JPH09232629A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPH09232629A
JPH09232629A JP3825996A JP3825996A JPH09232629A JP H09232629 A JPH09232629 A JP H09232629A JP 3825996 A JP3825996 A JP 3825996A JP 3825996 A JP3825996 A JP 3825996A JP H09232629 A JPH09232629 A JP H09232629A
Authority
JP
Japan
Prior art keywords
layer
gan
growth
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3825996A
Other languages
Japanese (ja)
Inventor
Risa Sugiura
理砂 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3825996A priority Critical patent/JPH09232629A/en
Publication of JPH09232629A publication Critical patent/JPH09232629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the spread of the high density dislocation generated on the interface between a substrate and a growth layer to growth direction by a method wherein a cubic crystal distortion layer, having a substantial growth surface 111}, is provided between the growth substrate of a semiconductor element having an element part consisting of a hexagonal crystal semiconductor. SOLUTION: A cubic crystal type n-GaN layer 11, having a growth surface, is formed on a sapphire substrate 10, and a distorted superlattice layer 12, on which an n-GaN layer and an n-HlGaN layer are alternately frown in critical film thickness or less, if formed thereon. An n-GaN layer 13, a clad layer 14, an active layer 15, a clad layer 16 and a contact layer 17 are successively grown thereon. Most of the dislocation of the high density generated by the lattice dismatching on the interface between the n-GaN layer 11 and the sapphire substrate 10 is changed its propagation direction by the distorted superlattice layer 12, and the propagation to the growth direction of transposition of high density generated on the interface between the substrate and the growth layer can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子、特に
GaN、AlGaN、InGaNなど窒素を含む化合物
半導体からなる半導体素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device made of a compound semiconductor containing nitrogen such as GaN, AlGaN and InGaN.

【0002】[0002]

【従来の技術】近年、光ディスクの記録密度の向上やレ
ーザプリンタの解像度の向上を図るため、短波長での発
光が可能な半導体レーザ(LD)が要求されている。短
波長の半導体レーザとしてInGaAlP材料による6
00nm帯光源は、ディスクの読み込み、書き込みのど
ちらも可能なレベルにまで特性改善され、すでに実用化
されている。さらなる記録密度向上を目指して青色半導
体レーザの開発が盛んに行われている。
2. Description of the Related Art In recent years, a semiconductor laser (LD) capable of emitting light at a short wavelength has been required in order to improve the recording density of an optical disk and the resolution of a laser printer. As a short wavelength semiconductor laser made of InGaAlP material 6
The 00 nm band light source has already been put to practical use, with its characteristics improved to a level where both reading and writing of a disc are possible. Blue semiconductor lasers are being actively developed to further improve the recording density.

【0003】このような開発において、II−VI族化合物
半導体であるZnSe系材料を用いた青緑色半導体レー
ザは発振動作が確認されて以来、長寿命化、信頼性向上
など実用化を目指した開発が盛んに行われている。
In such development, a blue-green semiconductor laser using a ZnSe-based material, which is a II-VI group compound semiconductor, has been developed for practical use such as a long life and improved reliability since the oscillation operation was confirmed. Is being actively conducted.

【0004】しかし、この材料系では、成長用基板と素
子部を有する成長層との間の格子不整合差や熱膨脹係数
差により生じた転位が通電により増殖するなどして、信
頼性が得られない、寿命が短いなど実用化への障壁は高
いことが明らかになりつつある。
However, in this material system, reliability is obtained because dislocations caused by a lattice mismatch difference and a thermal expansion coefficient difference between the growth substrate and the growth layer having the element portion are multiplied by energization. It is becoming clear that there are high barriers to practical use, such as the lack of a product and its short life.

【0005】一方、GaN系半導体レーザは材料的にZ
nSe系よりもさらに短波長化が可能であり、信頼性に
関してもZnSe系に比べ材料的に硬化であるため有望
な材料として期待されている。この材料系では108
1010cm-2の転位が存在するが、LEDにおいては一万
時間以上の信頼性が確認されており、現在は次世代の光
ディスクシステム光源に必要な条件を満たす青色半導体
レーザの研究開発が盛んに行われている。
On the other hand, GaN-based semiconductor lasers have a material Z
It is expected to be a promising material because it can make the wavelength shorter than that of the nSe system and is harder in material than the ZnSe system in terms of reliability. This material system is 10 8 ~
Although there is a dislocation of 10 10 cm -2 , the reliability of the LED has been confirmed for more than 10,000 hours, and the research and development of the blue semiconductor laser satisfying the conditions necessary for the next-generation optical disc system light source is now active. Has been done in.

【0006】上記のようにLEDでは108 〜1010cm
-2の転位の存在は大きな問題となっていない。しかし、
大電流密度注入を必要とするLDでは、前記108 〜1
10cm-2の高密度の転位の存在が信頼性を低下させる原
因となる。
As described above, with LEDs, 10 8 to 10 10 cm
The existence of the -2 dislocation is not a big problem. But,
In the LD requiring high current density injection, the above 10 8 to 1
The presence of dislocations with a high density of 0 10 cm -2 causes a decrease in reliability.

【0007】ところで、現在LED、LDとして一般に
用いられているGaN系半導体素子はサファイア基板上
に形成されており、六方晶型(ウルツ鉱型)半導体から
成る。GaN系の結晶は六方晶型と立方晶型とが存在す
るが、これまでのところLED、LD用を得るためのG
aN結晶としては、六方晶型の方が結晶品質の面で有利
であるという結果が多く報告されている。
By the way, a GaN-based semiconductor element which is generally used as an LED or LD at present is formed on a sapphire substrate and is made of a hexagonal (wurtzite) type semiconductor. GaN-based crystals exist in hexagonal type and cubic type, but so far G for obtaining LEDs and LDs is used.
As an aN crystal, it has been reported that the hexagonal type is more advantageous in terms of crystal quality.

【0008】図9は従来のGaN系半導体素子の概略構
造を示す断面図である。六方晶型結晶における転位は
(101- 0)、(11- 00)(1- は1のインバー
スを表す。以下同じ)などの柱面上で最もすべりを生じ
やすいため、図9に示すようにサファイア基板とGaN
層との間の格子不整合により生じた108〜1010cm-2
の高密度の転位が、成長方向(成長面と垂直方向)に伝
播し、活性層さらに表面まで貫通する。
FIG. 9 is a sectional view showing a schematic structure of a conventional GaN-based semiconductor device. Hexagonal dislocations in crystals (101 - 0), (11 - 00) (1 -. Represents hereinafter the same one of the inverse) for prone most slip on cylindrical surface such as shown in FIG. 9 Sapphire substrate and GaN
10 8 to 10 10 cm -2 caused by lattice mismatch between layers
Of high density propagates in the growth direction (perpendicular to the growth surface) and penetrates to the surface of the active layer.

【0009】したがって、活性層には108 〜1010cm
-2の高密度の転位が存在するため結晶性は悪く、LDの
場合、大電流密度注入により転位の伝播、増殖が生じる
など、素子の信頼性を低下させるため問題となる。
Therefore, the active layer has 10 8 to 10 10 cm.
-2 has a high density of dislocations, so the crystallinity is poor, and in the case of LDs, a large current density injection causes propagation and multiplication of dislocations, which lowers the reliability of the device, causing a problem.

【0010】GaN系半導体レーザの信頼性を確保する
ためには、基板と成長層の界面で発生する転位の密度を
低減すること、または現在存在する108 〜1010cm-2
の高密度の転位を活性層に伝播させないことが重要であ
る。
In order to secure the reliability of the GaN-based semiconductor laser, the density of dislocations generated at the interface between the substrate and the growth layer should be reduced, or the existing 10 8 to 10 10 cm -2.
It is important not to propagate high density dislocations in the active layer.

【0011】[0011]

【発明が解決しようとする課題】以上のように、従来の
窒化物系半導体素子をはじめとする六方晶型の半導体素
子では、基板と成長層との界面で発生した転位が成長方
向(成長面と垂直方向)へ最も伝播しやすいため、一旦
界面で生じた転位はそのまま素子部を貫通し、成長層表
面にぬけることになる。特にGaN系LDの場合、素子
心臓部である活性層に108 〜1010cm-2の高密度の転
位が伝播し、大電流密度注入により素子の信頼性を低下
させるという問題があった。
As described above, in the hexagonal type semiconductor device such as the conventional nitride semiconductor device, dislocations generated at the interface between the substrate and the growth layer are in the growth direction (growth plane). Since it is most likely to propagate in the vertical direction), dislocations once generated at the interface penetrate the element portion as they are and penetrate to the surface of the growth layer. Particularly, in the case of a GaN-based LD, there is a problem that high-density dislocations of 10 8 to 10 10 cm −2 propagate to the active layer, which is the heart of the device, and the injection of a large current density deteriorates the device reliability.

【0012】本発明は上記事情を考慮してなされたもの
で、基板と成長層との界面で発生した転位を素子心臓部
(発光素子の場合は活性層)へ貫通しないような構造を
有することにより、素子の信頼性を確保できる半導体素
子を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and has a structure in which dislocations generated at the interface between the substrate and the growth layer do not penetrate into the element heart (the active layer in the case of a light emitting element). Accordingly, it is an object of the present invention to provide a semiconductor device capable of ensuring the reliability of the device.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、まず、請求項1に対応する発明は、六方晶型の半導
体からなる素子部を有する半導体素子において、成長基
板と素子部との間に実質的な{111}成長面を有する
立方晶型の歪層を設けた半導体素子である。
In order to solve the above-mentioned problems, first of all, the invention corresponding to claim 1 is a semiconductor device having an element part made of a hexagonal type semiconductor, which comprises a growth substrate and an element part. It is a semiconductor device in which a cubic strain layer having a substantial {111} growth plane is provided therebetween.

【0014】次に、請求項2に対応する発明は、六方晶
型の半導体からなる素子部を有する半導体素子におい
て、成長基板と素子部との間に、{111}面から30
度以内の傾斜を有する成長面を含む実質的な{111}
成長面を有する立方晶型の歪超格子を設けた半導体素子
である。 (作用)これにより、まず、請求項1に対応する発明の
半導体素子によれば、六方晶型の半導体素子心臓部の下
部に{111}成長面を有する立方晶型の歪層を設ける
ことにより、基板と成長層との界面で発生した高密度の
転位の成長方向への伝播を抑制できる。
Next, an invention according to claim 2 is a semiconductor device having a device portion made of a hexagonal type semiconductor, wherein a {111} plane is provided between the growth substrate and the device portion by 30.
Substantial {111} including a growth surface with a tilt within degrees
A semiconductor device provided with a cubic strained superlattice having a growth surface. (Operation) Accordingly, according to the semiconductor device of the invention corresponding to claim 1, first, the cubic strained layer having the {111} growth plane is provided below the heart of the hexagonal semiconductor device. It is possible to suppress the propagation of high-density dislocations generated at the interface between the substrate and the growth layer in the growth direction.

【0015】つまり、基板からの転位が、歪層に達した
とき、立方晶型結晶のすべり面である{111}面での
すべりにより、転位の大部分が半導体素子側部に抜ける
ものである。
That is, when the dislocations from the substrate reach the strained layer, most of the dislocations escape to the side of the semiconductor element due to the slip on the {111} plane which is the slip plane of the cubic crystal. .

【0016】したがって、基板と成長層との界面で発生
した転位を素子心臓部(発光素子の場合は活性層)へ貫
通しないような構造を有することにより、素子の信頼性
を確保できる。
Therefore, by having a structure in which dislocations generated at the interface between the substrate and the growth layer do not penetrate into the element heart (the active layer in the case of a light emitting element), the reliability of the element can be secured.

【0017】なお、この歪層は単層の歪層であってもよ
いが、例えば歪超格子層を用いればより一層効果的であ
る。次に、請求項2に対応する発明の半導体素子におい
ては、実質的な{111}成長面には、{112}成長
面や{113}成長面等の{111}面から30度以内
の傾斜を有する成長面を含んでいる。{111}面から
30度以内程度の傾斜があっても{111}面でのすべ
りによる上記した脱転位効果は十分働き、請求項1記載
の半導体素子と同様に作用する。
The strained layer may be a single strained layer, but it is more effective if a strained superlattice layer is used, for example. Next, in the semiconductor element of the invention according to claim 2, the substantial {111} growth plane has an inclination within 30 degrees from the {111} plane such as the {112} growth plane or the {113} growth plane. Is included in the growth surface. Even if there is an inclination of about 30 degrees or less from the {111} plane, the above-mentioned dislocation effect due to slippage on the {111} plane works sufficiently, and operates similarly to the semiconductor element according to claim 1.

【0018】なお、上述した課題を解決する手段として
は、上記手段の他、以下の内容をも含む。 (1)前記素子部はGaN、AlGaN、InGaN等
の窒素を含む化合物半導体からなることを特徴とする請
求項1又は2記載の半導体素子。 (2)六方晶型の半導体からなる素子部を有する半導体
素子において、成長基板と前記素子部との間に実質的な
{111}成長面を有する立方晶型の半導体層を備え、
当該立方晶型の半導体層は前記素子部側にて接する他の
半導体層よりもやわらかい層であることを特徴とする半
導体素子。 (3)六方晶型の半導体からなる素子部を有する半導体
素子において、成長基板と前記素子部との間に実質的な
{111}成長面を有する立方晶型の半導体層を備え、
当該立方晶型の半導体層は前記成長基板側にて接する他
の半導体層よりもかたい層であることを特徴とする半導
体素子。
As means for solving the above-mentioned problems, the following contents are included in addition to the above means. (1) The semiconductor element according to claim 1 or 2, wherein the element portion is made of a compound semiconductor containing nitrogen such as GaN, AlGaN, or InGaN. (2) In a semiconductor device having a device portion made of a hexagonal semiconductor, a cubic semiconductor layer having a substantial {111} growth plane is provided between a growth substrate and the device portion,
The cubic semiconductor layer is a layer softer than other semiconductor layers in contact with the element section side. (3) In a semiconductor device having a device portion made of a hexagonal semiconductor, a cubic semiconductor layer having a substantial {111} growth plane is provided between a growth substrate and the device portion,
The cubic crystal semiconductor layer is a harder layer than other semiconductor layers in contact with the growth substrate side.

【0019】なお、上記(2)又は(3)のように立方
晶型の半導体層として単層を用いた場合でも十分に脱転
位効果は得られるが、(2)及び(3)における各立方
晶型の半導体層を組み合わせて用いた歪超格子の場合が
最も効果的に転位を減少させることができる。
Although a sufficient dislocation effect can be obtained even when a single layer is used as the cubic semiconductor layer as in the above (2) or (3), each cubic in (2) and (3) Dislocations can be reduced most effectively in the case of a strained superlattice using a combination of crystalline semiconductor layers.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して詳細に説明する。 (発明の第1の実施の形態)図1は本発明の第1の実施
形態に係る半導体素子を適用したGaN系青色半導体レ
ーザ装置の概略構成を示す断面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment of the Invention) FIG. 1 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device to which a semiconductor element according to the first embodiment of the present invention is applied.

【0021】この半導体レーザ装置においては、サファ
イア基板10上に形成されている。サファイア基板10
上には、有機金属気相成長法(MOCVD法)により、
まず(111)成長面を有する立方晶型(閃亜鉛鉱型)
のn−GaN層11(Siドープ、3〜5×1018c
m-3)を650℃で成長する。
In this semiconductor laser device, it is formed on the sapphire substrate 10. Sapphire substrate 10
On top, by metalorganic vapor phase epitaxy (MOCVD),
First, cubic type (sphalerite type) with (111) growth plane
N-GaN layer 11 (Si-doped, 3-5 × 10 18 c
m -3 ) is grown at 650 ° C.

【0022】その上にn−GaN層とn−AlGaN層
を臨界膜厚以下で交互に成長する歪超格子層12(Si
ドープ、3〜5×1018cm-3)を650℃で成長する。
この歪超格子層12は(111)成長面を有する閃亜鉛
鉱型のn−GaN層11上に同一条件で成長させること
により、同様の(111)成長面を有する閃亜鉛鉱型の
歪超格子層となる。
A strained superlattice layer 12 (Si) having n-GaN layers and n-AlGaN layers alternately grown thereon with a critical film thickness or less is formed thereon.
Dope, 3-5 × 10 18 cm −3 ) is grown at 650 ° C.
The strained superlattice layer 12 is grown on the zinc blende type n-GaN layer 11 having a (111) growth surface under the same conditions, so that a strained zinc blende type strained superlattice layer having a similar (111) growth surface is obtained. It becomes a lattice layer.

【0023】次に、成長条件を調整することによって歪
超格子層12の上に六方晶型(ウルツ鉱型)を有するn
−GaN層13(Siドープ、3〜5×1018cm-3)を
形成し、引き続いてウルツ鉱型のn−Al0.5 Ga0.5
Nクラッド層14(Siドープ、5×1017cm-3、層厚
0.15μm)、GaN活性層15(アンドープ、層厚
0.1μm)、p−Al0.5 Ga0.5 Nクラッド層16
(Mgドープ、5×1017cm-3、層厚0.15μm)、
GaNコンタクト層17(Mgドープ、1〜3×1018
cm-3、層厚0.1μm)を順次1150℃で成長させ
る。ここで、閃亜鉛鉱型結晶からウルツ鉱型結晶への結
晶形態の制御は、成長温度、および水素、窒素キャリア
ガス、窒素原料であるアンモニアの流量比の制御により
行われる。
Next, n having a hexagonal type (wurtzite type) is formed on the strained superlattice layer 12 by adjusting the growth conditions.
Forming a GaN layer 13 (Si-doped, 3-5 × 10 18 cm −3 ), and subsequently forming a wurtzite type n-Al 0.5 Ga 0.5.
N cladding layer 14 (Si-doped, 5 × 10 17 cm −3 , layer thickness 0.15 μm), GaN active layer 15 (undoped, layer thickness 0.1 μm), p-Al 0.5 Ga 0.5 N cladding layer 16
(Mg-doped, 5 × 10 17 cm −3 , layer thickness 0.15 μm),
GaN contact layer 17 (Mg-doped, 1-3 × 10 18
cm −3 , layer thickness 0.1 μm) are successively grown at 1150 ° C. Here, the control of the crystal form from the zinc blende type crystal to the wurtzite type crystal is performed by controlling the growth temperature and the flow rate ratio of hydrogen, nitrogen carrier gas, and ammonia as a nitrogen source.

【0024】また、特に図示しないが、n−GaN層1
1とサファイア基板10との間には、MOCVD成長時
に550℃で低温成長させたAlNバッファ層が設けら
れている。
Although not particularly shown, the n-GaN layer 1
1 and the sapphire substrate 10 are provided with an AlN buffer layer grown at a low temperature of 550 ° C. during MOCVD growth.

【0025】さらに、GaNコンタクト層17上面に
は、p側電極18が設けられ、n−GaN層13上のn
−AlGaNクラッド層14が積層されていない上面部
分には、n側電極19が設けられる。このようにして本
実施形態に係わる青色半導体レーザ装置が得られた。
Further, a p-side electrode 18 is provided on the upper surface of the GaN contact layer 17, and n on the n-GaN layer 13 is provided.
An n-side electrode 19 is provided on the upper surface portion where the -AlGaN cladding layer 14 is not stacked. Thus, the blue semiconductor laser device according to this embodiment was obtained.

【0026】上記構成の青色半導体レーザ装置につい
て、透過電子顕微鏡により断面からの素子観察を行った
ところ、サファイア基板10とn−GaN層11との界
面で格子不整合により発生した108 〜1010cm-2の高
密度の転位の大部分が、本発明により設けた歪超格子層
12で伝播方向を変えており、活性層15における転位
密度は103 cm-3台にまで減少していることが確認され
た。
When the element of the blue semiconductor laser device having the above structure was observed from the cross section with a transmission electron microscope, 10 8 to 10 10 were generated due to lattice mismatch at the interface between the sapphire substrate 10 and the n-GaN layer 11. Most of the high-density dislocations of cm −2 change the propagation direction in the strained superlattice layer 12 provided by the present invention, and the dislocation density in the active layer 15 is reduced to the order of 10 3 cm −3 . It was confirmed.

【0027】このように転位密度が減少する理由につい
て図2を用いて説明する。図2は本実施形態の半導体素
子において転位が抜ける様子を説明する模式図である。
The reason why the dislocation density is reduced will be described with reference to FIG. FIG. 2 is a schematic diagram for explaining how dislocations are eliminated in the semiconductor device of this embodiment.

【0028】半導体中を伝搬する転位は、やわらかい半
導体層から相対的にかたい半導体層に入ろうとすると
き、その転位伝搬の進行が阻まれ、伝搬方向を変えるこ
とになる。この様子を示したのが図2である。
When a dislocation propagating in a semiconductor tries to enter a relatively hard semiconductor layer from a soft semiconductor layer, the dislocation propagation is blocked and the propagation direction is changed. FIG. 2 shows this state.

【0029】歪超格子層12を構成するn−GaN層と
n−AlGaN層とでは、n−GaN層に比しn−Al
GaN層がかたい層となっている。したがって、同図に
示すように、n−AlGaN層からn−GaN層に入ろ
うとする位置で、転位70は水平方向にその伝搬方向を
変えることになる。
Compared to the n-GaN layer, the n-GaN layer and the n-AlGaN layer forming the strained superlattice layer 12 have n-Al layers.
The GaN layer is a hard layer. Therefore, as shown in the figure, the dislocation 70 changes its propagation direction in the horizontal direction at the position where the n-AlGaN layer tries to enter the n-GaN layer.

【0030】具体的には、このような転位伝搬方向の変
更が起こるのは、立方晶型結晶のすべり面が(111)
面であることによっている。つまり、(111)成長面
を有する閃亜鉛鉱型のn−GaN層とn−AlGaN層
から成る歪超格子層12を基板と活性層の間に設けたこ
とにより、サファイア基板10とn−GaN層11との
界面で発生した転位の大部分が、立方晶型結晶のすべり
面である(111)面、しかも歪超格子の歪み方向から
成長面と平行な(111)面上で最も滑りやすくなるた
め、伝播方向を曲げられ素子の側面(成長方向と垂直方
向)に抜けると考えられる。
Specifically, such a change in the dislocation propagation direction occurs when the slip surface of the cubic crystal is (111).
It depends on being a face. That is, the sapphire substrate 10 and the n-GaN are provided by providing the strained superlattice layer 12 including the zinc blende type n-GaN layer and the n-AlGaN layer having the (111) growth surface between the substrate and the active layer. Most of the dislocations generated at the interface with the layer 11 are the most slippery on the (111) plane, which is the slip plane of the cubic crystal, and on the (111) plane parallel to the growth plane from the strain direction of the strained superlattice. Therefore, it is considered that the propagation direction is bent and the light exits to the side surface of the element (direction perpendicular to the growth direction).

【0031】これにより、上記したように活性層15を
含むn−GaN層13以降の活性層15を含む半導体層
の転位密度は大幅に減少する。以上のように作製した半
導体レーザ装置は、しきい値150mAで室温連続発振
した。発振波長は365nm、動作電圧は10Vであっ
た。
As a result, as described above, the dislocation density of the semiconductor layer including the active layer 15 after the n-GaN layer 13 including the active layer 15 is significantly reduced. The semiconductor laser device manufactured as described above continuously oscillated at room temperature with a threshold value of 150 mA. The oscillation wavelength was 365 nm and the operating voltage was 10V.

【0032】上述したように、本発明の第1の実施の形
態に係わる半導体素子によれば、六方晶型の半導体素子
心臓部の下部に(111)成長面を有する立方晶型の歪
超格子層等を設け、基板と成長面との界面で発生した高
密度の転位の成長方向への伝播を抑制するようにしたの
で、GaN系青色半導体レーザにおいては基板と成長層
との界面で発生した108 〜1010cm-2の転位を歪超格
子により活性層部では103 cm-2にまで減少させること
ができ、信頼性が大幅に向上させることができる。
As described above, according to the semiconductor device according to the first embodiment of the present invention, a cubic strained superlattice having a (111) growth surface in the lower portion of the core of the hexagonal semiconductor device. Layers and the like are provided to suppress the propagation of high-density dislocations generated at the interface between the substrate and the growth surface in the growth direction. Therefore, in the GaN-based blue semiconductor laser, it occurs at the interface between the substrate and the growth layer. Dislocations of 10 8 to 10 10 cm -2 can be reduced to 10 3 cm -2 in the active layer portion by the strained superlattice, and the reliability can be significantly improved.

【0033】すなわち従来技術で説明した構造のGaN
系青色半導体レーザでは、基板と成長層との界面で発生
した108 〜1010cm-2の存在により、レーザ発振が困
難であるか、レーザ発振動作が確認されても大電流密度
注入により数秒ないしは数分の動作寿命で素子が破壊さ
れるなど、素子の信頼性が得られていなかった。
That is, GaN having the structure described in the prior art.
In the blue semiconductor laser, it is difficult to oscillate because of the presence of 10 8 to 10 10 cm -2 generated at the interface between the substrate and the growth layer. Or, the reliability of the device has not been obtained, such as the device being destroyed within the operating life of several minutes.

【0034】これに対し、本実施形態の内容に従い作製
した上述の半導体素子では、動作電圧が高い点はそのま
まであるにかかわらず、動作寿命が従来の100〜10
00倍に延び、素子の信頼性が大幅に向上した。(発明
の第2の実施の形態)第2の実施形態として、第1の実
施形態と同様、MOCVD法により作製したやや構造の
異なる青色半導体レーザ素子について説明する。
On the other hand, in the above-described semiconductor device manufactured according to the contents of the present embodiment, the operating life is 100 to 10 of that of the conventional semiconductor device although the operating voltage remains high.
The reliability of the device is greatly improved. (Second Embodiment of the Invention) As a second embodiment, a blue semiconductor laser device having a slightly different structure manufactured by the MOCVD method will be described as in the first embodiment.

【0035】図3は本発明の第2の実施形態に係る半導
体素子を適用したGaN系青色半導体レーザ装置の概略
構成を示す断面図である。このGaN系青色半導体レー
ザ装置においては、サファイア基板20上に550℃の
低温でGaNバッファ層(図示せず)を設け、その上に
第1の実施形態の場合と同様に、まず(111)成長面
を有する立方晶型(閃亜鉛鉱型)のn−GaN層21
(Siドープ、3〜5×1018cm-3)を750℃で成長
させる。
FIG. 3 is a sectional view showing a schematic structure of a GaN-based blue semiconductor laser device to which the semiconductor element according to the second embodiment of the present invention is applied. In this GaN-based blue semiconductor laser device, a GaN buffer layer (not shown) is provided on the sapphire substrate 20 at a low temperature of 550 ° C., and then (111) growth is performed on the GaN buffer layer, as in the case of the first embodiment. Cubic type (sphalerite type) n-GaN layer 21 having a plane
(Si-doped, 3-5 × 10 18 cm −3 ) is grown at 750 ° C.

【0036】さらに、n−GaN層21上に、同じく
(111)成長面を有する閃亜鉛鉱型のn−GaN/n
−InGaN歪超格子層22(Siドープ、3〜5×1
18cm-3)を750℃で成長させる。
Further, on the n-GaN layer 21, a zinc blende type n-GaN / n also having a (111) growth surface.
-InGaN strained superlattice layer 22 (Si-doped, 3-5 x 1)
0 18 cm -3 ) is grown at 750 ° C.

【0037】次に、六方晶型(ウルツ鉱型)を有するn
−GaN層23(Siドープ、3〜5×1018cm-3)を
形成し、続いてn−Al0.5 Ga0.5 Nクラッド層24
(Siドーブ、5×1017cm-3、層厚0.3μm)、G
aN光閉じ込め層25(アンドープ、層厚0.2μ
m)、In0.1 Ga0.9 N多重量子井戸活性層26、G
aN光閉じ込め層27(アンドープ、層厚0.2μ
m)、p−Al0.5 Ga0.5 Nクラッド層28(Mgド
ープ、5×1017cm-3、層厚0.3μm)、GaNコン
タクト層29(Mgドープ、1〜3×1018cm-3,層厚
0.1μm)を順次1150℃で成長させる。
Next, n having a hexagonal type (wurtzite type)
A GaN layer 23 (Si-doped, 3 to 5 × 10 18 cm −3 ) is formed, and then an n-Al 0.5 Ga 0.5 N cladding layer 24 is formed.
(Si dove, 5 × 10 17 cm -3 , layer thickness 0.3 μm), G
aN optical confinement layer 25 (undoped, layer thickness 0.2μ
m), In 0.1 Ga 0.9 N multiple quantum well active layer 26, G
aN optical confinement layer 27 (undoped, layer thickness 0.2 μm
m), p-Al 0.5 Ga 0.5 N cladding layer 28 (Mg-doped, 5 × 10 17 cm −3 , layer thickness 0.3 μm), GaN contact layer 29 (Mg-doped, 1-3 × 10 18 cm −3 , A layer thickness of 0.1 μm) is successively grown at 1150 ° C.

【0038】さらに、GaNコンタクト層29上面に
は、p側電極30が設けられ、n−GaN層23上のn
−AlGaNクラッド層24が積層されていない上面部
分には、n側電極31が設けられる。このようにして本
実施形態に係わる青色半導体レーザ装置が得られた。
Further, a p-side electrode 30 is provided on the upper surface of the GaN contact layer 29, and n on the n-GaN layer 23 is provided.
An n-side electrode 31 is provided on the upper surface portion where the -AlGaN cladding layer 24 is not stacked. Thus, the blue semiconductor laser device according to this embodiment was obtained.

【0039】この青色半導体レーザ装置においても活性
層26の転位密度は十分に低減された。次に、上記構成
の青色半導体レーザ装置の発振動作を説明する。
Also in this blue semiconductor laser device, the dislocation density of the active layer 26 was sufficiently reduced. Next, the oscillation operation of the blue semiconductor laser device having the above configuration will be described.

【0040】本構造の素子ではしきい値75mAで50
℃まで連続発振した。発振波長は395nm、動作電圧
は7Vで5000時間までの安定動作を確認した。上述
したように、本発明の第2の実施の形態に係わる半導体
素子によれば、第1の実施形態の場合と同様に、六方晶
型の半導体素子心臓部の下部に(111)成長面を有す
る立方晶型の歪超格子層等を設けたので、第1の実施形
態の場合と同様な効果が得られた。 (発明の第3の実施の形態)第3の実施形態として、第
1,第2の実施形態と同様のGaN系半導体レーザを、
立方晶型(閃亜鉛鉱型)のIII −V族化合物半導体であ
って、光デバイス、電子デバイス等に広く利用されてい
るGaAs基板上に形成する場合について説明する。
In the element of this structure, the threshold value is 75 mA and the threshold value is 50.
Continuous oscillation up to ℃. The oscillation wavelength was 395 nm, the operating voltage was 7 V, and stable operation was confirmed for up to 5000 hours. As described above, according to the semiconductor device according to the second embodiment of the present invention, as in the case of the first embodiment, the (111) growth plane is formed in the lower portion of the core of the hexagonal semiconductor device. Since the cubic strained superlattice layer and the like are provided, the same effect as in the case of the first embodiment can be obtained. (Third Embodiment of the Invention) As a third embodiment, a GaN semiconductor laser similar to that of the first and second embodiments is used.
A cubic (zinc blende type) III-V group compound semiconductor, which is formed on a GaAs substrate that is widely used for optical devices, electronic devices, and the like, will be described.

【0041】図4は本発明の第3の実施形態に係る半導
体素子を適用したGaAs基板上に形成したGaN系青
色半導体レーザ装置の概略構成を示す断面図である。こ
のGaN系青色半導体レーザ装置においては、立方晶型
(閃亜鉛鉱型)のn−GaAs(111)基板40上
に、有機金属気相成長法(MOCVD法)により、ま
ず、(111)成長面を有する立方晶型(閃亜鉛鉱型)
のn−GaN層41(Siドープ、3〜5×1018c
m-3)を550℃で成長させる。
FIG. 4 is a sectional view showing a schematic structure of a GaN-based blue semiconductor laser device formed on a GaAs substrate to which the semiconductor element according to the third embodiment of the present invention is applied. In this GaN-based blue semiconductor laser device, a (111) growth surface is first formed on a cubic (zincblende) n-GaAs (111) substrate 40 by metal organic chemical vapor deposition (MOCVD). With cubic structure (sphalerite type)
N-GaN layer 41 (Si-doped, 3-5 × 10 18 c
m -3 ) is grown at 550 ° C.

【0042】その上にn−GaN層とn−InGaN層
を臨界膜厚以下で交互に成長させた歪超格子層42(S
iドープ、3〜5×1018cm-3)を設ける。この歪超格
子層42も同様の(111)成長面を有する閃亜鉛鉱型
となる。
A strained superlattice layer 42 (S) in which an n-GaN layer and an n-InGaN layer are alternately grown to have a critical thickness or less is formed thereon.
i-doping, 3 to 5 × 10 18 cm −3 ) is provided. This strained superlattice layer 42 also becomes a zinc blende type having a similar (111) growth surface.

【0043】次に750℃において、水素、窒素キャリ
アガスおよびアンモニアの流量を変更し、六方晶型(ウ
ルツ鉱型)を有するn−GaN層43(Siドープ、3
〜5×1018cm-3)を形成し、続いてウルツ鉱型のn−
Al0.5 Ga0.5 Nクラッド層44(Siドープ、5×
1017cm-3、層厚0.2μm)、In0.1 Ga0.9 N活
性層45(アンドープ、層厚200オングストロー
ム)、p−Al0.5 Ga0.5 Nクラッド層46(Mgド
ープ、5×1017cm-3、層厚0.2μm)、GaNコン
タクト層47(Mgドープ、1〜3×1018cm-3,層厚
0.1μm)を順次750℃で成長させる。
Next, at 750 ° C., the flow rates of hydrogen, nitrogen carrier gas, and ammonia are changed, and the n-GaN layer 43 having a hexagonal type (wurtzite type) (Si-doped, 3
˜5 × 10 18 cm −3 ), followed by wurtzite n−
Al 0.5 Ga 0.5 N cladding layer 44 (Si-doped, 5 ×
10 17 cm −3 , layer thickness 0.2 μm), In 0.1 Ga 0.9 N active layer 45 (undoped, layer thickness 200 Å), p-Al 0.5 Ga 0.5 N cladding layer 46 (Mg-doped, 5 × 10 17 cm − 3 , a layer thickness of 0.2 μm) and a GaN contact layer 47 (Mg-doped, 1-3 × 10 18 cm −3 , layer thickness of 0.1 μm) are sequentially grown at 750 ° C.

【0044】ここでn−GaN層43、n−AlGaN
層44、InGaN活性層45、p−AlGaN層4
6、GaNコンタクト層47からなる各層、すなわち素
子部としてのダブルヘテロ構造部51は立方晶型よりも
安定である六方晶型で構成することで素子特性の信頼性
が向上する。
Here, the n-GaN layer 43, n-AlGaN
Layer 44, InGaN active layer 45, p-AlGaN layer 4
6. Each layer composed of the GaN contact layer 47, that is, the double hetero structure portion 51 as the element portion is constituted by the hexagonal crystal type which is more stable than the cubic crystal type, so that the reliability of the element characteristics is improved.

【0045】また、この半導体レーザ装置においては、
開口を有する円板上に構成されたSiO2 からなる電流
狭窄層48がGaNコンタクト層47の上に設けられ、
さらに上記開口を介してGaNコンタクト層27と直接
接触するようにp側電極49が設けられている。一方、
n−GaAs基板20の下側にはn側電極50が設けら
れている。
Further, in this semiconductor laser device,
A current confinement layer 48 made of SiO 2 formed on a disk having an opening is provided on the GaN contact layer 47,
Further, a p-side electrode 49 is provided so as to be in direct contact with the GaN contact layer 27 via the opening. on the other hand,
An n-side electrode 50 is provided below the n-GaAs substrate 20.

【0046】上記構成の青色半導体レーザ装置につい
て、透過電子顕微鏡により断面からの素子観察を行った
ところ、第1の実施形態の場合と同様、GaAs基板4
0とn−GaN層41との界面で生じた転位の大部分
が、本実施形態において設けた歪超格子層42により
(111)成長面上ですべりを生じた結果伝播方向を変
えられ、素子側面(成長方向と垂直方向)にぬけている
ことが確認された。活性層45における転位密度は10
3 cm-3台にまで減少していた。
When the element of the blue semiconductor laser device having the above-mentioned structure was observed from the cross section with a transmission electron microscope, the GaAs substrate 4 was observed as in the case of the first embodiment.
Most of the dislocations generated at the interface between 0 and the n-GaN layer 41 can be changed in the propagation direction as a result of slipping on the (111) growth surface by the strained superlattice layer 42 provided in the present embodiment, and It was confirmed that it penetrated to the side surface (direction perpendicular to the growth direction). The dislocation density in the active layer 45 is 10
It was reduced to 3 cm -3 .

【0047】次に、上記構成の青色半導体レーザ装置の
発振動作について説明する。本実施例のダブルヘテロ構
造を有する半導体レーザ装置は、しきい値45mAで8
0℃まで連続発振した。発振波長は395nm、動作電
圧は4Vで7000時間までの安定動作を確認した。
Next, the oscillation operation of the blue semiconductor laser device having the above structure will be described. The semiconductor laser device having the double hetero structure of the present embodiment has a threshold value of 45 mA and is 8
It oscillated continuously up to 0 ° C. It was confirmed that the oscillation wavelength was 395 nm and the operation voltage was 4 V, and stable operation was performed for up to 7,000 hours.

【0048】上述したように、本発明の第3の実施の形
態に係わる半導体素子によれば、第1の実施形態の場合
と同様に、六方晶型の半導体素子心臓部の下部に(11
1)成長面を有する立方晶型の歪超格子層等を設けた
他、基板としてGaAs基板40を用い、基板方向に電
流を流せるようにしたので、第1の実施の形態の場合と
同様な効果が得られる他、本レーザでは特に素子抵抗の
面で改善をすること、すなわち抵抗値を低くすることが
できる。
As described above, according to the semiconductor device according to the third embodiment of the present invention, as in the case of the first embodiment, (11
1) In addition to providing a cubic strained superlattice layer or the like having a growth surface, a GaAs substrate 40 is used as a substrate, and a current can be passed in the substrate direction. Therefore, the same as in the case of the first embodiment. In addition to the effect, the present laser can improve the element resistance, that is, reduce the resistance value.

【0049】従来技術と同様に、つまり第1の実施形態
のように絶縁性基板を用いた場合では、横方向から電流
を注入する方式になるために抵抗は高くなるが、本実施
形態のように導電性基板を用いた場合は基板方向に電流
を流すことが可能であり、著しく素子抵抗が改善され
る。
Similar to the prior art, that is, in the case where the insulating substrate is used as in the first embodiment, the resistance increases because the current is injected laterally. When a conductive substrate is used as the substrate, a current can be passed in the direction of the substrate, and the element resistance is remarkably improved.

【0050】つまり、従来構造のGaN系青色半導体レ
ーザでは、基板と成長層との界面で発生した高密度の転
位の大部分がInGaN活性層45まで伝播しており、
レーザ発振のための大電流密度注入により、高抵抗であ
ることと相俟って、素子の動作寿命は数分程度であり信
頼性が得られなかった。
That is, in the GaN-based blue semiconductor laser having the conventional structure, most of the high-density dislocations generated at the interface between the substrate and the growth layer propagate to the InGaN active layer 45,
In combination with the high resistance due to the injection of a large current density for laser oscillation, the operating life of the device was only a few minutes and reliability was not obtained.

【0051】しかし、本実施形態の場合は、活性層45
の低転位密度化、低抵抗化により、動作寿命が従来の約
7000倍に延び、素子の信頼性が大幅に向上した。 (発明の第4の実施の形態)本実施の形態は、単層の歪
層を用いた場合を示すものである。
However, in the case of this embodiment, the active layer 45
By lowering the dislocation density and lowering the resistance, the operating life was extended about 7,000 times that of the conventional one, and the reliability of the device was significantly improved. (Fourth Embodiment of the Invention) This embodiment shows the case where a single strained layer is used.

【0052】図5は本発明の第4の実施形態に係る半導
体素子を適用したGaN系青色半導体レーザ装置の概略
構成を示す断面図であり、図1と同一部分には同一符号
を付してその説明を省略する。
FIG. 5 is a sectional view showing a schematic structure of a GaN-based blue semiconductor laser device to which the semiconductor element according to the fourth embodiment of the present invention is applied. The same parts as those in FIG. The description is omitted.

【0053】このGaN系青色半導体レーザ装置は、歪
超格子層に代えて立方晶型のInGaN層71を設けた
他、第1の実施形態と同様に構成されている。このIn
GaN層71は、n−GaN層13に比し、やわらかい
層であり、これにより、図6に示すように転位が抜け、
活性層15の転位密度は低くなっている。
This GaN-based blue semiconductor laser device has the same structure as that of the first embodiment, except that a cubic InGaN layer 71 is provided in place of the strained superlattice layer. This In
The GaN layer 71 is a softer layer than the n-GaN layer 13, whereby dislocations are eliminated as shown in FIG.
The dislocation density of the active layer 15 is low.

【0054】図6は本実施形態の半導体素子において転
位が抜ける様子を説明する模式図である。同図におい
て、やわらかい層であるInGaN層71内を上方に伝
搬する転位70は、かたい層であるn−GaN層13に
近づくと、(111)成長面上ですべりを生じてその伝
搬方向を変えられ、当該転位70は半導体素子側部から
抜ける。
FIG. 6 is a schematic diagram for explaining how dislocations are eliminated in the semiconductor device of this embodiment. In the figure, the dislocations 70 propagating upward in the soft InGaN layer 71, when approaching the hard n-GaN layer 13, slip on the (111) growth surface and propagate in the propagation direction. The dislocation 70 is changed and escapes from the side of the semiconductor device.

【0055】上述したように、本発明の第4の実施の形
態に係わる半導体素子によれば、第1の実施形態の場合
と同様の構成を有する他、歪超格子層に代えて立方晶型
のInGaN層71を設けたので、第1の実施の形態の
場合と同様、活性層の低転位密度化を図ることができ
る。 (発明の第5の実施の形態)本実施の形態は、単層の歪
層を用いた場合を示すものである。
As described above, the semiconductor device according to the fourth embodiment of the present invention has the same structure as that of the first embodiment, and has a cubic crystal structure instead of the strained superlattice layer. Since the InGaN layer 71 is provided, the dislocation density of the active layer can be reduced as in the case of the first embodiment. (Fifth Embodiment of the Invention) The present embodiment shows a case where a single strained layer is used.

【0056】図7は本発明の第5の実施形態に係る半導
体素子を適用したGaN系青色半導体レーザ装置の概略
構成を示す断面図であり、図1と同一部分には同一符号
を付してその説明を省略する。
FIG. 7 is a sectional view showing a schematic structure of a GaN-based blue semiconductor laser device to which a semiconductor element according to the fifth embodiment of the present invention is applied. The same parts as those in FIG. The description is omitted.

【0057】このGaN系青色半導体レーザ装置は、歪
超格子層に代えて立方晶型のAlGaN層72を設けた
他、第1の実施形態と同様に構成されている。このAl
GaN層72は、n−GaN層11に比し、かたい層で
あり、これにより、図8に示すように転位が抜け、活性
層15の転位密度は低くなっている。
This GaN-based blue semiconductor laser device has the same structure as that of the first embodiment except that a cubic AlGaN layer 72 is provided instead of the strained superlattice layer. This Al
The GaN layer 72 is a harder layer than the n-GaN layer 11, and as a result, dislocations are eliminated and the active layer 15 has a low dislocation density, as shown in FIG.

【0058】図8は本実施形態の半導体素子において転
位が抜ける様子を説明する模式図である。同図におい
て、やわらかい層であるn−GaN層11内を上方に伝
搬する転位70は、かたい層であるAlGaN層72に
近づくと、(111)成長面上ですべりを生じてその伝
搬方向を変えられ、当該転位70は半導体素子側部から
抜ける。
FIG. 8 is a schematic diagram for explaining how dislocations are eliminated in the semiconductor device of this embodiment. In the figure, the dislocations 70 propagating upward in the n-GaN layer 11 which is a soft layer, when approaching the AlGaN layer 72 which is a hard layer, causes a slip on the (111) growth surface and changes its propagation direction. The dislocation 70 is changed and escapes from the side of the semiconductor device.

【0059】上述したように、本発明の第5の実施の形
態に係わる半導体素子によれば、第1の実施形態の場合
と同様の構成を有する他、歪超格子層に代えて立方晶型
のAlGaN層72を設けたので、第1の実施の形態の
場合と同様、活性層の低転位密度化を図ることができ
る。
As described above, the semiconductor device according to the fifth embodiment of the present invention has the same structure as that of the first embodiment, and has a cubic crystal structure instead of the strained superlattice layer. Since the AlGaN layer 72 is provided, the dislocation density of the active layer can be reduced as in the case of the first embodiment.

【0060】なお、上記各実施形態においては、六方晶
型サファイア基板、立方晶型GaAs基板をその基板と
して用いたが、本発明はこれに限定されるものではな
く、SiC、Si、ZnO、スピネル、ネオジウムガレ
ート(NdGaO3 、NGO)等を基板とした場合でも
同様に適用が可能である。
In each of the above embodiments, a hexagonal sapphire substrate and a cubic GaAs substrate are used as the substrate, but the present invention is not limited to this, and SiC, Si, ZnO, spinel are used. The same can be applied even when a substrate made of, for example, neodymium gallate (NdGaO 3 , NGO) is used.

【0061】また、上記第1,第2,第4,第5の実施
形態のような結晶成長の場合、一般的にはサファイヤ基
板の(0001)面が成長面として用いられるが、本発
明はこれに限られるものではなく、例えばサファイヤ基
板の(011- 2)面等の種々の面を用いることができ
る。
Further, in the case of crystal growth as in the first, second, fourth and fifth embodiments, the (0001) plane of the sapphire substrate is generally used as the growth surface. not limited to this, for example, a sapphire substrate (011 - 2) may be any of various aspects of the surface or the like.

【0062】さらに、上記各実施形態では、超格子層1
2,22,42、InGaN層71、AlGaN層72
等の転位抜きのための層を{111}成長面の場合で説
明したが、本発明はこの場合に限られるものではない。
例えば{112}面や{113}面等の{111}面か
ら30度以内程度の傾斜を有する面であれば、立方晶型
結晶のすべり面である(111)面でのすべりによる転
位抜け効果は十分に発揮でき、このような場合も本発明
の範囲に含まれる。なお、各実施形態では結晶面の表現
として(111)で説明したが、{111}の場合でも
同様な効果を得られることはいうまでもない。
Further, in each of the above embodiments, the superlattice layer 1
2, 22, 42, InGaN layer 71, AlGaN layer 72
Although the layer for removing dislocations such as, for example, has been described in the case of the {111} growth plane, the present invention is not limited to this case.
For example, if the surface has an inclination within about 30 degrees from the {111} plane such as the {112} plane or the {113} plane, the dislocation escape effect due to the slip on the (111) plane, which is the slip plane of the cubic crystal, Can be sufficiently exerted, and such a case is also included in the scope of the present invention. In addition, in each of the embodiments, the description of the crystal plane is (111), but it is needless to say that the same effect can be obtained even in the case of {111}.

【0063】さらにまた、本発明は、六方晶型を有する
半導体層として、半導体発光素子のみならず、受光素
子、トランジスター等の電子デバイス分野へも適用が可
能である。なお、本発明は、上記各実施の形態に限定さ
れるものでなく、その要旨を逸脱しない範囲で種々に変
形することが可能である。
Furthermore, the present invention can be applied not only to a semiconductor light emitting element but also to a field of electronic devices such as a light receiving element and a transistor as a semiconductor layer having a hexagonal crystal type. The present invention is not limited to the above embodiments, and can be variously modified without departing from the gist thereof.

【0064】[0064]

【発明の効果】以上説明したように、本発明によれば、
六方晶型の半導体層の下部に(111)成長面を有する
立方晶型の半導体層を設けて転位の成長方向への伝播を
抑制するようにしたので、基板と成長層との界面で発生
した転位を素子心臓部(発光素子の場合は活性層)へ貫
通しないようにして、素子の信頼性を確保できる半導体
素子を提供することができる。
As described above, according to the present invention,
Since a cubic semiconductor layer having a (111) growth plane is provided below the hexagonal semiconductor layer to suppress the propagation of dislocations in the growth direction, it occurs at the interface between the substrate and the growth layer. It is possible to provide a semiconductor element which can ensure the reliability of the element by preventing the dislocation from penetrating the element heart (active layer in the case of a light emitting element).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係る半導体素子を適
用したGaN系青色半導体レーザ装置の概略構成を示す
断面図。
FIG. 1 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device to which a semiconductor element according to a first embodiment of the present invention is applied.

【図2】同実施形態の半導体素子において転位が抜ける
様子を説明する模式図。
FIG. 2 is a schematic diagram illustrating how dislocations are eliminated in the semiconductor device of the same embodiment.

【図3】本発明の第2の実施形態に係る半導体素子を適
用したGaN系青色半導体レーザ装置の概略構成を示す
断面図。
FIG. 3 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device to which a semiconductor element according to a second embodiment of the present invention is applied.

【図4】本発明の第3の実施形態に係る半導体素子を適
用したGaAs基板上に形成したGaN系青色半導体レ
ーザ装置の概略構成を示す断面図。
FIG. 4 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device formed on a GaAs substrate to which a semiconductor element according to a third embodiment of the present invention is applied.

【図5】本発明の第4の実施形態に係る半導体素子を適
用したGaN系青色半導体レーザ装置の概略構成を示す
断面図。
FIG. 5 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device to which a semiconductor element according to a fourth embodiment of the present invention is applied.

【図6】同実施形態の半導体素子において転位が抜ける
様子を説明する模式図。
FIG. 6 is a schematic diagram illustrating how dislocations are eliminated in the semiconductor device of the same embodiment.

【図7】本発明の第5の実施形態に係る半導体素子を適
用したGaN系青色半導体レーザ装置の概略構成を示す
断面図。
FIG. 7 is a sectional view showing a schematic configuration of a GaN-based blue semiconductor laser device to which a semiconductor element according to a fifth embodiment of the present invention is applied.

【図8】同実施形態の半導体素子において転位が抜ける
様子を説明する模式図。
FIG. 8 is a schematic diagram illustrating how dislocations are eliminated in the semiconductor device of the same embodiment.

【図9】従来のGaN系半導体素子の概略構造を示す断
面図。
FIG. 9 is a sectional view showing a schematic structure of a conventional GaN-based semiconductor element.

【符号の説明】[Explanation of symbols]

10…サファイア基板(六方晶型) 11…閃亜鉛鉱型n−GaN層(結晶欠陥密度:約10
8 〜1010cm-2) 12…閃亜鉛鉱型n−GaN/n−AlGaN歪超格子
層 13…ウルツ鉱型n−GaN層 14…ウルツ鉱型n−AlGaNクラッド層 15…ウルツ鉱型アンド−プGaN活性層 16…ウルツ鉱型p−AlGaNクラッド層 17…ウルツ鉱型p−GaNコンタクト層 18…p側電極 19…n側電極 20…サファイア基板(六方晶型) 21…閃亜鉛鉱型n−GaN層(結晶欠陥密度:約10
8 〜1010cm-2) 22…閃亜鉛鉱型n−GaN/n−InGaN歪超格子
層 23…ウルツ鉱型n−GaN層 24…ウルツ鉱型n−Al0.5 Ga0.5 Nクラッド層 25…ウルツ鉱型GaN光閉じ込め層 26…ウルツ鉱型In0.1 Ga0.9 N多重量子井戸活性
層 27…ウルツ鉱型GaN光閉じ込め層 28…ウルツ鉱型p−Al0.5 Ga0.5 Nクラッド層 29…ウルツ鉱型GaNコンタクト層 30…p側電極 31…n側電極 40…GaAs(111)基板(閃亜鉛鉱型) 41…閃亜鉛鉱型n−GaN層 42…閃亜鉛鉱型n−InGaN/n−AlGaN歪超
格子層 43…ウルツ鉱型n−GaN層 44…ウルツ鉱型n−AlGaNクラッド層 45…ウルツ鉱型アンド−プInGaN活性層 46…ウルツ鉱型p−AlGaNクラッド層 47…ウルツ鉱型p−GaNコンタクト層 48…電流狭窄層 49…p側電極 50…n側電極 51…ダブルヘテロ構造部 71…閃亜鉛鉱型InGaN層 72…閃亜鉛鉱型AlGaN層
10 ... Sapphire substrate (hexagonal type) 11 ... Zinc blende type n-GaN layer (crystal defect density: about 10
8 ~10 10 cm -2) 12 ... sphalerite n-GaN / n-AlGaN strained superlattice layer 13 ... wurtzite n-GaN layer 14 ... wurtzite type n-AlGaN cladding layer 15 ... wurtzite and -P GaN active layer 16 ... wurtzite p-AlGaN cladding layer 17 ... wurtzite p-GaN contact layer 18 ... p-side electrode 19 ... n-side electrode 20 ... sapphire substrate (hexagonal type) 21 ... sphalerite n-GaN layer (crystal defect density: about 10
8 ~10 10 cm -2) 22 ... sphalerite n-GaN / n-InGaN strained superlattice layer 23 ... wurtzite n-GaN layer 24 ... wurtzite n-Al 0.5 Ga 0.5 N cladding layer 25 ... Wurtzite GaN optical confinement layer 26 ... Wurtzite In 0.1 Ga 0.9 N multiple quantum well active layer 27 ... Wurtzite GaN optical confinement layer 28 ... Wurtzite p-Al 0.5 Ga 0.5 N clad layer 29 ... Wurtzite GaN contact layer 30 ... p-side electrode 31 ... n-side electrode 40 ... GaAs (111) substrate (zinc blende type) 41 ... zinc blende type n-GaN layer 42 ... zinc blende type n-InGaN / n-AlGaN strain Superlattice layer 43 ... Wurtzite n-GaN layer 44 ... Wurtzite n-AlGaN cladding layer 45 ... Wurtzite and-type InGaN active layer 46 ... Wurtzite p-AlGaN cladding layer 47 ... U Tsu blende p-GaN contact layer 48 ... current blocking layer 49 ... p-side electrode 50 ... n-side electrode 51 ... double heterostructure section 71 ... sphalerite InGaN layer 72 ... zinc blende type AlGaN layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 六方晶型の半導体からなる素子部を有す
る半導体素子において、成長基板と前記素子部との間に
実質的な{111}成長面を有する立方晶型の歪層を設
けたことを特徴とする半導体素子。
1. A semiconductor device having a device portion made of a hexagonal semiconductor, wherein a cubic strain layer having a substantial {111} growth plane is provided between a growth substrate and the device portion. A semiconductor element characterized by.
【請求項2】 六方晶型の半導体からなる素子部を有す
る半導体素子において、成長基板と前記素子部との間
に、{111}面から30度以内の傾斜を有する成長面
を含む実質的な{111}成長面を有する立方晶型の歪
超格子を設けたことを特徴とする半導体素子。
2. A semiconductor device having a device portion made of a hexagonal semiconductor, wherein a growth surface having an inclination within 30 degrees from a {111} plane is substantially provided between the growth substrate and the device portion. A semiconductor device comprising a cubic strained superlattice having a {111} growth plane.
JP3825996A 1996-02-26 1996-02-26 Semiconductor element Pending JPH09232629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3825996A JPH09232629A (en) 1996-02-26 1996-02-26 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3825996A JPH09232629A (en) 1996-02-26 1996-02-26 Semiconductor element

Publications (1)

Publication Number Publication Date
JPH09232629A true JPH09232629A (en) 1997-09-05

Family

ID=12520329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3825996A Pending JPH09232629A (en) 1996-02-26 1996-02-26 Semiconductor element

Country Status (1)

Country Link
JP (1) JPH09232629A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063711A1 (en) * 1998-03-12 2000-12-27 Nichia Chemical Industries, Ltd. Turntable device and manufacturing method thereof
US6530991B2 (en) 1999-12-14 2003-03-11 Riken Method for the formation of semiconductor layer
US6541798B2 (en) 1999-12-06 2003-04-01 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
JP2003318494A (en) * 1997-11-26 2003-11-07 Nichia Chem Ind Ltd Nitride semiconductor device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
US6841808B2 (en) 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
US6872967B2 (en) 2000-03-24 2005-03-29 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and manufacturing method thereof
US7015515B2 (en) 2001-06-08 2006-03-21 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device having a superlattice structure
JP2006510234A (en) * 2003-06-25 2006-03-23 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
WO2006068375A1 (en) * 2004-12-23 2006-06-29 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
JP2006179959A (en) * 2006-03-24 2006-07-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2007180499A (en) * 2005-12-28 2007-07-12 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
JP2008135768A (en) * 2007-12-28 2008-06-12 Sony Corp Growing method of nitride-based group iii-v compound semiconductor layer and manufacturing method of semiconductor device
US7429756B2 (en) 2003-10-15 2008-09-30 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device
CN100446289C (en) * 1998-03-12 2008-12-24 日亚化学工业株式会社 Nitride semiconductor device
WO2010150809A1 (en) * 2009-06-24 2010-12-29 日亜化学工業株式会社 Nitride semiconductor light emitting diode
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element
JP2012009783A (en) * 2010-06-28 2012-01-12 Meijo Univ Group iii nitride-based solar cell
JP2012151503A (en) * 2012-04-06 2012-08-09 Sharp Corp Method of manufacturing nitride semiconductor
JP2013065630A (en) * 2011-09-15 2013-04-11 Toshiba Corp Semiconductor light-emitting element, wafer, method of manufacturing semiconductor light-emitting element, and method of manufacturing wafer
JP2013516781A (en) * 2010-01-05 2013-05-13 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and manufacturing method thereof
JP2014195114A (en) * 2014-06-02 2014-10-09 Toshiba Corp Semiconductor light-emitting element and wafer
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
JP2015511776A (en) * 2012-03-29 2015-04-20 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting element
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US10164150B2 (en) 2012-03-29 2018-12-25 Seoul Viosys Co., Ltd. Near UV light emitting device
US10177273B2 (en) 2012-03-29 2019-01-08 Seoul Viosys Co., Ltd. UV light emitting device

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP4524997B2 (en) * 1997-11-26 2010-08-18 日亜化学工業株式会社 Nitride semiconductor device
JP2003318494A (en) * 1997-11-26 2003-11-07 Nichia Chem Ind Ltd Nitride semiconductor device
CN100446289C (en) * 1998-03-12 2008-12-24 日亚化学工业株式会社 Nitride semiconductor device
EP1063711A4 (en) * 1998-03-12 2007-06-27 Nichia Corp Turntable device and manufacturing method thereof
EP2273571A3 (en) * 1998-03-12 2012-06-27 Nichia Corporation A nitride semiconductor device
US7947994B2 (en) 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
KR100753147B1 (en) * 1998-03-12 2007-08-30 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device
EP1063711A1 (en) * 1998-03-12 2000-12-27 Nichia Chemical Industries, Ltd. Turntable device and manufacturing method thereof
US7402838B2 (en) 1998-03-12 2008-07-22 Nichia Corporation Nitride semiconductor device
KR100683234B1 (en) * 1998-03-12 2007-02-15 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
EP2273572A3 (en) * 1998-03-12 2012-08-29 Nichia Corporation A nitride semiconductor device
US7348602B2 (en) 1999-03-29 2008-03-25 Nichia Corporation Nitride semiconductor device
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
US6617061B2 (en) 1999-12-06 2003-09-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
US6541798B2 (en) 1999-12-06 2003-04-01 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
US6530991B2 (en) 1999-12-14 2003-03-11 Riken Method for the formation of semiconductor layer
US6872967B2 (en) 2000-03-24 2005-03-29 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and manufacturing method thereof
US6841808B2 (en) 2000-06-23 2005-01-11 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and method for producing the same
US9054253B2 (en) 2001-05-30 2015-06-09 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
US9112083B2 (en) 2001-05-30 2015-08-18 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7015515B2 (en) 2001-06-08 2006-03-21 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device having a superlattice structure
JP2008182284A (en) * 2003-06-25 2008-08-07 Lg Innotek Co Ltd Light emitting device using nitride semiconductor and fabrication method of the same
JP2006510234A (en) * 2003-06-25 2006-03-23 エルジー イノテック カンパニー リミテッド Nitride semiconductor light emitting device and manufacturing method thereof
US7691657B2 (en) 2003-06-25 2010-04-06 Lg Innotek Co., Ltd. Light emitting device using nitride semiconductor and fabrication method of the same
US7429756B2 (en) 2003-10-15 2008-09-30 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device
DE112004001447B4 (en) * 2003-10-15 2010-07-22 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
US8704250B2 (en) 2004-12-23 2014-04-22 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device and fabrication method thereof
KR100765004B1 (en) * 2004-12-23 2007-10-09 엘지이노텍 주식회사 Nitride semiconductor LED and fabrication method thereof
US7902561B2 (en) 2004-12-23 2011-03-08 Lg Innotek Co., Ltd. Nitride semiconductor light emitting device
WO2006068375A1 (en) * 2004-12-23 2006-06-29 Lg Innotek Co., Ltd Nitride semiconductor light emitting device and fabrication method thereof
JP2007180499A (en) * 2005-12-28 2007-07-12 Samsung Electro Mech Co Ltd Nitride semiconductor light-emitting device
JP2006179959A (en) * 2006-03-24 2006-07-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2008135768A (en) * 2007-12-28 2008-06-12 Sony Corp Growing method of nitride-based group iii-v compound semiconductor layer and manufacturing method of semiconductor device
JPWO2010150809A1 (en) * 2009-06-24 2012-12-10 日亜化学工業株式会社 Nitride semiconductor light emitting diode
JP5758293B2 (en) * 2009-06-24 2015-08-05 日亜化学工業株式会社 Nitride semiconductor light emitting diode
US9048385B2 (en) 2009-06-24 2015-06-02 Nichia Corporation Nitride semiconductor light emitting diode
WO2010150809A1 (en) * 2009-06-24 2010-12-29 日亜化学工業株式会社 Nitride semiconductor light emitting diode
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element
JP2013516781A (en) * 2010-01-05 2013-05-13 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and manufacturing method thereof
US9716210B2 (en) 2010-01-05 2017-07-25 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US10418514B2 (en) 2010-01-05 2019-09-17 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
US9136427B2 (en) 2010-01-05 2015-09-15 Seoul Viosys Co., Ltd. Light emitting diode and method of fabricating the same
JP2012009783A (en) * 2010-06-28 2012-01-12 Meijo Univ Group iii nitride-based solar cell
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
JP2013065630A (en) * 2011-09-15 2013-04-11 Toshiba Corp Semiconductor light-emitting element, wafer, method of manufacturing semiconductor light-emitting element, and method of manufacturing wafer
JP2015511776A (en) * 2012-03-29 2015-04-20 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting element
US10164150B2 (en) 2012-03-29 2018-12-25 Seoul Viosys Co., Ltd. Near UV light emitting device
US10177273B2 (en) 2012-03-29 2019-01-08 Seoul Viosys Co., Ltd. UV light emitting device
JP2012151503A (en) * 2012-04-06 2012-08-09 Sharp Corp Method of manufacturing nitride semiconductor
JP2014195114A (en) * 2014-06-02 2014-10-09 Toshiba Corp Semiconductor light-emitting element and wafer

Similar Documents

Publication Publication Date Title
JPH09232629A (en) Semiconductor element
US7615804B2 (en) Superlattice nitride semiconductor LD device
AU738480B2 (en) Nitride semiconductor device
US6891201B2 (en) Nitride semiconductor laser element and optical device containing it
WO1998039827A1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JP2002335052A (en) Nitride semiconductor element
JP2003332697A (en) Nitride semiconductor element and its manufacturing method
JP2900990B2 (en) Nitride semiconductor light emitting device
US6881981B2 (en) Nitride semiconductor light emitting device chip
JPH1065271A (en) Gallium nitride based semiconductor light-emitting element
JPH08316582A (en) Semiconductor laser
JP4291960B2 (en) Nitride semiconductor device
JP3395631B2 (en) Nitride semiconductor device and method of manufacturing nitride semiconductor device
JP2891348B2 (en) Nitride semiconductor laser device
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP3371830B2 (en) Nitride semiconductor light emitting device
JP4365898B2 (en) Gallium nitride semiconductor laser device and semiconductor laser light source device
JP4334129B2 (en) Nitride semiconductor light emitting device and optical device including the same
JP3496480B2 (en) Nitride semiconductor device
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JP2000307193A (en) Semiconductor laser, its manufacture, semiconductor device and manufacture of the same
JP3347633B2 (en) Semiconductor device and method of manufacturing the same
JP4955195B2 (en) Nitride semiconductor device
JP2005101536A (en) Nitride semiconductor laser element
JP2001102690A (en) Nitride type semiconductor laser