JP2001102678A - Gallium nitride compound semiconductor element - Google Patents

Gallium nitride compound semiconductor element

Info

Publication number
JP2001102678A
JP2001102678A JP27682899A JP27682899A JP2001102678A JP 2001102678 A JP2001102678 A JP 2001102678A JP 27682899 A JP27682899 A JP 27682899A JP 27682899 A JP27682899 A JP 27682899A JP 2001102678 A JP2001102678 A JP 2001102678A
Authority
JP
Japan
Prior art keywords
layer
side electrode
compound semiconductor
gallium nitride
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27682899A
Other languages
Japanese (ja)
Inventor
Chiharu Nozaki
千晴 野崎
Hiroaki Yoshida
博昭 吉田
Shinya Nunogami
真也 布上
Kazuhiko Itaya
和彦 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27682899A priority Critical patent/JP2001102678A/en
Publication of JP2001102678A publication Critical patent/JP2001102678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a low-threshold current, a low operating voltage and a high reliability by reducing the contact resistance of an n-type GaN contact layer to an n-side electrode. SOLUTION: On a sapphire substrate 11 an n-GaN contact layer 13, an n- AlGaN clad layer 14, an MQW active layer 16, a p-AlGaN clad layer 18 and a p-GaN contact layer 19 are laminated, a p-side electrode 20 is formed on the p-GaN contact layer 19, the layers 14, 16, 18, 20 are partly removed to expose the n-GaN contact layer 13 and an n-side electrode 30 is formed on the n-GaN contact layer 13, thus forming a blue semiconductor laser. The n-side electrode 30 is formed in a TiN-Ti-Al laminated structure, and semiconductor layer crystals 35 having a wurtzite structure and a cubic structure are mixed in the contact portion between the n-GaN contact layer 13 and the n-side electrode 30, and the wurtzite structure abundance ratio is less than 1%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウム系青
紫色半導体レーザや窒化ガリウム系高輝度青/緑色発光
ダイオードなどの窒化ガリウム系化合物半導体素子に係
わり、特に窒化ガリウム系化合物半導体層と金属コンタ
クト層との接触部分の改良をはかった窒化ガリウム系化
合物半導体素子に関する。
The present invention relates to a gallium nitride-based compound semiconductor device such as a gallium nitride-based blue-violet semiconductor laser or a gallium nitride-based high-brightness blue / green light-emitting diode, and more particularly to a gallium nitride-based compound semiconductor layer and a metal contact. The present invention relates to a gallium nitride-based compound semiconductor device in which a contact portion with a layer is improved.

【0002】[0002]

【従来の技術】従来、InGaAlP材料を用いた半導
体レーザは、600nm帯の光源として光ディスクの読
出/書込のいずれも可能なレベルまで特性改善され、既
に実用化されている。さらなる記録密度向上を目指して
近年、より波長の短い青色半導体レーザが盛んに開発さ
れている。青色半導体レーザの構成材料としては、Ga
N,InGaN,GaAlN,InGaAlNなどの窒
化ガリウム系化合物半導体が注目されている。
2. Description of the Related Art Heretofore, a semiconductor laser using an InGaAlP material has been already put to practical use as a light source in a 600 nm band with its characteristics improved to a level at which both reading and writing of an optical disk are possible. In recent years, blue semiconductor lasers having shorter wavelengths have been actively developed to further improve the recording density. As a constituent material of the blue semiconductor laser, Ga
Gallium nitride-based compound semiconductors such as N, InGaN, GaAlN, and InGaAlN have attracted attention.

【0003】例えば、GaN系材料を用いた半導体レー
ザでは、波長380〜417nmの連続発振が確認され
ている。しかしながら、現状では満足な特性が得られ
ず、室温発振におけるしきい値電圧は10V程度と高い
値である上にばらつきが大きく、半導体レーザとしての
特性は十分ではない。これは、窒化ガリウム系化合物半
導体層の結晶成長が難しいことと、素子抵抗が大きいこ
とに起因する。
For example, in a semiconductor laser using a GaN-based material, continuous oscillation at a wavelength of 380 to 417 nm has been confirmed. However, at present, satisfactory characteristics cannot be obtained, and the threshold voltage at room temperature oscillation is a high value of about 10 V and has large variations, and the characteristics as a semiconductor laser are not sufficient. This is because crystal growth of the gallium nitride-based compound semiconductor layer is difficult and element resistance is large.

【0004】特に、窒化ガリウム系化合物半導体素子で
は、高キャリア濃度のp型窒化ガリウム系化合物半導体
層を形成できないことと、p側電極コンタクト抵抗が高
いことにより、大きな電圧降下を招き、パルス発振動作
でさえ発熱や金属反応による劣化を生じる問題がある。
この問題に関しては、様々な提案がなされており、解決
の目処も立っている。
In particular, in a gallium nitride-based compound semiconductor device, a large voltage drop is caused due to the inability to form a p-type gallium nitride-based compound semiconductor layer having a high carrier concentration and a high p-side electrode contact resistance. Even there is a problem that heat generation and deterioration due to metal reaction occur.
Various proposals have been made on this issue, and there are potential solutions.

【0005】一方、n側の抵抗分に関しては、p側と比
較してn型半導体は充分なキャリア濃度が実現でき、電
極コンタクト抵抗も大きな問題にはならなかった。しか
し、p側の抵抗分の改良が進むにつれ、全体の抵抗分と
してn側についても改良すべき点があることが分かって
きた。例えば、n側電極金属はコンタクト層としてのn
型GaN層上への堆積時に既に反応し、100℃〜15
0℃という工程時、或いはレーザ稼動時にかかる僅かな
温度上昇でさえも劣化を起こす。そして、抵抗が高く不
安定になるため、レーザの室温での連続発振が困難とな
る場合がある。
On the other hand, with respect to the resistance on the n-side, the n-type semiconductor can realize a sufficient carrier concentration as compared with the p-side resistance, and the electrode contact resistance has not been a serious problem. However, as the improvement of the resistance on the p-side has progressed, it has been found that there is a point to be improved on the n-side as a whole resistance. For example, the n-side electrode metal is n
Already reacts when deposited on the p-type GaN layer,
Even a slight temperature rise during the process of 0 ° C. or during operation of the laser causes deterioration. Since the resistance is high and unstable, continuous oscillation of the laser at room temperature may be difficult.

【0006】[0006]

【発明が解決しようとする課題】このように、光ディス
クなどへの応用が期待される窒化ガリウム系化合物半導
体レーザでは、n側電極と窒化ガリウム系化合物半導体
層とのコンタクト抵抗が高く不安定となる。このため、
コンタクト部で大きな電圧降下を生じ動作が不安定とな
り、低しきい値電流,低動作電圧,高い信頼性の素子の
実現は困難となっている。また、n側電極と窒化ガリウ
ム系半導体層が通電時に劣化を起こすために、レーザの
室温での連続発振は困難であった。
As described above, in a gallium nitride compound semiconductor laser expected to be applied to an optical disk or the like, the contact resistance between the n-side electrode and the gallium nitride compound semiconductor layer becomes high and unstable. . For this reason,
A large voltage drop occurs at the contact portion, and the operation becomes unstable, and it is difficult to realize a device having a low threshold current, a low operating voltage, and high reliability. Further, since the n-side electrode and the gallium nitride-based semiconductor layer deteriorate when energized, continuous oscillation of the laser at room temperature is difficult.

【0007】本発明は、上記の事情を考慮してなされた
もので、その目的とするところは、n側電極と窒化ガリ
ウム系化合物半導体層との間に生じるコンタクト抵抗を
低くし、さらに稼動時の発熱に対しての耐熱性を強く安
定化することができ、低しきい値電流,低動作電圧で劣
化を起こさず、優れた信頼性を有する窒化ガリウム系化
合物半導体素子を提供することにある。
The present invention has been made in consideration of the above circumstances, and has as its object to reduce the contact resistance generated between an n-side electrode and a gallium nitride-based compound semiconductor layer, and further reduce the operating resistance. An object of the present invention is to provide a gallium nitride-based compound semiconductor device which can stabilize heat resistance against heat generation of a semiconductor device, does not deteriorate at a low threshold current and a low operating voltage, and has excellent reliability. .

【0008】[0008]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は、次のような構成を採用している。
(Structure) In order to solve the above-mentioned problem, the present invention employs the following structure.

【0009】即ち本発明は、n型窒化ガリウム系化合物
半導体層(Gax Iny Alz N:x+y+z=1,0
≦x,y,z≦1)と、この化合物半導体層上に形成さ
れたn側電極とを備えた窒化ガリウム系化合物半導体素
子において、前記化合物半導体層とn側電極との接触部
分の半導体層結晶は、ウルツァイト構造とキュービック
構造が混在していることを特徴とする。
[0009] The present invention, n-type gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x + y + z = 1,0
≦ x, y, z ≦ 1) and a gallium nitride-based compound semiconductor device having an n-side electrode formed on the compound semiconductor layer, a semiconductor layer at a contact portion between the compound semiconductor layer and the n-side electrode. The crystal is characterized by a mixture of a wurtzite structure and a cubic structure.

【0010】ここで、本発明の望ましい実施態様として
は次のものがあげられる。 (1) n側電極は、少なくとも半導体層側がTiNからな
ること。 (2) n側電極は、TiN/Ti/Alの3層構造である
こと。
Here, preferred embodiments of the present invention include the following. (1) At least the semiconductor layer side of the n-side electrode is made of TiN. (2) The n-side electrode has a three-layer structure of TiN / Ti / Al.

【0011】(3) 窒化ガリウム系化合物半導体層のn側
電極との接触部分でのキュービック構造(c−GaInAl
N)とウルツァイト構造(w−GaInAlN)の存在比は、0
%<(c−GaInAlN)/(w−GaInAlN)<1%であるこ
と。
(3) Cubic structure (c-GaInAlAl) at the contact portion of the gallium nitride-based compound semiconductor layer with the n-side electrode
N) and the wurtzite structure (w-GaInAlN) are 0
% <(C-GaInAlN) / (w-GaInAlN) <1%.

【0012】また本発明は、基板上に、それぞれ窒化ガ
リウム系化合物半導体層(Gax Iny Alz N:x+
y+z=1,0≦x,y,z≦1)からなる、n型コン
タクト層,n型クラッド層,活性層,p型クラッド層,
p型コンタクト層が積層され、p型コンタクト層上にp
側電極が形成され、p型コンタクト層からn型クラッド
層までを一部除去して露出したn型コンタクト層上にn
側電極が形成された窒化ガリウム系化合物半導体素子で
あって、前記n側電極は少なくとも半導体層側がTiN
であり、前記n型コンタクト層とn側電極との接触部分
の半導体層結晶は、ウルツァイト構造とキュービック構
造が混在しており、該接触部分でのキュービック構造
(c-GaInAlN)とウルツァイト構造(w-GaInAlN)の存
在比は0%<(c-GaInAlN)/(w-GaInAlN)<1%で
あることを特徴とする。
[0012] The present invention, on a substrate, each gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x +
y + z = 1, 0 ≦ x, y, z ≦ 1), an n-type contact layer, an n-type cladding layer, an active layer, a p-type cladding layer,
A p-type contact layer is laminated, and p-type
A side electrode is formed, and a part of the n-type cladding layer from the p-type contact layer is partially removed.
A gallium nitride-based compound semiconductor device having a side electrode formed thereon, wherein at least the semiconductor layer side of the n-side electrode is TiN
In the semiconductor layer crystal at the contact portion between the n-type contact layer and the n-side electrode, a wurtzite structure and a cubic structure are mixed, and the cubic structure (c-GaInAlN) and the wurtzite structure (w -GaInAlN) is characterized in that 0% <(c-GaInAlN) / (w-GaInAlN) <1%.

【0013】(作用)従来の青色半導体レーザの素子構
造を、図5に示す。図中の11はサファイア基板、12
はGaNバッファ層、13はn−GaNコンタクト層、
14はn−AlGaNクラッド層、15はGaN導波
層、16は多重量子井戸(MQW)構造の活性層、17
はGaN導波層、18p−AlGaNクラッド層、19
はp−GaNコンタクト層、20はp側電極、30はn
側電極、32はTi層、33はAl層を示している。
(Operation) FIG. 5 shows an element structure of a conventional blue semiconductor laser. In the figure, 11 is a sapphire substrate, 12
Is a GaN buffer layer, 13 is an n-GaN contact layer,
14 is an n-AlGaN cladding layer, 15 is a GaN waveguide layer, 16 is an active layer having a multiple quantum well (MQW) structure, 17
Is a GaN waveguide layer, 18p-AlGaN cladding layer, 19
Is a p-GaN contact layer, 20 is a p-side electrode, 30 is n
A side electrode, 32 indicates a Ti layer, and 33 indicates an Al layer.

【0014】従来素子では、図5(a)に示すように、
n側電極と窒化ガリウム系化合物半導体層とのコンタク
ト金属にはTiが用いられるのが一般的で、ノンアロイ
の状態でややオーミック性を示していた。また、この状
態ではTi/GaN構造が保たれていることが報告され
ている。しかし、デバイス作製の工程中、或いはデバイ
ス稼動時に劣化を起こし高抵抗化する傾向にあった。こ
の高抵抗化は、ノンアロイでややオーミック接触であっ
たものが、100℃〜150℃という低温でショットキ
ー接触に変わってしまうことが原因であると考えられ
る。
In the conventional device, as shown in FIG.
Ti is generally used as a contact metal between the n-side electrode and the gallium nitride-based compound semiconductor layer, and has exhibited a little ohmic property in a non-alloy state. It is also reported that the Ti / GaN structure is maintained in this state. However, the resistance tends to increase during the device manufacturing process or during the operation of the device, resulting in a high resistance. This increase in resistance is considered to be due to the fact that non-alloy and slightly ohmic contact are changed to Schottky contact at a low temperature of 100 ° C. to 150 ° C.

【0015】このため多くの場合、図5(b)に示すよ
うに、Ti上にAlを形成し、600℃以上のシンター
を施すことにより、TiAl合金にコンタクトとして良
好なオーミック性を持たせ、これを使っている。本発明
者らも、ショットキー性はシンターすることによりオー
ミック性に戻る場合があることを確認した。
For this reason, in many cases, as shown in FIG. 5 (b), by forming Al on Ti and sintering at 600 ° C. or more, the TiAl alloy has good ohmic properties as a contact, I use this. The present inventors have also confirmed that Schottky properties may return to ohmic properties by sintering.

【0016】しかし、ノンアロイ状態よりも完全で良好
なオーミック性が戻るシンター温度は、窒化ガリウム系
化合物半導体層の成長条件やコンタクト金属堆積前の処
理及び堆積条件により大きく異なったり、シンターでは
オーミック性を改善することが困難な場合が多い。さら
に、他の報告のように、一様に600℃以上のシンター
では安定したオーミック特性が得られるが、600℃以
上の工程では半導体結晶の劣化が起こるために、素子特
性全体から考えれば600℃以上の高温でのシンターは
避けなければならない。
However, the sintering temperature at which the ohmic property is completely and better than that in the non-alloy state is greatly different depending on the growth conditions of the gallium nitride-based compound semiconductor layer and the processing and deposition conditions before the deposition of the contact metal. It is often difficult to improve. Further, as described in other reports, a stable ohmic characteristic can be obtained with a sinter uniformly at 600 ° C. or higher, but a semiconductor crystal is deteriorated in a process at 600 ° C. or higher. Sintering at higher temperatures must be avoided.

【0017】そこで本発明者らは、Al/Ti積層をn
型GaN層上に堆積した構造を例にとり、諸条件でショ
ットキーになるなど不安定な現象が、何によるものかを
調べた。その結果、元素分析からは、半導体を構成する
元素や電極として用いている金属Tiは堆積時に既に窒
素と反応しつつあり、深さ方向のプロファイルに変化は
なかった。しかし、X線回折(図6)で反応生成物や結
晶構造を調べると、良好なオーミック性を示し安定な試
料では窒化ガリウム系化合物半導体はウルツァイト構造
とキュービック構造が混在しており、その存在比はキュ
ービック構造が1%未満であることが条件であることを
見出した。
Therefore, the present inventors set the Al / Ti lamination to n.
Using a structure deposited on a p-type GaN layer as an example, it was investigated what caused unstable phenomena such as Schottky under various conditions. As a result, from elemental analysis, the element constituting the semiconductor and the metal Ti used as the electrode were already reacting with nitrogen at the time of deposition, and the profile in the depth direction did not change. However, when the reaction product and the crystal structure were examined by X-ray diffraction (FIG. 6), the gallium nitride-based compound semiconductor showed a good ohmic property, and the wurtzite structure and the cubic structure were mixed in the stable sample. Found that the cubic structure was less than 1%.

【0018】つまり、ウルツァイト構造100%であっ
た窒化ガリウム物系化合物半導体に金属電極を積層した
場合は、良好なオーミック特性ではなくまた不安定でも
あった。しかし、ウルツァイト構造に1%未満のキュー
ビック構造が混在した層が電極金属と接触した場合は、
低抵抗なオーミック性を安定に示していた。
That is, when a metal electrode is laminated on a gallium nitride-based compound semiconductor having a wurtzite structure of 100%, not only good ohmic characteristics but also instability was obtained. However, if the layer where the cubic structure of less than 1% is mixed with the wurtzite structure comes into contact with the electrode metal,
Low resistance ohmic properties were stably exhibited.

【0019】キュービック構造の仕事関数はウルツァイ
ト構造の仕事関数にくらべ小さいと類推され、そのため
に金属との界面で低抵抗のオーミック性が強くなるもの
と考える。但し、キュービック構造が1%以上になると
また不安定なショットキー性を示すのは、キュービック
構造とウルツァイト構造の境はアモルファス的となり全
体の結晶性も著しく劣るためではないかと推測される。
但し、この現象に対する明確な解釈はできていない。
It is assumed that the work function of the cubic structure is smaller than the work function of the wurtzite structure, and therefore, it is considered that the ohmic property of low resistance becomes stronger at the interface with the metal. However, when the cubic structure is 1% or more, it is speculated that the unstable Schottky property may be exhibited because the boundary between the cubic structure and the wurtzite structure is amorphous and the overall crystallinity is extremely poor.
However, no clear interpretation of this phenomenon has been made.

【0020】この実験結果より本発明者らは、金属コン
タクト層に接触している窒化ガリウム系化合物半導体結
晶には、ある程度のキュービック構造が混在していた方
が安定で良好なオーミック特性を得ることが実現できる
ことを見出した。実際にウルツァイト構造中にキュービ
ック構造を制御して作製するには、半導体結晶の成長方
法や半導体表面への前処理やビームなどによる改質、ド
ライエッチング条件、金属堆積時の真空度や不純物状態
などにより、電極界面での結晶構造の制御をすることに
より可能である。
According to the experimental results, the present inventors have found that the gallium nitride-based compound semiconductor crystal in contact with the metal contact layer has a stable and good ohmic characteristic when a certain cubic structure is mixed. Was found to be realizable. In order to actually control the cubic structure in the wurtzite structure, it is necessary to prepare a semiconductor crystal growth method, pretreatment or modification of the semiconductor surface with a beam, dry etching conditions, the degree of vacuum during metal deposition, and the state of impurities. Thus, it is possible to control the crystal structure at the electrode interface.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態につい
て、図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(第1の実施形態)図1は、本発明の第1
の実施形態に係わる青色半導体レーザの概略構成を示す
断面図である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a blue semiconductor laser according to the embodiment.

【0023】図中の11は(0001)サファイア基板
であり、この基板11上に、GaNバッファ層12、n
型GaNコンタクト層13(Siドープ,5×1018
-3,4μm)、n型Al0.2 Ga0.8 Nクラッド層1
4(Siドープ,5×1017cm-3,0.3μm)、G
aN導波層(アンドープ,0.1μm)15、多重量子
井戸構造(MQW)の活性層16、p型GaN導波層1
7(Mgドープ,0.1μm)、p型Al0.2 Ga0.8
Nクラッド層18(Mgドープ、5×1017cm-3
0.3μm)、p型GaNコンタクト層(Mgドープ1
×1018cm-3,1μm)19が順次形成され、半導体
多層構造が形成されている。この多層構造の各結晶はほ
ぼウルツァイト構造に形成されている。
In the figure, reference numeral 11 denotes a (0001) sapphire substrate, on which a GaN buffer layer 12, n
-Type GaN contact layer 13 (Si-doped, 5 × 10 18 c
m −3 , 4 μm), n-type Al 0.2 Ga 0.8 N clad layer 1
4 (Si-doped, 5 × 10 17 cm −3 , 0.3 μm), G
aN waveguide layer (undoped, 0.1 μm) 15, active layer 16 having a multiple quantum well structure (MQW), p-type GaN waveguide layer 1
7 (Mg doped, 0.1 μm), p-type Al 0.2 Ga 0.8
N cladding layer 18 (Mg doped, 5 × 10 17 cm −3 ,
0.3 μm), p-type GaN contact layer (Mg doped 1)
× 10 18 cm −3 , 1 μm) 19 are sequentially formed to form a semiconductor multilayer structure. Each crystal of this multilayer structure is formed substantially in a wurtzite structure.

【0024】半導体多層構造のp型GaNコンタクト層
19上には、p側電極20が形成されている。また、半
導体多層構造の一部は、n型GaNコンタクト層13に
達する深さまでドライエッチング法により除去され、こ
れにより露出されたコンタクト層13上には、n側電極
30として、TiNコンタクト層31,Ti層32,A
l層33が順次積層された形で形成されている。n型G
aNコンタクト層13は99%以上がウルツァイト構造
であるが、n側電極30との接触部分35は所々キュー
ビック構造が含まれている。
On the p-type GaN contact layer 19 having a semiconductor multilayer structure, a p-side electrode 20 is formed. Further, a part of the semiconductor multilayer structure is removed by a dry etching method to a depth reaching the n-type GaN contact layer 13, and on the exposed contact layer 13, a TiN contact layer 31, as an n-side electrode 30, is formed. Ti layer 32, A
The l-layers 33 are formed so as to be sequentially laminated. n-type G
99% or more of the aN contact layer 13 has a wurtzite structure, but the contact portion 35 with the n-side electrode 30 includes a cubic structure in some places.

【0025】次に、本実施形態の半導体レーザの製造方
法について説明する。
Next, a method of manufacturing the semiconductor laser according to the present embodiment will be described.

【0026】まず、図2(a)に示すように、面方位
(0001)のサファイア基板11上にMOCVD法
で、GaNバッファ層12,n型GaNコンタクト層1
3、n型Al0.2 Ga0.8 Nクラッド層14,GaN導
波層15,活性層16,p型GaN導波層17,p型A
0.2 Ga0.8 Nクラッド層18,p型GaNコンタク
ト層19を順次成長形成する。ここで、GaNバッファ
層12からp型GaNコンタクト層19までの各層は、
1回のMOCVD成長により連続して成長する。
First, as shown in FIG. 2A, a GaN buffer layer 12 and an n-type GaN contact layer 1 are formed on a (0001) sapphire substrate 11 by MOCVD.
3, n-type Al 0.2 Ga 0.8 N clad layer 14, GaN waveguide layer 15, active layer 16, p-type GaN waveguide layer 17, p-type A
A l 0.2 Ga 0.8 N cladding layer 18 and a p-type GaN contact layer 19 are sequentially grown and formed. Here, each layer from the GaN buffer layer 12 to the p-type GaN contact layer 19 is:
It grows continuously by one MOCVD growth.

【0027】次いで、図2(b)に示すように、p型G
aNコンタクト層19の表面に幅10μmの領域に金属
コンタクト層とAu電極を順次スパッタ蒸着し、700
℃の窒素雰囲気で熱処理をしてp側電極20を形成す
る。
Next, as shown in FIG.
On the surface of the aN contact layer 19, a metal contact layer and an Au electrode are sequentially deposited by sputtering on a region having a width of 10 μm,
A heat treatment is performed in a nitrogen atmosphere at a temperature of ° C. to form a p-side electrode 20.

【0028】次いで、図2(c)に示すように、p側電
極20を含んだメサ形状をエッチングにより形成し、メ
サ下部に現れたn型GaNコンタクト層13の表面に対
して200MeV程度の軽元素イオンビームを1時間照
射する。これにより、表面の改質が起こり表面付近に非
晶質部ができる。その後、300℃で熱処理することに
より再結晶化するが、その際に表面層には1%未満のキ
ュービック構造が一様に形成される。
Next, as shown in FIG. 2 (c), a mesa shape including the p-side electrode 20 is formed by etching, and the surface of the n-type GaN contact layer 13 appearing under the mesa is lightened by about 200 MeV. Irradiate with an element ion beam for 1 hour. As a result, the surface is modified and an amorphous portion is formed near the surface. Thereafter, recrystallization is performed by heat treatment at 300 ° C. At this time, a cubic structure of less than 1% is uniformly formed on the surface layer.

【0029】次いで、Ti,Alを順次スパッタ蒸着
し、窒素雰囲気で熱処理をすることにより金属コンタク
ト層であるTiN層31、さらにTi層32,Al層3
3が順次積層された、n側電極30を形成する。
Next, Ti and Al are sequentially deposited by sputtering, and a heat treatment is performed in a nitrogen atmosphere to form a TiN layer 31, a Ti layer 32, and an Al layer 3 which are metal contact layers.
3 are sequentially laminated to form an n-side electrode 30.

【0030】次いで、サファイア基板11を50μm厚
まで鏡面研磨し、p側電極20の長手方向に対して垂直
方向にへき開し、1mm長の青色半導体レーザチップを
形成する。
Next, the sapphire substrate 11 is mirror-polished to a thickness of 50 μm and cleaved in a direction perpendicular to the longitudinal direction of the p-side electrode 20 to form a blue semiconductor laser chip having a length of 1 mm.

【0031】かくして形成された青色半導体レーザは、
しきい値電流80mAで室温連続発振した。発振波長は
420nm、動作電圧は7Vであり、さらに50℃,3
0mW駆動においても安定に動作した。
The blue semiconductor laser thus formed is
Room temperature continuous oscillation was performed at a threshold current of 80 mA. The oscillation wavelength is 420 nm, the operating voltage is 7 V, and 50 ° C., 3
It operated stably even at 0 mW drive.

【0032】本実施形態の青色半導体レーザの電流電圧
特性を、従来レーザと比較して図3に示す。図3の曲線
Aが本実施形態による青色半導体レーザの特性であり、
比較として、n型GaNコンタクト層とn側電極との界
面でコンタクト層の結晶がノンアロイで形成し、ウルツ
ァイト構造が100%の場合B、及び300℃シンター
によりキュービック構造が接触面積の1%以上の場合C
の青色半導体レーザの電流電圧特性を示した。
FIG. 3 shows the current-voltage characteristics of the blue semiconductor laser of this embodiment in comparison with the conventional laser. Curve A in FIG. 3 shows the characteristic of the blue semiconductor laser according to the present embodiment,
As a comparison, when the crystal of the contact layer is formed as a non-alloy at the interface between the n-type GaN contact layer and the n-side electrode and the wurtzite structure is 100%, the cubic structure is 1% or more of the contact area by a 300 ° C. sinter. Case C
The current-voltage characteristics of the blue semiconductor laser shown in FIG.

【0033】図3から明らかなように、本実施形態では
良好なダイオード特性を示しているが、比較例では完全
なダイオード特性となっておらず、また電圧の立ち上が
りも15V程度と非常に高くなっており、発光は確認で
きたが数分で劣化した。
As is clear from FIG. 3, the present embodiment shows good diode characteristics, but the comparative example does not have perfect diode characteristics, and the voltage rise is as high as about 15 V. The emission was confirmed, but deteriorated within a few minutes.

【0034】このように本実施形態によれば、n側電極
30を形成すべきn型GaNコンタクト層13の表面に
軽元素イオンビームを照射した後に熱処理し、表面層に
1%未満のキュービック構造を形成することにより、n
側電極30とn型GaNコンタクト層13との間に生じ
るコンタクト抵抗を低くすることができる。しかも、稼
動時の発熱に対しての耐熱性を強く安定化することがで
き、従って低しきい値電流,低動作電圧で劣化を起こさ
ず、優れた信頼性を実現することができる。
As described above, according to the present embodiment, the surface of the n-type GaN contact layer 13 on which the n-side electrode 30 is to be formed is irradiated with a light element ion beam and then heat-treated, so that the surface layer has a cubic structure of less than 1%. To form n
The contact resistance generated between the side electrode 30 and the n-type GaN contact layer 13 can be reduced. In addition, the heat resistance against heat generation during operation can be strongly stabilized, so that a low threshold current and a low operating voltage do not cause deterioration and excellent reliability can be realized.

【0035】(第2の実施形態)図4は、本発明の第2
の実施形態に係わる青色半導体レーザの概略構成を示す
断面図である。なお、図1と同一部分には同一符号を付
して、その詳しい説明は省略する。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a blue semiconductor laser according to the embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0036】本実施形態の青色半導体レーザでは、サフ
ァイア基板上にGaN厚膜結晶をH−VPE法により1
00μm成長する。その後、サファイア基板をエッチン
グ等で取り除き、そのGaN厚膜を基板としてMOCV
D成長により図中の各層の成長を行う。基板としたGa
N厚膜はn型GaNコンタクト層43(Siドープ,5
×1018cm-3)とし、サファイア基板を取り除いた一
部分にTiN/Ti/Alを形成しn側電極30とす
る。
In the blue semiconductor laser of this embodiment, a GaN thick film crystal is formed on a sapphire substrate by the H-VPE method.
Growing by 00 μm. Then, the sapphire substrate is removed by etching or the like, and the MOCV
Each layer in the figure is grown by D growth. Ga as substrate
The N thick film is an n-type GaN contact layer 43 (Si-doped, 5
× 10 18 cm −3 ), and TiN / Ti / Al is formed on a part except for the sapphire substrate to form an n-side electrode 30.

【0037】この場合、n型コンタクト層43とした厚
膜は良好なGaN結晶に電極金属を接触させるために、
さらに20μmのドライエッチングを施す。このとき、
n型GaNコンタクト層43のn側電極30との接触部
分45はサファイア基板を既に除去しているため、格子
不整合による歪みが少なく、高加速,長時間のイオンビ
ーム照射でキュービック構造が接触面積の1%未満の存
在率になるように設定することができる。これにより、
低抵抗な電極界面を安定に保つことができ、第1の実施
形態と同様の効果が得られる。
In this case, the thick film used as the n-type contact layer 43 is formed in order to bring the electrode metal into contact with a good GaN crystal.
Further, dry etching of 20 μm is performed. At this time,
Since the sapphire substrate has already been removed from the contact portion 45 of the n-type GaN contact layer 43 with the n-side electrode 30, distortion due to lattice mismatch is small, and the cubic structure has a contact area with high acceleration and long-time ion beam irradiation. Can be set to be less than 1%. This allows
A low-resistance electrode interface can be stably maintained, and the same effects as in the first embodiment can be obtained.

【0038】(第3の実施形態)次に、本発明の第3の
実施形態に係わる青色半導体レーザについて説明する。
素子構造は、図4と同一であるので省略する。
(Third Embodiment) Next, a blue semiconductor laser according to a third embodiment of the present invention will be described.
The element structure is the same as that of FIG.

【0039】本実施形態では、H−VPE法でGaN厚
膜結晶を成長し、その後MOCVD法により他の各層を
成長していくという第2の実施形態と同じように積層す
る。第2の実施形態で述べたようにGaN厚膜は歪みが
開放されているため100%のウルツァイト構造になり
やすい。
In the present embodiment, a GaN thick-film crystal is grown by the H-VPE method, and thereafter, the other layers are grown by the MOCVD method, as in the second embodiment. As described in the second embodiment, the GaN thick film easily has a 100% wurtzite structure because the strain is released.

【0040】そこで本実施形態では、電極堆積前に表面
に適当量のピットを形成し、その後にMOCVD再成長
することにより、積極的にキュービック構造を形成す
る。これにより、n側電極形成ではノンアロイのままで
良好で安定なオーミック接触が得られている。その後の
工程は、第1の実施形態と同様である。
Therefore, in the present embodiment, an appropriate amount of pits are formed on the surface before the electrode is deposited, and then MOCVD is re-grown to actively form the cubic structure. As a result, in the formation of the n-side electrode, a good and stable ohmic contact can be obtained without any alloy. Subsequent steps are the same as in the first embodiment.

【0041】このようにして作成された本実施形態レー
ザにおいても、n側電極30とのコンタクトに関して低
抵抗な電極界面を安定に保つことができ、第1の実施形
態と同様の効果が得られる。
In the laser of the present embodiment thus produced, the low resistance electrode interface can be stably maintained with respect to the contact with the n-side electrode 30, and the same effects as those of the first embodiment can be obtained. .

【0042】なお、本発明は上述した各実施形態に限ら
れるものではない。半導体層の成長方法や条件、コンタ
クト電極金属の種類や堆積前の半導体層に対する処理、
さらには堆積後のシンター条件など製造方法は多様であ
る。また、半導体レーザに限らず発光ダイオードに適用
することもできる。さらに、発光素子以外にも、受光素
子やトランジスタなどの電子デバイスにも適用可能であ
る。また、実施形態では活性層をMQWにしたが、活性
層は量子井戸構造ではなく単層構造であっても良いのは
勿論のことである。
The present invention is not limited to the above embodiments. Semiconductor layer growth method and conditions, type of contact electrode metal, treatment of semiconductor layer before deposition,
Furthermore, there are various manufacturing methods such as sintering conditions after deposition. Further, the present invention can be applied not only to a semiconductor laser but also to a light emitting diode. Further, in addition to the light emitting element, the present invention can be applied to electronic devices such as a light receiving element and a transistor. In the embodiment, the MQW is used as the active layer. However, the active layer may have a single-layer structure instead of the quantum well structure.

【0043】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
In addition, various modifications can be made without departing from the scope of the present invention.

【0044】[0044]

【発明の効果】以上詳述したように本発明によれば、n
側電極(特に、n側コンタクト金属)と接触しているn
型窒化ガリウム系化合物半導体層(特に、n型GaNコ
ンタクト層)の界面の結晶構造を、ウルツァイト構造中
に1%未満のキュービック構造を形成する構造にするこ
とによって、低抵抗で熱的に安定なn側電極を実現する
ことができる。これにより、低しきい値電流,低動作電
圧で劣化を起こさず、優れた信頼性を有する窒化ガリウ
ム系化合物半導体素子を実現することが可能となる。
As described above, according to the present invention, n
N in contact with the side electrode (particularly, the n-side contact metal)
Low-resistance and thermally stable by making the crystal structure at the interface of the gallium nitride-based compound semiconductor layer (especially the n-type GaN contact layer) a less than 1% cubic structure in the wurtzite structure An n-side electrode can be realized. As a result, it is possible to realize a gallium nitride-based compound semiconductor device that does not deteriorate at low threshold current and low operating voltage and has excellent reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係わる青色半導体レーザの素
子構造を示す断面図。
FIG. 1 is a sectional view showing an element structure of a blue semiconductor laser according to a first embodiment.

【図2】図1のデバイスの製造工程を示す断面図。FIG. 2 is a sectional view showing a manufacturing process of the device of FIG. 1;

【図3】実施形態レーザと従来レーザの特性を比較して
示す図。
FIG. 3 is a diagram showing a comparison between characteristics of the embodiment laser and a conventional laser.

【図4】第2の実施形態に係わる青色半導体レーザの素
子構造を示す断面図。
FIG. 4 is a sectional view showing an element structure of a blue semiconductor laser according to a second embodiment.

【図5】従来の青色半導体レーザの素子構造を示す断面
図。
FIG. 5 is a sectional view showing an element structure of a conventional blue semiconductor laser.

【図6】窒化ガリウム系化合物半導体のX線回折結果を
示す図。
FIG. 6 is a graph showing an X-ray diffraction result of a gallium nitride-based compound semiconductor.

【符号の説明】[Explanation of symbols]

11…サファイア基板 12…GaNバッファ層 13,43…n型GaNコンタクト層 14…n型Al0.2 Ga0.8 Nクラッド層 15…n型GaN導波層 16…MQW活性層 17…p型GaN導波層 18…p型Al0.2 Ga0.8 Nクラッド層 19…p型GaNコンタクト層 20…p側電極 30…n側電極 31…TiNコンタクト金属 32…Ti層 33…Al層 35,45…GaNコンタクト層のn側電極との接触部
11 ... sapphire substrate 12 ... GaN buffer layer 13, 43 ... n-type GaN contact layer 14 ... n-type Al 0.2 Ga 0.8 N cladding layer 15 ... n-type GaN guide layer 16 ... MQW active layer 17 ... p-type GaN guide layer 18 ... p-type Al 0.2 Ga0.8 n cladding layer 19 ... p-type GaN contact layer 20 ... p-side electrode 30 ... n-side electrode 31 ... TiN contact metal 32 ... Ti layer 33 ... Al layer 35, 45 ... GaN contact layer Contact part with n-side electrode

フロントページの続き (72)発明者 布上 真也 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 板谷 和彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 5F041 AA03 CA34 CA40 CA46 CA84 CA87 CA92 FF16 5F073 AA73 AA74 AB04 BA06 CA17 CB05 CB22 EA23 Continuing from the front page (72) Inventor Shinya Nunogami 1 Toshiba R & D Center, Komukai, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Kazuhiko Itaya 1 Toshiba-cho, Komukai Toshiba-cho, Saisaki-ku, Kawasaki-shi, Kanagawa Address F-term in Toshiba R & D Center (reference) 5F041 AA03 CA34 CA40 CA46 CA84 CA87 CA92 FF16 5F073 AA73 AA74 AB04 BA06 CA17 CB05 CB22 EA23

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】n型窒化ガリウム系化合物半導体層(Ga
x Iny Alz N:x+y+z=1,0≦x,y,z≦
1)と、この化合物半導体層上に形成されたn側電極と
を備えた窒化ガリウム系化合物半導体素子であって、 前記化合物半導体層とn側電極との接触部分の半導体層
結晶は、ウルツァイト構造とキュービック構造が混在し
ていることを特徴とする窒化ガリウム系化合物半導体素
子。
1. An n-type gallium nitride-based compound semiconductor layer (Ga)
x In y Al z N: x + y + z = 1,0 ≦ x, y, z ≦
1) and a gallium nitride-based compound semiconductor device including an n-side electrode formed on the compound semiconductor layer, wherein a semiconductor layer crystal at a contact portion between the compound semiconductor layer and the n-side electrode has a wurtzite structure. And a cubic structure.
【請求項2】前記n側電極は、少なくとも半導体層側が
TiNからなることを特徴とする請求項1記載の窒化ガ
リウム系化合物半導体素子。
2. The gallium nitride-based compound semiconductor device according to claim 1, wherein said n-side electrode has at least a semiconductor layer side made of TiN.
【請求項3】前記化合物半導体層の前記n側電極との接
触部分でのキュービック構造(c-GaInAlN)とウルツァ
イト構造(w-GaInAlN)の存在比は、 0%<(c-GaInAlN)/(w-GaInAlN)<1% であることを特徴とする請求項1又は2に記載の窒化ガ
リウム系化合物半導体素子。
3. An abundance ratio of a cubic structure (c-GaInAlN) and a wurtzite structure (w-GaInAlN) at a contact portion of the compound semiconductor layer with the n-side electrode is 0% <(c-GaInAlN) / ( 3. The gallium nitride-based compound semiconductor device according to claim 1, wherein (w-GaInAlN) <1%.
【請求項4】基板上に、それぞれ窒化ガリウム系化合物
半導体層(Gax Iny Alz N:x+y+z=1,0
≦x,y,z≦1)からなる、n型コンタクト層,n型
クラッド層,活性層,p型クラッド層,p型コンタクト
層が積層され、p型コンタクト層上にp側電極が形成さ
れ、p型コンタクト層からn型クラッド層までの一部を
除去して露出したn型コンタクト層上にn側電極が形成
された窒化ガリウム系化合物半導体素子であって、 前記n側電極は少なくとも半導体層側がTiNであり、
前記n型コンタクト層とn側電極との接触部分の半導体
層結晶は、ウルツァイト構造とキュービック構造が混在
しており、該接触部分でのキュービック構造(c-GaInA
lN)とウルツァイト構造(w-GaInAlN)の存在比は0%
<(c-GaInAlN)/(w-GaInAlN)<1%であることを
特徴とする窒化ガリウム系化合物半導体素子。
4. A substrate, each gallium nitride-based compound semiconductor layer (Ga x In y Al z N : x + y + z = 1,0
≤ x, y, z ≤ 1), an n-type contact layer, an n-type cladding layer, an active layer, a p-type cladding layer, and a p-type contact layer are laminated, and a p-side electrode is formed on the p-type contact layer. A gallium nitride-based compound semiconductor device in which an n-side electrode is formed on an n-type contact layer exposed by removing a part from a p-type contact layer to an n-type cladding layer, wherein the n-side electrode is at least a semiconductor. The layer side is TiN,
In the semiconductor layer crystal at the contact portion between the n-type contact layer and the n-side electrode, a wurtzite structure and a cubic structure are mixed, and the cubic structure (c-GaInA
1N) and the wurtzite structure (w-GaInAlN) are 0%
A gallium nitride-based compound semiconductor device, wherein <(c-GaInAlN) / (w-GaInAlN) <1%.
JP27682899A 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element Pending JP2001102678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27682899A JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27682899A JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Publications (1)

Publication Number Publication Date
JP2001102678A true JP2001102678A (en) 2001-04-13

Family

ID=17574980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27682899A Pending JP2001102678A (en) 1999-09-29 1999-09-29 Gallium nitride compound semiconductor element

Country Status (1)

Country Link
JP (1) JP2001102678A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
KR100630306B1 (en) * 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same
KR100838756B1 (en) 2007-08-10 2008-06-17 삼성전기주식회사 Manufacturing method for nitride semiconductor light emitting device
CN100448039C (en) * 2002-03-26 2008-12-31 三洋电机株式会社 Nitride-based semiconductor device
KR100963823B1 (en) 2004-11-03 2010-06-16 에피스타 코포레이션 Light emitting diode
KR101018227B1 (en) 2008-10-09 2011-02-28 삼성엘이디 주식회사 Vertically structured nitridetype light emitting diode and method of the same
WO2012067428A2 (en) * 2010-11-16 2012-05-24 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
WO2013046943A1 (en) * 2011-09-27 2013-04-04 シャープ株式会社 Nitride semiconductor device and method for manufacturing same
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
WO2015056489A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Heat-assisted-magnetic-recording head, semiconductor laser element, and method for manufacturing semiconductor laser element
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108592A (en) * 1985-11-06 1987-05-19 Hitachi Ltd Manufacture of semiconductor
JPH0832115A (en) * 1994-07-19 1996-02-02 Sharp Corp Electrode structure and its manufacture
JPH08153892A (en) * 1994-09-30 1996-06-11 Rohm Co Ltd Semiconductor light emitting element and fabrication thereof
JPH08172055A (en) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for growing nitride semiconductor crystal
JPH098356A (en) * 1995-06-16 1997-01-10 Sumitomo Chem Co Ltd Production of electrode for iii-v compound semiconductor
JPH10247747A (en) * 1997-03-05 1998-09-14 Toshiba Corp Semiconductor light emitting device and manufacture thereof
JPH10256666A (en) * 1997-03-13 1998-09-25 Hitachi Ltd Crystal growth method of nitride based compound semiconductor and semiconductor light emitting element
JPH10294525A (en) * 1997-04-21 1998-11-04 Sony Corp Manufacture of semiconductor light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108592A (en) * 1985-11-06 1987-05-19 Hitachi Ltd Manufacture of semiconductor
JPH0832115A (en) * 1994-07-19 1996-02-02 Sharp Corp Electrode structure and its manufacture
JPH08153892A (en) * 1994-09-30 1996-06-11 Rohm Co Ltd Semiconductor light emitting element and fabrication thereof
JPH08172055A (en) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for growing nitride semiconductor crystal
JPH098356A (en) * 1995-06-16 1997-01-10 Sumitomo Chem Co Ltd Production of electrode for iii-v compound semiconductor
JPH10247747A (en) * 1997-03-05 1998-09-14 Toshiba Corp Semiconductor light emitting device and manufacture thereof
JPH10256666A (en) * 1997-03-13 1998-09-25 Hitachi Ltd Crystal growth method of nitride based compound semiconductor and semiconductor light emitting element
JPH10294525A (en) * 1997-04-21 1998-11-04 Sony Corp Manufacture of semiconductor light emitting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLGER CORDES ET AL.: "Interfacial Reactions and Electrical Properties of Ti/n-GaN Contacts", MRS IJNSR, vol. Vol. 2, Art. 2, JPN7008003456, 1997, ISSN: 0001031803 *
MOHNEY, S.E. ET AL.: "TiN and ZrN based ohmic contacts to n-GaN", FOURTH INTERNATIONAL HIGH TEMPERATURE ELECTRONICS CONFERENCE, JPN7008003455, 1998, pages 134 - 137, XP010281933, ISSN: 0001031802, DOI: 10.1109/HITEC.1998.676774 *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448039C (en) * 2002-03-26 2008-12-31 三洋电机株式会社 Nitride-based semiconductor device
CN100359704C (en) * 2002-06-04 2008-01-02 氮化物半导体株式会社 Gallium nitride compound semiconductor device and manufacturing method
US7372066B2 (en) 2002-06-04 2008-05-13 Nitride Semiconductors Co., Ltd. Gallium nitride compound semiconductor device and manufacturing method
WO2003103062A1 (en) * 2002-06-04 2003-12-11 Nitride Semiconductors Co.,Ltd. Gallium nitride compound semiconductor device and manufacturing method
KR100630306B1 (en) * 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same
KR100963823B1 (en) 2004-11-03 2010-06-16 에피스타 코포레이션 Light emitting diode
US9431243B2 (en) 2005-05-17 2016-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US11251272B2 (en) 2005-05-17 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9859381B2 (en) 2005-05-17 2018-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9219112B2 (en) 2005-05-17 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8987028B2 (en) 2005-05-17 2015-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US10522629B2 (en) 2005-05-17 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8796734B2 (en) 2005-05-17 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8629477B2 (en) 2005-05-17 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8519436B2 (en) 2005-05-17 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8878243B2 (en) 2006-03-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US10074536B2 (en) 2006-03-24 2018-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
US9318325B2 (en) 2006-09-07 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8847279B2 (en) 2006-09-07 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US9818819B2 (en) 2006-09-07 2017-11-14 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8629047B2 (en) 2006-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9105522B2 (en) 2006-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8216951B2 (en) 2006-09-27 2012-07-10 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US8860160B2 (en) 2006-09-27 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US9559712B2 (en) 2006-09-27 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
US10468551B2 (en) 2006-10-19 2019-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US8502263B2 (en) 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
US9508890B2 (en) 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US9853118B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9231073B2 (en) 2007-04-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9853176B2 (en) 2007-04-09 2017-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9543472B2 (en) 2007-04-09 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US10680126B2 (en) 2007-04-09 2020-06-09 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US8624103B2 (en) 2007-04-09 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US9449868B2 (en) 2007-04-09 2016-09-20 Taiwan Semiconductor Manufacutring Company, Ltd. Methods of forming semiconductor diodes by aspect ratio trapping with coalesced films
US9040331B2 (en) 2007-04-09 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
US9780190B2 (en) 2007-06-15 2017-10-03 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
KR100838756B1 (en) 2007-08-10 2008-06-17 삼성전기주식회사 Manufacturing method for nitride semiconductor light emitting device
US8344242B2 (en) 2007-09-07 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10002981B2 (en) 2007-09-07 2018-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
US10961639B2 (en) 2008-06-03 2021-03-30 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8822248B2 (en) 2008-06-03 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US9365949B2 (en) 2008-06-03 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
US8994070B2 (en) 2008-07-01 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9356103B2 (en) 2008-07-01 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8629045B2 (en) 2008-07-01 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9640395B2 (en) 2008-07-01 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US9607846B2 (en) 2008-07-15 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9287128B2 (en) 2008-07-15 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US9934967B2 (en) 2008-09-19 2018-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
US9984872B2 (en) 2008-09-19 2018-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
US8384196B2 (en) 2008-09-19 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US9105549B2 (en) 2008-09-24 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US8809106B2 (en) 2008-09-24 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
US9455299B2 (en) 2008-09-24 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
KR101018227B1 (en) 2008-10-09 2011-02-28 삼성엘이디 주식회사 Vertically structured nitridetype light emitting diode and method of the same
US8765510B2 (en) 2009-01-09 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US9029908B2 (en) 2009-01-09 2015-05-12 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
WO2012067428A3 (en) * 2010-11-16 2012-08-23 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
WO2012067428A2 (en) * 2010-11-16 2012-05-24 주식회사 에피밸리 Group-iii nitride semiconductor light-emitting device
WO2013046943A1 (en) * 2011-09-27 2013-04-04 シャープ株式会社 Nitride semiconductor device and method for manufacturing same
JP2013074052A (en) * 2011-09-27 2013-04-22 Sharp Corp Nitride semiconductor device and manufacturing method thereof
WO2015056489A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Heat-assisted-magnetic-recording head, semiconductor laser element, and method for manufacturing semiconductor laser element

Similar Documents

Publication Publication Date Title
JP2001102678A (en) Gallium nitride compound semiconductor element
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP5153769B2 (en) Gallium nitride based semiconductor device with electron blocking layer
JP2000223743A (en) Nitride semiconductor light emitting element and growth of nitride semiconductor layer
JP2008109092A (en) Semiconductor light emitting element
JP2003198045A (en) Semiconductor laser structure body
JPH10290027A (en) Semiconductor light emitting device and manufacture thereof
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JP2003332697A (en) Nitride semiconductor element and its manufacturing method
JPH09232629A (en) Semiconductor element
JP3325479B2 (en) Compound semiconductor device and method of manufacturing the same
WO2006120999A1 (en) Method of producing nitride semiconductor element
JP2002540638A (en) Semiconductor structure and processing method using group III nitride quaternary material system with little phase separation
JP2900990B2 (en) Nitride semiconductor light emitting device
JP2003101154A (en) Nitride semiconductor element
JP3494880B2 (en) P-side electrode of nitride semiconductor light emitting device and nitride semiconductor light emitting device
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JP4493041B2 (en) Nitride semiconductor light emitting device
JP2800666B2 (en) Gallium nitride based compound semiconductor laser device
JP2000223742A (en) Nitrogen compound semiconductor element
JP3239812B2 (en) Crystal growth method of gallium nitride based semiconductor layer including InGaN layer, gallium nitride based light emitting device and method of manufacturing the same
JP2002151786A (en) Semiconductor laser device
JP3457516B2 (en) Gallium nitride based compound semiconductor device
JP2003506877A (en) Semiconductor structure using group III nitride quaternary material system
JP2009038408A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311