抗を低くし、さらに稼動時の発熱に対しての耐熱性を強く安定化することができ、低しきい値電流,低動作電圧で劣化を起こさず、優れた信頼性を有する窒化ガリウム系化合物半導体素子を提供することにある。 [0007] The present invention has been made in consideration of the above circumstances, and has as its object to reduce the contact resistance between the n-side electrode and the gallium nitride-based compound semiconductor layer, further during the operation the heat resistance is strongly can be stabilized against heat generation, low threshold current, without causing deterioration in low operating voltage, and to provide an excellent gallium nitride-based compound semiconductor device having a reliable .

【0008】 [0008]

【課題を解決するための手段】(構成)上記課題を解決するために本発明は、次のような構成を採用している。 Means for Solving the Problems] (Configuration) The present invention for solving the above problems, it adopts the following configuration.

【0009】即ち本発明は、n型窒化ガリウム系化合物半導体層(Ga x In y Al z N:x+y+z=1,0 [0009] The present invention, n-type gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x + y + z = 1,0
≦x,y,z≦1)と、この化合物半導体層上に形成されたn側電極とを備えた窒化ガリウム系化合物半導体素子において、前記化合物半導体層とn側電極との接触部分の半導体層結晶は、ウルツァイト構造とキュービック構造が混在していることを特徴とする。 ≦ x, y, and z ≦ 1), the gallium nitride-based compound semiconductor device having an n-side electrode formed on the compound semiconductor layer, the semiconductor layer of the contact portion between the compound semiconductor layer and the n-side electrode crystal is characterized by wurtzite structure and the cubic structure are mixed.

【0010】ここで、本発明の望ましい実施態様としては次のものがあげられる。 [0010] Here, the following can be cited as a preferred embodiment of the present invention. (1) n側電極は、少なくとも半導体層側がTiNからなること。 (1) n-side electrode, at least the semiconductor layer side is made of TiN. (2) n側電極は、TiN/Ti/Alの3層構造であること。 (2) the n-side electrode has a three-layer structure of TiN / Ti / Al.

【0011】(3) 窒化ガリウム系化合物半導体層のn側電極との接触部分でのキュービック構造(c−GaInAl [0011] (3) cubic structure at the contact portion between the n-side electrode of the gallium nitride compound semiconductor layer (c-GaInAl
N)とウルツァイト構造(w−GaInAlN)の存在比は、0 Abundance ratio of N) and wurtzite structure (w-GaInAlN) is 0
%<(c−GaInAlN)/(w−GaInAlN)<1%であること。 % <(C-GaInAlN) / ​​(w-GaInAlN) <is 1%.

【0012】また本発明は、基板上に、それぞれ窒化ガリウム系化合物半導体層(Ga x In y Al z N:x+ [0012] The present invention, on a substrate, each gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x +
y+z=1,0≦x,y,z≦1)からなる、n型コンタクト層,n型クラッド層,活性層,p型クラッド層, y + z = 1,0 ≦ x, y, consists of z ≦ 1), n-type contact layer, n-type cladding layer, active layer, p-type cladding layer,
p型コンタクト層が積層され、p型コンタクト層上にp p-type contact layer is laminated, p to p-type contact layer
側電極が形成され、p型コンタクト層からn型クラッド層までを一部除去して露出したn型コンタクト層上にn Side electrode is formed, n to p-type contact layer to the n-type cladding layer is exposed by partially removing from the n-type contact layer
側電極が形成された窒化ガリウム系化合物半導体素子であって、前記n側電極は少なくとも半導体層側がTiN A semiconductor device gallium nitride compound side electrodes are formed, the n-side electrode is at least a semiconductor layer side is TiN
であり、前記n型コンタクト層とn側電極との接触部分の半導体層結晶は、ウルツァイト構造とキュービック構造が混在しており、該接触部分でのキュービック構造(c-GaInAlN)とウルツァイト構造(w-GaInAlN)の存在比は0%<(c-GaInAlN)/(w-GaInAlN)<1%であることを特徴とする。 , And the semiconductor layer crystal of the contact portion between the n-type contact layer and the n-side electrode, wurtzite structure and the cubic structure are mixed, cubic structure at the contact portion (c-GaInAlN) and wurtzite structure (w wherein the abundance ratio of -GaInAlN) is 0% <(c-GaInAlN) / ​​(w-GaInAlN) <1%.

【0013】(作用)従来の青色半導体レーザの素子構造を、図5に示す。 [0013] The (effect) device structure of a conventional blue semiconductor laser shown in FIG. 図中の11はサファイア基板、12 11 sapphire substrate of FIG, 12
はGaNバッファ層、13はn−GaNコンタクト層、 GaN buffer layer, 13 n-GaN contact layer,
14はn−AlGaNクラッド層、15はGaN導波層、16は多重量子井戸(MQW)構造の活性層、17 14 n-AlGaN cladding layer 15 is GaN guide layer, an active layer of multiple quantum well (MQW) structure 16, 17
はGaN導波層、18p−AlGaNクラッド層、19 GaN guide layer, 18p-AlGaN cladding layer 19
はp−GaNコンタクト層、20はp側電極、30はn p-GaN contact layer 20 is p-side electrode, 30 is n
側電極、32はTi層、33はAl層を示している。 Side electrode, 32 is the Ti layer, 33 denotes an Al layer.

【0014】従来素子では、図5(a)に示すように、 [0014] In the conventional device, as shown in FIG. 5 (a),
n側電極と窒化ガリウム系化合物半導体層とのコンタクト金属にはTiが用いられるのが一般的で、ノンアロイの状態でややオーミック性を示していた。 The contact metal between the n-side electrode and the gallium nitride-based compound semiconductor layer is common to Ti is used, it was slightly indicates ohmic resistance in the state of non-alloy. また、この状態ではTi/GaN構造が保たれていることが報告されている。 Further, in this state it has been reported that Ti / GaN structure is maintained. しかし、デバイス作製の工程中、或いはデバイス稼動時に劣化を起こし高抵抗化する傾向にあった。 However, during the process of device fabrication, or tended to high resistance causes a deterioration during device operation. この高抵抗化は、ノンアロイでややオーミック接触であったものが、100℃〜150℃という低温でショットキー接触に変わってしまうことが原因であると考えられる。 This high resistance has, what was slightly ohmic contact with non-alloy is believed to be due to the fact that would change the Schottky contact at a low temperature of 100 ° C. to 150 DEG ° C..

【0015】このため多くの場合、図5(b)に示すように、Ti上にAlを形成し、600℃以上のシンターを施すことにより、TiAl合金にコンタクトとして良好なオーミック性を持たせ、これを使っている。 [0015] In many cases for this, as shown in FIG. 5 (b), the Al is formed on Ti, by performing 600 ° C. or more sintering, to have a good ohmic property as a contact in TiAl alloy, We are using this. 本発明者らも、ショットキー性はシンターすることによりオーミック性に戻る場合があることを確認した。 The present inventors have also, Schottky was confirmed that there is a case to return to the ohmic resistance by sintering.

【0016】しかし、ノンアロイ状態よりも完全で良好なオーミック性が戻るシンター温度は、窒化ガリウム系化合物半導体層の成長条件やコンタクト金属堆積前の処理及び堆積条件により大きく異なったり、シンターではオーミック性を改善することが困難な場合が多い。 [0016] However, sintering temperature returns complete and satisfactory ohmic properties than non-alloy state, very different or the growth conditions and contact metal deposition before the treatment and deposition conditions of the gallium nitride-based compound semiconductor layer, the ohmic property by sintering If the improvement it is difficult to often. さらに、他の報告のように、一様に600℃以上のシンターでは安定したオーミック特性が得られるが、600℃以上の工程では半導体結晶の劣化が起こるために、素子特性全体から考えれば600℃以上の高温でのシンターは避けなければならない。 Furthermore, like other reports, although stable ohmic characteristics are obtained by uniformly 600 ° C. or more sintering, to deterioration of the semiconductor crystal occurs at 600 ° C. above steps, 600 ° C. Given the overall device characteristics It must be avoided sintering of the above high temperature.

【0017】そこで本発明者らは、Al/Ti積層をn [0017] The present inventors, the Al / Ti layered n
型GaN層上に堆積した構造を例にとり、諸条件でショットキーになるなど不安定な現象が、何によるものかを調べた。 Take a structure that was deposited on the type GaN layer as an example, an unstable phenomenon such as become Schottky in various conditions, was examined what by one. その結果、元素分析からは、半導体を構成する元素や電極として用いている金属Tiは堆積時に既に窒素と反応しつつあり、深さ方向のプロファイルに変化はなかった。 As a result, from the elemental analysis, metal Ti is used as the element and electrodes of the semiconductor is getting already react with nitrogen during deposition, change in the depth direction profile was not. しかし、X線回折(図6)で反応生成物や結晶構造を調べると、良好なオーミック性を示し安定な試料では窒化ガリウム系化合物半導体はウルツァイト構造とキュービック構造が混在しており、その存在比はキュービック構造が1%未満であることが条件であることを見出した。 However, when examining the reaction product and the crystal structure by X-ray diffraction (FIG. 6), gallium nitride-based compound is in a stable sample showed good ohmic semiconductor has a wurtzite structure and the cubic structure are mixed, abundance that We have found that it is a condition cubic structure is less than 1%.

【0018】つまり、ウルツァイト構造100%であった窒化ガリウム物系化合物半導体に金属電極を積層した場合は、良好なオーミック特性ではなくまた不安定でもあった。 [0018] That is, when a metal electrode are laminated on a gallium nitride-based compound semiconductor was 100% wurtzite structure, it was also also unstable not a good ohmic characteristics. しかし、ウルツァイト構造に1%未満のキュービック構造が混在した層が電極金属と接触した場合は、 However, if the layer cubic structure of less than 1% wurtzite structure are mixed are in contact with the electrode metal,
低抵抗なオーミック性を安定に示していた。 A low-resistance ohmic resistance showed stable.

【0019】キュービック構造の仕事関数はウルツァイト構造の仕事関数にくらべ小さいと類推され、そのために金属との界面で低抵抗のオーミック性が強くなるものと考える。 The work function of the cubic structure is inferred to be smaller than the work function of the wurtzite structure, considered as ohmic resistance is increased at the interface between the metal for this purpose. 但し、キュービック構造が1%以上になるとまた不安定なショットキー性を示すのは、キュービック構造とウルツァイト構造の境はアモルファス的となり全体の結晶性も著しく劣るためではないかと推測される。 However, it indicates also unstable Schottky the Cubic structure is 1% or more, the boundary of the cubic structure and the wurtzite structure is speculated that by way significantly inferior even overall crystallinity becomes amorphous manner.
但し、この現象に対する明確な解釈はできていない。 However, do not be a clear interpretation of this phenomenon.

【0020】この実験結果より本発明者らは、金属コンタクト層に接触している窒化ガリウム系化合物半導体結晶には、ある程度のキュービック構造が混在していた方が安定で良好なオーミック特性を得ることが実現できることを見出した。 [0020] The present inventors from this experimental result, the contact with that gallium nitride-based compound semiconductor crystal on the metal contact layer, to obtain a stable and satisfactory ohmic properties is better to have a mix of some cubic structure There has been found that can be achieved. 実際にウルツァイト構造中にキュービック構造を制御して作製するには、半導体結晶の成長方法や半導体表面への前処理やビームなどによる改質、ドライエッチング条件、金属堆積時の真空度や不純物状態などにより、電極界面での結晶構造の制御をすることにより可能である。 To actually produced by controlling the cubic structure during the wurtzite structure, pre-processing and beam, such as by modification of the growth method and a semiconductor surface of the semiconductor crystal, the dry etching conditions, such as degree of vacuum and impurities state during metal deposition Accordingly, it is possible by controlling the crystal structure at the electrode interface.

【0021】 [0021]

【発明の実施の形態】以下、本発明の実施形態について、図面を参照して説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】(第1の実施形態)図1は、本発明の第1 [0022] (First Embodiment) FIG. 1 is a first aspect of the present invention
の実施形態に係わる青色半導体レーザの概略構成を示す断面図である。 It is a cross-sectional view showing the schematic structure of a blue semiconductor laser according to the embodiment.

【0023】図中の11は(0001)サファイア基板であり、この基板11上に、GaNバッファ層12、n [0023] 11 in the figure is a (0001) sapphire substrate, on the substrate 11, GaN buffer layer 12, n
型GaNコンタクト層13(Siドープ,5×10 18 -Type GaN contact layer 13 (Si-doped, 5 × 10 18 c
-3 ,4μm)、n型Al 0.2 Ga 0.8 Nクラッド層1 m -3, 4μm), n-type Al 0.2 Ga 0.8 N cladding layer 1
4(Siドープ,5×10 17 cm -3 ,0.3μm)、G 4 (Si doped, 5 × 10 17 cm -3, 0.3μm), G
aN導波層(アンドープ,0.1μm)15、多重量子井戸構造(MQW)の活性層16、p型GaN導波層1 aN waveguide layer (undoped, 0.1 [mu] m) 15, the active layer 16 of multiple quantum well structure (MQW), p-type GaN guide layer 1
7(Mgドープ,0.1μm)、p型Al 0.2 Ga 0.8 7 (Mg-doped, 0.1 [mu] m), p-type Al 0.2 Ga 0.8
Nクラッド層18(Mgドープ、5×10 17 cm -3 N cladding layer 18 (Mg-doped, 5 × 10 17 cm -3,
0.3μm)、p型GaNコンタクト層(Mgドープ1 0.3 [mu] m), p-type GaN contact layer (Mg doped 1
×10 18 cm -3 ,1μm)19が順次形成され、半導体多層構造が形成されている。 × 10 18 cm -3, 1μm) 19 are sequentially formed, the semiconductor multilayer structure is formed. この多層構造の各結晶はほぼウルツァイト構造に形成されている。 Each crystal of the multilayer structure is formed substantially wurtzite structure.

【0024】半導体多層構造のp型GaNコンタクト層19上には、p側電極20が形成されている。 [0024] On p-type GaN contact layer 19 of the semiconductor multilayer structure, p-side electrode 20 is formed. また、半導体多層構造の一部は、n型GaNコンタクト層13に達する深さまでドライエッチング法により除去され、これにより露出されたコンタクト層13上には、n側電極30として、TiNコンタクト層31,Ti層32,A Further, a portion of the semiconductor multilayer structure, to a depth reaching the n-type GaN contact layer 13 is removed by dry etching, on the contact layer 13 exposed by this, as the n-side electrode 30, TiN contact layer 31, Ti layer 32, A
l層33が順次積層された形で形成されている。 l layer 33 is formed by sequentially stacking form. n型G n-type G
aNコンタクト層13は99%以上がウルツァイト構造であるが、n側電極30との接触部分35は所々キュービック構造が含まれている。 aN contact layer 13 is more than 99% are wurtzite structure, the contact portion 35 between the n-side electrode 30 are included in some places cubic structure.

【0025】次に、本実施形態の半導体レーザの製造方法について説明する。 Next, a method for manufacturing the semiconductor laser of the present embodiment.

【0026】まず、図2(a)に示すように、面方位(0001)のサファイア基板11上にMOCVD法で、GaNバッファ層12,n型GaNコンタクト層1 [0026] First, as shown in FIG. 2 (a), by the MOCVD method on a sapphire substrate 11 of the plane orientation (0001), GaN buffer layer 12, n-type GaN contact layer 1
3、n型Al 0.2 Ga 0.8 Nクラッド層14,GaN導波層15,活性層16,p型GaN導波層17,p型A 3, n-type Al 0.2 Ga 0.8 N cladding layer 14, GaN guide layer 15, active layer 16, p-type GaN guide layer 17, p-type A
0.2 Ga 0.8 Nクラッド層18,p型GaNコンタクト層19を順次成長形成する。 l 0.2 Ga 0.8 N cladding layer 18 are sequentially grown and formed a p-type GaN contact layer 19. ここで、GaNバッファ層12からp型GaNコンタクト層19までの各層は、 Here, layers from the GaN buffer layer 12 to the p-type GaN contact layer 19,
1回のMOCVD成長により連続して成長する。 To grow continuously by a single MOCVD growth.

【0027】次いで、図2(b)に示すように、p型G [0027] Then, as shown in FIG. 2 (b), p-type G
aNコンタクト層19の表面に幅10μmの領域に金属コンタクト層とAu電極を順次スパッタ蒸着し、700 The metal contact layer and the Au electrode are sequentially sputter deposited on the surface of aN contact layer 19 in the region of the width 10 [mu] m, 700
℃の窒素雰囲気で熱処理をしてp側電極20を形成する。 And a heat treatment at ℃ nitrogen atmosphere to form a p-side electrode 20.

【0028】次いで、図2(c)に示すように、p側電極20を含んだメサ形状をエッチングにより形成し、メサ下部に現れたn型GaNコンタクト層13の表面に対して200MeV程度の軽元素イオンビームを1時間照射する。 [0028] Then, as shown in FIG. 2 (c), a mesa containing the p-side electrode 20 is formed by etching, the light of the order 200MeV to the surface of the n-type GaN contact layer 13 appearing in the mesa bottom elemental ion beam irradiation for one hour. これにより、表面の改質が起こり表面付近に非晶質部ができる。 Accordingly, it is an amorphous portion in the vicinity of the surface modification of the surface occurs. その後、300℃で熱処理することにより再結晶化するが、その際に表面層には1%未満のキュービック構造が一様に形成される。 Thereafter, re-crystallization by heat treatment at 300 ° C., a cubic structure of less than 1% in the surface layer at that time is uniformly formed.

【0029】次いで、Ti,Alを順次スパッタ蒸着し、窒素雰囲気で熱処理をすることにより金属コンタクト層であるTiN層31、さらにTi層32,Al層3 [0029] Then, Ti, sequentially sputter depositing Al, TiN layer 31 is a metal contact layer by a heat treatment in a nitrogen atmosphere, of Ti layer 32, Al layer 3
3が順次積層された、n側電極30を形成する。 3 are sequentially stacked to form the n-side electrode 30.

【0030】次いで、サファイア基板11を50μm厚まで鏡面研磨し、p側電極20の長手方向に対して垂直方向にへき開し、1mm長の青色半導体レーザチップを形成する。 [0030] Then, mirror-polished sapphire substrate 11 to 50μm thick, cleaved in a direction perpendicular to the longitudinal direction of the p-side electrode 20, to form a blue semiconductor laser chip 1mm length.

【0031】かくして形成された青色半導体レーザは、 [0031] Thus a blue semiconductor laser is formed,
しきい値電流80mAで室温連続発振した。 And room temperature continuous oscillation threshold current 80 mA. 発振波長は420nm、動作電圧は7Vであり、さらに50℃,3 Oscillation wavelength 420 nm, the operating voltage is 7V, further 50 ° C., 3
0mW駆動においても安定に動作した。 And it operates stably also in 0mW drive.

【0032】本実施形態の青色半導体レーザの電流電圧特性を、従来レーザと比較して図3に示す。 [0032] The current-voltage characteristic of the blue semiconductor laser of the present embodiment, as compared with the conventional laser shown in FIG. 図3の曲線Aが本実施形態による青色半導体レーザの特性であり、 Curve A in FIG. 3 is a characteristic of the blue semiconductor laser according to the present embodiment,
比較として、n型GaNコンタクト層とn側電極との界面でコンタクト層の結晶がノンアロイで形成し、ウルツァイト構造が100%の場合B、及び300℃シンターによりキュービック構造が接触面積の1%以上の場合C As a comparison, crystals of the contact layer at the interface between the n-type GaN contact layer and the n-side electrode is formed of non-alloy, if wurtzite structure of 100% B, and 300 ° C. sintering the cubic structure is not less than 1% of the contact area If C
の青色半導体レーザの電流電圧特性を示した。 Of showing the current-voltage characteristic of the blue semiconductor laser.

【0033】図3から明らかなように、本実施形態では良好なダイオード特性を示しているが、比較例では完全なダイオード特性となっておらず、また電圧の立ち上がりも15V程度と非常に高くなっており、発光は確認できたが数分で劣化した。 [0033] As apparent from FIG. 3, in the present embodiment shows a good diode characteristics, not a perfect diode characteristics in the comparative example, also become very rising even 15V voltage of about high and, emission was deteriorated in a few minutes, but was able to confirm.

【0034】このように本実施形態によれば、n側電極30を形成すべきn型GaNコンタクト層13の表面に軽元素イオンビームを照射した後に熱処理し、表面層に1%未満のキュービック構造を形成することにより、n According to this embodiment, the heat treatment after the irradiation with the light element ion beam on the surface of the n-type GaN contact layer 13 to be formed an n-side electrode 30, less than 1% in the surface layer cubic structure by forming, n
側電極30とn型GaNコンタクト層13との間に生じるコンタクト抵抗を低くすることができる。 It is possible to reduce the contact resistance between the side electrode 30 and the n-type GaN contact layer 13. しかも、稼動時の発熱に対しての耐熱性を強く安定化することができ、従って低しきい値電流,低動作電圧で劣化を起こさず、優れた信頼性を実現することができる。 Moreover, it is possible to stabilize a strong heat resistance against heat generated during operation, thus low threshold currents, without causing deterioration in low operating voltage, it is possible to realize excellent reliability.

【0035】(第2の実施形態)図4は、本発明の第2 [0035] (Second Embodiment) FIG. 4 is a second embodiment of the present invention
の実施形態に係わる青色半導体レーザの概略構成を示す断面図である。 It is a cross-sectional view showing the schematic structure of a blue semiconductor laser according to the embodiment. なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。 Incidentally, the same parts as FIG. 1 are denoted by the same reference numerals, and a detailed description thereof will be omitted.

【0036】本実施形態の青色半導体レーザでは、サファイア基板上にGaN厚膜結晶をH−VPE法により1 [0036] In the blue semiconductor laser of this embodiment, the H-VPE method GaN thick film crystal on a sapphire substrate 1
00μm成長する。 00μm to grow. その後、サファイア基板をエッチング等で取り除き、そのGaN厚膜を基板としてMOCV Then, remove the sapphire substrate by etching or the like, MOCV the GaN thick film as a substrate
D成長により図中の各層の成長を行う。 To grow each layer in the drawing by D growth. 基板としたGa Ga was the substrate
N厚膜はn型GaNコンタクト層43(Siドープ,5 N thick n-type GaN contact layer 43 (Si-doped, 5
×10 18 cm -3 )とし、サファイア基板を取り除いた一部分にTiN/Ti/Alを形成しn側電極30とする。 × and 10 18 cm -3), an n-side electrode 30 to form a TiN / Ti / Al in a portion of the sapphire substrate was removed.

【0037】この場合、n型コンタクト層43とした厚膜は良好なGaN結晶に電極金属を接触させるために、 [0037] For this case, thick film was n-type contact layer 43 contacting the electrode metal in a good GaN crystal,
さらに20μmのドライエッチングを施す。 Further subjected to dry etching of 20μm. このとき、 At this time,
n型GaNコンタクト層43のn側電極30との接触部分45はサファイア基板を既に除去しているため、格子不整合による歪みが少なく、高加速,長時間のイオンビーム照射でキュービック構造が接触面積の1%未満の存在率になるように設定することができる。 Since the contact portion 45 between the n-side electrode 30 of the n-type GaN contact layer 43 is already removed sapphire substrate, less distortion due to lattice mismatch, high acceleration, cubic structure contacts a long time of the ion beam irradiation area it can be set to be the presence of less than 1%. これにより、 As a result,
低抵抗な電極界面を安定に保つことができ、第1の実施形態と同様の効果が得られる。 Low-resistance electrode interface to be able to keep stable, the same effect as the first embodiment can be obtained.

【0038】(第3の実施形態)次に、本発明の第3の実施形態に係わる青色半導体レーザについて説明する。 [0038] (Third Embodiment) Next, a blue semiconductor laser is described according to a third embodiment of the present invention.
素子構造は、図4と同一であるので省略する。 Device structure will be omitted since it is identical to FIG.

【0039】本実施形態では、H−VPE法でGaN厚膜結晶を成長し、その後MOCVD法により他の各層を成長していくという第2の実施形態と同じように積層する。 [0039] In this embodiment, the GaN thick film is grown crystals H-VPE method, stacked like the second embodiment that grow other layers by subsequent MOCVD method. 第2の実施形態で述べたようにGaN厚膜は歪みが開放されているため100%のウルツァイト構造になりやすい。 GaN thick film tends to 100% of the wurtzite structure for distortion is opened as described in the second embodiment.

【0040】そこで本実施形態では、電極堆積前に表面に適当量のピットを形成し、その後にMOCVD再成長することにより、積極的にキュービック構造を形成する。 [0040] Therefore, in the present embodiment, to form a suitable amount of a pit on the surface before the electrode deposition, by then be MOCVD regrowth to form a positively cubic structure. これにより、n側電極形成ではノンアロイのままで良好で安定なオーミック接触が得られている。 Thus, the n-side electrode formation are good and stable ohmic contact is obtained while the non-alloy. その後の工程は、第1の実施形態と同様である。 The subsequent steps are the same as in the first embodiment.

【0041】このようにして作成された本実施形態レーザにおいても、n側電極30とのコンタクトに関して低抵抗な電極界面を安定に保つことができ、第1の実施形態と同様の効果が得られる。 [0041] In this way, the present embodiment a laser that was created, a low-resistance electrode interface can be kept stable with respect to contact with the n-side electrode 30, the same effect as the first embodiment can be obtained .

【0042】なお、本発明は上述した各実施形態に限られるものではない。 [0042] The present invention is not limited to the above embodiments. 半導体層の成長方法や条件、コンタクト電極金属の種類や堆積前の半導体層に対する処理、 Growth method and conditions of the semiconductor layer, the process for contact electrode metal type and prior to deposition of the semiconductor layer,
さらには堆積後のシンター条件など製造方法は多様である。 Furthermore the production method such as sintering condition after deposition are diverse. また、半導体レーザに限らず発光ダイオードに適用することもできる。 Can also be applied to a light emitting diode is not limited to the semiconductor laser. さらに、発光素子以外にも、受光素子やトランジスタなどの電子デバイスにも適用可能である。 Furthermore, in addition to the light emitting element it is also applicable to electronic devices such as light-receiving elements and transistors. また、実施形態では活性層をMQWにしたが、活性層は量子井戸構造ではなく単層構造であっても良いのは勿論のことである。 Although the active layer has the MQW in the embodiment, the active layer is that of course may be a single layer structure rather than a quantum well structure.

【0043】その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。 [0043] Other, without departing from the scope of the present invention can be modified in various ways.

【0044】 [0044]

【発明の効果】以上詳述したように本発明によれば、n According to the present invention as described in detail above, n
側電極(特に、n側コンタクト金属)と接触しているn n in contact with the side electrode (in particular, n-side contact metal)
型窒化ガリウム系化合物半導体層(特に、n型GaNコンタクト層)の界面の結晶構造を、ウルツァイト構造中に1%未満のキュービック構造を形成する構造にすることによって、低抵抗で熱的に安定なn側電極を実現することができる。 Type gallium nitride-based compound semiconductor layer (in particular, n-type GaN contact layer) the crystal structure of the interface, by the structure forming the cubic structure of less than 1% in the wurtzite structure, a thermally stable low resistance it is possible to realize the n-side electrode. これにより、低しきい値電流,低動作電圧で劣化を起こさず、優れた信頼性を有する窒化ガリウム系化合物半導体素子を実現することが可能となる。 Thus, a low threshold current, without causing deterioration in low operating voltage, it is possible to realize a semiconductor device gallium nitride-based compound having excellent reliability.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】第1の実施形態に係わる青色半導体レーザの素子構造を示す断面図。 Figure 1 is a cross-sectional view showing the element structure of a blue semiconductor laser according to the first embodiment.

【図2】図1のデバイスの製造工程を示す断面図。 2 is a cross-sectional view showing a manufacturing process of the device of Figure 1.

【図3】実施形態レーザと従来レーザの特性を比較して示す図。 Figure 3 is a graph showing comparison of characteristics of the embodiments the laser and conventional laser.

【図4】第2の実施形態に係わる青色半導体レーザの素子構造を示す断面図。 4 is a cross-sectional view showing the element structure of a blue semiconductor laser according to the second embodiment.

【図5】従来の青色半導体レーザの素子構造を示す断面図。 5 is a sectional view showing an element structure of a conventional blue semiconductor laser.

【図6】窒化ガリウム系化合物半導体のX線回折結果を示す図。 6 is a diagram showing the X-ray diffraction pattern of a gallium nitride-based compound semiconductor.

【符号の説明】 DESCRIPTION OF SYMBOLS

11…サファイア基板 12…GaNバッファ層 13,43…n型GaNコンタクト層 14…n型Al 0.2 Ga 0.8 Nクラッド層 15…n型GaN導波層 16…MQW活性層 17…p型GaN導波層 18…p型Al 0.2 Ga0.8 Nクラッド層 19…p型GaNコンタクト層 20…p側電極 30…n側電極 31…TiNコンタクト金属 32…Ti層 33…Al層 35,45…GaNコンタクト層のn側電極との接触部分 11 ... sapphire substrate 12 ... GaN buffer layer 13, 43 ... n-type GaN contact layer 14 ... n-type Al 0.2 Ga 0.8 N cladding layer 15 ... n-type GaN guide layer 16 ... MQW active layer 17 ... p-type GaN guide layer 18 ... p-type Al 0.2 Ga0.8 n cladding layer 19 ... p-type GaN contact layer 20 ... p-side electrode 30 ... n-side electrode 31 ... TiN contact metal 32 ... Ti layer 33 ... Al layer 35, 45 ... GaN contact layer contact portion between the n-side electrode

フロントページの続き (72)発明者 布上 真也 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 板谷 和彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F041 AA03 CA34 CA40 CA46 CA84 CA87 CA92 FF16 5F073 AA73 AA74 AB04 BA06 CA17 CB05 CB22 EA23 Of the front page Continued (72) inventor cloth on Shinya, Kawasaki-shi, Kanagawa-ku, Saiwai Komukaitoshiba-cho, address 1 Co., Ltd. Toshiba Research and Development in the Center (72) inventor Kazuhiko Itaya Kawasaki-shi, Kanagawa-ku, Saiwai Komukaitoshiba-cho 1 address Co., Ltd., Toshiba research and development Center in the F-term (reference) 5F041 AA03 CA34 CA40 CA46 CA84 CA87 CA92 FF16 5F073 AA73 AA74 AB04 BA06 CA17 CB05 CB22 EA23

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】n型窒化ガリウム系化合物半導体層(Ga 1. A n-type gallium nitride-based compound semiconductor layer (Ga
    x In y Al z N:x+y+z=1,0≦x,y,z≦ x In y Al z N: x + y + z = 1,0 ≦ x, y, z ≦
    1)と、この化合物半導体層上に形成されたn側電極とを備えた窒化ガリウム系化合物半導体素子であって、 前記化合物半導体層とn側電極との接触部分の半導体層結晶は、ウルツァイト構造とキュービック構造が混在していることを特徴とする窒化ガリウム系化合物半導体素子。 1), a semiconductor element gallium nitride-based compound that includes a formed n-side electrode on the compound semiconductor layer, the semiconductor layer crystal of the contact portion between the compound semiconductor layer and the n-side electrode, wurtzite structure a semiconductor element gallium nitride compound, wherein a cubic structure are mixed.
  2. 【請求項2】前記n側電極は、少なくとも半導体層側がTiNからなることを特徴とする請求項1記載の窒化ガリウム系化合物半導体素子。 Wherein said n-side electrode, at least a semiconductor layer side Claim 1 gallium nitride-based compound semiconductor device, wherein a composed of TiN.
  3. 【請求項3】前記化合物半導体層の前記n側電極との接触部分でのキュービック構造(c-GaInAlN)とウルツァイト構造(w-GaInAlN)の存在比は、 0%<(c-GaInAlN)/(w-GaInAlN)<1% であることを特徴とする請求項1又は2に記載の窒化ガリウム系化合物半導体素子。 Abundance ratio of 3. The cubic structure at the contact portion between the n-side electrode of the compound semiconductor layer (c-GaInAlN) and wurtzite structure (w-GaInAlN) is, 0% <(c-GaInAlN) / ​​( w-GaInAlN) <gallium nitride-based compound semiconductor device according to claim 1 or 2, characterized in that it is 1%.
  4. 【請求項4】基板上に、それぞれ窒化ガリウム系化合物半導体層(Ga x In y Al z N:x+y+z=1,0 4. A substrate, each gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x + y + z = 1,0
    ≦x,y,z≦1)からなる、n型コンタクト層,n型クラッド層,活性層,p型クラッド層,p型コンタクト層が積層され、p型コンタクト層上にp側電極が形成され、p型コンタクト層からn型クラッド層までの一部を除去して露出したn型コンタクト層上にn側電極が形成された窒化ガリウム系化合物半導体素子であって、 前記n側電極は少なくとも半導体層側がTiNであり、 ≦ x, y, consists of z ≦ 1), n-type contact layer, n-type cladding layer, active layer, p-type cladding layer, p-type contact layer are laminated, p-side electrode is formed on the p-type contact layer , a p-type contact layer n-type cladding layer to a part n-type contact gallium nitride compound n-side electrode is formed on layer semiconductor device exposed by removing the from the n-side electrode of at least a semiconductor layer side is TiN,
    前記n型コンタクト層とn側電極との接触部分の半導体層結晶は、ウルツァイト構造とキュービック構造が混在しており、該接触部分でのキュービック構造(c-GaInA Semiconductor layer crystal of the contact portion between the n-type contact layer and the n-side electrode, wurtzite structure and the cubic structure are mixed, cubic structure at the contact portion (c-GAINA
    lN)とウルツァイト構造(w-GaInAlN)の存在比は0% Abundance ratio of lN) and wurtzite structure (w-GaInAlN) 0%
    <(c-GaInAlN)/(w-GaInAlN)<1%であることを特徴とする窒化ガリウム系化合物半導体素子。 <(C-GaInAlN) / ​​(w-GaInAlN) <semiconductor element gallium nitride-based compound which is a 1%.
JP27682899A 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element Pending JP2001102678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27682899A JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27682899A JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Publications (1)

Publication Number Publication Date
JP2001102678A true JP2001102678A (en) 2001-04-13

Family

ID=17574980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27682899A Pending JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Country Status (1)

Country Link
JP (1) JP2001102678A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
KR100630306B1 (en) * 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same
KR100838756B1 (en) 2007-08-10 2008-06-17 삼성전기주식회사 Manufacturing method for nitride semiconductor light emitting device
CN100448039C (en) 2002-03-26 2008-12-31 三洋电机株式会社 Nitride-based semiconductor device
KR100963823B1 (en) 2004-11-03 2010-06-16 에피스타 코포레이션 Light emitting diode
KR101018227B1 (en) 2008-10-09 2011-02-28 삼성엘이디 주식회사 Vertically structured nitridetype light emitting diode and method of the same
WO2012067428A2 (en) * 2010-11-16 2012-05-24 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
WO2013046943A1 (en) * 2011-09-27 2013-04-04 シャープ株式会社 Nitride semiconductor device and method for manufacturing same
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
WO2015056489A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Heat-assisted-magnetic-recording head, semiconductor laser element, and method for manufacturing semiconductor laser element
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448039C (en) 2002-03-26 2008-12-31 三洋电机株式会社 Nitride-based semiconductor device
US7372066B2 (en) 2002-06-04 2008-05-13 Nitride Semiconductors Co., Ltd. Gallium nitride compound semiconductor device and manufacturing method
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
KR100630306B1 (en) * 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same
KR100963823B1 (en) 2004-11-03 2010-06-16 에피스타 코포레이션 Light emitting diode
US8519436B2 (en) 2005-05-17 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8796734B2 (en) 2005-05-17 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8629477B2 (en) 2005-05-17 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8629047B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
KR100838756B1 (en) 2007-08-10 2008-06-17 삼성전기주식회사 Manufacturing method for nitride semiconductor light emitting device
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9356103B2 (en) 2008-07-01 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8629045B2 (en) 2008-07-01 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8809106B2 (en) 2008-09-24 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
KR101018227B1 (en) 2008-10-09 2011-02-28 삼성엘이디 주식회사 Vertically structured nitridetype light emitting diode and method of the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
WO2012067428A3 (en) * 2010-11-16 2012-08-23 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
WO2012067428A2 (en) * 2010-11-16 2012-05-24 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
WO2013046943A1 (en) * 2011-09-27 2013-04-04 シャープ株式会社 Nitride semiconductor device and method for manufacturing same
JP2013074052A (en) * 2011-09-27 2013-04-22 Sharp Corp Nitride semiconductor device and manufacturing method thereof
WO2015056489A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Heat-assisted-magnetic-recording head, semiconductor laser element, and method for manufacturing semiconductor laser element

Similar Documents

Publication Publication Date Title
EP0772249B1 (en) Nitride semiconductor device
US7615804B2 (en) Superlattice nitride semiconductor LD device
US7365369B2 (en) Nitride semiconductor device
JP3728332B2 (en) Compound semiconductor light-emitting device
JP4328366B2 (en) Semiconductor element
JP2013211587A (en) CLEAVED FACET (Ga,Al,In)N EDGE-EMITTING LASER DIODES GROWN ON SEMIPOLAR {11-2N} BULK GALLIUM NITRIDE SUBSTRATES
JP3688843B2 (en) Method of manufacturing a nitride-based semiconductor device
US20070063207A1 (en) Nitride semiconductor device
US20180152004A1 (en) Semi-polar iii-nitride optoelectronic devices on m-plane substrates with miscuts less than +/- 15 degrees in the c-direction
JP4325232B2 (en) Nitride semiconductor device
JP3180743B2 (en) Nitride compound semiconductor light-emitting device and its manufacturing method
JP3116675B2 (en) Semiconductor laser
US20100289056A1 (en) Semiconductor light-emitting devices
JP3594826B2 (en) The nitride semiconductor light emitting device and a manufacturing method thereof
JP3705047B2 (en) The nitride semiconductor light emitting device
JP2932467B2 (en) The gallium nitride-based compound semiconductor light-emitting device
JP3374737B2 (en) Nitride semiconductor device
JP3864735B2 (en) The semiconductor light emitting device and a manufacturing method thereof
JP3719613B2 (en) Semiconductor light-emitting element
JP4018177B2 (en) The gallium nitride-based compound semiconductor light-emitting device
JP2890396B2 (en) The nitride semiconductor light emitting device
JP3744211B2 (en) Nitride semiconductor device
JP3679914B2 (en) The semiconductor light emitting device and manufacturing method thereof
US6242761B1 (en) Nitride compound semiconductor light emitting device
JP3846150B2 (en) Iii nitride compound semiconductor device and the electrode forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311